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1 Basic description of the problem

This code can be used to solve elliptic, second order partial differential equations (PDE) on a domain
Q C R? with boundary I' = I'yUI's. For given functions a, b, f, gD and gN an approximate solution
u of the boundary value problem (BVP)

div(a gradu) —bu = f in Q
u = gD on I (1)
a % = gN on I’y

is computed. On a triangularization of the domain 2 a piecewise linear approximation of the
exact solution is used. The mathematical background can be found in many books, e.g. [John87],
[Loga92] and [Redd84]. The implementation is based on a set of lecture notes by this author
(see [VarFem]).

The goal is to provide a set of Octave commands to solve the above problem. The commands
are listed in table 1. For teaching purposes we give a full set of commands to compute element
stiffness matrices, construct the system of linear equations and examine the solution. A set of
sample problems is included and might help to illustrate the commands. More examples are given
in [VarFem)].

This code was developed and tested on a variety UNIX systems. Dynamically linked Octave
functions are used to obtain shorter computation times. This author is not aware on any system
dependent features.

Similar code was implemented in Mathematica and can be obtained through the authors home
page! or at the Wolfram mathsource site?. The runtime performance under Mathematica is rather
poor.

"http://www.hta-bi.bfh.ch/ sha
*http://www.mathsource. com



Creating, reading and visualizing a mesh

ReadMesh ()
ReadMeshTriangle()
CreateRectMesh()
CreateEasyMesh()
CreateMeshTriangle()
ShowMesh ()

reading mesh information from FasyMesh files
reading mesh information from triangle files
create a rectangular mesh

create a mesh by calling FasyMesh

create a mesh by calling triangle

visualize the mesh.

Creating and solving the system of linear equations, evaluate functions

FEMEquation() set up the system of linear equations

FEMSolveSym() solve the system of linear equations, banded symmetric solver
FEMEig() find eigenvalues and eigenfunctions

FEMValue () evaluate the solution and its gradient at given points
FEMGradient () evaluate the gradient at the nodes of the mesh
FEMIntegrate () integrate a function over the domain

Visualization of the solution

ShowSolution() visualize the solution with the help of Gnuplot
ShowLevelCurves () show the level curves of a function
ShowVectorField() visualize the gradient of the solution as vector field
ShowSolutionMTV () create an input file for plotmtv

Functions for education purpos

es

ReadMeshM()
ReadMeshTriangleM()
ElementContribution()
ElementContributionEdge ()
FEMEquationM()

FEMSolve ()

FEMValueM()
ShowSolutionM()

reading mesh information from FasyMesh files
reading mesh information from triangle files

find element stiffness matrix and the element vector
find contribution of one edge

set up the system of linear equations

solve the system of linear equations, full matrix
evaluate the solution and its gradient at given points
visualize the solution

Operations for symmetric, banded matrices

SBSolve ()
SBFactor ()
SBBacksub ()
SBEig()
SBProd ()
FullToBand ()
BandToFull()
BandToSparse ()

solve a system of linear equations

find the RT DR factorization

use back-substitution to solve system of equations
find a few of the smallest eigenvalues and eigenvectors
multiply symmetric banded matrix with full matrix
convert a symmetric matrix to a banded matrix
convert a banded matrix to a symmetric matrix
convert a banded matrix to a sparse matrix

Table 1: List of commands




2 FEM commands

A list of all commands is given in table 1. The following sections give short descriptions of each
command.

2.1 Reading the mesh information and generating meshes

Currently the mesh may be generated by EasyMesh?. Using one input file (e.g. test.d) three
output files are generated by FasyMesh, with information on nodes (test.n), elements (test.e)
and edges (test.s).

Another option is to use the code triangle, written by Jonathan Richard Shewchuk*. The source
is included the distribution of FEMoctave. Since triangle does not number its nodes to minimize
the bandwidth of the matrix the additional utility CuthillMcKee is provided. Sample applications
are shown in demos 5, 8 and 10 and its Makefile. Some more documentation can be found on this
authors home page at [www:shal.

2.1.1 ReadMesh

If the mesh is generated by EasyMesh, then the files are read by the command ReadMesh () to make
the information available to Octave, i.e. read the variables nodes, elem und edges by calling
[nodes,elem,edges]=ReadMesh("test")

The directory of the files can be be given as part of the filename. The type of boundary conditions
have to be given in these mesh descriptions. Dirichlet conditions are of type 1 and Neumann
conditions of type 2. The on-line help on ReadMesh () gives some more information.

[...] = ReadMesh (...)
reads the information of EasyMesh output into Octave data structures

[nodes,elem,edges]=ReadMesh(filename) ;
the files filename.n filename.e filename.s are read
these files have to be generated first by ‘EasyMesh filename’
EasyMesh reads filename.d for the description of the domain
The boundary markers in filename.d lead to the following boundary conditions
1 leads to a Dirichlet condition
2 leads to a Neumann condition

the matrices nodes elem edges describe the mesh

nodes contains the x and y coordinates of the nodes and the material
type at each node, i.e. nodes =[x1,yl,ml;x2,y2,m2;...;xn,yn,mn]

elem contains the information about the elements
One row shows the numbers of the three nodes forming the element and
then the material type of the element

edges contains the information about the boundary segments
One row shows the numbers of the two nodes forming the segment and
then the boundary markers is shown (1=Dirichlet, 2=Neumann)

Currently material information ignored

3http://www-dinma.univ.trieste.it/ nirftc/research/easymesh/
“Information can be found at http://www.cs.cmu.edu/"quake/triangle.html



2.1.2 ReadMeshTriangle

If the mesh is generated by triangle, then the files are read by the command ReadMeshTriangle ()
to make the information available to Octave, i.e. read the corresponding variables with the help of
[nodes,elem,edges]=ReadMeshTriangle("test.1")

One should definitely use CuthillMcKee to renumber the nodes, see ./demos/demo5.

2.1.3 CreateRectMesh

With the command CreateRectMesh() a rectangular mesh can be generated, without the help of
EasyMesh or triangle.

[...] = CreateRectMesh(...)
generate a rectangular mesh

[nodes,elem,edges] = CreateRectMesh(x,y,blow,bup,bleft,bright)
nodes elem edges contain the information on the mesh

X y vectors containing the coordinates of the nodes
a typical vertex is (x(j), y(i))

blow,bup,bleft,bright indicate the type of boundary condition
at lower, upper, right and left edge of rectangle
b*=1 Dirichlet condition
b*=2 Neumann condition

An example is shown in demo 3.

2.1.4 CreateEasyMesh

If the domain to be meshed is enclosed by a simple curve, then the command CreateEasyMesh
can be used. The nodes forming the curve and the type of boundary conditions, together with the
typical length of the sides of the triangles and the filename, are given as input parameters. The
command generates an input file for FasyMesh and then calls EasyMesh, thus EasyMesh needs to
be installed for this to work. An example is shown in demos 8 and 10 .

[...] = CreateEasyMesh(...)
generate a mesh using EasyMesh

CreateEasyMesh(name,xy,len)
name the base filename: the file name.d will be generated
then EasyMesh will generate files name.* with the mesh

Xy  vector containing the coordinates of the nodes forming the
outer boundary. Currently no holes can be generated. The format is
[x1,y1,t1;x2,y2,t2;...;xn,yn,tn] where
xi x-coordinate of node i
yi x-coordinate of node i
ti boundary marker for segment from node i to node i+l
bi=1 Dirichlet condition
bi=2 Neumann condition
the last given node will be connected to the first given node
to create a closed curve



len vector with the typical length of triangle side at a point
if len is a scalar the same length will be used for all points

The information can then be read and used by
[nodes,elem,edges] =ReadMesh("name") ;

2.1.5 CreateMeshTriangle

If the domain to be meshed is enclosed by a simple curve, then the command CreateMeshTriangle
can be used. The nodes forming the curve and the type of boundary conditions, together with
the maximal area of the triangles and the filename, are given as input parameters. The command
generates an input file for triangle and then calls triangle, thus triangle needs to be installed for
this to work. In addition CuthillMcKee is called to assure a band structure of the resulting matrix.
Examples are shown in demos 6, 7, 8, 9 and 10 .

[...] = CreateMeshTriangle(...)
generate a mesh using triangle

[...] = CreateMeshTriangle(...)
generate a mesh using triangle
CreateMeshTriangle (name,xy,area)
name the base filename: the file name.poly will be generated
then triangle will generate files name.l.* with the mesh

Xy  vector containing the coordinates of the nodes forming the
outer boundary. Currently no holes can be generated. The format is
[x1,y1,t1;x2,y2,t2;...;%xn,yn,tn] where
xi x-coordinate of node i
yi x-coordinate of node i
ti boundary marker for segment from node i to node i+l
bi=1 Dirichlet condition
bi=2 Neumann condition
the last given node will be connected to the first given node
to create a closed curve

area a scalar given the maximal area of the triangles to be generated

The information can then be read and used by
[nodes,elem,edges]=ReadMeshTriangle("name.1");

This simple script file only covers rather elementary situations. triangle allows for many more
options to be specified and its web page show how to use them. To generate good meshes we clearly
recommend to use triangle directly. An example of this is show in demo 8 where we compute the
capacitance of a conductor.

2.1.6 ShowMesh
For a visual control of the mesh use ShowMesh(). With ShowMesh(nodes,elem) a temporary file
will be written to the disk and then Gnuplot is called to show the mesh.

2.2 Setting up and solving the system of linear equations

In this section we try to give a brief explanation of the command used to convert the boundary
value problem in equation (1) into a system of linear equations.



2.2.1 Writing the function files

The examples in ./demos/* show different techniques to implement the functions.

To solve the boundary value problem (1) the functions a, b, f, gD and gNN have to be given.
They can be given by one constant or by a vector of values at the nodes of the mesh. One can also
implement the functions in script files, as function files (“*.m’) or as dynamically linked functions
(“*.oct’). The function accept a matrix with x and y coordinates of points as arguments and return
a vector with the values of the function as result. As an example consider an implementation of
the function a(z,y) = 1+ x. Calling a([1,2;3,4;5,-6]) should return the answer [2;4;6] . The
code below has to be in a file a.m .

function res = a(xy)
[n,m]=size(xy);
res=zeros(n,1);
for k=1:n
res(k)=1+xy(k,1);
endfor
endfunction

A vectorized (faster) implementation of the same function is given by

function res = aVector(xy)
res=1 + xy(:,1);
endfunction

If the applications has to run as fast as possible, then an implementation as a dynamically linked
function should be considered. On good operating systems the command mkoctfile -s a.cc will
create a file a.oct using the input below. The speed improvement can be considerable. Below find
the file a.cc

#include <iostream.h>
#include <math.h>
#include <octave/oct.h>
#include <octave/parse.h>

DEFUN_DLD (a, args, , "[...] = a (...) description ")
{
octave_value_list retval;
int nargin = args.length ();
if (nargin !'=1 ) {
print_usage ("a");
return retval;
}
octave_value X_arg = args(0);
int nr= X_arg.rows();
Matrix xy=X_arg.matrix_value();
ColumnVector result (ar);

for(int i= 0; i < nr; i++) { result(i) =1.0 + xy(i,0); }
retval (0)=result;
return retval;

¥

Often is is convenient to create one source file for multiple functions and then use links to generate
other *.oct files. This can save a considerable amount of disk space. An example is shown in
demo 4.



2.2.2 FEMEquation

Once all functions and the mesh information are set up, then the system of linear equations can
be setup up by [A,b,n2d]=FEMEquation(nodes,elem,edges,’a’,’b’,’f’,’gD’,’gN’); to solve
the boundary value problem in equation (1).

e The functions a, b and f can be given as string with the function—name, as array of values
at the nodes or as one scalar value to be used on all nodes, i.e. constant coefficients.

e The boundary functions gD and gN can be given as string with the function—name or as a
constant scalar value.

The command will create a representation of the symmetric matrix in A and the RHS in the vector
b. The vector n2d shows the essential boundary conditions and numbers the actual degrees of
freedom of the system. Almost FEM problems solved with this package will require a call of
FEMEquation().

The on-line help on FEMEquation() gives more information, as shown below.

[...] = FEMEquation (...)
sets up the system of linear equations for a numerical solution of a PDE

[A,b,n2d]=FEMEquation(nodes,elem,edges,’a’,’b’,’f’,’gD’, gN’)
[A,b,n2d]=FEMEquation(nodes,elem,edges,aVec,bVec,fVec,’gD’,’gN’)
nodes elem edges describe the mesh
see ReadMesh() for the description of the format
’a’,’b’,’f’,’gD’,’gN’ are the names of the functions and coefficients
in the boundary value problem given below
the functions a, b and f may be given as constant scalar value
or as vector with the values of the function at the nodes
the functions gD and gN may be given as constant scalar value

div(a*grad u) - b*xu = f in domain
u = gD on Dirichlet section of the boundary
axdu/dn = gN on Neumann section of the boundary

A is the matrix of the system to be solved.
It is stored in a symmetric, banded form (see SBSolve() )
b is the RHS of the system to be solved.
n2d is the renumbering of the nodes to the DOF of the system
n2d(k)=0 indicates that node k is a Dirichlet node
n2d(k)=nn indicates that the value of the solution at node k
is given by u(an)

The contributions of each element and edge are computed internally by this function. The function
files ElementContribution and ElementContributionEdge are not used.

2.2.3 FEMSolveSym

Once the equations are known they can be solve by u=FEMSolveSym(nodes,A,b,n2d,’gD’). The
vector u will contain the values of the function at the nodes. The on-line help shows more infor-
mation.

[...] = FEMESolveSym (...)
solves the system of linear equations for a numerical solution of a PDE



u=FEMSolveSym(nodes,A,b,n2d,gDFunc)

nodes contains information about the mesh
see ReadMesh() for the description of the format
A is the matrix of the system to be solved.
It is stored in a symmetric, banded form (see SBSolve() )
b is the RHS of the system to be solved.
n2d is the renumbering of the nodes to the DOF of the system
n2d(k)=0 indicates that node k is a Dirichlet node
n2d(k)=nn indicates that the value of the solution at node k
is given by u(an)
’gD’ is the function describing the Dirichlet boundary condition
it may also be given as a scalar value

u is the vector with the values of the solution

The source of FEMSolveSym is very simple. First the system of equations is solved by calling
SBSolve (), then the solution is supplemented with the values on the Dirichlet boundary for the
final solution vector u.

function u=FEMSolveSym(nodes,gMat,gVec,n2d,gDFunc)
if (nargin!=5)

help("FEMSolveSym"); usage("FEMSolveSym(nodes,A,b,n2d,gDFunc)");
endif

ug=-SBSolve(gMat,gVec);
n=length(n2d) ;
u=zeros(n,1);

for k=1:n

if n2d(k)>0
u(k) = ug(n2d(k));

else
if is_scalar(gDFunc) u(k)

else u(k)

endif 7, scalar

endif

gDFunc;
feval (gDFunc,nodes(k,1:2));

endfor
endfunction

If the matrix A is not given in banded symmetric form, then the command FEMSolve () can be

used instead. If possible FEMSolveSym() should be used, as it is considerably faster.

2.2.4 FEMEig

To determine eigenvalues A and eigenfunctions u of the boundary value problem

div(a gradu) —bu = X fu in Q

u = 0 on I (2)
(1%% =0 on Iy

the command FEMEig() can be used.



[...] = FEMEig (...)
determine eigenvalues and eigenfunctions for the given BVP

div(a*grad u) - b*u = laxf*u in domain

u=20 on Dirichlet section of the boundary
axdu/dn = 0 on Neumann section of the boundary
la = FEMEig(nodes,elem,edges,aFunc,bFunc,fFunc,eigVec,tol)
[la,ev] = FEMEig(nodes,elem,edges,aFunc,bFunc,fFunc,eigVec,tol)

nodes elem, edges contains information about the mesh
see ReadMesh() for the description of the format
aFunc bFunc fFunc function files for the coefficient functions
may also be given as vectors or scalar values
eigVec 1is the initial guess for the eigenvectors
the number of columns determines the number of eigenvalues
to be computed
if a number n is given, then n eigenvalues will be computed
tol is the tolerance for the relative error of the eigenvalues
if not given tol = le-5 is used as default

la 1is the vector containing the eigenvalues
ev 1is the matrix with the eigenvectors as columns

The command will create the global stiffness matrix A and a mass matrix B and then call SBEig()
to solve the generalized eigenvalue problem Av = A\ B7.
An example is given in demos 4 and 7.

2.2.5 FEMValue

To compute the value of the solution at a specific point or at multiple use FEMValue (). Calling the
function values=FEMValue(xy,nodes,elem,u,defaultvalue) returns the values of the linearly
interpolated solution at the points given in xy. It is considerably more efficient to call the function
once with multiple points in xy than to call it for each point separately. If a point is not in the
domain, then 0 is returned, unless defaultvalue is specified. There are certainly faster algorithms
than the one used here, but its it not extremely slow either.

If one also wishes to calculate the values of the gradient at the given points then one can call the
function with 2 output arguments, e.g. [values,grad]=FEMValue(xy,nodes,elem,u). Examples
are shown in demos 1, 2, 4, 7, 8 and 10.

2.2.6 FEMGradient

To compute the value of the gradient of a function at all nodes of the mesh use FEMGradient ().
Calling grad=FEMGradient (nodes,elem,u) will determine the gradient of the function u at the
nodes. The function is constructed by linear interpolation, using the given values u at the nodes.
Then the gradient is computed on each element. For each node a weighted average of the gradient
on the neighboring elements is used. The weight is given by the angle of the element (triangle)
at the node. For evaluation at the nodes FEMGradient returns better results than FEMValue. An
example is shown in demo 7 .
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2.2.7 FEMIntegrate

With the command integral=FEMIntegrate(nodes,elem,u) the linear interpolation of the func-
tion determined by u will be integrated over the domain, i.e. compute

/Q/udA

[...] = FEMIntegrate (...)
integrate a function over the mesh

integral = FEMIntegrate(nodes,elem,’f’)
integral = FEMIntegrate(nodes,elem,fValues)
nodes elem describe the mesh
see ReadMesh() for the description of the format

i i is the name of the function to be integrated
fValues a vector with the values of the function at the nodes
integral is the integral of the given function over the mesh

For linear function the result is exact. An example is shown in demo 7 .

2.2.8 FindDOF

The function file FindDOF determines the DOF (degrees of freedom) for the system at hand. It also
determines the correct numbering of the DOF. It is an internal function, called in FEMEquation and
FEMEquationM. The result is stored in a variable n2d, to be used in FEMSolveSym and FEMSolve.
There should be no need to call this function explicitly.

2.3 Visualization

2.3.1 ShowSolution

The computed solution can be graphed using Gnuplot using the command ShowSolution(). Its
syntax is self-explanatory.

ShowSolution(...)
shows a graph of a numerical solution of the PDE

ShowSolution(nodes,elem,u);
nodes, elem contain information about the mesh

see ReadMesh() for the description of the format
u contains the values of the solution at the nodes

To speed up the writing to the temporary file a dynamically linked function WriteSolution is
used. The source of ShowSolution is a function file. Examples are given in most demos.

2.3.2 ShowLevelCurves

The level curves of a computed function can be visualized by ShowLevelCurves(). Its syntax is
self-explanatory.

ShowLevelCurves(...)
shows level curves of a function on the mesh

11



ShowLevelCurves (nodes,elem,u,levels);
nodes, elem contain information about the mesh
see ReadMesh() for the description of the format
u contains the values of the solution at the nodes
level is a list of values for which the level curves are drawn

see also ReadMesh, ShowMesh, FEMEquation, FEMSolve, FEMValue

Examples are given in demos 3, 7 and 8 .

2.3.3 ShowVectorField

A vector field (e.g. a gradient field) can be visualized by the command ShowVectorField(). Its
syntax is self-explanatory.

ShowVectorField(...)
shows a vector field plot of a numerical solution of the PDE

ShowVectorField(nodes,vectors,factor)

nodes the coordinates of the points at which the vector field was computed
vectors components of the vectorfield at nodes

factor vector field is rescaled by this factor, if given

if the argument factor is not specified an appropriate
default value will be choosen

Examples are given in demos 4, 7, 10 and 11 .

2.3.4 ShowSolutionMTV

If a visualization with the help of plotmtv is desired, then use ShowSolutionMTV (). This command
generates an input file to be displayed from a command line by plotmtv filename. The full power
of plotmtv is at your disposition.

[...] = ShowSolutionMTV (...)
generate the data to be plotted with plotmtv

ShowSolutionMTV(nodes,elem,u,’filename’)
nodes elem u describe the mesh and the solution
’filename’ is the name of the file to be used

The header of the file filename allows for some modifications of the output. For more information
consult the documentation of plotmtv.

2.4 Some function files for educational purposes

For educational purposes it can be useful to have pure Octave code, implementing all necessary
steps of a FEM algorithm. This allows to compute the contributions of each element and edge to the
system of equation to be solved and the assembling of the system of linear equations can be examined
using Octave code. For larger problems this code should not be used, as the implementations in
the previous sections are considerably faster.

e ElementContribution
To compute the element stiffness matrix and the vector contribution of one given element call
[elMat,elVec]=ElementContribution(corners,aFunc,bFunc,fFunc)
See also the on-line help on ElementContribution

12



e ElementContributionEdge
To compute the contribution of the RHS vector due to one line segment of the Neumann part
of the boundary call edgeVec=ElementContributionEdge (corners,gNFunc)
See also the on-line help on ElementContributionEdge

e FEMEquationM
This function file implements the same procedures as FEMEquation. It calls the above two
functions repeatedly. It returns a full matrix A and thus FEMSolve has to be used to solve
the system of equations.

e FEMSolve
This function serves the same purpose as FEMSolveSym, but for a full matrix. It is usually
not as fast.

e FEMValueM
This function serves the same purpose as FEMValue, but is considerably slower.

e ShowSolutionM, ShowVectorField
Display the solution or its gradient using Gnuplot.

Demo 3 shows an elementary sample application.

3 Operations with banded, symmetric matrices

3.1 Basic description

Many matrices used to solve PDE (using FEM) are symmetric. It the nodes are numbered properly
then the matrix will show a band structure, i.e. all nonzero elements are located close to the
main diagonal. The algorithm of Cholesky or the LDLT factorization can take advantage of this
structure, see [GoluVanLoan96]. For a symmetric matrix A of size n x n with semi-bandwidth b
the approximate computational cost to solve one system of equations is given by

1 1
Gauss ~ 3 n® and Band Cholesky ~ 5 n b

Obviously for b <« n it is advantageous to use a banded solver. A more detailed analysis and an
implementation is given in [VarFem].

To take advantage of the symmetry and the band structure the matrices will be stored in a
modified format, as illustrated below.

10 2 3 0 0 10 2 3
2 20 4 5 0 20 4 5
3 4 30 6 7 |—]3 6 7
0 5 6 40 8 40 8 O
0o 0 7 8 &0 50 0 0

A banded version of the LDLT factorization in [GoluVanLoan96] can be implemented. If the matrix
A is strictly positive definite, then the algorithm is known to be stable. If A is not positive definite,
then problems might occur, since no pivoting is done. The matrix A is positive definite if and only
if the diagonal matrix D is positive.

For a given matrix some of its smallest eigenvalues can be computed with an algorithm based
on inverse power iteration. Precise information on the numerical errors is provided. The code is
capable of finding eigenvalues of medium size matrices, where the standard command eig() of
Octave is either very slow or will fail.

13



3.2 Description of the commands
3.2.1 SBSolve

The basic factorization algorithm is implemented in SBSolve. The function can return the solution
of the system of linear equations, or the solution and the factorization of the original matrix.
Multiple sets of equations can be solved.

[...] = SBSolve (...)
solve a system of linear equations with a symmetric banded matrix

X=SBSolve(A,B)
[X,R]=SBSolve(A,B)

solves A X = B
is mxt where t-1 is number of non-zero super diagonals

is mxn
is mxn

D X W=

is mxt

if A would be ! 11000 ! then A= ! 11 !

I 14300 ! I 43 !
I 03520 ! I 52 !
I 00285 ! I 85 !
I 00059 ! 1 90 !

B is a full matrix

The code is based on a LDL’ decomposition (use L=R’), without pivoting.
If A is positive definite, then it reduces to the Cholesky algorithm.

R is an upper right band matrix
The first column of R contains the entries of a diagonal matrix D.
If the first column of R is filled by 1’s, then we have R’*D*R = A

To determine the inverse matrix A~! one can use the command invA = SBSolve(A, eye(n));. Be
aware that calculating the inverse matrix is rarely a wise thing to do. Most often the inverse of a
banded matrix will loose the band structure. If many system of linear equations have to be solved
simultaneously, then use SBSolve(A,B) with a matrix B. If multiple systems need to be solved
sequentially, use SBFactor () and then SBBacksub for each system to be solved.

If the matrix A is strictly positive definite, then the algorithm is stable and one can expect the
solution to be as accurate as the condition number of A permits. If A is semidefinite, then large
errors might occur, since no pivoting is implemented in the code. The matrix is positive definite
if all eigenvalues are positive, this can be verified by inspection of the signs of the numbers in the
first column of R. The matrix is positive definite if the first column of the factorization matrix
R (use SBFactor()) contains positive numbers only. A description of the algorithm can be found
in [GoluVanLoan96] or [VarFem)].

3.2.2 SBFactor and SBBacksub

Instead of calling X=SBSolve (A,B) one can first call R=SBFactor (A) to determine the factorization
A = RTDR and then B=SBBacksub(R,X) to solve the system(s) A- X = B . Since most of the
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computational effort is in the factorization, this can be useful if many system of linear equations
have to be solved sequentially. If multiple system are to be solved simultaneously it is preferable
to use SBSolve(A,B) with a matrix B .

[...] = SBFactor(...)
find the R’DR factorization of a symmetric banded matrix

R=SBFactor (A)

A is mxt where t-1 is number of non-zero super diagonals
R is mxt

if A would be ! 11000 ! then A= ! 11 !

I 14300 ! I 43 !
I 03520 ! I 52 !
I 00285 ! ! 85 !
I 00059 ! ' 90 !

The code is based on a LDL’ decomposition (use L=R’), without pivoting.
If A is positive definite, then it reduces to the Cholesky algorithm.

R is an upper right band matrix
The first column of R contains the entries of a diagonal matrix D.
If the first column of R is filled by 1’s, then we have R’*D*R = A

[...] = SBBacksub(...)
using backsubstitution to return the solution of a system of linear equations

X=SBBacksub(R,B)

B is mxn
X is mxn
R is mxt

R is produced by a call of [X,R] = SBSolve(A,B) or R = SBFactor(A)
It is an upper right band matrix

The first column of R contains the entries of a diagonal matrix D.
If the first column of R is filled by 1’s, then we have R’*D*R = A

If there is interest in the classical Cholesky decomposition of the matrix A (i.e. A =R’-R) then
R can be computed by

rBand=SBFactor(A);
d=sqrt(rBand(:,1));
rBand(:,1)=ones(n,1);
r=triu(diag(d)*rBand)

The number of positive/negative numbers in the first column of R equals the number of posi-
tive/negative eigenvalues of A.
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3.2.3 SBEig

For given symmetric matrices A and B the standard (resp. generalized) eigenvalue problem will
be solved, i.e.
AU=MXU resp. A7=AB7

Using inverse power iteration a given number of the smallest (absolute value) eigenvalues if
a symmetric matrix A are computed. If needed the eigenvectors are also generated. A set of
initial vectors V have to be given. If those are already close to the eigenvectors, then the algo-
rithm will converge rather quickly. For a precise description and analysis consult [GoluVanLoan96|
or [VarFem].

[...] = SBEig(...)
find a few eigenvalues of the symmetric, banded matrix
inverse power iteration is used for the standard and generalized
eigenvalue problem

[Lambda,{Ev,err}] = SBEig(A,V,tol) solve A*Ev = Ev*diag(Lambda)
standard eigenvalue problem
[Lambda,{Ev,err}] = SBEig(A,B,V,tol) solve AxEv = BxEv*diag(Lambda)

generalized eigenvalue problem

A is mxt, where t-1 is number of non-zero superdiagonals

[ss}

is mxs, where s-1 is number of non-zero superdiagonals

v is mxn, where n is the number of eigenvalues desired
contains the initial eigenvectors for the iteration

tol is the relative error, used as the stopping criterion

X is a column vector with the eigenvalues
Ev 1is a matrix whose columns represent normalized eigenvectors
err is a vector with the a posteriori error estimates for the eigenvalues

The algorithm is based on inverse power iteration with n independent vectors. The iteration will
proceed until the relative change of all eigenvalues is smaller than the given value of tol. This does
not guarantee that the relative error is smaller than tol. The initial guesses V for the eigenvectors
have to be linearly independent. The closer the initial guess is to the actual eigenvector, the faster
the algorithm will converge. The algorithm returns the n eigenvalues closest to O .

For the standard eigenvalue problem A #; = \; ¥; the eigenvectors o; will be orthonormal with
respect to the standard scalar product, i.e, (U;, U;) = 6; ;. For the generalized eigenvalue problem
A ¥; = \; B this translates to (¥;, B;) = ¢; ;. The symmetric matrix B should be positive
definite. The columns of Ev can be used to restart the algorithm if higher accuracy is required.

The algorithm will return reliable estimates for the errors in the eigenvalues. The a posteriori
error estimate err is based on the residual ¥ = A ¥ — A ¥ and

i A= < (7, ) = [|7]]
where we use the normalization (7, ¥) = 1. If one of the eigenvalues has to be computed with high
accuracy, the approximate value A may be subtracted from the diagonal of the matrix. Then the
eigenvalue closest to zero of the modified matrix A — A1 can be computed, using the already com-
puted eigenvector. If the eigenvalue is isolated the algorithm will converge very quickly. This algo-
rithm is similar to the Rayleigh quotient iteration. A good description is given in [GoluVanLoan96].
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If the eigenvalue closest to A is denoted by \; we have the improved estimate

12
A=Al < % where gap =min{|A — \;| : A\; € 0(A),j # i}

It is very easy to implement this test in Octave. If the estimate is based on approximate values of
the eigenvalues, then the result is not as reliable as the previous one. Since the value of gap will
carry an approximation error. The situation is particularly bad if some eigenvalues are clustered.

For the generalized eigenvalue problem we use the residual ¥ = A ¥ — AB ¢ and the estimates

: o (', B~'7)
mln)|)\—)\i\§\/(r,B1f> and |A— )\ < —=——

Xi€o(A gap

with the normalization (¢, B ¥) = 1. The variable err will return the first of the above estimates.
The precise algorithm and proof of the above estimate is given in [VarFem].

3.2.4 SBProd
With this command a symmetric banded matrix can be multiplied with a full matrix.

[...] = SBProd(...)
multiplies a symmetric banded matrix with a matrix

X=SBProd(A,B)
A is mxt where t-1 is number of non-zero super diagonals
B is mxn

X is mxn

if A would be ! 11000 ! then A= ! 11 !

I 14300 ! I 43 !
I 03520 ! I 52 !
I 00285 ! I 85 !
I 00059 ! I 90 !

B is full matrix Ax=B

3.2.5 BandToFull, FullToBand and BandToSparse

With these commands conversion between full, symmetric matrices and banded symmetric matrices
is possible. A conversion to a sparse format is also included.

4 Auxiliary programs

An essential part of a FEM solution to a boundary value problem is the generation of a mesh. The
package FEMoctave is building on external codes to generate the meshes.

e EasyMesh This code is available from a web site® or also from this author’s home page. The
original source is slightly modified.

— On the first few lines replace #define MAX_NODES 3000 by #define MAX_NODES 100000
to allow for meshes with more than 3000 nodes.

*http://www-dinma.univ.trieste.it/ nirftc/research/easymesh/
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— On the very last lines replace return 1 by return 0, otherwise the make command will
not do all of its job.

e triangle This is an excellent mesh generator by Jonathan Richard Shewchuk®. The source
is included with this package.

e CuthillKcKee The numbering of the nodes in a mesh generated by triangle will not lead to
a matrix with small bandwidth. The algorithm of Cuthill-McKee will improve this situation.
The code is included with this package or also available on the web site [www:sha].

5 Examples

There are a few examples distributed with this package. Find them in the subdirectories of
./demos . To run a demo change into the appropriate directory, run make, start Octave and
then use the script file demorun.m. Some of the demos require FEasyMesh to generate the meshes,
which might have to be installed first. Most sample applications either use triangle or the mesh is
provided.

5.1 Demo 1: a first example

The source and a Makefile for this example can be found in in directory ./demos/demol. It is
used to generate the mesh with the help of FasyMesh.

In this example the domain is the rectangle 2 = [0, 5] x [0,4] and the boundary value problem
to be solved is

Au = f(z,y) for 0<z<5 and O<y<4
u = 0 for 0<z<b5 and ye{0,4}
Se = g(z,y) for z€{0,5} and O0<y<4

with f(x,y) = —1 and g(z,y) = —1. The description of the domain and type of boundary condition
are given by the file test4.d shown below.

5 # number of points #

# Nodes which define the boundary #

0: 0 0 0.2 1

5 0 2 1

5 4 2 1
0 4 0.2 1

material marker #

12 2 0 1 # material 1 #

# Number Boundary of segments #
0 1 1 #Dirichlet

0.
0.

1 2 2 #Neumann
2 3 1 #Dirichlet
3 0 2 #Neumann

WNNFP, O P HF WN -

The command EasyMesh test4 will then create the mesh. The coefficient functions are all given
as constants. The Octave script below will generate a graph of the solution.

clear

tic
[nodes,elem,edges]=ReadMesh("./test4");

readingtime=toc

Shttp://www.cs.cmu.edu/"quake/triangle.html
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tic
[A,b,n2d]=FEMEquation(nodes,elem,edges,1,0,-1,0,-1);
setuptime=toc
tic
u=FEMSolveSym(nodes,A,b,n2d,0);
solvetime=toc
tic
ShowSolution(nodes,elem,u)
graphtime=toc

This leads to Figure 1 and the output below.

octave:1> demorun
readingtime = 0.11547

setuptime = 0.12725
solvetime = 0.13990
graphtime = 0.067842

Figure 1: Solution of an elementary PDE

The additional lines in demorun.m evaluate the function along a diagonal in the domain.

np=25;
xy=[linspace(0,5,np) ;linspace(0,4,np)]’;
[values,grad] =FEMValue (xy,nodes,elem,u)

5.2 Demo 2: parameter dependence and animation

This example is similar to demo 1, in fact the same mesh is used and only the right hand side
function f(z,y) changed. It depends on a parameter par, i.e. a global variable. It is given by

—par if <2

f(x’y):{—1 it 2> 2

and implemented in the script file demorun.m. The parameter par varies from —1 to 2 and the
script file creates a poor man’s animation with the help of Gnuplot.
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page_screen_output=0;
global par;

clear £
function res = f(xy)
global par;
[n,m]=size(xy);
res=-1%ones(n, 1) *par;
for k=1:max(size(xy))
if (xy(k,1)>2) res(k)=-1;endif
endfor
endfunction

[nodes,elem,edges]=ReadMesh("../demol/testd");
gset zrange [-3:4]

for par=-1:0.1:2
[A,b,n2d]=FEMEquation(nodes,elem,edges,1,0,’f’,0,-1);
u=FEMSolveSym(nodes,A,b,n2d,0);
ShowSolution(nodes,elem,u)
res=[par,FEMValue([2,2] ,nodes,elem,u)];
printf ("For lambda=%2.3f we find u(2,2)=%2.4f\n",res);
endfor

5.3 Demo 3: using function files only

The problem to be solved on the rectangular domain © = [0, 1] x [0, 2] is

Au = -1 in Q
u = 0 on Of)

The mesh is generated by the function CreateRectMesh() and all definitions of the functions are
given in the script file demorun.m

clear

x=linspace(0,1,5);

y=linspace(0,2,5);
[nodes,elem,edges]=CreateRectMesh(x,y,1,1,1,1);
[A,b,n2d]=FEMEquationM(nodes,elem,edges,1,0,-1,0,0);
u=FEMSolve(nodes,A,b,n2d,0);

gset zrange [*:%*]

gset nokey

ShowSolutionM(nodes,elem,u)

A % display the matrix

b=b’ Jdisplay the vector

# evaluate along diagonal
npoints=10;
xv=linspace(0,1,npoints);
yv=linspace(0,2,npoints);
xy=[xv;yv]’;

[values, grad] =FEMValueM(xy,nodes,elem,u,0)
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Since no dynamically linked libraries are used this is a rather slow method to solve the problem. But
for small meshes this is feasible nonetheless. The above computation leads to the global stiffness
matrix A and the vector b below.

A =
5.000 -2.000 0.000 -0.500 0.000 0.000 0.000 0.000 0.000
-2.000 5.000 -2.000 0.000 -0.500 0.000 0.000 0.000 0.000
0.000 -2.000 5.000 0.000 0.000 -0.500 0.000 0.000 0.000
-0.500 0.000 0.000 5.000 -2.000 0.000 -0.500 0.000 0.000
0.000 -0.500 0.000 -2.000 5.000 -2.000 0.000 -0.500 0.000
0.000 0.000 -0.500 0.000 -2.000 5.000 0.000 0.000 -0.500
0.000 0.000 0.000 -0.500 0.000 0.000 5.000 -2.000 0.000
0.000 0.000 0.000 0.000 -0.500 0.000 -2.000 5.000 -2.000
0.000 0.000 0.000 0.000 0.000 -0.500 0.000 -2.000 5.000

b’=

-0.126 -0.125 -0.125 -0.1265 -0.125 -0.125 -0.125 -0.125 -0.125

The script demorun.m also computes the values of the solution along a diagonal of the rectangular
domain.

We may examine a single element stiffness matrices. To find the contributions from a triangular
element with corners at (0,0, (1,0) and (0,1) use

[mat,vec]=ElementContribution([0,0;1,0;0,1],1,0,-1)
to obtain

mat = 1.00000 -0.50000 -0.50000
-0.50000 0.50000 0.00000
-0.50000 0.00000 0.50000

vec = -0.16667
-0.16667
-0.16667

A second problem
Au = 0 in
u = xz+3y on 02

is solved in demorun?2.m.

Results of this type can be useful to teach FEM algorithms.

5.4 Demo 4: a bigger problem, evaluation of the solution, its gradient, eigen-
values and eigenfunctions

On an L-shaped domain 2 we consider the boundary value problem

Au = 10(z —vy) in Q
u = 0 on 0f2

The mesh is generated, such that it is finer at the inside corner. It consists of 2496 nodes, forming
4802 elements.

The codes in this demo use compiled functions for the coefficient function. Thus before launching
the FEM code one has to compile the function with the help of the make programm. Then the
script demorun.m shown below will compute the solution and create a few plots.
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tic
[nodes,elem,edges]=ReadMesh("./Lshape");
NumberNodes=max (size (nodes))
readingtime=toc
tic
[A,b,n2d]=FEMEquation(nodes,elem,edges,’a’,0,’£f’,0,0);
setuptime=toc
[dof,semiband]=size (A)
tic
u=FEMSolveSym(nodes,A,b,n2d,0);
solvetime=toc
figure(1);
tic
ShowSolution(nodes,elem,u)
graphtime=toc
ShowSolutionMTV (nodes,elem,u,’u.mtv’)

gset zrange [*:*]
gset view 60, 300
gset title

gset nokey

replot

npoints=41;
x=linspace(-1,1,npoints);
y=linspace(l,-1,npoints);
xy=[x;y1’;

pause (3)

tic
values=FEMValue(xy,nodes,elem,u,0);
evaluatetime=toc

figure(2);

gset nokey

gset title "A section"
plot (x,values)

tic
[la,vec]=FEMEig(nodes,elem,edges,’a’ ,0,1,4,1e-4);

eigenvaluetime=toc
eigenvalues=la’

figure(3);

gset title "3rd eigenfunction"
ShowSolution(nodes,elem,vec(:,3))
gset title

# evaluate on a mesh

npoints=21;
xv=linspace(-1,1,npoints); yv=linspace(-1,1,npoints);
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[xx,yy]l=meshgrid(xv,yv) ;
xy=[xx(:),yy(:)]1;

[values, grad] =FEMValue(xy,nodes,elem,u,0);

figure(4);
ShowVectorField(xy,-grad)

This leads to the output

octave:1> demorun
NumberNodes = 2496
readingtime = 0.26706
setuptime = 0.27529

dof = 2308

semiband = 133
solvetime = 0.63635
graphtime = 0.21737
evaluatetime = 0.018111
eigenvaluetime = 5.1880
eigenvalues = 9.6359 15.1744 19.6921 29.4253

This shows that we have a system with 2308 unknowns with a semi-bandwidth of 133. On a given
computer’ it takes 0.27 sec to read the mesh information, 0.28 sec to set up the equations and
0.6 sec to solve. The time to evaluate the solution along the diagonal from (—1,1) to (1,—1) at
41 points is 0.02 sec. To find the first four eigenvalues 5 sec are used. The shape of the third
eigenfunction is plotted. The resulting graphs are shown in Figure 2.

Using the command plotmtv u.mtv & we can generate 3—d plots and level curves, as shown in
Figure 3.

"A dual Pentium IIT 800MHz PC with 256KB cash per CPU and 256M RAM, running Linux
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5.5 Demo 5: using triangle and CuthillMcKee

The mesh can be generated by triangle. The input file for the mesh in Figure 4 was generated
using the input file testA.poly shown below. Further documentation can be found on the home
page of triangle.

Figure 4: Solution on a structure with a hole

The problem to be solved

Au = 0 for (z,y) €
u = Ty for (z,y) el

The exact solution is u(z,y) = x - y, thus we can compare the approximate solution and compute
the error.

# nodes
10200

H O O F,r P, NDNOO

©O© 00 N O O b W N =
W WNO R~ DM DO
(S22 e

10 2 1.5

# segments
10 1

D O b W N
N

1
2
3
4
5
6
#
7
8
9
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10 10 7 1

1
1251

Then the command triangle -pqa0.03 testA.poly will generate the mesh. To reduce the com-
putation time it is important to use the utility CuthillMcKee to renumber the mesh. The structure
of nonzero elements is shown in Figure 5. This figure was generated by sparseplot("testA.1",1)
and sparseplot("testA.1") . For a larger sample problem® with a matrix of size 1422 the com-
putation time jumped from 0.38 sec to 84 sec as the bandwidth changed from 44 to 1398 .

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Figure 5: The structure of the matrix before and after renumbering

5.6 Demo 6: using CreateMeshTriangle

The script demorun.m shown below generates a mesh on the unit square, displays the mesh and
then the solution of

Au = 1 for 0<x<1l and O0<y<1
% =1 for =1 and O0<y<1
v = 0 on the remaining three sections of the boundary

CreateMeshTriangle("test",[0,0,1;1,0,2;1,1,1;0,1,1],0.01)
[nodes,elem,edges]=ReadMeshTriangle("./test.1");
ShowMesh (nodes,elem)

[A,b,n2d]=FEMEquation(nodes,elem,edges,1,0,1,0,1);
u=FEMSolveSym(nodes,A,b,n2d,0);
ShowSolution(nodes,elem,u)

5.7 Demo 7: eigenfunctions of circular membrane

Consider the eigenvalue problem
Au = Adu in Q
u = 0 on ['=0%0

where Q C R? is the disk with radius 1. The code below will compute four eigenvalues and

eigenfunctions, leading to Figure 6.

8create the mesh by triangle -pga0.003 testA.poly
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R=1; % radius of circle

nR = 40 ; % number of divisions to create circle

area=0.004;

w=linspace(0,2*xpi*(1-1/nR) ,nR); 7% angles of points on circle
xy=[R*cos(w) ;R*sin(w) ;ones(1,nR)]’;
CreateMeshTriangleQ("circle",xy,area)
[nodes,elem,edges]=ReadMeshTriangle("./circle.1");

[la,vec]=FEMEig(nodes,elem,edges,1,0,1,4,1e-6);
la=la’

figure(1);

ShowSolution(nodes,elem,vec(:,1))

figure(2);

vmin=min(vec(:,1)); vmax=max(vec(:,1));
ShowLevelCurves(nodes,elem,vec(:,1),linspace(vmin,vmax,11))
disp("Hit RETURN"); pause();

figure(1); ShowSolution(nodes,elem,vec(:,2))

figure(2); vmin=min(vec(:,2)); vmax=max(vec(:,2));
ShowLevelCurves(nodes,elem,vec(:,2),linspace(vmin,vmax,11))
disp("Hit RETURN"); pause();

figure(1); ShowSolution(nodes,elem,vec(:,4))

figure(2); vmin=min(vec(:,4)); vmax=max(vec(:,4));
ShowLevelCurves(nodes,elem,vec(:,4),linspace(vmin,vmax,11))

A separation of variable argument shows that the exact eigenvalues are given by
VA =2y = m* zero of J,(r)

where J,, (1) are the Bessel functions of the first kind. The eigenfunctions are
n ..n
u(r, ¢) = Jn(r/zn,m) ’ COS(% ¢) and u(r, ¢) = Jn(r/zn,m) : Sln(% qb)

Thus we can compare the results of this code with the exact solution. Observe that for n > 1 we
have eigenvalues of multiplicity 2. The table below identifies the first 20 eigenvalues (resp. V/\)
computed by FEMoctave with the exact values 2, .

1 2 3 4 5 6 7 8 9 10
VA | 2.4089 | 3.8365 | 3.8365 | 5.1393 | 5.1390 | 5.5226 | 6.3799 | 6.3802 | 7.0120 | 7.0122
Znom | 2.4048 | 3.8317 5.1356 5.5201 | 6.3802 7.0156
n 0 1 1 2 2 0 3 3 1 1
m 1 1 1 1 1 2 1 1 2
11 12 13 14 15 16 17 18 19 20
VA | 7.5826 | 7.5810 | 8.4047 | 8.4028 | 8.6384 | 8.7552 | 8.7555 | 9.7363 | 9.7307 | 9.9043
Znm | 7.5883 8.4172 8.6537 | 8.7715 9.7610 9.9361
n 4 4 2 2 0 ) 5 3 3 6
m 1 1 2 2 3 1 1 2 2 1

For the second eigenfunction in Figure 6 we can compute and display the gradient field, shown
in Figure 7. First compute the first two eigenfunctions and define a regular grid on the circle.
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Figure 6: The first, second and fourth eigenfunction of a vibrating membrane
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[nodes,elem,edges]=ReadMeshTriangle("./circle.1");
[la,vec]=FEMEig(nodes,elem,edges,1,0,1,2,1e-6);

R=1;
nn=21; v=linspace(-R,R,nn);
[xx,yyl=meshgrid(v,v); xy=[xx(:),yy(:)];

Then there are two different path to this result.
e Compute values of the function and gradient on the grid, then show the solution.

[values, grad] =FEMValue(xy,nodes,elem,vec(:,2),0);
ShowVectorField(xy,grad)

e Compute the gradient at the nodes of the mesh, then evaluate the components with the help
of FEMValue and display the graph.

grad=FEMGradient (nodes,elem,vec(:,2));
gl=FEMValue (xy,nodes,elem,grad(:,1),0);
g2=FEMValue(xy,nodes,elem,grad(:,2),0);
ShowVectorField(xy, [gl’;g2°]1°)

The results should be similar but might not be identical.
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Figure 7: The gradient field of the second eigenfunction of a vibrating membrane

The command FEMIntegrate() allows to integrate functions over the meshed domain.

FEMIntegrate(nodes,elem,1)
FEMIntegrate(nodes,elem,vec(:,1))
FEMIntegrate(nodes,elem,vec(:,2))
FEMIntegrate(nodes,elem,vec(:,2)."2)

Leading to answers 3.1287 ~ 7 (area of the circle), 1.4681 and 0.00043, the integrals of the first
and second eigenfunction. The last answer of 1.000 shows that the eigenfunction is normalized in

the Lo(2)—norm.
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5.8 Demo 8: computing a capacitance

Consider a radially symmetric capacitor consisting of two symmetric, conducting plates of radius r.
The two conductors are 2 h apart. The setup is enclosed in a cylinder of radius R and height 2 H
(—H <y < H). By modeling only the upper half of the capacitor we find the following differential
equation for the voltage u (radius x, height y)

div(z gradu) = 0  in domain
u = 0 along edge y = 0
u = 1 along edge of upper conductor
% = 0 on remaining boundary

Between the two plates the field is expected to be homogeneous and this is confirmed by figures 8.
By computing the flux through the middle plain by
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disk

we find the capacitance of this setup. If the setup would correspond to a perfect plane capacitor,
then the normalized flux should be 1. The configuration in the script demorunTriangle (shown
below) leads to the significantly different result of 1.5 . This illustrates that a capacitance with the
dimensions above can not be treated as an idealized plate capacitor.

clear *

r=1;

R=2.5;

global h=0.2;
H=0.5;

N=201;
area=0.0001;

xy=[0,0,1; R,0,2; R,H,2; r,H,1; r,h,1; 0,h,2];

CreateMeshTriangle("cap",xy,area)
[nodes,elem,edges]=ReadMeshTriangle("./cap.1");

function res = aF(xy)
res=xy(:,1);
endfunction

function res = volt(xy)
global h;
[n,m]=size(xy);
res=zeros(n,1);
for k=1:n
if (xy(k,2)<h/2) res(k)=0;
else res(k)=1;endif
endfor

endfunction
function res = zero(xy)

[n,m]=size(xy);
res=zeros(n,1);
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endfunction

[A,b,n2d]=FEMEquation(nodes,elem,edges,’aF’, ’zero’,’zero’,’volt’, ’zero’);
u=FEMSolveSym(nodes,A,b,n2d,’volt’);

x=linspace(0,R,N);

y=0.0%ones (1,N);
[uval,grad]=FEMValue([x;y]’,nodes,elem,u);
plot(x,grad(:,2))

# trapezoidal integration
flux=2*(x*grad(:,2)-x(1)*grad(1,2)/2-x(N) *grad(N,2) /2) *R/ (N-1) * (h/r**2)
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Figure 8: Voltage and vertical field in a capacitor

With the above code the triangles are of uniform size throughout the domain, but since the
solution varies only very little in the right part of the domain we are using too many triangles
there. By generating the mesh directly with triangle we can divide the domain in two sections
and generate larger triangles in the right part. This is done in the file capManual.poly, which is
the used as input for triangle. Consider the Makefile and demorunManual.m for details. The file
capManual2.poly describes the situation of a very thin conducting plate, the result will be closer
to an ideal capacitor.

The same problem is also solved by the script demorunEasyMesh.m, using a mesh generated by
EasyMesh.

5.9 Demo 9: exact solution and convergence

Consider the unit square = [0,1] x [0,1]. On can verify the u.(z,y) = sinz - siny is an exact
solution of

divgradu = —2 sinz-siny in domain
% = sinx-cosy along edge y =1
U = Ue on remaining boundary

Let h > 0 be the typical length of a side of a triangle. By choosing different values of A we should
observe smaller errors for smaller values of h. We measure the error by computing the maximal
difference of the exact and approximate solutions. A double logarithmic plot leads to Figure 9.
The slope of the curve is approximately 2 and thus we conclude error ~ c- h?, i.e. quadratic
convergence of the approximate solutions to the exact solution.
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Figure 9: Logarithmic plot of error versus typical length of triangle

5.10 Demo 10: potential flow problem

Consider a laminar flow between two plates with an obstacle between the two plates. We assume
that the situation is independent on one of the spatial variables and consider a cross section only
shown in the Figure 10. The goal is to find the velocity field ¥’ of the fluid.
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Figure 10: Fluid flow between two plates, the setup

We may introduce a velocity potential ®(x,y). The velocity vector ¢ is then given by

= (5)--(%)
v = = —
Uy 8_y
The flow is assumed to be uniform far away from the obstacle. Thus we set the potential to ® =1
(resp. @ = 0) at the left (resp. right) end of the plates. Since the fluid can not flow through the

plates we know that the normal component of the velocity has to vanish at the upper and lower
boundary. The differential equation to be satisfied by ® is

pys

AP =div(grad®) =0
In Figure 11 the vector field for the velocity ¢ is shown. The vector filed was computed with the

help of FEMValue(). Find the code in demorun2.m . With demorun.m and demorun3.m different
meshes are used.
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Figure 11: Velocity field of a ideal fluid, full view and details
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Figure 12: Horizontal velocity along a horizontal straight line
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5.11 Demo 11: minimal surface problem

Let u(x,y) be the hight of a surface above the border of a 2-dimensional domain 2 is given by
a function g(z,y). Then the function u representing the surface of minimal with has to solve a

nonlinear PDE.
le(ﬁ grad U) = 0 in domain Q
grad u
u = g along edge I' = 0Q

This software is not directly capable of solvin linear problems, but a simple iteration will lead to
an approximation of the solution.

e start with an initial solution ug(z,y) =0
e repeat until change in solution is small enough

— compute the coefficient function

1
a(z,y) = 5
1+ |[Vu(z,y)|
— Solve the boundary value problem
div(a(z,y) gradu) = 0 in domain €

U g along edge I' = 0Q

The code below implements the above algorithm for a square 2 and will lead to the result in
Figure 13.

if (lexist("square.1l.node","file"))
xy=[1,0,1;0,1,1;-1,0,1;0,-1,1];
CreateMeshTriangle("square",xy,0.001)

endif

[nodes,elem,edges]=ReadMeshTriangle("square.1");

function res = BC(xy)
res=abs(xy(:,1));
endfunction

[A,b,n2d]=FEMEquation(nodes,elem,edges,1,0,0,’BC’,0);
u=FEMSolveSym(nodes,A,b,n2d,’BC’);

areaO=FEMIntegrate(nodes,elem,1)

numit=5;
errors=zeros (numit,1);
areas=errors;

for it=1:numit
norm=FEMIntegrate(nodes,elem,u."2);
ugrad=FEMGradient (nodes,elem,u) ;
coeff=sqrt(l+ugrad(:,1) . 2+ugrad(:,2).72);
areas (it)=FEMIntegrate(nodes,elem,coeff);
coeff=1./coeff;
uold=u;
[A,b,n2d]=FEMEquation(nodes,elem,edges,coeff,0,0,’BC’,0);
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u=FEMSolveSym(nodes,A,b,n2d,’BC’);
errors(it)=FEMIntegrate(nodes,elem, (u-uold)."2);

endfor

[areas,errors]

figure(1);

ShowSolution(nodes,elem,u) ;

figure(2);

ShowSolution(nodes,elem,u-uold);

Figure 13: A minimal surface
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