
Calculus of Variations and Finite Elements

Andreas Stahel

April 22, 2021

©Andreas Stahel, 1999
All rights reserved. This work may not be translated or copied in whole or in part without the written permission by
the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information storage and retrieval, electronic adaptation, computer software is forbidden.

Contents

1 Extrema of functions of one or multiple variables 1
1.1 Necessary condition for an extremum . 1
1.2 Sufficient conditions for minima . 4
1.3 Exercises . 6

2 Two introductionary problems 8
2.1 Finite element solution for a system of trusses . 8

2.1.1 Description of the situation . 8
2.1.2 Element stiffness matrix . 8
2.1.3 Derivation of the element stiffness matrix . 9
2.1.4 Explicit calculations for all five element stiffness matrices 12
2.1.5 The global stiffness matrix . 14
2.1.6 Using the constraints and solving the system of equations 15
2.1.7 Interpretation of the results . 17
2.1.8 Octave–code for problems of this type . 17

2.2 Finite element method for a horizontal truss with variable cross section 20
2.2.1 Hooke’s law and the energy of a stretched truss 20
2.2.2 A truss with variable cross section, a finite element approach 21
2.2.3 Formulation of the special problem . 21
2.2.4 Division in three elements . 21
2.2.5 Elastic energy in the elements . 22
2.2.6 Combining the elastic energy of the elements and the external energy 24
2.2.7 How to improve the accuracy of the solution . 24
2.2.8 An afterthought . 25
2.2.9 Exercises . 26

3 Calculus of variations, one variable 27
3.1 The Euler Lagrange equation . 27

3.1.1 The fundamental lemma of the calculus of variations 27
3.1.2 Shortest connection between two given points . 28
3.1.3 Critical values of functionals of the form

∫
f(x, u(x)) dx 30

3.1.4 Critical values of functionals of the form
∫
f(x, u(x), u′(x)) dx 31

3.1.5 Quadratics functionals and second order linear boundary value problems 34
3.1.6 First integrals . 36
3.1.7 Functionals depending on several functions . 37

3.2 Examples . 38
3.2.1 Brachistochrone problem . 38
3.2.2 Transverse deflection of a string . 40
3.2.3 Geodesics on a sphere . 41

3.3 Hamilton’s principle of least action . 42

i

CONTENTS ii

3.3.1 A simple pendulum . 43
3.3.2 A double pendulum . 44
3.3.3 A pendulum with moving support . 45

3.4 An isoperimetric problem . 48
3.5 Laser beam deflected by a heat source . 49

3.5.1 Dependence of the speed of light on the temperature 49
3.5.2 Find the time of travel . 50
3.5.3 Solution using a first integral . 50
3.5.4 Solution using an approximation . 52

3.6 Bending of a circular plate . 53
3.6.1 Energy of bending . 53
3.6.2 Using polar coordinates . 53
3.6.3 Energy due to external pressure and the Euler Lagrange equation 55
3.6.4 Clamped edge at r = R . 56
3.6.5 Simply supported edge at r = R . 56
3.6.6 Introduce new variable . 58
3.6.7 Eigenfrequencies of a clamped plate . 58

3.7 Exercises . 60

4 Finite Element problems in one variable 62
4.1 The heat equation . 62

4.1.1 Basic physics . 62
4.1.2 One dimensional heat equation . 64
4.1.3 Two dimensional heat equation, strong formulation 64
4.1.4 Steady state problem with radial symmetry . 65

4.2 Weak solutions . 67
4.2.1 Two dimensional heat equation, weak formulation 67
4.2.2 Advantages of weak solutions . 68
4.2.3 Weak solution of heat equation on a circular plate 69

4.3 The general one dimensional problem . 70
4.4 First order elements . 70

4.4.1 Description of one element with a linear function 71
4.4.2 Add up the contributions from the elements . 72
4.4.3 Solve the system of linear equations and use boundary conditions 73
4.4.4 Examples . 73
4.4.5 General situation . 76

4.5 Second order element with Gauss integration . 77
4.5.1 Linear and quadratic interpolation . 78
4.5.2 Gauss integration . 79
4.5.3 Construction of an improved element . 82
4.5.4 Comparison of interpolation and integration methods 85

4.6 Code in Mathematica for second order boundary value problems 85
4.7 Examples . 89

4.7.1 The FEM solution to the standard truss problem 89
4.7.2 Radial heat problem . 90

4.8 Vibrations of a beam . 91
4.8.1 Description of the static situation . 91
4.8.2 Dynamic situation, separation of variables . 92
4.8.3 From eigenvalues to frequencies . 93
4.8.4 A beam with constant cross section . 94

SHA 22-4-21

CONTENTS iii

4.8.5 FEM description of the static situation . 95
4.8.6 Assembling the system of equations, Octave code and a few tests 99
4.8.7 Finding eigenvalues . 102
4.8.8 Design of a force sensor . 104

4.9 Exercises . 107

5 Convergence and finite difference schemes 110
5.1 Convergence of the approximate solutions for boundary value problems 110

5.1.1 Basic assumptions and regularity results . 110
5.1.2 Function spaces, norms and continuous functionals 111
5.1.3 Convergence of the finite dimensional approximation 113

5.2 A finite difference approximation to an ordinary differential equation 119
5.2.1 Finite difference approximations . 120
5.2.2 Forward difference . 121
5.2.3 Backward difference . 121
5.2.4 Centered difference . 122

5.3 General difference approximations, consistency, stability and convergence 122
5.4 Parabolic problems, heat equation . 126

5.4.1 A special matrix . 126
5.4.2 Explicit finite difference approximation to the heat equation 128
5.4.3 Implicit finite difference approximation to the heat equation 130
5.4.4 Crank–Nicolson approximation to the heat equation 132
5.4.5 General parabolic problems . 133

5.5 Hyperbolic problems, wave equation . 134
5.5.1 Explicit approximation . 134
5.5.2 Implicit approximation . 136
5.5.3 General wave type problems . 137

5.6 Comments and bibliography . 138

6 Calculus of variations, multiple variables 139
6.1 An electrostatic example . 139
6.2 Minimization of a functional of two variables . 141
6.3 The general quadratic functional . 142
6.4 A minimal surface problem . 143

7 Finite element problems in two variables 146
7.1 Description of the general procedure . 146

7.1.1 Approximation of the domain Ω, triangularization 147
7.1.2 Integration over one triangle . 147
7.1.3 Integration the contribution on the boundary . 149
7.1.4 Assembling the system of equations . 150
7.1.5 Taking the Dirichlet boundary condition into account 151
7.1.6 Applying periodic boundary conditions . 152
7.1.7 Solving the set of linear equations, visualization and interpretation 152

7.2 The eigenvalue problem . 152
7.3 From the finite element method to a finite difference method 154

7.3.1 Element contributions . 154
7.3.2 The linear equation associated with an interior node 155
7.3.3 Assembling the system of linear equations . 157

7.4 FEM code in Mathematica . 160

SHA 22-4-21

CONTENTS iv

7.4.1 Description of the sample problem . 160
7.4.2 Mesh generation by EasyMesh . 160
7.4.3 Reading the mesh information . 161
7.4.4 Element and edge contributions . 164
7.4.5 Assembling the equations . 166
7.4.6 Solving the equations . 167
7.4.7 Visualization . 168

7.5 Exercises . 169

8 Some Applications 170
8.1 Computing a capacitance . 170

8.1.1 State the problem . 170
8.1.2 Create the mesh . 171
8.1.3 Creating the functions for Octave . 172
8.1.4 Solve the system and show the solution . 173
8.1.5 Compute the capacitance . 174

8.2 Heat conduction on a circuit board . 175
8.2.1 The static situation . 176
8.2.2 The dynamic situation . 177

8.3 Torsion of a shaft . 182
8.3.1 Torsional rigidity of a square . 182
8.3.2 Torsional rigidity of a circle and a circle with hole 184
8.3.3 Torsional rigidity of a rectangle . 185
8.3.4 Torsional rigidity of a square with hole . 185
8.3.5 Comparison of different sections . 187

8.4 Vibrations of a membrane . 187
8.5 Sound in a bottle . 190

8.5.1 The question . 190
8.5.2 Finding the correct equation, based on conservation laws 190
8.5.3 Separation of variables . 192
8.5.4 The open organ pipe . 193
8.5.5 A can with a circular hole . 195
8.5.6 A can with a circular neck . 195
8.5.7 A can with a circular neck, with air gap . 196
8.5.8 Conclusion . 196

8.6 Ultrasonic distance measurements . 201
8.7 Asparagus . 201
8.8 Heating a disk . 201

9 Linear Elasticity 202
9.1 Description of stress and strain . 202

9.1.1 Description of strain . 202
9.1.2 Description of stress . 209
9.1.3 Von Mises stress . 214

9.2 Hooke’s law and elastic energy . 214
9.2.1 Hooke’s law . 214
9.2.2 Some exemplary situations . 216

9.3 Volume and surface forces, thermoelasticity . 218
9.3.1 Volume forces . 218
9.3.2 Surface forces . 219

SHA 22-4-21

CONTENTS v

9.3.3 Thermoelasticity . 219
9.4 Torsion of a shaft . 220

9.4.1 Basic description . 220
9.4.2 Deriving the differential equation, using calculus of variations 221
9.4.3 Uniqueness and existence of the solution . 222
9.4.4 Torsion of a shaft with circular cross section . 223
9.4.5 Torsion of a shaft with square cross section . 224
9.4.6 Using the Prandtl stress function . 226

9.5 Plane strain . 228
9.5.1 From the minimization formulation to a system of PDE’s 231
9.5.2 Boundary conditions . 232
9.5.3 Thermoelasticity . 234

9.6 Plane stress . 237
9.6.1 Boundary conditions . 239
9.6.2 Thermoelasticity . 240

9.7 FEM solution for plane strain problems . 244
9.7.1 A single element contribution . 244
9.7.2 Edge segment contribution . 245
9.7.3 Boundary constraints . 246

10 Matlab PDE–Toolbox 249
10.1 Starting the toolbox and demos . 249
10.2 A heat conduction problem . 249

10.2.1 Setting up the domain . 250
10.2.2 Specifying boundary conditions . 250
10.2.3 Specifying the differential equation . 251
10.2.4 Setting up the mesh . 251
10.2.5 Solving the differential equation and plotting the solution 251

10.3 A partial differential equation in polar coordinates . 251
10.3.1 The equation to be solved . 251
10.3.2 Using cylindrical coordinates . 252
10.3.3 Setting up the domain . 252
10.3.4 Specifying boundary conditions . 252
10.3.5 Specifying the differential equation . 253
10.3.6 Setting up the mesh . 254
10.3.7 Solving the differential equation and plotting the solution 254

10.4 A two dimensional fluid flow problem . 254

11 Some matrix computations 256
11.1 A few basic definitions for matrices . 256
11.2 The Cholesky decomposition . 262

11.2.1 The algorithm of Cholesky for a 3× 3 matrix . 262
11.2.2 The algorithm and an implementation in Octave 265
11.2.3 Stability of the Cholesky algorithm . 268

11.3 Banded matrices . 270
11.3.1 The algorithm of Cholesky for banded matrices 270
11.3.2 An implementation in C++ . 272
11.3.3 Performance tests on different computers . 274

11.4 The algorithm of Cuthill and McKee to reduce bandwidth 277
11.5 Eigenvalues and eigenvectors . 279

SHA 22-4-21

CONTENTS vi

11.5.1 Basic facts on eigenvalues of symmetric matrices 280
11.5.2 Power iteration . 281
11.5.3 The Rayleigh quotient and an à posteriori estimate 282
11.5.4 Inverse power iteration . 283
11.5.5 Inverse power iteration for subspaces . 284

11.6 The generalized eigenvalue problem . 285
11.7 Iterative methods . 288

11.7.1 Basic definitions . 288
11.7.2 A model problem . 289
11.7.3 Steepest descent iteration . 289
11.7.4 Conjugate gradient iteration . 293
11.7.5 Preconditioned conjugate gradient iteration . 298

11.8 Exercises . 300

A Some mathematical results and formulas 304
A.1 Vectors and matrices . 304

A.1.1 Products of matrices and vectors . 304
A.1.2 Scalar product of vectors . 304
A.1.3 Diagonalisation of a symmetric matrix, orthogonal matrices 304

A.2 Gradient, divergence and the Laplace operator . 305
A.2.1 Vectors in different coordinate systems . 305
A.2.2 Gradient . 306
A.2.3 Divergence . 306
A.2.4 The Laplace operator . 306

A.3 Divergence theorems . 307
A.4 Scalar product on function spaces . 308
A.5 Fundamental lemma of calculus of variations . 308
A.6 Maxwell’s equation . 309

A.6.1 Dynamic equations of Maxwell . 309
A.6.2 Static equations . 310
A.6.3 Time-harmonic fields . 310

B Solutions to some exercises 311

Bibliography 321

List of Figures 323

List of Tables 326

Index 327

SHA 22-4-21

Chapter 1

Extrema of functions of one or multiple
variables

This chapter serves as a short repetition of results about functions in one and multiple variables. We will
present some facts about extrema of functions.

1.1 Necessary condition for an extremum

As a result from the calculus in one variable we know that if a smooth func-
tion f : R → R it to attain a maximal or minimal value at x = x0 then we
need f ′(x0) = 0. This result implies that the tangent line at an extremal value
has to be horizontal. Please observe that this is only a necessary condition,
but not a sufficient condition.

-

6

x0

This fundamental result also applies to functions of multiple variables. If a function f : Rn → R of
multiple variables xi (i = 1, 2, . . . , n) attains an extremum at a point ~xc ∈ Rn, then the partial derivatives
with respect to all variable have to vanish. Thus the gradient has to be the zero vector, in short

f (~x) extremal at ~x = ~xc =⇒ ~∇f (~xc) =


∂ f
∂x1

∂ f
∂x2

...
∂ f
∂xn

 =


0

0
...

0

 = ~0

If the gradient vanishes at ~xc then the point is called a critical point.

1–1 Example : Consider the function

f(x, y) = 2x2 + 2x y + 2 y2 − 5

2
x− 5

2
y + 1.1

=
1

2
〈

(
x

y

)
,

[
4 2

2 4

] (
x

y

)
〉+ 〈

(
x

y

)
,

(
−5/2

−5/2

)
〉+ 1.1

The corresponding surface and level curves are shown in Figure 1.1. The minimum of this function is
characterized by vanishing derivatives in both coordinate directions.

∂ f

dx
= 4x+ 2 y − 5

2
∂ f

dx
= 2x+ 4 y − 5

2

1

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 2

This can also be written in the form[
4 2

2 4

] (
x

y

)
+

(
−5/2

−5/2

)
=

(
0

0

)

and the solution is given by (x, y) = (5/12 , 5/12).

0
0.2

0.4
0.6

0.8
1x

0

0.2

0.4

0.6

0.8

1

y

0

0.1

0.2

0.3

0.4

0.5

0
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 1.1: The surface of a quadratic function and its level curves

The eigenvalues and eigenvectors of the matrix are given by

λ1 = 2 , ~v1 =

(
1

−1

)
and λ1 = 6 , ~v1 =

(
1

1

)

Thus the function f(x, y) behaves like a parabola g(t) = t2 in the direction (1 , −1)T and like a parabola
g(t) = 3 t2 in the direction (1 , 1) . This is confirmed by Figure 1.1. ♦

1–2 Example : The smooth function

f (~x) = f (x1, x2, x3) = x2
1 + 3x2

2 + 5x2
3 + 2x1 x2 − 5x2 x3 − 2x1 − 3x3 + 17

depends on three variables. To find a possible extremum we have the three necessary conditions

∂ f
∂x1

= 2x1 +2x2 −2 = 0
∂ f
∂x2

= 2x1 +6x2 −5x3 = 0
∂ f
∂x3

= −5x2 +10x3 −3 = 0

Since the original function is a polynomial of degree 2, the partial derivatives are linear functions and we
have a particularly simple situation. This system of linear equation can be written as

2 2 0

2 6 −5

0 −5 10




x1

x2

x3

 =


2

0

3


and with some calculations we arrive at the unique solution

x1 =
4

3
, x1 =

−1

3
, x1 =

2

15

Thus there is exactly one critical point. If the function has a minimum, then we found its location. Later we
will see that this function has in fact a minimum. ♦

SHA 22-4-21

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 3

Now we consider a special type of function, which turns out to be very important in the context of the
Finite Element Method. We start with a function of three variables.

1–3 Example : Let A be a symmetric 3× 3 matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 with

a12 = a21

a13 = a31

a23 = a32

Now consider the function
f (~x) =

1

2
〈~x , A ~x〉+ 〈~x , ~b〉

where ~b ∈ R3 is given. Writing all the components leads to the expression below. All computations are
elementary but tedious. The last transformation is valid, since the matrix A is symmetric.

f (~x) =
1

2
〈~x , A ~x〉+ 〈~x , ~b〉

=
1

2
〈


x1

x2

x3

 ,


a11 a12 a13

a21 a22 a23

a31 a32 a33




x1

x2

x3

〉+ 〈


x1

x2

x3

 ,


b1

b2

b3

〉

=
1

2
(x1, x2, x3) ·


a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

+ (x1, x2, x3) ·


b1

b2

b3


=

1

2

(
a11x

2
1 + a12x1x2 + a13x1x3 + a21x1x2 + a22x

2
2 + a23x2x3

+a31x1x3 + a32x2x3 + a33x
2
3

)
+ x1 b1 + x2 b2 + x3 b3

=
1

2

(
a11x

2
1 + a22x

2
2 + a33x

2
3

)
+ a21x1x2 + a13x1x3 + a23x2x3 + x1 b1 + x2 b2 + x3 b3

Now it is rather simple to find the three components of the gradient.

∂ f

∂x1
= a11x1 + a12x2 + a13x3 + b1

∂ f

∂x2
= a21x1 + a22x2 + a23x3 + b2

∂ f

∂x3
= a31x1 + a32x2 + a33x3 + b3

Thus the point ~x ∈ R3 is a critical point of the function f if and only if

~∇f (~x) = A ~x+~b = ~0

If the matrix A is invertible there is exactly one critical point, given by

~xc = −A−1~b

Thus for functions of three variables of the above type finding the critical point is equivalent to solving a
linear system of equations. ♦

SHA 22-4-21

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 4

The observation in the above example can be generalised to functions of n variables and we arrive at the
following result. The proof of this theorem is entirely based on the idea of the previous example.

1–4 Theorem : Let A be a symmetric, real n× n matrix and~b ∈ Rn. Consider the function

f (~x) =
1

2
〈~x , A ~x〉+ 〈~x , ~b〉

Then we have
~xc is a critical point of f ⇐⇒ A ~xc +~b = ~0

3

The i-th component of the equation A ~xc +~b = ~0 results from the derivative of f(~x) with respect to xi
to be equals zero. A more detailed computation is shown in Exercise 1–3 .

Many finite element problems will lead to functions f of the above type to be minimised, i.e. linear
systems to be solved.

1.2 Sufficient conditions for minima

For a function f of one variable and f ′(x0) = 0 then the additional condition f ′′(x0) > 0 is sufficient to
determine a local minimum. The situation for functions of multiple variables is not quite as simple. The
idea is again to use Taylor’s approximation. We consider the function f for arguments close to the critical
point ~xc, the deviation from ~xc is denoted by ~x. We have

f (~xc + ~x) = f (~xc) + grad f(~xc) · ~x+
1

2
~xT ·Hf · ~x+O(‖~x‖3)

where Hf is the Hessian matrix of second derivatives.

Hf =


∂2f(~xc)
∂2x1x1

∂2f(~xc)
∂x1x2

· · · ∂2f(~xc)
∂x1xn

∂2f(~xc)
∂2x2x1

∂2f(~xc)
∂x2x2

· · · ∂2f(~xc)
∂x2xn

...
...

. . .
...

∂2f(~xc)
∂2xnx1

∂2f(~xc)
∂xnx2

· · · ∂2f(~xc)
∂xnxn


This matrix has to be symmetric. Now we use that ~xc is a critical point and thus

f (~xc + ~x) ≈ f (~xc) +
1

2
〈~xT , Hf · ~x〉

By moving the coordinate origin to the critical point and ignoring the fixed value f(~xc) we have to examine
functions

f (~x) =
1

2
〈~x,A~x〉

for symmetric matrices A. Now we examine the special situation of an eigenvector ~ek with eigenvalue λk.
It is know that all eigenvalues are real and the corresponding eigenvectors can be chosen to have length 1.

f (~ek) =
1

2
〈~ek,A~ek〉 =

1

2
〈~ek, λk~ek〉 =

1

2
λk ‖~ek‖ =

1

2
λk

f (t~ek) =
1

2
〈t~ek , tA~ek〉 =

1

2
t2 λk

Thus the eigenvalues λk are important.

SHA 22-4-21

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 5

• If λk > 0 then the function f grows in the corresponding direction (given by ~ek) like the function
h(t) = 1

2 λk t
2 ≥ 0.

• If λk < 0 then the function f decays in the corresponding direction (given by ~ek) like the function
h(t) = 1

2 λk t
2 ≤ 0.

Such a matrix can be diagonalised (see Appendix A.1.3), i.e. written in the form

A = R · D · RT or equivalently D = RT · A · R

where the diagonal matrix D has the eigenvalues λi of A as entries along the diagonal. With the substitution
~y = RT~x (and thus ~x = R ~y) we have

f (~x) =
1

2
〈~x,A~x〉 =

1

2
〈R~y,AR~y〉

=
1

2
〈~y,RTAR~y〉 =

1

2
〈~y,D~y〉

=
1

2

n∑
k=1

λk y
2
k

Multiplying the matrix R by the column ~y from the right corresponds to a linear combination of the columns
of R, where the factors are given by the entries in ~y. Since the columns of R contain the normalised
eigenvectors of A we have

~x = [~e1, ~e2, . . . , ~en] ·


y1

y2

...

yn

 = y1 ~e1 + y2 ~e2 + . . .+ yn~en

Thus the substitution ~y = R ~x corresponds to a rewriting ~x as a linear combination of the eigenvectors ~ek.
From this we can draw some conclusion on the behaviour of the function f(~x). We examine this function

along straight line through the origin in the direction of an eigenvector by using the parametrisation

~x(t) = t~ek for t ∈ R

then we have
f (~x(t)) =

1

2
λk t

2 for t ∈ R

The restricted function behaves like a parabola, the sign of the eigenvalue λk determines whether the func-
tion has a local minimum or maximum for t = 0. This motivates the following result.

1–5 Result : Consider a function
f (~x) =

1

2
〈~x,A~x〉

for symmetric matrices A with eigenvalues λk.

• If all eigenvalues are strictly positive then the function has a local minimum at ~xc = ~0.

• If all eigenvalues are strictly negative then the function has a local maximum at ~xc = ~0.

• If some of the eigenvalues are positive and some negative then the critical point ~xc = ~0 is a saddle
point.

3

SHA 22-4-21

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 6

If all eigenvalues are positive and we use the substitution ~y = RT~x then we have

f (~x) =
1

2
〈A~x, ~x〉 =

1

2

n∑
k=1

λk y
2
k > 0 if ~x 6= ~0

This leads to a definition.

1–6 Definition : A symmetric, real matrix A is called positive definite if and only if

〈A · ~x , ~x〉 = 〈~x , A · ~x〉 > 0 for all ~x 6= ~0

It is obvious that a positive definite matrix A implies that the function f(~x) examined above will have a
minimal value of 0 at ~x = ~0. Functions of the form

f (~x) =
1

2
〈~x , A ~x〉+ 〈~x , ~b〉

will have a unique minimum. Matrices of this type occur very often in finite element problems and they will
be examined more carefully in chapter 11.

1.3 Exercises

•Exercise 1–1:
Consider the function

f (x1, x2) = x2
1 + 4x1 x2 − 2x2

2 + 3x1 + 6x2

(a) Write the function in the form

f (~x) =
1

2
〈~x , A ~x〉+ 〈~x , ~b〉

(b) Find the critical point of this function by solving a linear system of equations.

(c) Use the eigenvalues and eigenvectors of the Matrix A to describe the type of critical point.

(d) Use appropriate software to examine the graph of this function and verify your results.

•Exercise 1–2:
Examine the function

f (x, y) =
1

2
〈

(
x

y

)
,

[
8 −2

−2 6

]
·

(
x

y

)
〉+ 〈

(
x

y

)
,

(
b

−2 b

)
〉

For each value of the parameter b ∈ R this function has a unique minimum. Determine the location of this
minimum as a function of b.

You can use the code below to illustrate that the graph of the function does not change its shape as b
varies, but the location of the minimum is moving. Verify that the minimum moves along a straight line.

Mathematica

SHA 22-4-21

CHAPTER 1. EXTREMA OF FUNCTIONS OF ONE OR MULTIPLE VARIABLES 7

f[x_,y_,b_]= 4xˆ2 + 3*yˆ2 - 2*x*y + b*x - 2*b*y;
limit=3;
makeplot[b_] :=

Plot3D[f[x,y,b],{x,-limit,limit},{y,-5,5},
PlotRange->{{-limit,limit},{-limit,limit},{-8,15}},
PlotPoints -> 30,
ClipFill ->None];

Animation[Table[makeplot[b],{b,-5,5,0.25}]];

•Exercise 1–3:
To compute the partial derivative with respect to up we write the expression to be examined as a sum of

terms involving up and a remainder R, which is independent on up

f(~u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉

=
1

2

n∑
i=1

ui

 n∑
j=1

ai,j uj

+

n∑
i=1

bi ui

=
1

2
up ap,p up +

1

2

n∑
j=1,j 6=p

up ap,j uj +
1

2

n∑
j=1,j 6=p

uj aj,p up + bp up +R

This leads to

∂

∂up
f(~u) = ap,p up +

1

2

n∑
j=1,j 6=p

ap,j uj +
1

2

n∑
j=1,j 6=p

uj aj,p + bp + 0

=
n∑

j=1,

ap,j uj + bp

where we used the symmetry aj,p = ap,j . This equals row p of the expression A ~u+~b.

SHA 22-4-21

Chapter 2

Two introductionary problems

In this chapter we consider two elementary elasticity problems and determine a numerical approximation to
their solution. Many of the ideas presented will carry over to a finite element approach for general problems.

2.1 Finite element solution for a system of trusses

2.1.1 Description of the situation

In Figure 2.1 find a simple system of five trusses, named (a, b, c, d, e). The trusses support only loads in the
direction of the trusses, i.e. no bending moments are allowed. They are flexibly connected at four points.
All trusses have length L, cross section A and are made of a material with modulus of elasticity E. The
point 2 is fixed and point 1 can only move in the x direction. An external load of 100 N is applied to point 4
in vertical direction.

6
- x

y

T
T
T
T
T
T
TT�
�
�
�
�
�
��T
T
T
T
T
T
TT

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

�
�
A
A

��AA

6100 N
a

b

c

d

e

1 2

3 4

Figure 2.1: Simple system of trusses

2.1.2 Element stiffness matrix

Consider an element e, connecting points i and n, forming an angle α with the vertical axis. Figure 2.2
shows the typical situation.

The displacements of the points i and n out of the initial positions are given by the vectors(
ui

vi

)
and

(
un

vn

)

8

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 9

Now we express the forces ~Fe,i and ~Fe,n at both ends in terms of the displacement vectors. Here we consider
the forces applied to the truss, and not the forces the truss is applying to the nodes. The difference is
a sign. In the complete structure these forces have to be produced by the other trusses, the supports or the
applied external forces. The observations in section 2.1.3 show that the forces due to displacement in one
element are computed by multiplying the vector of displacements ~ae by the element stiffness matrix Ke.

6
- u

v

�
�
�
�
�
�
�
�
�
��

s

s����3

�
�

��+

i

n

e

α

~Fe,i

~Fe,n

Figure 2.2: An isolated element e of the structure with the forces applied to it

~Fe =

(
~Fe,i
~Fe,n

)
=


Ui

Vi

Un

Vn

 = (2.1)

=
E A

L


cos2 α sinα cosα − cos2 α − sinα cosα

sinα cosα sin2 α − sinα cosα − sin2 α

− cos2 α − sinα cosα cos2 α sinα cosα

− sinα cosα − sin2 α sinα cosα sin2 α




ui

vi

un

vn


A short notation for this is

~Fe = Ke ~ae

If the displacements ~ae are small then the angle α will change only very little. We ignore those changes.
If the displacements would be large then the change of the angle would have to be taken into account by
recomputing the element stiffness matrices. We want to ignore this problem and thus work under the general
assumption:

The displacements of the nodes are small compared to the dimensions of the trusses. We consider the
angles as constant.

2.1.3 Derivation of the element stiffness matrix

We give one of the possible derivations for these matrices. The calculations are based on matrix opera-
tions representing rotations in the plane and Hooke’s law. One may safely skip this section and accept
equation (2.1) as a fact.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 10

Consider a truss of length L, area of cross section A of a material with modulus of elasticity E. If this
truss is stretched by length ∆L then the elastic force is given by

F =
E A

L
∆L

This is Hooke’s law. For a horizontal truss we find |∆L| = |ui − un| and thus

Ui =
E A

L
(ui − un)

Vi = 0

Un =
E A

L
(−ui + un)

Vn = 0

This can also be rewritten with the help of a 4× 4 matrix by
Ui

Vi

Un

Vn

 =
E A

L


ui − un

0

−ui + un

0

 =
E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0




ui

vi

un

vn


This is the element stiffness matrix in equation (2.1) for the special case of α = 0. We base the general
situation on this formula and rotations in the plane. With similar calculation one can compute the elastic
energy U stored in the truss, due to the deformation1.

When rotating a vector (u , v)T by an angle α (in the positive sense) we obtain the new vector(
cosαu− sinα v

sinαu+ cosα v

)
=

[
cosα − sinα

sinα cosα

]
·

(
u

v

)

Rotating by the opposite angle −α leads to the inverse matrix[
cosα − sinα

sinα cosα

]−1

=

[
cosα sinα

− sinα cosα

]

If a truss has angle α then we first rotate the displacement vectors (ui , vi)
T and (un , vn)T by −α and

obtain a truss in horizontal position. The forces ~Fe,i and ~Fe,n have to be rotated by the same angle−α. This

1As the change of length s varies from 0 to ∆L the force is given by F (s) = E A
L

s and thus the work needed to stretch the
truss by ∆L is given by

U =

∫ ∆L

0

E A

L
s ds =

E A

2 L
(∆L)2

Since (∆L)2 = (ui − un)2 this can be rewritten as

U =
1

2
〈


ui

vi

un

vn

 ,
E A

L


ui − un

0

−ui + un

0

〉 =
1

2
〈


ui

vi

un

vn

 ,
E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 ·


ui

vi

un

vn

〉

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 11

leads to the condition
cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα

 ·


Ui

Vi

Un

Vn

 =

=
E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 ·


cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα

 ·


ui

vi

un

vn


The element stiffness matrix is given by

Ke =
E A

L


cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα


−1

·


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 ·


cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα


Carrying out the multiplications we arrive at

Ke =
E A

L


cosα − sinα 0 0

sinα cosα 0 0

0 0 cosα − sinα

0 0 sinα cosα

 ·


cosα sinα − cosα − sinα

0 0 0 0

− cosα − sinα cosα sinα

0 0 0 0


and thus

Ke =
E A

L


cos2 α sinα cosα − cos2 α − sinα cosα

sinα cosα sin2 α − sinα cosα − sin2 α

− cos2 α − sinα cosα cos2 α sinα cosα

− sinα cosα − sin2 α sinα cosα sin2 α


The matrix

T (α) =

[
cosα − sinα

sinα cosα

]
·

[
cosα sinα

0 0

]
=

[
cos2 α sinα cosα

sinα cosα sin2 α

]

is called a transformation matrix and we can write

Ke =
E A

L

[
T (α) −T (α)

−T (α) T (α)

]

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 12

The internal elastic energy of a truss at angle α can be computed by

Ue(α) =
1

2
〈~ae , Ke · ~ae〉 (2.2)

The computations are similar to the above arguments2.

2.1.4 Explicit calculations for all five element stiffness matrices

The results of the previous section will be carried out for all five trusses of the structure in Figure 2.1.

The truss connecting points 1 and 3

For this element we find the angle α = −60◦ = −π/3 and thus

cosα =
1

2
= 0.5 and sinα = −

√
3

2
≈ −0.866

The transformation matrix is

T (−π
3

) =

[
0.25 −0.433

−0.433 0.75

]
and thus

Ka =
E A

L


0.25 −0.433 −0.25 0.433

−0.433 0.75 0.433 −0.75

−0.25 0.433 0.25 −0.433

0.433 −0.75 −0.433 0.75


The truss connecting points 1 and 2

For this element we find the angle α = 0 and thus

cosα = 1 and sinα = 0

The transformation matrix is

T (−π
3

) =

[
1 0

0 0

]
and thus

Kb =
E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


2

Ue(α) =
1

2
〈


cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα

 ·


ui

vi

un

vn

 ,

E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 ·


cosα sinα 0 0

− sinα cosα 0 0

0 0 cosα sinα

0 0 − sinα cosα

 ·


ui

vi

un

vn

〉 =
1

2
〈~ae , Ke · ~ae〉

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 13

The truss connecting points 2 and 3

For this element we find the angle α = −120◦ = −2π/3 and thus

cosα = −1

2
= −0.5 and sinα = −

√
3

2
≈ −0.866

The transformation matrix is

T (−2π

3
) =

[
0.25 0.433

0.433 0.75

]
and thus

Kc =
E A

L


0.25 0.433 −0.25 −0.433

0.433 0.75 −0.433 −0.75

−0.25 −0.433 0.25 0.433

−0.433 −0.75 0.433 0.75


The truss connecting points 3 and 4

For this element we find the angle α = 0 and thus

cosα = 1 and sinα = 0

The transformation matrix is

T (0) =

[
1 0

0 0

]
and thus

Kd =
E A

L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


The truss connecting points 2 and 4

For this element we find the angle α = −60◦ = −π/3 and thus

cosα =
1

2
= 0.5 and sinα = −

√
3

2
≈ −0.866

The transformation matrix is

T (−π
3

) =

[
0.25 −0.433

−0.433 0.75

]
and thus

Ke =
E A

L


0.25 −0.433 −0.25 0.433

−0.433 0.75 0.433 −0.75

−0.25 0.433 0.25 −0.433

0.433 −0.75 −0.433 0.75



SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 14

2.1.5 The global stiffness matrix

For the sake of slightly simpler notations we use the condition

E A

L
= 1

for the next two subsections.
The goal is to combine the five element stiffness matrices of the previous subsection to one single system

of equations, representing the fact that at each node we should have a balance of forces. Each of the node
has two degrees of freedom and we have (at first) eight unknown displacements. For the moment we ignore
the constraints.

We start out with an 8× 8 matrix filled with 0 and a vector containing the known and unknown external
forces. 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


·



u1

v1

u2

v2

u3

v3

u4

v4


=



0

f1,y

f2,x

f2,y

0

0

0

100


The first row of this system of linear equation will represent that fact that all horizontal forces at point 1 have
to add up to zero. The second row corresponds to the vertical forces at point 1. The third and fourth row
represent the balance of forces at point 2. The bottom four row contain the equations for the points 3 and 4.
The force vector on the RHS contains the known external force of 100 N and the yet unknown support forces
at the points 1 and 2. Now we have to include all force contributions by the elements, element by element.

At first we consider the forces generated by the elements a and d. The intermediate result is shown
below, dots representing zeros.

0.2500 −0.4330 · · −0.2500 0.4330 · ·
−0.4330 0.7500 · · 0.4330 −0.7500 · ·
· · · · · · · ·
· · · · · · · ·

−0.2500 0.4330 · · 1.2500 −0.4330 −1.0000 ·
0.4330 −0.7500 · · −0.4330 0.7500 · ·
· · · · −1.0000 · 1.0000 ·
· · · · · · · ·


·



u1

v1

u2

v2

u3

v3

u4

v4


=



0

f1,y

f2,x

f2,y

0

0

0

100



SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 15

When considering contribution from the elements b, c and e too we obtain finally the system

1.250 −0.433 −1.000 0.000 −0.250 0.433 · ·
−0.433 0.750 0.000 0.000 0.433 −0.750 · ·
−1.000 0.000 1.500 −0.000 −0.250 −0.433 −0.250 0.433

0.000 0.000 −0.000 1.500 −0.433 −0.750 0.433 −0.750

−0.250 0.433 −0.250 −0.433 1.500 −0.000 −1.000 0.000

0.433 −0.750 −0.433 −0.750 −0.000 1.500 0.000 0.000

· · −0.250 0.433 −1.000 0.000 1.250 −0.433

· · 0.433 −0.750 0.000 0.000 −0.433 0.750


·



u1

v1

u2

v2

u3

v3

u4

v4


=



0

f1,y

f2,x

f2,y

0

0

0

100


With suitable abbreviations this can be rewritten as

K · ~a = ~Fext

At first sight we find 8 equations but 11 unknowns, the 8 displacements and the 3 unknown support forces.
But we have not yet used the 3 support constraints v1 = u2 = v2 = 0. The global stiffness matrix K shows
a few properties that will be used to solve the system:

• K is symmetric

• Some of the entries are 0. Since point 1 has no connection truss with point 4 the 2 × 2 in the upper
right and lower left corner contain 0. For larger structures this will turn out to be important as it leads
to sparse or banded matrices, i.e. most of the entries are 0.

• The matrix K is positive definite, i.e. all eigenvalues are greater or equals 0.

Since for each element (i.e. truss) the internal elastic energy is given by Ue = 1
2 〈~ae , Ke · ~ae〉 (see

equation (2.2)) is is not to difficult to verify that the internal energy of the system is given by

Uelast =
1

2
〈~a , K · ~a〉

2.1.6 Using the constraints and solving the system of equations

In Figure 2.1 we find v1 = u2 = v2 = 0. Due to this constraint all contribution coming from columns 2, 3
and 4 will vanish. Thus we remove those columns and the variables v1 = u2 = v2 = 0 from the system. By
removing equations (rows) 2, 3 and 4 we du not yet try to solve for the unknown support forces f1,y, f2,x

and f2,y. With these simplifications we obtain a system of five liner equations for five unknowns

1.250 −0.250 0.433 · ·
−0.250 1.500 −0.000 −1.000 0.000

0.433 −0.000 1.500 0.000 0.000

· −1.000 0.000 1.250 −0.433

· 0.000 0.000 −0.433 0.750


·



u1

u3

v3

u4

v4


=



0

0

0

0

100


(2.3)

This new, smaller matrix K̂ inherits a few properties of K.

• K is symmetric

• Some of the entries are 0.

• The matrix K is strictly positive definite, i.e. all eigenvalues are greater than 0.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 16

This linear system admits a unique solution given by

u1

u3

v3

u4

v4


=



28.868

129.904

−8.3333

187.639

241.667


and thus we know the displacement vector ~a of the system

~a =



u1

v1

u2

v2

u3

v3

u4

v4


=



28.868

0

0

0

129.904

−8.3333

187.639

241.667


Our simplifying assumption E A

L = 1 is in practical situations certainly false and the result ~a has to be
multiplied by the factor L

E A . If we are to compute the resulting forces the we are short a factor E A
L and the

forces would have correct values3.
The external force F at the point cane be represented by an external energy contribution Uext = −v4 ·F .

Thus we arrive at the total energy

U = Uelast + Uext

=
1

2
〈



u1

u3

v3

u4

v4


,



1.250 −0.250 0.433 · ·
−0.250 1.500 −0.000 −1.000 0.000

0.433 −0.000 1.500 0.000 0.000

· −1.000 0.000 1.250 −0.433

· 0.000 0.000 −0.433 0.750


·



u1

u3

v3

u4

v4


〉+

+〈



u1

u3

v3

u4

v4


,



0

0

0

0

−100


〉

Minimizing this total energy of the system leads to a problem of the type in Theorem 1–4 (page 4). The
optimal value of the displacements is given by the solutions of equation (2.3). For this example we have
thus verified a very important physical principle of least energy:

Finding the displacement vector for a system of truss is equivalent to finding the minimum of the total
energy (elastic and external).

3In this situation twice ignoring the factor cancels in fact the error

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 17

2.1.7 Interpretation of the results

The result for the displacements ~a can now be used in K~a = ~Fext to find all external forces

~Fext =



−3.323e− 15

5.000e+ 01

−1.310e− 14

−1.500e+ 02

2.842e− 14

−2.665e− 15

−1.532e− 14

1.000e+ 02


=



0

50

0

−150

0

0

0

100


We determined the support forces at the points 1 and 2, e.g. point 1 applies a force of 50 N (upwards) to the
structure.

With the help of the element stiffness matrices we can compute forces on each element. As an example
consider element c. We find

Kc


u2

v2

u3

v3

 = ~Fc

and thus
0.25 0.433 −0.25 −0.433

0.433 0.75 −0.433 −0.75

−0.25 −0.433 0.25 0.433

−0.433 −0.75 0.433 0.75

 ·


0

0

129.904

−8.3333

 =


−28.87

−50.00

28.87

50.00

 =


U2

V2

U3

V3


Thus this element is compressed by a total force with strength

√
28.872 + 502N = 57.74N .

2.1.8 Octave–code for problems of this type

Even for small problems it is not very convenient to perform the calculations in the previous section by hand.
It is a simple programming exercise to implement the method in any reasonable language. As an example
we show an implementation in Octave4. Computations are split up in a few subroutines.

Generating an element stiffness matrix

The file StabElementMatrix.m contains code for a function to compute the element stiffness matrix
of a truss with given data.

Octave
function elmat = BarElementMatrix(Coeff,Angle)
% BarElementMatrix(Coeff,Angle)
% generates the 4x4 Element stiffnes matrix, where
% Coeff= E A /L
% Angle = Angle of the truss with respect to the horizontal

4Octave is comparable to MATLAB, each has its own strong and weak points.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 18

c = cos(Angle); s=sin(Angle);
T = Coeff* [cˆ2 s*c

s*c sˆ2] ;
elmat = zeros(4);
elmat(1:2 , 1:2) = T ;
elmat(3:4 , 1:2) = -T ;
elmat(1:2 , 3:4) = -T ;
elmat(3:4 , 3:4) = T ;
endfunction

Inserting an element stiffness matrix in the global stiffness matrix

The file assemble.m contains the corresponding code. As parameters we have to give the numbers of the
nodes and the 4× 4 element stiffness matrix, generated by BarElementMatrix(). The global variable
StMat is the global stiffness matrix.

Octave
function assemble(k,n,Mat)
% The element stiffness matrix belonging to the connection from
% point k to point n is included in the global stiffness matrix

global StMat
k2 = 2*k ; n2 = 2*n;

StMat((k2-1):k2,(k2-1):k2) = StMat((k2-1):k2,(k2-1):k2) + Mat(1:2,1:2);
StMat((k2-1):k2,(n2-1):n2) = StMat((k2-1):k2,(n2-1):n2) + Mat(1:2,3:4);
StMat((n2-1):n2,(k2-1):k2) = StMat((n2-1):n2,(k2-1):k2) + Mat(3:4,1:2);
StMat((n2-1):n2,(n2-1):n2) = StMat((n2-1):n2,(n2-1):n2) + Mat(3:4,3:4);
endfunction

Generating and solving the system of linear equations

With the help of the above two functions we may now solve the problem considered in the previous sections.
The code is stored in the file TrussSystem.m .

Octave
% TrussSystem
output_precision = 4 ;

% find the element stiffness matrices
Ka = BarElementMatrix(1,-pi/3);
Kb = BarElementMatrix(1,0);
Kc = BarElementMatrix(1,-2*pi/3);
Kd = BarElementMatrix(1,0);
Ke = BarElementMatrix(1,-pi/3);

% Global stiffness matrix of the correct size
global StMat = zeros(8);

% taking care of all the elements
assemble(1,3,Ka); assemble(1,2,Kb); assemble(2,3,Kc);
assemble(3,4,Kd); assemble(2,4,Ke);

% Now StMat contains the global stiffness matrix

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 19

% remove 2nd, 3rd and 4th rows and columns
mat = StMat([1 5 6 7 8],[1 5 6 7 8]);

% the vector sol is to contain the unknown displacements of the points
% and is produced by solving the correct system of equations
sol =mat\[0 0 0 0 100]’ ;

% Now compute the actual vector with all displacements
a = [sol(1) 0 0 0 sol(2:5)’]’

% and find all the forces by a simple matrix multiplication
Fext = StMat * a

The result generated by the above code is given by

Octave
a =

28.8675
0.0000
0.0000
0.0000

129.9038
-8.3333
187.6388
241.6667

Fext =
-3.323e-15
5.000e+01
-1.310e-14
-1.500e+02
2.842e-14
-2.665e-15
-1.532e-14
1.000e+02

Interpretation of results

Each isolated element can now be examined by

Octave
Kc*[0 0 a(5:6)’]’

leading to the forces on element c

Octave
ans =
-28.87
-50.00
28.87
50.00

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 20

2.2 Finite element method for a horizontal truss with variable cross section

2.2.1 Hooke’s law and the energy of a stretched truss

Consider a truss of original length L and constant cross section A, see Figure 2.3. We place the truss along
the x axis with 0 ≤ x ≤ L and keep the left endpoint at x = 0 fixed. At the right endpoint we apply a force
F . Due to this force the truss will stretch and the new endpoint will be at x = L+ ∆L. Hooke’s law gives

∆L

L
=

F

E A

where E is Young’s modulus of elasticity, a constant determined by the type of material. The term F/A
gives the force per unit area and is called stress∗ σ. The stress could depend on x but in this case we find it Spannung

tensionto be a constant.

x

L0

∆ L

Figure 2.3: An elementary horizontal truss

Obviously not only the right endpoint of the truss will move, but all parts of the truss will be moved. The
point x will end up at x+ u(x) where u(x) is the displacement∗. We know that u(0) = 0 and u(L) = ∆L. Verschiebung

déplacementIt is reasonable to assume that the displacement depends linearly on x, i.e.

u (x) =
∆L

L
x

Now we can introduce the strain∗ ε as Verzerrung
déformation

ε (x) = lim
h→0

u(x+ h)− u(x)

h
=
d u(x)

dx

In the above example we find a constant strain of ε(x) = ∆L/L. Hooke’s law can now be reformulated as

σ(x) = E ε(x)

The truss can also be considered as a simple spring with a spring constant k = EA
L . The total energy U

stored in a spring is known to be

U =
1

2
k (∆L)2 =

1

2

E A

L
(∆L)2

As the energy is evenly distributed over the truss we find the energy density e(x) (units: J
m3) by

e AL = U =
1

2

E A

L
(∆L)2

e =
E

2

(
∆L

L

)2

=
E

2
ε2

=
1

2
σ ε

This result remains correct in more general situations, we have the basic formula

density of energy = e(x) =
1

2
σ(x) · ε(x) (2.4)

This will allow us to compute the elastic energy stored in a stretched (or compressed) truss. In Exer-
cise 2–1 a truss with variable cross section is considered.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 21

2.2.2 A truss with variable cross section, a finite element approach

The problem in this section in this section is taken from the book [MullGrot97]. It will serve as a first
example on how to use finite elements to find an approximate solution to a problem. It is possible to find
an exact solution to this question by using Exercise 2–1. As a guideline we use the following path of
calculations:

• state the problem

• discretize the problem by dividing the truss in three simpler (constant cross section) elements

• introduce 4 well chosen variables

• compute the elastic energy stored in each of the elements

• give the formula for the total energy of the truss

• use the fact that the total energy has to be at a minimum for the physically stable situation

• solve the system of linear equations to find an approximate solution

• interpretation of the results, compare with the exact solution

2.2.3 Formulation of the special problem

Consider the truss shown in Figure 2.4. We know the following facts about the horizontal truss

Length L = 100 cm

Area of cross section A = (10− 0.09x) cm2

Left edge fixed

Force at right edge F = 2 · 104 N

Modulus of elasticity E = 3 · 106 N
cm2

The goal is to compute the stress σ(x) and the displacement u(x) for this situation.

-
x = 100 cmx = 0 cm

hhhhhhhhhhhhhhhhh

((((
((((

(((
((((

((

A = 10 cm2

A = 1 cm2

-F = 20 kN

Figure 2.4: truss with variable cross section

2.2.4 Division in three elements

The truss in Figure 2.4 will be divided in three simpler trusses, each with constant cross section, see Fig-
ure 2.4. Within each of the tree truss we find the situation of the previous section. Thus the displacement
will be an affine function (straight line), except at the connections. If the displacement is known at those

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 22

four special point, it can be computed at all points by a piecewise linear interpolation. We have the unknown
displacements

u0 = u(0) , u1 = u(
100

3
) , u2 = u(

200

3
) and u1 = u(100)

Within each of the elements the strain σ will be constant.

-

hhhhhhhhhhhhhhhhh

(((
((((

(((
((((

(((

-F = 20 kN

Figure 2.5: Truss divided in three elements, each with constant cross section

We arrive at three elements with the following data:

Element 1 Element 2 Element 3

Domain of x 0 ≤ x ≤ 100
3

100
3 ≤ x ≤

200
3

200
3 ≤ x ≤ 100

Length L1 = 100
3 L2 = 100

3 L3 = 100
3

Cross section A1 = 8.5 A2 = 5.5 A1 = 2.5

Left displacement u0 u1 u2

Right displacement u1 u2 u3

Strain ε1 = u1−u0
L1

ε2 = u2−u1
L2

ε3 = u3−u2
L3

2.2.5 Elastic energy in the elements

Elastic energy in the first element

Since the strain in this element is given by ε1 = u1−u0
L1

we find the stress σ1 by Hooke’s law

σ1 = E ε1 = E
u1 − u0

L1

Thus the energy density is given by equation (2.4) and thus

e1 =
1

2
σ1 · ε1 =

E

2

u1 − u0

L1

u1 − u0

L1
=

E

2L2
1

(
u2

1 − 2u1 u0 + u2
0

)
A simple multiplication leads to the elastic energy E1 stored in the first element

E1 = e1 L1 A1 =
E A1

2L1

(
u2

1 − 2u1 u0 + u2
0

)
=
E A1

2L1
〈

(
u0

u1

)
,

[
1 −1

−1 1

] (
u0

u1

)
〉

The last transformation of the expression is based on the idea used in Exercise 1–1. This leads to the
definition of the element stiffness matrix K1 as

K1 =

[
EA1
L1

−EA1
L1

−EA1
L1

EA1
L1

]

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 23

The energy can now be written as

E1 = 〈

(
u0

u1

)
,K1 ·

(
u0

u1

)
〉

Elastic energy in the other elements

Similarly we obtain

E2 =
1

2
〈

(
u1

u2

)
,K2 ·

(
u1

u2

)
〉 where K2 =

[
EA2
L2

−EA2
L2

−EA2
L2

EA2
L2

]

and

E3 =
1

2
〈

(
u2

u3

)
,K3 ·

(
u2

u3

)
〉 where K3 =

[
EA3
L3

−EA3
L3

−EA3
L3

EA3
L3

]

Total elastic energy stored in the stretched truss

Now it is an easy exercise to compute the total internal energy in the truss by adding the three contributions.
By using the notation of matrices we arrive at

Uelast = E1 + E2 + E3 =
1

2
〈~u , K · ~u〉

with the vector of displacements ~u = (u0, u1, u2, u3)T and the total stiffness matrix K

K =


EA1
L1

−EA1
L1

0 0

−EA1
L1

EA1
L1

+ EA2
L2

−EA2
L2

0

0 −EA2
L2

EA2
L2

+ EA3
L3

−EA3
L3

0 0 −EA3
L3

EA3
L3


In our case we know that u0 = 0 since the left end point is fixed. Using this we can eliminate the first row
and column in the matrix K and arrive at the total elastic energy

Uelast =
1

2
〈


u1

u2

u3

 ,


EA1
L1

+ EA2
L2

−EA2
L2

0

−EA2
L2

EA2
L2

+ EA3
L3

−EA3
L3

0 −EA3
L3

EA3
L3

 ·


u1

u2

u3

〉
The external force written as potential energy

The right end point is subjected to a force of strength F . Thus if the displacement u3 increases the corre-
sponding potential energy has to decrease. A potential of

Uext = −F · u3

will lead to the correct force F = − d
dx U . This can be rewritten as

Uext = 〈


u1

u2

u3

 ,


0

0

−F

〉
SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 24

2.2.6 Combining the elastic energy of the elements and the external energy

Now it is easy to combine the two energies.

total potential energy = internal elastic energy + potential energy due to external forces

U = Uelast + Uext

This leads to

U (~u) =
1

2
〈


u1

u2

u3

 ,


EA1
L1

+ EA2
L2

−EA2
L2

0

−EA2
L2

EA2
L2

+ EA3
L3

−EA3
L3

0 −EA3
L3

EA3
L3

 ·


u1

u2

u3

〉

+〈


u1

u2

u3

 ,


0

0

−F

〉
To solve the problem we have to use the principle of least energy:

The system is at rest if the total potential energy is at a minimum.

Using Theorem 1–4 (page 4) this leads to a system of linear equations for the unknown displacement
vector. 

EA1
L1

+ EA2
L2

−EA2
L2

0

−EA2
L2

EA2
L2

+ EA3
L3

−EA3
L3

0 −EA3
L3

EA3
L3

 ·


u1

u2

u3

 =


0

0

F


Now we can apply all the known values and arrive at

106 ·


1.26 −0.495 0

−0.495 0.72 −0.225

0 −0.225 0.225

 ·


u1

u2

u3

 = 106 ·


0

0

0.02


with the solution 

u1

u2

u3

 =


0.026

0.067

0.155


Since all the eigenvalues of the symmetric matrix are strictly positive we have in fact a minimum.

Now we can plot the solution in Figure 2.6. The dashed line corresponds to the exact solution. Since
the strain ε is given as the derivative of the displacement. It will be a constant on each of the three elements.
This is clearly visible in the right half of Figure 2.6. The stress σ is proportional to the strain.

2.2.7 How to improve the accuracy of the solution

Since we replaced the truss with variable cross section by a combination of three trusses with constant cross
section we can not expect to obtain exact solutions. There are different ways to improve the accuracy of the
solution.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 25

20 40 60 80 100
x

0.025

0.05

0.075

0.1

0.125

0.15

Displacement

20 40 60 80 100
x

0.001

0.002

0.003

0.004

0.005

0.006
Strain

Figure 2.6: Displacement and strain in a truss with three elements

• Choose more elements. In Figure 2.7 the result for 10 elements of equal length is shown. Observe
that the approximation of the displacement is good, while the strain still shows rather large errors in
the thin parts of the truss.

• Move the location of the internal nodes, such that there are more elements in areas of large stress (see
Exercise 2–2).

• Develop better elements to deliver a better approximation (see section 4.7.1). The elements used in
this section assume that the strain is constant within one element. This can be changed. A quadratic
function for the displacement can be used.

20 40 60 80 100
x

0.025

0.05

0.075

0.1

0.125

0.15

Displacement

20 40 60 80 100
x

0.001

0.002

0.003

0.004

0.005

0.006
Strain

Figure 2.7: Displacement and strain in a truss with 10 elements

2.2.8 An afterthought

In this chapter we considered displacement functions u defined for 0 ≤ x ≤ 100 which are piecewise linear
and continuous with corners at the interior points x1 and x2. On each of the elements the energy density
e(x) is given by (Hooke’s law: σ = E ε)

e(x) =
1

2
σ(x) · ε(x) =

1

2
E u′(x)2

In addition u(x0) = u(0) = 0 is required. Amongst all those functions we tried to minimize the total energy

E(u) =

∫ 100

0
A(x) e(x) dx− F · u(100) =

E

2

∫ 100

0
A(x)u′(x)2 dx− F · u(100)

The total energy E(u) is a function of the displacement function u(x), i.e. a functional. In the next chapter
we will look for the minimal energy amongst all permissable function, without the restriction piecewise
linear. This will lead to the calculus of variations.

SHA 22-4-21

CHAPTER 2. TWO INTRODUCTIONARY PROBLEMS 26

2.2.9 Exercises

•Exercise 2–1:
Consider a truss of length L (0 ≤ x ≤ L) with variable cross section A(x). Keep the left endpoint at x = 0
fixed and apply a force of strength F at the right end point.

(a) Compute the stress σ(x) using the fact that the total force applied to a cross section can not depend
on x.

(b) Use Hooke’s law to compute the strain ε(x) and then compute the total elastic energy in the truss.

(c) Find the total change ∆L of the lengthL by using the strain ε(x). The result is an integral containing
the function A(x).

(d) Show that the spring constant for this truss is given by

k =
force

change of length
=

(∫ L

0

1

E A(s)
ds

)−1

•Exercise 2–2:
Search and load the Mathematica notebook Truss.nb.

(a) Read and try to understand the given code in the section with the approximation by three elements.

(b) Modify the location of the internal nodes to obtain a better approximation.

(c) Modify the code to generate an approximation by 4 elements.

•Exercise 2–3:
Write a Mathematica notebook to solve the problem of a truss with variable cross section and arbitrary
number and length of elements. The input below should generate the results in this section.

Mathematica
nodes={0,100/3,200/3,100};
A[x_] := 10-0.09*x;
Em = 3*10ˆ6;
Force = 2*10ˆ4;

The next code should generate Figure 2.7.
Mathematica

nodes=Table[x,{x,0,100,10}]
A[x_] := 10-0.09*x;
Em = 3*10ˆ6;
Force = 2*10ˆ4;

SHA 22-4-21

Chapter 3

Calculus of variations for functions of one
independent variable

3.1 The Euler Lagrange equation

In this section the most important result will carefully be developed. We start with a technical, but important
result, then consider a simple example and aim for the general Euler Lagrange equation.

If the functions u(x) and f(x, u, u′) are given then the definite integral

F (u) =

∫ b

a
f(x, u(x), u′(x)) dx

is well defined. The main idea is now to examine the behaviour of F (u) if we choose different functions
u. We will search for special functions u(x) which will minimise the value of F (u). Some of the ideas and
results from the previous chapter will be reused, but some essential new concepts will be used too.

3.1.1 The fundamental lemma of the calculus of variations

3–1 Lemma : If u(x) is a continuous function for a ≤ x ≤ b and∫ b

a
u(x) · φ(x) dx = 0

for all differentiable functions φ with φ(a) = φ(b) = 0 then

u(x) = 0 for all a ≤ x ≤ b

3

Proof : We proceed by contradiction. Assume that for some x0 between a and b we we have u(x0) > 0.
Since the function u(x) is continuous we know that u(x) > 0 on a (possibly small) interval x1 < x < x2.
Now we choose

φ(x) =


0 for x ≤ x1

(x− x1)2(x− x2)2 for x1 ≤ x ≤ x2

0 for x2 ≤ x

Then we have u(x)φ(x) ≥ 0 for all a ≤ x ≤ b and u(x0)φ(x0) > 0 and thus∫ b

a
u(x) · φ(x) dx =

∫ x2

x1

u(x) · φ(x) dx > 0

This is a contradiction to the condition in the Lemma. Thus we have u(x) = 0 for a < x < b. As the
function u is continuous we also have u(a) = u(b) = 0. 2

27

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 28

With a few more mathematical ideas the above result can be improved and we obtain an important result
for the calculus of variations.

3–2 Theorem : Fundamental lemma of the calculus of variations
If u(x) is a continuous function for a ≤ x ≤ b and∫ b

a
u(x) · φ(x) dx = 0

for all infinitely often differentiable functions φ(x) with φ(a) = φ(b) = 0 then

u(x) = 0 for all a ≤ x ≤ b

3

If the integral condition is formulated with the derivative φ′(x) of the test function φ(x) then we arrive
at a modified result

3–3 Lemma : If u(x) is a continuous function for a ≤ x ≤ b and∫ b

a
u(x) · φ′(x) dx = 0

for all infinitely often differentiable functions φ(x) then

u′(x) = 0 for all a ≤ x ≤ b and u(a) · φ(a) = u(b) · φ(b) = 0

3

Proof : We use integration by parts

0 =

∫ b

a
u(x) · φ′(x) dx

= u(b) · φ(b)− u(a) · φ(a)−
∫ b

a
u′(x) · φ(x) dx

Considering all test function φ(x) with φ(a) = φ(b) = 0 leads to the condition u′(x) = 0. We are free
to choose test functions with arbitrary values at the end points a and b, thus we arrive at u(a) · φ(a) =
u(b) · φ(b) = 0 . 2

3.1.2 Shortest connection between two given points

As an first problem to the calculus of variations of one variable, we consider the question of finding the
shortest connection between two points. The solution is obviously given by a straight line. In figure 3.1 the
optimal and a lesser solution are shown. Now we use the fundamental lemmas to find the optimal solution
in a systematic fashion.

For two given points (a, y1) and (b, y2) in the xy–plane we are looking for the function y = u(x) which
gives the shortest connection between the two points. The length L of the curve is given by the integral

L(u) =

∫ b

a

√
1 + (u′(x))2 dx

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 29

x

u

a b

Figure 3.1: Shortest connection between two points

Assuming the optimal solution u(x) is given, we perturb it by a smooth function εη(x) with η(a) = η(b) = 0
and ε ∈ R small. Thus we have the boundary conditions

u(a) = u(a) + εη(a) = y1 and u(b) = u(b) + εη(b) = y2

Now we examine the function

F (ε) = L(u+ εη) =

∫ b

a

√
1 + (u′(x) + εη′(x))2 dx

If u(x) is in fact the optimal solution then the function F (ε) needs to be minimal at ε = 0. Thus we have
the necessary condition d

dε F (0) = 0. This leads to

d

dε
F (ε) =

d

dε

∫ b

a

√
1 + (u′(x) + εη′(x))2 dx

=

∫ b

a

d

dε

√
1 + (u′(x) + εη′(x))2 dx

=

∫ b

a

(u′(x) + εη′(x))√
1 + (u′(x) + εη′(x))2

η′(x) dx

If we set ε = 0 then this integral has to vanish and we obtain∫ b

a

u′(x)√
1 + (u′(x))2

η′(x) dx = 0 for all smooth functions η(x) with η(a) = η(b) = 0

With the help of the fundamental Lemma 3–3 we conclude

d

dx

u′(x)√
1 + (u′(x))2

= 0

If the derivative of an expression vanishes everywhere, then it has to be a constant, thus

u′(x)√
1 + (u′(x))2

= c

Subsequently u′(x) has to be constant, thus the optimal solution is a straight line. The two boundary condi-
tions u(a) = y1 and u(b) = y2 will determine the precise form of the line.

We had to find an extremum of a functional

F (u) =

∫ b

a
f(x, u, u′) dx with f(x, u, u′) =

√
1 + (u′)2

Most of the problems of the calculus of variations in one variable fit into a very similar framework and we
will look at this type of problem with some more care.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 30

3–4 Definition : If a mapping is defined for a set of functions X and returns a number as a result then it is
called a functional on the function space X .

Thus a functional is nothing but a function with a a set of functions as domain of definition. It might
help to compare typical functions and functionals.

domain of definition range

function interval [a, b] numbers R

functional
continuous functions

defined on [a, b], i.e. C([a, b],R)
numbers R

Here are a few examples of functionals

F (u) =
∫ π

0 a(x) u2 dx defined on C([0, 1],R) with u(0) = u(π) = 1

F (u) =
∫ 1

0

√
1 + u′(x)2 dx defined on C1([0, 1],R) with u(0) = 1 , u(1) = π

F (u) =
∫ 1

0 (u′(x)2 − 1)2 + u(x)2 dx defined on C1([0, 1],R) with u(0) = u(1) = 0

F (u) =
∫ 1

0 a(x) u′′(x)2 dx defined on C2([0, 1],R)

The principal goal of the calculus of variations is to find extrema of functionals.

3.1.3 Critical values of functionals of the form
∫
f(x, u(x)) dx

For a given function f we try to find a function u(x) such that the functional

F (u) =

∫ b

a
f(x, u(x)) dx

has a critical value for the function u. The critical value can be a maximal value, a minimal value or a
generalised saddle point. We require that

d

dε
F (u+ εη)

ε=0
= 0 for ”all“ functions η

To find the equations to be satisfied by the solution u(x) we use linear approximations. For small values
of ∆u we have

f (x, u+ ∆u) ≈ f(x, u) +
∂ f(x, u)

∂u
∆u

= f(x, u) + fu (x, u) ∆u

f (x, u(x) + εη (x)) ≈ f (x, u(x)) + ε fu(x, u(x)) η (x)

Now examine the functional in question

F (u) =

∫ b

a
f (x, u(x)) dx

F (u+ ε η) =

∫ b

a
f (x, u(x) + εη (x)) dx

≈
∫ b

a
f (x, u(x)) + ε fu(x, u(x)) η (x) dx

= F (u) + ε

∫ b

a
fu(x, u(x)) η (x) dx

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 31

If u leads to a critical value then the factor of ε has to vanish, i.e.∫ b

a
fu(x, u(x)) η (x) dx = 0 for all function η

Another way to derive this condition is to differentiate with respect to the parameter ε, and then set
ε = 0. The result has to be the same.

d

dε
F (u+ ε η)

ε=0
=

d

dε

(∫ b

a
f (x, u(x) + εη (x)) dx

)
ε=0

=

∫ b

a
fu(x, u(x)) η (x) dx

If this integral has to vanish for all function η(x) then we use the fundamental lemma to obtain the necessary
condition for a critical value∫ b

a
f (x, u(x)) dx critical for u =⇒ fu(x, u(x)) = 0 for a < x < b

3–5 Example : If the function u(x) leads to a critical value of the functional

F (u) =

∫ π

0
x2 + u2(x) dx

then we have to consider

f(x, u) = x2 + u2

fu(x, u) = 2u

0 = fu(x, u(x)) = 2u(x)

This leads to the obvious solution u(x) = 0 . ♦

3–6 Example : If the function u(x) leads to a critical value of the functional

F (u) =

∫ 1

−1
cosh(x+ u(x)) dx

then we have to consider

f(x, u) = cosh(x+ u)

fu(x, u) = sinh(x+ u)

0 = fu(x, u(x)) = sinh(x+ u(x))

u(x) = −x

This leads to the solution u(x) = −x . By inspection the original problem carefully we can verify that this
is in fact a correct solution. ♦

3.1.4 Critical values of functionals of the form
∫
f(x, u(x), u′(x)) dx

For a given function f we try to find a function u(x) such that the functional

F (u) =

∫ b

a
f(x, u(x), u′(x)) dx

has a critical value for the function u. We require that

d

dε
F (u+ εη)

ε=0
= 0 for ”all“ functions η

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 32

To find the equations to be satisfied by the solution u(x) we use linear approximations. For small values of
∆u we have

f (x, u+ ∆u, u′ + ∆u′) ≈ f(x, u) +
∂ f(x, u, u′)

∂u
∆u+

∂ f(x, u, u′)

∂u′
∆u′

= f(x, u) + fu (x, u, u′) ∆u+ fu′ (x, u, u
′) ∆u′

f (x, u(x) + εη (x), u′(x) + εη′(x)) ≈ f (x, u(x)) + ε fu(x, u(x), u′) η (x) +

+ε fu′(x, u(x), u′(x)) η′ (x)

Now we examine the functional in question

F (u) =

∫ b

a
f (x, u(x), u′(x)) dx

F (u+ ε η) =

∫ b

a
f (x, u(x) + εη (x), u′(x) + εη′ (x)) dx

≈
∫ b

a
f (x, u(x), u′(x)) + ε fu(x, u(x), u′(x)) η (x) + ε fu′(x, u(x), u′(x)) η′ (x) dx

= F (u) + ε

∫ b

a
fu(x, u(x), u′(x)) η (x) + fu′(x, u(x), u′(x)) η′ (x) dx

or
d

dε
F (u+ ε η)

ε=0
=

∫ b

a
fu(x, u(x), u′(x)) η (x) + fu′(x, u(x), u′(x)) η′ (x) dx

If this integral has to vanish for all function η(x) the we have a necessary condition. An integration by parts
leads to

0 =

∫ b

a
fu(x, u(x), u′(x)) η (x) + fu′(x, u(x), u′(x)) η′ (x) dx

= fu′(x, u(x), u′(x)) η (x)
∣∣b
x=a

+

∫ b

a

(
fu(x, u(x), u′(x))− d

dx
fu′(x, u(x), u′(x))

)
η (x) dx

If this expression is to vanish for all function η(x) we need

∫ b

a
f (x, u(x), u′(x)) dx extremal =⇒


d
dxfu′(x, u(x), u′(x)) = fu(x, u(x))

fu′(x, u(a), u′(a)) η (a) = 0

fu′(x, u(b), u′(b)) η (b) = 0

The first condition is the Euler Lagrange equation, the second and third condition are boundary condi-
tions. If the value u(a) is given and we are not free to choose it, then we need η(a) = 0 and the first
boundary condition is automatically satisfied. If we are free to choose u(a) then η(a) need not vanish and
we have the condition

fu′(x, u(a), u′(a)) = 0

A similar argument applies at the other endpoint x = b .

Now we have the central result for the calculus of variations in one variable.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 33

3–7 Theorem : Euler Lagrange equation
If a smooth function u(x) leads to a critical value of the functional

F (u) =

∫ b

a
f(x, u(x), u′(x)) dx

the differential equation
d

dx
fu′(x, u(x), u′(x)) = fu(x, u(x))

has to be satisfied for a < x < b. This is usually a second order differential equation.
• If it is a critical value amongst all functions with prescribed boundary values u(a) and u(b), use

these to solve the differential equation.

• If you are free to choose the values of u(a) and u(b), then the natural boundary conditions

fu′(x, u(a), u′(a)) = 0 and fu′(x, u(b), u′(b)) = 0

can be used.
3

3–8 Example : The problem of the shortest connection between two given points (see section 3.1.2) leads
to the question of finding a function u(x) such that

F (u) =

∫ b

a

√
1 + (u′(x))2 dx minimal, and u(a) = y1 , u(b) = y2

Thus we have

f(x, u, u′) =
√

1 + (u′)2

fu(x, u, u′) = 0

fu′(x, u, u
′) =

u′√
1 + (u′)2

The Euler Lagrange equation for this example is

0 =
d

dx
fu′(x, u, u

′) =
d

dx

u′√
1 + (u′)2

=
u′′√

1 + (u′)2
− (u′)2 · u′′√

1 + (u′)23

=
u′′ (1 + (u′(x)2)− (u′)2 · u′′√

1 + (u′)23 =
u′′√

1 + (u′)23

This equation is satisfied if u′′(x) = 0, thus we find the straight line again. ♦

3–9 Example : The Euler Lagrange equations are a necessary condition, but not a sufficient condition.
There are functionals where the Euler Lagrange equation can be solved, but the functional will not attain a
minimal value. As an example consider the functional

F (u) =

∫ 1

0

(
(u′(x))2 − 1

)2
+ u(x)2 dx with u(0) = u(1) = 0

which leads to the Euler Lagrange equation

d

dx
2
(
(u′(x))2 − 1

)
2u′(x) = 2u(x)

4 (u′(x))2 u′′(x) +
(
(u′(x))2 − 1

)
2u′′(x) = u(x)

2
(
3 (u′(x))2 − 1

)
u′′(x) = u(x)

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 34

This is a second order differential equation. A solution of this equation, including boundary conditions, is
given by u(x) = 0. For this solution we have F (u) = 1. But this is not the minimal value of the functional.
To verify this fact consider the triangular function in the figure below.

-

6

1�
�@

@
@@�

�
�
�@

@
@@�

�
�
�@

@
@@�

�
�
�@

@
@@�

�
�
�@

@
@@�

�

As the slope of the function is ±1 the first part of the functional vanishes and we only have to compute

F (u) =

∫ 1

0
u(x)2 dx

As the number of triangles is increased their height will decrease and this integral will obviously converge
to zero. ♦

3.1.5 Quadratics functionals and second order linear boundary value problems

If for given functions a(x), b(x) and g(x) the functional

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx (3.1)

has to be minimised, then we obtain the Euler Lagrange equation

d

dx
fu′ = fu

d

dx

(
a(x)

d u(x)

dx

)
= b(x)u(x) + g(x)

This is a linear, second order differential equation which has to be supplemented with appropriate boundary
conditions. If the value at one of the endpoints is given then this is called a Dirichlet boundary condition.
If we are free to choose the value at the boundary then this is called a Neumann boundary condition.
Theorem 3–7 implies that the second situation leads to a natural boundary condition

a(x)
d u

dx
= 0 for x = a or x = b

If we wish to consider a non-homogeneous boundary conditions

a(x)
d u

dx
= r(x) for x = a or x = b

then the functional has to be supplemented by (see exercise 3–6)

F (u) + r(a)u(a)− r(b)u(b)

Thus the above approach shows that many second order differential equation corresponds to an extremal
point for a properly chosen functional.

Many physical, mechanical and electrical problems lead to this type of equation as can be seen in
Table 3.1 (Source: [OttoPete92, p. 63]). Examples of this type are considered in section 4.3.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 35

differential equation problem description constitutive law

d
dx

(
Ak d Tdx

)
+Q = 0

one–dimensional

heat flow

T = temperature

A = area

k = thermal conductivity

Q = heat supply

Fourier’s law

q = −k d T
dx

d
dx

(
AE d u

dx

)
+ b = 0

axially loaded

elastic bar

u = displacement

A = area

E = Young’s modulus

b = axial loading

Hooke’s law

σ = E d u
dx

σ = stress

d
dx

(
S dwdx

)
+ p = 0

transversely loaded

flexible string

w = deflection

S = string force

p = lateral loading

d
dx

(
AD d c

dx

)
+Q = 0

one dimensional

diffusion

c = concentration

A = area

D = Diffusion coefficient

Q = external supply

Fick’s law

q = −D d c
dx

q = flux

d
dx

(
Aγ d V

dx

)
+Q = 0

one dimensional

electric current

V = voltage

A = area

γ = electric conductivity

Q = charge supply

Ohm’s law

q = −γ d V
dx

q = charge flux

d
dx

(
A D2

32ν
d p
dx

)
+Q = 0

laminar flow

in a pipe

(Poisseuille flow)

p = pressure

A = area

D = diameter

µ = viscosity

Q = fluid supply

q = D2

32ν
d p
dx

q = volume flux

Table 3.1: Examples of second order differential equations

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 36

3.1.6 First integrals

If the function f in integral of an variational problem does not depend on x or u, then the Euler Lagrange
equation can be simplified and we can conclude that certain expressions have to be constant, i.e. we have a
first integral.

3–10 Result : If the function f in the functional

F (u) =

∫ b

a
f (x, u′(x)) dx

does not explicitly depend on u then the expression

fu′(x, u
′(x)) = C1

is a first integral. 3

Proof : Since f does not depend on u we have fu = 0 and the Euler Lagrange equation simplifies to

d

dx
fu′ = 0

Thus the expression in the result can not depend on x. 2

3–11 Result : If the function f in the functional

F (u) =

∫ b

a
f (u(x), u′(x)) dx

does not explicitly depend on x then the expression

u′ fu′ − f = C1

is a first integral. 3

Proof : Since f does not depend on x the chain rule implies

d

dx
f = fu u

′ + fu′ u
′′

We use the Euler Lagrange equation
d

dx
fu′ = fu

to show that the total derivative of the expression in question vanishes.

d

dx

(
u′ fu′ − f

)
= u′′fu′ + u′

d fu′

dx
− d f

dx
= u′′fu′ + u′ fu −

(
fu u

′ + fu′ u
′′) = 0

2

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 37

3–12 Example : The problem of the shortest connection between two points leads to the functional

F (u) =

∫ b

a

√
1 + (u′(x))2 dx

Since the integrand does not explicitly depend on u we have the first integral

C = fu′(x, (u
′(x)) =

u′(x)√
1 + (u′(x))2

Thus we conclude

C
√

1 + (u′(x))2 = u′(x)

C2
(
1 + (u′(x))2

)
= (u′(x))2

(u′(x))2 =
C2

1− C2

and we obtain again the result that the slope has to be constant. ♦

3.1.7 Functionals depending on several functions

If a functional

F (u1, u2) =

∫ b

a
f(x, u1(x), u2(x), u′1(x), u′2(x)) dx

depends on two functions u1 and u2 and their first derivatives, the situation changes slightly. If the functional
is minimised then the new function

g(ε) = F (u1 + ε · η, u2) =

∫ b

a
f(x, u1(x) + ε · η(x), u2(x), u′1(x) + ε · η′(x), u′2(x)) dx

needs to have a minimum for ε = 0 and thus

d

dε
g(ε)

ε=0
= 0

This leads to the necessary condition

0 =

∫ b

a
fu1(x, u1(x), u2(x), u′1(x), u′2(x)) · η(x)fu′1(x, u1(x), u2(x), u′1(x), u′2(x)) · η′(x) dx

for all admissible functions η. Integration by parts and using the fundamental lemma we have one Euler
Lagrange equation

d

dx
fu′1(x, ~u(x), ~u′(x)) = fu1(x, ~u(x), ~u′(x))

Identical arguments apply to the dependence on the second function u2 and we have one Euler Lagrange
equation for each function the functional depends on.

This situation occurs often for mechanical problems when using Hamilton’s principle of least action.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 38

x
A

B

y

b

Figure 3.2: The brachistochrone by Johann Bernoulli

3.2 Examples

3.2.1 Brachistochrone problem

In 1696 Johann Bernoulli asked the following question: Given two points A and B in a vertical plane. What
is the path to be used by a moving particle to get from point A to point B in the shortest time possible? It is
assume that gravity is the only force available and friction is ignored. The situation is shown in figure 3.2.
The techniques used here to solve the problem were not available to Johann Bernoulli, he used Fermat’s
principle from optics to find a solution.

The velocity at a given height y is known to be v =
√

2 g
√
y. Now we assume that the curve is given

by a function y = u(x). The length element along the path is

ds =
√

1 + u′(x)2 dx

and thus the total travel time is

T (u) =

∫ b

0

ds

v
=

1√
2 g

∫ b

0

√
1 + u′(x)2√
u(x)

dx

we have to find a function u to render this integral minimal. As the integrand does not explicitly depend on
x we have a first integral

u′ fu′ − f = u′
u′

√
u
√

1 + (u′)2
−
√

1 + (u′)2

√
u

= C

This equation can be solved for u′. The calculations are shown below.

(u′)2√
1 + (u′)2

−
√

1 + (u′)2 = C
√
u

(u′)2 − (1 + (u′)2) = C
√
u
√

1 + (u′)2

−1

C
√
u

=
√

1 + (u′)2

1 + (u′)2 =
1

C2 u

d u

dx
=

√
1

C2 u
− 1 =

√
1− C2 u

C2 u

Separation of variables leads to the integral. To compute the integral on the right we use the substitution
C2 u = sin2 θ and du = 2

C2 sin θ cos θ dθ

∫
1 dx =

∫ √
C2 u

1− C2 u
du

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 39

x =

∫ √
sin2 θ

1− sin2 θ

2

C2
sin θ cos θ dθ =

∫ √
sin2 θ

cos2 θ

2

C2
sin θ cos θ dθ

C2

2
x =

∫
sin2 θ dθ =

1

4
(2 θ − sin(2 θ)) + k

Using

y = u(x) =
1

C2
sin2 θ =

1

2C2
(1− cos (2θ))

and the new parameter t = 2 θ we find the parametrisation of a cycloid.

x(t) = 1
2C2 (t− sin t) + x0

y(t) = 1
2C2 (1− cos t)

where t ∈ R

This curve can be generated by attaching a pen at the perimeter of a wheel with diameter 1/C and then roll
it in direction x. Find the graph of a cycloid of a wheel with radius 1 in figure 3.3. Observe that orientation
of the vertical axis is different from figure 3.2.

1 2 3 4 5 6

0.5

1

1.5

2

Figure 3.3: Graph of a cycloid

3–13 Example : The Mathematica code below will find and plot the curve connecting the origin with the
point (1, 1) such that the time of flight will be minimal.

Mathematica
Clear[x,y,c]
x[t_]:= 1/(2 c) (t-Sin[t])
y[t_]:= 1/(2 c) (1-Cos[t])
sol=FindRoot[{x[t]==1,y[t]==1},{t,1.0},{c,0.5}]
ParametricPlot[{x[t],y[t]}/. sol[[2]],{t,0,t/.sol[[1]]},
AspectRatio ->Automatic];

♦

3–14 Example : If the particle is to move from the origin to the vertical line x = b as first as possible but
the height at x = b is not prescribed then we have to use the natural boundary condition

fu′(x, u(b), u′(b)) = 0

u′
√
u
√

1 + (u′)2
= 0

u′(b) = 0

Thus we know that the optimal solution will hit the line x = b horizontally. For the parametrisation of the
cycloid we have thus the necessary condition

d

dt
y(t) =

d

dt

1

2C2
(1− cos t) =

sin t

2C2
= 0

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 40

This implies t = π and from

b = x(π) =
1

2C2
(π − sinπ) + x0 =

π

2C

we conclude C = π
2 b Thus we have the exact parametrisation of the cycloid and can now compute the level

at which the particle will hit the line x = b by

y(π) =
1

2C2
(1− cosπ) =

2 b

π

♦

3.2.2 Transverse deflection of a string

A perfectly flexible string (such as a violin string) is stretched tightly between two fixed points x = 0 and
x = L. The tension is known to be S (units N). The string is pulled out of its horizontal position by a known
vertical force F (units N

m). Its new position can be described by a function y(x). Thus the string will be
stretched and will finally have a total length of L = ∆L. We assume that ∆L � L. Due to this stretching
the elastic energy in the string will increase by S∆L. To compute the increase in energy we have to find the
length as a functional of the vertical displacement function y(x). From calculus we (should) know

L(y) =

∫ L

0

√
1 + (y′(x))2 dx ≈

∫ L

0
1 +

1

2
(y′(x))2 dx

where we used the approximation
√

1 + x ≈ 1+x/2 for x� 1. Thus the increase in elastic energy is given
by

Uelast(y) =
S

2

∫ L

0
(y′(x))2 dx

The external vertical force can be described to a potential energy of the form

Upot(y) = −
∫ L

0
F (x) · y(x) dx

Thus we arrive at at total energy

U(y) =

∫ L

0

S

2
(y′(x))2 − F (x) · y(x) dx

The string will be at rest if this energy is minimal and we find a standard problem for the calculus of
variations. The Euler Lagrange equation for this problem is

d

dx
fy′ = fy(x)

d

dx

(
S · y′(x)

)
= −F (x)

y′′(x) =
−F (x)

S

This ordinary differential equation of order 2 can be solved with the boundary conditions y(0) = y(L) = 0.
As a simple example we consider the deflection of the string due to its weight. If the mass per meter is

given by ρ then we have F = −gρ and the equation to be solved is

y′′(x) =
+gρ

S
with y(0) = y(L) = 0

The unique solution is
y(x) =

gρ

2S
(x− L)x

thus the string is shaped like a parabola.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 41

3.2.3 Geodesics on a sphere

On the right find the northern hemisphere (radius R =
6300 km) with the two cities Zürich and Salt Lake City
shown. The geographic data of the towns is given below

latitude π
2 − θ longitude φ

Zürich 47◦ +8◦

Salt Lake City 41◦ −112◦

Airlines prefer to use the shortest connection possible and will
fly north first, only to turn back south. We use calculus of
variations to show that the shortest connection follows a great
circle.

Find the Euler Lagrange equation

To achieve this we use spherical coordinates. The longitude equals the angle φ and the latitude is given by
π/2− θ. We represent the connection from Salt Lake City to Zürich by writing the latitude as a function of
the longitude, i.e. φ = v(θ). To find the total length L we need to express the length element dl in terms of
spherical coordinates. A few calculations lead to

dφ = v′ (θ) dθ

dl2 = R2
(
sin2 θ dφ2 + dθ2

)
= R2

(
sin2 θ v′(θ) + 1

)
dθ2

dl = R

√
sin2 θ (v′ (θ))2 + 1 dθ

L = R

∫ θ1

θ0

√
sin2 θ (v′ (θ))2 + 1 dθ

Thus we have a variational problem with

f (θ, v, v′) = R

√
sin2 θ (v′)2 + 1

∂

∂v
f (θ, v, v′) = 0

∂

∂v′
f (θ, v, v′) = R

sin2 θ v′√
sin2 θ (v′)2 + 1

As the function f does not explicitly depend on the function v we have a first integral

fv′ = C1

sin2 θ v′(θ)√
sin2 θ (v′(θ))2 + 1

=
C1

R
= C2

sin4 θ(v′(θ))2 = C2
2 (sin2 θ (v′(θ))2 + 1)

v′(θ) =
±C2√

sin4 θ − C2
2 sin2 θ

Proof that all solutions are great circles

The above differential equation could be solved, but the computations are rather involved. Thus we resort
to a slightly different argument to conclude that the optimal solution is along a great circle.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 42

If we consider the special case of v′(θ0) = 0 for some v(θ0) 6= 0 then we can conclude that C2 = 0 thus
v′(θ) = 0 for all θ. This solution is along a great circle with constant longitude. In general this will not be
the case. Knowing the locations of the two towns we can introduce a new system of spherical coordinates,
such that the two cities are on a great circle with the same ‘longitude’ in the new system. The connecting
path is then a great circle. This does not depend on our choice of coordinate system. Thus the two cities are
to be connected along a great circle.

The connection from Zürich to Salt Lake City

With the given data we have the locations of the two cities given by

~Z = R


cos 47◦ cos 8◦

cos 47◦ sin 8◦

sin 47◦

 ≈


4254.78

597.97

4607.53

 km

and

~S = R


cos 41◦ cos 112◦

− cos 41◦ sin 112◦

sin 41◦

 ≈

−1781.13

−4408.45

4133.17

 km

The distance along a straight line, cutting the interior of the earth is given by

d1 = ‖~Z − ~S‖ ≈ 7856.3 km

To find the distance between the cities along the surface we have to compute the angle between the two
vectors

cosα =
〈~Z, ~S〉
‖~Z‖ ‖~S‖

≈ 0.222 =⇒ α ≈ 1.346 ≈ 77.15◦

and then conclude
d2 = R α ≈ 8482.72 km

The distance along the surface is slightly larger, as it should be. The vector ~n normal to ~Z and ~S is a normal
vector to the plane supporting the great circle. It can be normalised.

~n1 = ~S × ~Z ≈


−2.35126

2.66176

1.8258

 107 normalises to ~n2 =


−0.588792

0.666546

0.457209


The angle between the z axis and ~n2 indicates the maximal latitude along the connection and is given by

arccos 0.457 ≈ 62.8◦

This shows why flights from Zürich to Salt Lake City first go north and then turn south again.

3.3 Hamilton’s principle of least action

Some of the notes in this section are adapted from [Wein74, p. 72]
We consider a system of particles subject to given geometric constraints and otherwise influenced by

forces which are functions only of the positions of the particles. In addition we require the system to be
conservative, i.e. the forces can be written as the gradient of a potential energy V of the system. We denote
the n degrees of freedom of the system with ~q = (q1, q2, . . . , qn)T . The kinetic energy T of the system is

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 43

the extension of the basic formulaE = 1
2 mv2. With those we form the Lagrange function L of the system

by
L(~q, ~̇q) = T (~q, ~̇q)− V (~q)

The fundamental principle of Hamilton now reads:

The actual motion of a system with the above Lagrangian L is such as to render the (Hamilton’s)
integral

I =

∫ t2

t1

(T − V) dt =

∫ t2

t1

L(~q, ~̇q) dt

an extremum with respect to all twice differentiable functions ~q(t). Here t1 and t2 are arbitrary times.

This is a situation where we (usually) have multiple dependent variables and thus the Euler Lagrange
equations imply

d

dt

∂ L

∂q̇i
=
∂ L

∂qi
for i = 1, 2, . . . , n

These differential equations apply to many mechanical setups, as the subsequent examples show.

3.3.1 A simple pendulum

For a simple pendulum of length l we have

T (ϕ, ϕ̇) =
1

2
ml2 (ϕ̇)2 and V (ϕ) = −ml g cosϕ

and thus the Lagrange function

L = T − V =
1

2
ml2 (ϕ̇)2 +ml g cosϕ

The only degree of freedom is q1 = ϕ and the functional to be min-
imised is ∫ b

a

1

2
ml2 (ϕ̇)2 +ml g cosϕ dϕ

L
L
L
L
L
L
L
L
L

ϕ

y
m

l

The

Euler Lagrange equation leads to

d

dt

∂ L

∂ϕ̇
=

∂ L

∂ϕ

d

dt
m l2 ϕ̇ = −ml g sinϕ

ϕ̈ = −g
l

sinϕ

This is the well known differential equation describing a pendulum. One can certainly derive the same
equation using Newton’s law.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 44

3.3.2 A double pendulum

The calculations for this problem given in many books on classical me-
chanics, e.g. [Gree77]. A double pendulum consists of two particles
with mass m suspended by massless rods of length l. Assuming that all
takes place in a vertical plane we have two degrees of freedom: the two
angles ϕ and θ. The potential energy is not too hard to find as

V (ϕ, θ) = −ml g (2 cosϕ+ cos θ)

The velocity of the upper particle is

v1 = l ϕ̇

L
L
L
L
L
L
LL

ϕ

xm
l

@
@
@
@@xm

lθ

To find the kinetic energy we need the velocity of the lower particle. The velocity vector is equal to the
vector sum of the velocity of the upper particle and the velocity of the lower particle relative to the upper
particle. Since the two vectors differ in direction by an angle of ϕ − θ we can use the law of cosine to find
the absolute velocity as1

v2 = l

√
ϕ̇2 + θ̇2 + 2 ϕ̇ θ̇ cos(ϕ− θ)

Thus the total kinetic energy is

T (ϕ̇, θ̇) =
ml2

2

(
2 ϕ̇2 + θ̇2 + 2 ϕ̇ θ̇ cos(ϕ− θ)

)
and the Lagrange function is

L = T − V =
ml2

2

(
2 ϕ̇2 + θ̇2 + 2 ϕ̇ θ̇ cos(ϕ− θ)

)
+ml g (2 cosϕ+ cos θ)

The Lagrange equation for the free variable ϕ is obtained from

∂ L

∂ϕ̇
= ml2

(
2 ϕ̇+ θ̇ cos(ϕ− θ)

)
d

dt

∂ L

∂ϕ̇
= ml2

(
2 ϕ̈+ θ̈ cos(ϕ− θ)− θ̇ (ϕ̇− θ̇) sin(ϕ− θ)

)
∂ L

∂ϕ
= −ml2 ϕ̇ θ̇ sin(ϕ− θ)−ml g 2 sinϕ

which, upon substitution into the Euler Lagrange equation, yields

ml2
(

2 ϕ̈+ θ̈ cos(ϕ− θ) + θ̇2 sin(ϕ− θ)
)

= −ml g 2 sinϕ

In a similar fashion the θ equation is obtained from

∂ L

∂θ̇
= ml2

(
θ̇ + ϕ̇ cos(ϕ− θ)

)
d

dt

∂ L

∂θ̇
= ml2

(
θ̈ + ϕ̈ cos(ϕ− θ)− ϕ̇ (ϕ̇− θ̇) sin(ϕ− θ)

)
∂ L

∂θ
= −ml2 ϕ̇ θ̇ sin(ϕ− θ)−ml g sin θ

yielding
ml2

(
θ̈ + ϕ̈ cos(ϕ− θ)− ϕ̇2 sin(ϕ− θ)

)
= −ml g sin θ

1Another approach is to use cartesian coordinates x(ϕ, θ) = l (sinϕ + sin θ), y(ϕ, θ) = −l (cosϕ + cos θ) and a few
calculations

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 45

Those two equations can be divided by ml2 and then lead to a system of ordinary differential equations of
order 2.

2 ϕ̈+ θ̈ cos(ϕ− θ) + θ̇2 sin(ϕ− θ) = −g
l

2 sinϕ

θ̈ + ϕ̈ cos(ϕ− θ)− ϕ̇2 sin(ϕ− θ) = −g
l

sin θ

By isolating the second order terms on the left we arrive at[
2 cos(ϕ− θ)

cos(ϕ− θ) 1

] (
ϕ̈

θ̈

)
= sin(ϕ− θ)

(
−θ̇2

ϕ̇2

)
− g

l

(
2 sinϕ

sin θ

)

The matrix on the left hand side is always invertible and thus this differential equation can reliably be solved
by numerical procedures.

If we assume that all angles and velocities are small we may use the approximations cos(ϕ − θ) ≈ 1
and sinx ≈ x to obtain the linearised differential equation[

2 1

1 1

] (
ϕ̈

θ̈

)
= −g

l

(
2ϕ

θ

)

Solving for the highest order derivative we obtain(
ϕ̈

θ̈

)
= −g

l

[
1 −1

−1 2

] (
2ϕ

θ

)
= −g

l

[
2 −1

−2 2

] (
ϕ

θ

)

This linear system of equations could be solved explicitly using eigenvalues and eigenvectors. The solution
will be valid for small angles and velocities.

3.3.3 A pendulum with moving support

A chariot of mass m1 with an attached pendulum of length l and mass m2 is moving freely. The situation is
shown in figure 3.4. In this example the independent variable is time t and the two general coordinates are
x and θ, i.e.

~u =

(
x

θ

)
and potential and kinetic energy are given by

V (x, θ) = −m2 l g cos θ

T (x, θ, ẋ, θ̇) =
m1

2
ẋ2 +

m2

2

(
(ẋ+ l cos θ θ̇)2 + (l sin θ θ̇)2

)
=

m1

2
ẋ2 +

m2

2

(
ẋ2 + 2 l ẋ cos θ θ̇ + l2 θ̇2

)
Thus for the Lagrange function L = T − V we have two Euler Lagrange equations. The first equation

deals with the dependence on the function x(t).

d

dt
Lẋ(x, θ, ẋ, θ̇) = Lx(x, θ, ẋ, θ̇)

d

dt

(
(m1 +m2) ẋ+m2 l cos θ θ̇

)
= 0

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 46

m2

l

m 1

θ

x

Figure 3.4: Pendulum with moving support

From this we can conclude that the momentum in x direction is conserved. The first equation deals with the
dependence on the function θ(t).

d

dt
Lθ̇(x, θ, ẋ, θ̇) = Lθ(x, θ, ẋ, θ̇)

m2
d

dt

(
l ẋ cos θ + l2 θ̇

)
= −m2 l ẋ θ̇ sin θ −m2 l g sin θ

d

dt

(
ẋ cos θ + l θ̇

)
= −ẋ θ̇ sin θ − g sin θ

ẍ cos θ − ẋ θ̇ sin θ + l θ̈ = −ẋ θ̇ sin θ − g sin θ

ẍ cos θ + l θ̈ = − g sin θ

This is a second order differential equation for the functions x(t) and θ(t). The two equations can be
combined and we arrive at the system

(m1 +m2) ẍ+m2 l cos θ θ̈ = m2 l sin θ (θ̇)2

ẍ cos θ + l θ̈ = − g sin θ

With the help of a matrix the system can be solved for the highest occurring derivatives. A simple com-
putation shows that the determinant of the matrix does not vanish and thus we can always find an inverse
matrix.

d2

dt2

(
x

θ

)
=

[
m1 +m2 m2 l cos θ

cos θ l

]−1 (
m2 l sin θ (θ̇)2

− g sin θ

)
This is a very convenient form to produce numerical solutions for the problem at hand.

The above model does not consider friction. Now we want to include some friction on the moving
chariot. This is not elementary, as the potential V can not depend on the velocity ẋ, but there is a trick to be
used.

1. Introduce a constant force F applied to the chariot to the system. This is done by modifying the
potential V accordingly.

2. Find the corresponding differential equations.

3. Set the force F = −αẋ

To take the additional force F into account we have to modify the potential energy

V (x, θ) = −m2 l g cos θ − x · F

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 47

The Euler Lagrange equation for the variable θ will not be affected by this change, but the equation for x
turns out to be

d

dt

(
(m1 +m2) ẋ+m2 l cos θ θ̇

)
= F

(m1 +m2) ẍ+m2 l cos θ θ̈ = m2 l sin θ (θ̇)2 + F

and the full system is now given by

d2

dt2

(
x

θ

)
=

[
m1 +m2 m2 l cos θ

cos θ l

]−1 (
m2 l sin θ (θ̇)2 + F

− g sin θ

)

Now it is easy to replace F by −αẋ and one obtains

d2

dt2

(
x

θ

)
=

[
m1 +m2 m2 l cos θ

cos θ l

]−1 (
m2 l sin θ (θ̇)2 − α ẋ

− g sin θ

)

This equation can be solved with Mathematica . First define the equations using the above matrix nota-
tion.

Mathematica
rhs:= Inverse[{{m1+m2,m2 l Cos[w[t]]},

{Cos[w[t]],l}}].{m2 l Sin[w[t]](w’[t])ˆ2- al x’[t],-g Sin[w[t]]};
eq:={x’’[t]==rhs[[1]],w’’[t]==rhs[[2]]}

Then choose the constants and initial conditions for the specific setup and compute the numerical approxi-
mation to the solution.

Mathematica
g=9.81;m1=1;m2=8; l =1;al=0.5;
initval={x[0]==0 ,x’[0]==0,w[0]==Pi/6,w’[0]==0};
nsol=NDSolve[Flatten[{eq,initval}],{x[t],w[t]},{t,0,10},MaxSteps -> 2000]

Define the functions to be plotted and generate an array of plots for the solution (see figure 3.5).
Mathematica

xn[t_] = x[t]/.nsol;
wn[t_] = w[t]/.nsol;
g1 = Plot[xn[t],{t,0,10},AxesLabel->{"t","x"},DisplayFunction->Identity];
g2 = Plot[wn[t],{t,0,10},AxesLabel->{"t","angle"},DisplayFunction->Identity];
Show[GraphicsArray[{g1,g2}],DisplayFunction ->$DisplayFunction];

2 4 6 8 10t

0.2

0.4

0.6

0.8
x

2 4 6 8 10t

-0.4
-0.2

0.2
0.4

angle

Figure 3.5: Numerical solution for a pendulum with moving support

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 48

3.4 An isoperimetric problem

If for function of multiple variable we want to find an extremum of the function f(~x) subject to to the
constraint g(~x) = c then we have to use a Lagrange multiplier, i.e. there is a number λ ∈ R such that

~x critical point of f(~x)

subject to g(~x) = c
=⇒ ~∇f(~x) + λ ~∇g(x) = ~0

The idea and technique of Lagrange multipliers can be applied to functionals too. We will not go into
details here but consider the problem of maximum enclosed area by a curve of given length.

If a function u(x) is a critical function for the functional

F (u) =

∫ b

a
f(x, u, u′) dx subject to G(u) =

∫ b

a
g(x, u, u′) dx = c

then there is a multiplier λ ∈ R such that u(x) is a critical function for

H(u) = F (u) + λG(u) =

∫ b

a
f(x, u, u′) + λ g(x, u, u′) dx

Thus the corresponding Euler Lagrange equation is

d

dx
hu′ = hu

d

dx
fu′ + λ

d

dx
gu′ = fu + λ gu

As an example we search the curve in R2 of given length L enclosing the largest area possible. We
examine parametrised curves

~u(t) =

(
x(t)

y(t)

)
for a ≤ t ≤ b

This problem has two dependent functions x(t) and y(t). The total length of the curve is given by

G(~u) =

∫ b

a

√
ẋ2 + ẏ2 dt = L

The total area can be computed by

F (~u) =
1

2

∫ b

a
x ẏ − y ẋ dt

Using the method of Lagrange multipliers we have to examine the functional∫ b

a

1

2
(x ẏ − y ẋ) + λ

√
ẋ2 + ẏ2 dt

and are lead to the Lagrange equations

d

dt

(
−y
2

+ λ
ẋ√

ẋ2 + ẏ2

)
=
ẏ

2
and

d

dt

(
x

2
+ λ

ẏ√
ẋ2 + ẏ2

)
=
−ẋ
2

Those equations can directly be integrated with respect to t and we get

λ
ẋ√

ẋ2 + ẏ2
− y = −C1 and λ

ẏ√
ẋ2 + ẏ2

+ x = C2

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 49

or also
λ

ẋ√
ẋ2 + ẏ2

= y − C1 and − λ ẏ√
ẋ2 + ẏ2

= x− C2

By squaring and adding we get
(x− C2)2 + (y − C1)2 = λ2

which is the equation of a circle of radius |λ| and center at x = C2 and y = C1.
The formula used to compute the total area requires that the curve has to be closed. There are other

situations and in exercise 3–4 a similar situation is considered.

3.5 Laser beam deflected by a heat source

A solid with a flat, horizontal surface is heated, thus there will be a temperature gradient above this surface.
Then a laser beam will travel parallel to the surface. As the speed of light v depends on the temperature ,
which decreases as we move further away from the surface. we consider the speed of light to be given by a
function of the form

v(x, u) = v0 + k u

where u is the distance above the surface, x the horizontal coordinate, v0 the speed of light on a given level
and the gradient of the speed of light is k. This can also be reformulated using the index of refraction n
related to the speed by

n(x, u) =
c

v(x, u)
=

c

v0 + k u

where c is the speed of light in empty space.

3.5.1 Dependence of the speed of light on the temperature

In [CRC95, §10–302] find data for the index of refraction as a function of pressure, wavelength and the
temperature. The index can be computed by

(n− 1) · 108 = 8342.13 + 2406030 (130− σ2)−1 + 15997 (38.9− σ2)−1

where

λvac = 1
σ wavelength µm

T temperature ◦C

p pressure N
m2

If the temperature is different from 15◦C and the pressure p deviates of 101.325 kP , then the value of
(n− 1) in the formula above has to be multiplied with

p (1 + p (61.3− t) · 10−10)

96095.4 (1 + 0.003661 t)

Those formulas can be coded in Mathematica
Mathematica

n1[sigma_]:=1+ (8342.13+ 2406030*(130-sigmaˆ2)ˆ(-1)+
15997*(38.9-sigmaˆ2)ˆ(-1))*10ˆ(-8)

nfactor[p_,T_] := (p (1+p*(61.3-T)* 10ˆ(-10)))/(96095.4*(1+0.003661*T))
n[lambda_] := n1[1/lambda]
n[lambda_,T_,p_] := (n[lambda]-1)*nfactor[p,T]+1

Then the entry in the table in [CRC95] for a wavelength of λ = 0.4 µm can be verified by
Mathematica

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 50

(n[0.4]-1)*10ˆ8
(n[0.4,15,101.325*10ˆ3]-1)*10ˆ8
.
28274.8
28274.8

Since we are interested in the gradient with respect to the temperature T now compute
Mathematica

nGradt[lambda_,T_,p_] =D[n[lambda,T,p],T];
nGradt[0.4,15,101.325*10ˆ3]
.
-9.84117*10ˆ(-7)

Thus if the temperature increases by 1◦ C then the index of refraction decreases by 10−6. This leads to

∆n ≈ −10−6 ∆T

∆v =
c

n+ ∆n
− c

n
≈ −c ∆n ≈ 10−6 c ∆T

If the rate of change of the temperature is known this will alow to find the coefficient k in v(v, u) = v0 +k u.

3.5.2 Find the time of travel

For a given function u(x) the time of travel T can be found. Fermat’s principle implies that the time T
required to travel from x = a to x = b will be a critical value. The time needed to travel from x to x+ ∆x
is approximately given by

∆T =
distance
speed

≈
√

1 + (u′(x))2

v (x, u)

Thus for the total time we consider the functional

T (u) =

∫ b

a

√
1 + (u′(x))2

v (x, u)
dx

x

α

u

Figure 3.6: Laser beam in a medium with variable refraction index

3.5.3 Solution using a first integral

We have to minimise a functional based on the function

f (u, u′) =

√
1 + (u′)2

v0 + k u

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 51

Since the function f is explicitly independent on x we have a first integral (see Result 3–11).

u′ fu′ − f = −C1

u′
u′√

1 + (u′)2 (v0 + k u)
−
√

1 + (u′)2

v0 + k u
= −C1

(u′)2 − (1 + (u′)2)√
1 + (u′)2 (v0 + k u)

= −C1

1√
1 + (u′)2 (v0 + k u)

= C1

The above leads to a nonlinear differential equation of first order.

(u′)2 = −1 +
1

C2
1 (v0 + k u)2

=
1− C2

1 (v0 + k u)2

C2
1 (v0 + k u)2

By a separation of variables we obtain√
C2

1 (v0 + k u)2

1− C2
1 (v0 + k u)2

du = dx∫
±C1 (v0 + k u)√
1− C2

1 (v0 + k u)2
du =

∫
dx

± 1

k C1

√
1− C2

1 (v0 + k u)2 = x+ C2

C2
1 (v0 + k u)2 = 1− k2C2

1 (x+ C2)2

(v0 + k u)2 =
1

C2
1

− k2 (x+ C2)2

k u = −v0 +

√
1

C2
1

− k2 (x+ C2)2

This integration will fail if the denominator vanishes which is equivalent to u′(x) = 0. This indicates that
for horizontal beams this approach is not suitable.

Using the initial conditions u(0) = 0 and u′(0) = u1 we can determine the constants C1 and C2. First
set x = 0, then differentiate with respect to to x and set x = 0. We conclude

0 = −v0 +

√
1

C2
1

− k2C2
2

k u1 =
−k2C2√

1/C2
1 − k2(0 + C2)2

=
−k2C2

v0

From this we arrive at

C2 = −v0 u1

k
and C2

1 =
1

v2
0 + k2C2

2

=
1

v2
0(1 + u2

1)

Now we finally obtain

u(x) =
1

k

(
−v0 +

√
v2

0(1 + u2
1)− k2 (x− v0 u1

k
)2

)
=

1

k

(
−v0 +

√
v2

0 + v2
0u

2
1 − k2x2 + 2x v0 k u1 − v2

0u
2
1

)
=

1

k

(
−v0 +

√
v2

0 + 2x v0 k u1 − k2x2

)
SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 52

Situation with vanishing initial slope

In the particular situation u1 = u′(0) = 0 we have

u(x) =
1

k

(
−v0 +

√
v2

0 − k2x2

)
=
v0

k

(
−1 +

√
1− k2

v2
0

x2

)
≈ −v0

k

k2

2 v2
0

x2 = − k

2 v0
x2

Thus the laser beam will take the shape of a parabola, at least for values close to the highest/lowest point of
the beam. But this is the ”dangerous region“ for the separation of variables above. But as soon as we are
away from the extremal point the solution should be valid.

The exact solution

Considering the intermediate results in the calculation for the separation of variables we see that the solution
passing through u(0) = 0 satisfies the following equations.

(v0 + k u)2 =
1

C2
1

− k2 (x+ C2)2

(v0 + k u)2 = v2
0(1 + u2

1)− k2 (x− v0u1

k
)2

= v2
0(1 + u2

1)− (k x− v0u1)2

(v0 + k u)2 + (k x− v0u1)2 = v2
0(1 + u2

1)

(u+
v0

k
)2 + (x− v0u1

k
)2 =

v2
0(1 + u2

1)

k2

This is the equation of a circle in the xu plane with center at x = v0u1
k and u = −v0

k . The radius of the
circle is v0

k

√
1 + u2

1. The points with vertical slope are at the level u = −v0
k and due to v(x, u) = vk0 u the

speed would be zero at those points.

3.5.4 Solution using an approximation

Since the expressions will be rather lengthy we assume v(x, u) = v0 +k u and use the approximation (valid
if |u′| � 1) √

1 + (u′)2 ≈ 1 +
1

2
(u′)2

Now we use the Euler Lagrange equation from Theorem 3–7. This leads to

f (x, u, u′) =
1 + 1

2 (u′)2

v0 + k u
d

dx
fu′(x, u, u

′) = fu(x, u)

d

dx

u′

v0 + k u
=
−k (1 + 1

2 (u′)2)

(v0 + k u)2

u′′

v0 + k u
− k (u′)2

(v0 + k u)2
=
−k (1 + 1

2 (u′)2)

(v0 + k u)2

u′′ =
−k + k

2 (u′)2)

(v0 + k u)
= − k

(v0 + k u)
+

k

2 (v0 + k u)
(u′)2

u′′ ≈ −k
v0 + k u

if (u′)2 � 1

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 53

Thus we obtain a very simple formula. If we use in addition k u � v0, then we find the following for the
height u(x) of the laser beam.

u′′ (x) ≈ −k
v0

But this formula should yield sufficiently precise results in many situations.
If the gradient k of the speed of light is known as a function of x then an integration will lead to the total

change of the angle as the ray of light crosses the area. We find with the obvious definition of K(x)

u′(x) = u′(0) +

∫ x

0
u′′(z) dz = u′(0)−

∫ x

0

k(z)

v0
dz = u(0)− 1

v0
K(x)

u(x) = u(0) +

∫ x

0
u′(z) dz = u(0) + xu′(0) +

1

v0

∫ x

0
K(z) dz

For a given experimental setup the last two formulas may help to analyse the structure of the temperature
gradient.

3.6 Bending of a circular plate

The goal of this section is to compute the bending of a circular plate under constant pressure. Knowing the
deflection at the midpoint one can find the applied pressure. The integral to be minimised is different from
the previous examples, it does contain second order derivatives of the unknown function. We have to derive
the Euler Lagrange equation for this type of problem.

3.6.1 Energy of bending

The energy of bending bar with cross section A, thickness h and moment of inertia I is given by

U =

∫ L

0

E I

2
(u′′(x))2 dx

This is correct if the displacement depends on x only. If the displacement depends on x and y then further
effects have to be taken into account. The energy of a plate described by the vertical displacement z =
u(x, y) for (x, y) ∈ Ω with thickness h is given by

U =
h3E

24 (1− σ2)

∫∫
Ω

(uxx + uyy)
2 − 2 (1− σ) (uxx uyy − u2

xy) dx dy

where E is Young’s modulus and σ is Poisson’s ratio. More information can be found in [Wein74, §10]
or [LandLifs75].

3.6.2 Using polar coordinates

Using the standard notation ∆ for the Laplace operator we have in cartesian and polar coordinates ∆u by

uxx + uyy = ∆u =
∂2 u

∂x2
+
∂2 u

∂y2
=

1

r

∂

∂r

(
r
∂ u

∂r

)
+

1

r2

∂2 u

∂φ2

For a circular plate 0 ≤ r ≤ R with the deflection depending on r only we find

F (u) = =
E h3

24 (1− σ2)

∫ R

0

(
1

r

(
r u′
)′)2

2π r dr =
π E h3

12 (1− σ2)

∫ R

0

1

r

((
r u′
)′)2

dr

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 54

Set k = π E h3

6 (1−σ2)
and choose a fixed test function φ(r) and a parameter ε then we find

F (u+ εφ) =
1

2

∫ R

0

k

r

((
r u′ + ε r φ′

)′)2
dr

d

dε
F (u+ εφ) =

∫ R

0

k

r

((
r u′ + ε r φ′

)′) · (r φ′)′ dr
d

dε
F (u+ εφ)

∣∣∣∣
ε=0

=

∫ R

0

k

r
(r u′)′ ·

(
r φ′
)′
dr

Now we can perform two integrations by parts to move all derivatives from the test function φ(r) to the
function u(r)

d

dε
F (u+ εφ)

∣∣∣∣
ε=0

=

∫ R

0

k

r
(r u′)′ ·

(
r φ′
)′
dr

=
k

r
(r u′)′ ·

(
r φ′
)∣∣∣∣R
r=0

−
∫ R

0

(
k

r
(r u′)′

)′
·
(
r φ′
)
dr

= k (r u′)′ · φ′ − r
(
k

r
(r u′)′

)′
· φ
∣∣∣∣R
r=0

+

∫ R

0

(
r

(
k

r
(r u′)′

)′)′
· φ dr

Next we consider the second part of the elastic energy. The expression in question is (suppressing some
constants)

P (u) =

∫∫
Ω

uxx uyy − u2
xy dx dy

P (u) =

∫∫
Ω

uxx uyy − u2
xy dx dy

=
1

2

∫∫
Ω

∂

∂x
(ux uyy − uy uxy) +

∂

∂y
(uy uxx − ux uxy) dx dy

=
1

2

∮
∂Ω

(
ux uyy − uy uxy
uy uxx − ux uxy

)
· ~n ds

=
2π R

2
u′(R)

u′(R)

R
= π u′(R)2

P (u+ φ)− P (u) ≈ 2π u′(R) · φ′(R)

−h
3E 2 (1− σ)

24 (1− σ2)
(P (u+ φ)− P (u)) ≈ −k (1− σ) u′(R) · φ′(R)

For small perturbations φ we find

P (u+ φ)− P (u) ≈
∫∫
Ω

φxx uyy + uxx φyy − 2uxy φxy dx dy

=

∫∫
Ω

∂

∂x
(φx uyy − φy uxy) +

∂

∂y
(φy uxx − φx uxy) dx dy

=

∮
∂Ω

(
φx uyy − φy uxy
φy uxx − φx uxy

)
· ~n ds

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 55

For a circular plate the integrand has to be constant along the boundary r = R and the functions u and φ
depend on r only. The derivatives with respect to x and y are

d

dx
u(r) = u′(r)

x√
x2 + y2

d

dy
u(r) = u′(r)

y√
x2 + y2

d2

dx2
u(r) = u′′(r)

x2

x2 + y2
+ u′(r)

1√
x2 + y2

− u′(r) x2√
x2 + y2

3

d2

dy2
u(r) = u′′(r)

y2

x2 + y2
+ u′(r)

1√
x2 + y2

− u′(r) y2√
x2 + y2

3

d2

dx dy
u(r) = u′′(r)

x y

x2 + y2
− u′(r) x y√

x2 + y2
3

At the point x = R and y = 0 we find(
φx uyy − φy uxy
φy uxx − φx uxy

)
· ~n = φx uyy − φy uxy = φ′(R)

u′(R)

R

As the situation is radially symmetric the contribution can not depend on the angle. Thus in the variation of
the total energy we find a contribution of

− E h3

24 (1− σ2)
2 (1− σ) φ′(R)

u′(R)

R
2π R = −k (1− σ) u′(R) · φ′(R)

where k = π E h3

6 (1−σ2)
is the same constant as above. Observe that this term does not lead to any contribution

in the integral, but only to boundary terms.

3.6.3 Energy due to external pressure and the Euler Lagrange equation

Sofar we considered the internal energy of bending only. The external pressure p applied to the upper side
of the plate will lead to an additional energy term

Fe(u) =

∫ R

0
p 2π r · u dr

By computations much simpler than the above we obtain an additional term to that variation∫ R

0
p 2π r · φ dr

The total variation can be described by

d

dε
U(u+ εφ)

∣∣∣∣
ε=0

=

(
k (r u′)′ · φ′ − r

(
k

r
(r u′)′

)′
· φ
) ∣∣∣∣R

r=0

− 2 k (1− σ) u′(R) · φ′(R)

+

∫ R

0

(
r

(
k

r
(r u′)′

)′)′
· φ+ p 2π r · φ dr

This expression has to vanish for ”all” test function φ(r). Using the fundamental lemma 3–2 we conclude
that the expression under the integral has to vanish. Since the expressions are not overly simple we compute

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 56

some of the derivatives.

r

(
k

r
(r u′)′

)′
= r

(
k

r
(u′ + r u′′)

)′
= r

(
k u′

r
+ k u′′

)′
= r

(
k u′′

r
− k u′

r2
+ k u′′′

)
= k u′′ − k u′

r
+ k r u′′′(

r

(
k

r
(r u′)′

)′)′
=

k u′

r2
− k u′′

r
+ 2 k u′′′ + k r u(4)

Thus the differential equation to be solved is

π E h3

6 (1− σ2)

(
u′

r2
− u′′

r
+ 2u′′′ + r u(4)

)
= −2π r p

This can be rewritten as

r3 u(4) + 2 r2 u′′′ − r u′′ + u′ = −12 (1− σ2)

E h3
r3 p

This is a linear differential equation with non constant coefficients. Its general solution is given as sum of
the general solution of the homogeneous problem and one particular solution. Standard methods will lead
to the result

u(r) = c1 + c2 ln r + c3 r
2 + c4 r

2 ln r − 12 p (1− σ2)

64E h3
r4

As the deflection (and its derivatives) can not have singularities at r = 0 we conclude c2 = c4 = 0. By
choosing u(0) = 0 we find c1 = 0 and thus the solution is

u(r) = c3 r
2 − 12 p (1− σ2)

64E h3
r4

The constant c3 has to be determined by another boundary condition. We carry out those computations for
two special cases.

3.6.4 Clamped edge at r = R

If we require u′(R) = 0 then

u′(R) = c3 2R− 4 · 12 p (1− σ2)

64E h3
R3 = 0 =⇒ c3 = 2

12 p (1− σ2)

64E h3
R2

The maximal deflection will be at r = R and we have

u(R) = 2
12 p (1− σ2)

64E h3
R2R2 − 12 p (1− σ2)

64E h3
R4 =

12 p (1− σ2)

64E h3
R4

This result is confirmed in [Hart52].

3.6.5 Simply supported edge at r = R

If the angle at r = R is free to move then we have to use the natural boundary condition, i.e. the terms in
the variation of the energy containing φ′(R) have to vanish at r = R.

(r u′)′ − (1− σ)u′(r) =

(
c3 2 r2 − 4

12 p (1− σ2)

64E h3
r4

)′
− (1− σ)

(
c3 2 r − 4

12 p (1− σ2)

64E h3
r3

)
= 0

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 57

This leads to

c3 (4R− 2 (1− σ)R) =
12 p (1− σ2)

64E h3

(
16R3 − 4 (1− σ)R3

)
with the solution

c3 =
12 p (1− σ2)

64E h3

16− 4 (1− σ)

4− 2 (1− σ)
R2 =

12 p (1− σ2)

64E h3

6 + 2σ

1 + σ
R2

and thus

u(R) =
12 p (1− σ2)

64E h3

(
6 + 2σ

1 + σ
− 1

)
R4 =

12 p (1− σ2)

64E h3

(
5 + σ

1 + σ

)
R4

We obtain the same result as for a clamped plate, except for the factor (5 + σ)/(1 + σ). We conclude that
the maximal deflection will increase by this factor if the plate is simply supported instead of clamped. For a
typical value of σ = 0.3 of Poisson’s ratio the factor is approximately 4.08. This is confirmed by the results
in [Hart52].

Since the dependence of the maximal deflection on the parameters is explicitly given one can now
quickly decide whether a given design of a pressure sensor might work.

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 58

3.6.6 Introduce new variable

If the plate is clamed we use u(R) = u′(R) = 0 we find the total energy of the plate as

F (u) =
π E h3

12 (1− σ2)

∫ R

0

1

r

((
r u′
)′)2

dr +

∫ R

0
2π r p · u dr

F (u) =
π E h3

12 (1− σ2)

∫ R

0

1

r

((
r u′
)′)2

dr −
∫ R

0
π r2 p · u′ dr

Let v(r) = r u′(r)

F (v) =
π E h3

12 (1− σ2)

∫ R

0

1

r
v′

2
dr −

∫ R

0
π r p · v dr

F (v + φ)− F (v) ≈ k

∫ R

0

2

r
v′ · φ′ dr −

∫ R

0
π r p · φ dr

=

(
k

2 v′(r)

r
· φ(r)

) R

r=0
−
∫ R

0

((
k
v′

r

)′
+ π r p

)
· φ dr

Thus (
k
v′

r

)′
= −π r p

and thus

k
v′

r
= −π p

2
r2 + c1

k v′ = −π p
2
r3 + c1 r

k r u′ = k v = −π p
8
r4 +

c1

2
r2 + c2

k u′ = −π p
8
r3 +

c1

2
r +

c2

r

k u = −π p
32

r4 +
c1

4
r2 + c2 ln r + c3

k u = −π p
32

r4 +
c1

4
r2 (use u(0) = u′(0) = 0)

0 = −π p
8
R3 +

c1

2
R (use u′(R) = 0)

c1 =
π p

4
R2

k u(r) = −π p
32

r4 +
π p

16
R2 r2 =

π p

32

(
2R2 − r2

)
r2

k u(R) =
π p

32
R4

U(R) =
6 (1− σ2)

π E h3

π p

32
R4 =

3 (1− σ2) p

16 E h3
R4

3.6.7 Eigenfrequencies of a clamped plate

F (u) =
k

2

∫ R

0

1

r

((
r u′
)′)2

dr +

∫ R

0
2π r p · u dr

F (u+ φ)− F (u) ≈ k

∫ R

0

1

r

(
r u′
)′ · (r φ′)′ dr +

∫ R

0
2π r p · φ dr

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 59

= boundary− k
∫ R

0

(
1

r

(
r u′
)′)′ · r φ′ dr +

∫ R

0
2π r p · φ dr

= boundary + k

∫ R

0

(
r

(
1

r

(
r u′
)′)′)′ · φ dr +

∫ R

0
2π r p · φ dr

Euler–Lagrange equation

k

(
r

(
1

r

(
r u′
)′)′)′

+ 2π r p = 0

Replace the pressure p by h ρ ü = −ω2 h ρu to examine harmonic vibration with angular velocity ω. This
leads to

π E h3

6 (1− σ2)

(
r

(
1

r

(
r u′
)′)′)′

= 2π r ω2 h ρu(
r

(
1

r

(
r u′
)′)′)′

= λ r u

with

λ =
6 (1− σ2)

π E h3
2π ω2 h ρ =

12 (1− σ2) ρ

E h2
ω2

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 60

3.7 Exercises

•Exercise 3–1:
Consider a curve y = u(x) for a ≤ x ≤ b where 0 < a < b, u(a) and u(b) are given. This curve is rotated
about the x axis and a surface of revolution is generated.

(a) Show that the area of the surface of revolution is given by

A(u) = 2π

∫ b

a
u(x)

√
1 + (u′(x))2 dx

This is only correct if u(x) ≥ 0 for all a < x < b.

(b) Find the Euler Lagrange equation for this area to be minimal.

(c) Use separation of variables to find a solution to this differential equation. Find the integral to be
computed in a table. The result will be a catenary.

•Exercise 3–2:
Write the elastic energy of a bar (a ≤ x ≤ b) with variable cross section A(x) as a function depending on
the displacement function u(x). The energy will be minimal.

(a) Then use the Euler Lagrange equation to find a differential equation for the displacement function.

(b) Find the exact solution of the bar in section 2.2.2. Assume that the displacement u(b) = u(100) =
B is known.

(c) The variational problem will have a first integral. What is the physical interpretation of this first
integral?

(d) Compute the force F at the right end point as a function of B. Use the strain and Hooke’s law.

•Exercise 3–3:
Use the Euler Lagrange equations to show that the connection between two points is given by a straight line.
You may assume that y and z are functions of the free variable x.

•Exercise 3–4:
A curve of known length L is described by y = u(x) ≥ 0 for 0 ≤ x ≤ b. It is required that u(0) = 0

but the value of u(b) is not prescribed. The area A under between the curve, the x axis and the vertical line
x = b is computed by an integral, as is the length L.

A =

∫ b

0
u(x) dx and L =

∫ b

0

√
1 + (u′(x))2 dx

Show that the curve enclosing the maximal area is a section of a circle and will have a horizontal tangent
line at x = b.

Hint : Use the Euler Lagrange equation and show that the curvature κ is constant.

κ =
u′′(x)√

1 + (u′(x))23

•Exercise 3–5:
A cylinder with radius R is partially filled with a given volume V0 of water and then rotated about the z axis
with angular velocity ω. The surface of the water can be described by a function z = u(r).

SHA 22-4-21

CHAPTER 3. CALCULUS OF VARIATIONS, ONE VARIABLE 61

(a) Find the volume V , the potential energy U and the kinetic energy T as functionals of the function u
by appropriate integration.

(b) Hamilton’s principle of least action implies that the functional L(u) = T (u)−U(u) will be minimal
at the stable state. But the restriction of the given volume V has to be taken into account. The theory
about isoperimetric problem indicates that there will be a Lagrange multiplier λ ∈ R such that the
functional L(u) + λV (u) will admit a critical value.

Find minimum of T (u)− U(u) subject to V (u) = V0

Use the Euler Lagrange equation to find u(r).

•Exercise 3–6:
For given functions a(x), b(x) and g(x) consider the functional

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx+ r(a)u(a)− r(b)u(b)

Use Theorem 3–7 (or its proof) to show that a minimiser of this functional has to solve the Neumann
boundary value problem

d

dx

(
a(x)

d u(x)

dx

)
= b(x)u(x) + g(x) for a < x < b

a(x)
d u(x)

dx

∣∣∣∣
x=a

= r(a)

a(x)
d u(x)

dx

∣∣∣∣
x=b

= r(b)

•Exercise 3–7:
Consider the functional

F (u) =
1

2

∫ b

a
A(x)

(
u′′(x)

)2
dx

This does not fit exactly into the framework of Theorem 3–7. Use the ideas and procedures of the calculus
of variations to show, that a necessary condition for an extremum is given by

d2

dx2

(
A(x) u′′(x)

)
= 0 for a < x < b

A possible application of this type of problem is the bending of a bar. Set A(x) = E I(x) (E=modulus of
elasticity, I(x)= moment of inertia of the cross section) and let u(x) denote the vertical displacement. If a
vertical force f(x) (units N

m) is applied the functional

F (u) =
1

2

∫ b

a
E I(x)

(
u′′(x)

)2
+ u(x) · f(x) dx

has to be minimised. For constant cross section this should lead to the equation

E I u(4)(x) = −f(x)

SHA 22-4-21

Chapter 4

Finite Element problems in one variable

In this chapter we will thoroughly discuss the problem of solving second order boundary value problems in
one variable by means of the finite element method. To achieve this ambitious goal we proceed in separate
steps:

• Use basic physical principles to derive and discuss the heat equation in one or multiple variables.
Consider the special case of a thin circular plate.

• Introduce weak formulation of differential equations.

• Introduce the general problem to be solved in this section and list a few of the possible application
areas.

• Construct the most simple finite element in one variable carefully: piecewise linear interpolation.

• Construct a vastly improved element using piecewise quadratic interpolation and Gauss integration.

• Solve a few sample problems.

4.1 The heat equation

As a real world example we first want to derive the heat equation for solids and the examine it in a few
special situations.

4.1.1 Basic physics

The heat capacity c of a material gives the amount of energy needed to raise the temperature T one kilo-
gramme of the material by one degree K (Kelvin). The thermal conductivity k of a material indicates the
amount of energy transmitted trough a plate with thickness 1 m and 1 m2 area if the temperatures at the
two sides differ by 1 K. In table 4.1 find values for c and k for some typical materials. For homogeneous
materials the values of c and k will not depend on the location ~x. For some materials the values can depend
on the temperature T , but we will not consider this case since the resulting equations would be nonlinear.

The flux of thermal energy is a vector indicates the direction of the flow and the amount of thermal
energy flowing per second and square meter. Fourier’s law of heat conduction can be stated as

~q = −k∇T (4.1)

This basic law of physics indicates that the thermal energy will flow from hot spots to areas with lower
temperature. For some simple situations we will examine the consequences of this equation. The only other
basic physical principle to be used is conservation of energy. Some of the variables and symbols used in
this section are shown in table 4.2.

62

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 63

heat capacity at 20◦C heat conductivity

symbol c k

unit kJ
kg K

W
m K

iron 0.452 74

steel 0.42 - 0.51 45

copper 0.383 384

water 4.182 0.598

Table 4.1: Some values of heat related constants

symbol unit

density of energy u
J

m3

temperature T K

heat capacity c
J

K kg

density ρ
kg
m3

heat conductivity k
J

s m K

heat flux ~q
J

s m2

external energy source density f
J

s m3

Table 4.2: Symbols and variables for heat conduction

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 64

4.1.2 One dimensional heat equation

If a temperature T over a solid (with constant cross sectionA) is known to depend on one coordinate x only,
then the change of temperature ∆T measured over a distance ∆x will lead to a flow of thermal energy ∆Q.
If the time difference is ∆t then (4.1) reads as

∆Q

∆t
= −k A ∆T

∆x

It we choose the temperature T as unknown variable we find on the interval a ≤ x ≤ b the thermal energy

E(t) =

∫ b

a
u(t, x) dx =

∫ b

a
ρ c T (t, x) dx

Fourier’s law leads to a total heat flux in direction x of

Q = −k A ∂T

∂x

Now we compute the rate of change of energy in the same interval. The rate of change has to equal the total
flux of energy into this interval plus the input from external sources

total change = input through boundary + external sources
d E(t)
dt =

(
−k A(a) ∂T (t,a)

∂x + k A(b) ∂T (t,b)
∂x

)
+

∫ b
a f(t, x) dx∫ b

a ρ c
∂ T (t,x)

∂t dx =
∫ b
a

∂
∂x

(
k A(x) ∂T (t,x)

∂x

)
dx +

∫ b
a f(t, x) dx

At this point we used the conservation of energy. Since the above equation has to be correct for all possible
values of a and b the expressions under the integrals have to be equal and we obtain the general equation for
heat conduction in one variable

ρ c
∂ T (t, x)

∂t
dx =

∂

∂x

(
k A(x)

∂T (t, x)

∂x

)
+ f(t, x)

If we are only interested in steady state solution then the temperature T can not depend on t and thus we
find

− ∂

∂x

(
k A(x)

∂T (t, x)

∂x

)
= f(t, x)

This second order differential equation has to be supplemented by boundary conditions, either prescribed
temperature or prescribed energy flux. Then the equation can be solved by the finite element method.

4.1.3 Two dimensional heat equation, strong formulation

If the domain G ⊂ R2 with boundary curve C describes a thin plate with constant thickness h then we may
assume that the temperature will depend on t, x and y only and not on z.

The total energy stored in that domain is given by

E (t) =

∫∫
G

hu dA =

∫∫
G

h c ρ T (t, x, y) dA

Again we compute the rate of change of energy d
dt E and arrive at

d

dt
E =

∫∫
G

h c ρ
∂ T

∂t
dA = −

∮
C
h ~q · ~n ds+

∫∫
G

h f dA

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 65

Using the divergence theorem on the second integral and Fourier’s law we find∫∫
G

h c ρ
∂ T

∂t
dA = −

∫∫
G

div(h ~q) dA+

∫∫
G

h f dA

=

∫∫
G

div (k h∇T) dA+

∫∫
G

h f dA

=

∫∫
G

div (k h∇T (t, x, y)) dA+

∫∫
G

h f dA

This equation has to be correct for all possible domainsG and not only for the actual physical domain. Thus
the expressions under the integral have to be equal and we find

h c ρ
∂ T

∂t
= div (k h∇T (t, x, y)) + h f (4.2)

If ρ, c, h and k are constant then we find in cartesian coordinates

c ρ
∂

∂t
T (t, x, y) = k

(
∂2

∂x2
T (t, x, y) +

∂2

∂y2
T (t, x, y)

)
+ f (t, x, y)

or shorter
c ρ

∂

∂t
T (t, x, y) = k ∆T (t, x, y) + f (t, x, y)

where ∆ is the well known Laplace operator. The heat equation is thus a second order partial differential
equation with respect to the space variable x and y and of first order with respect to time t.

If the solution is know to be independent of time then we find

div (k h∇T (t, x, y)) = −h f

If this equation is supplemented with boundary conditions then we can try to solve it numerically.

4.1.4 Steady state problem with radial symmetry

Suppose we have a radial plate of Radius R and the external heat source depends on the radius ρ only.
Then the temperature T will also depend on ρ. Thus we rewrite the above differential equation in polar
coordinates. If ρ, c, h and k are constant then we can use the Laplace operator in polar coordinates (see
appendix A.2.4) and find

∆T (ρ, φ, z) = ∆T (ρ) =
1

ρ

∂

∂ρ
(ρ
∂ T

∂ρ
) +

1

ρ2

∂2 T

∂φ2
+
∂ T

∂z2
=

1

ρ

∂

∂ρ
(ρ
∂ T

∂ρ
)

and thus the ordinary differential equation

1

ρ

∂

∂ρ
(ρ
∂ T (ρ)

∂ρ
) = −1

k
f(ρ)

or
∂

∂ρ
(ρ
∂ T (ρ)

∂ρ
) = −ρ

k
f(ρ)

As an example we consider a plate of radius 3 which is heated uniformly on the ring 1 ≤ ρ ≤ 2. The
outer edge is kept on T = 0 and the heat conductivity is set to k = 1. The equation to be solved is

∂

∂ρ
(ρ
∂ T (ρ)

∂ρ
) = ρ T ′′(ρ) + T ′(ρ) = −ρ f(ρ) =


0 if 0 ≤ ρ < 1

−ρ if 1 ≤ ρ < 2

0 if 0 ≤ ρ ≤ 3

T (3) = 0

T ′(0) = 0

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 66

Solution with Mathematica

Figure 4.1 shows the heating function f(ρ) and section of the resulting temperature as a function of the
radius. The results were generated with the code below.

-2

0

2

-2

0

2

0
0.25
0.5

0.75
1

-2

0

2 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 4.1: Heat source on a ring and the resulting temperature distribution

Mathematica
Clear[f,T,Tn]
f[r_] = Which[r<1,0,r<2,1,True,0];
g1=ParametricPlot3D[{r Cos[phi],r Sin[phi],f[r]},{phi,0,2 Pi},{r,0,3}];
nsol=NDSolve[{D[r D[T[r],r],r]== -r*f[r],T[3]==0,Derivative[1][T][0.01]==0},

T[r],{r,0.01,3}, Method -> RungeKutta];
Tn[r_] = T[r]/.nsol[[1]];
g2=Plot[Tn[r],{r,0.01,3},PlotRange -> All];

Mathematica had to be tricked into solving this equation. The boundary condition T ′(0) = 0 had to be
specified at a small value of ρ and the numerical scheme yielding a solution seems to be Runge–Kutta. A
sizeable number of attempts failed before the above created an answer. A good finite element code will
avoid both those problems.

Exact solution

The problem above can be solved exactly. This is useful to verify the numerical schemes and the coding of
the algorithms. The computations are elementary but lengthy.

• For 0 < ρ < 1 we have the differential equation

∂

∂ρ
ρ
∂ T (ρ)

∂ρ
= 0 with T ′(0) = 0

and thus the solution T (ρ) = c1.

• For 2 < ρ < 3 we have again the differential equation

∂

∂ρ
ρ
∂ T (ρ)

∂ρ
= 0 with T (3) = 0

This can be written as T ′(ρ) = c2
ρ with the solution

T (ρ) = c2 ln
ρ

3

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 67

• For 1 < ρ < 2 the differential equation is

∂

∂ρ
ρ
∂ T (ρ)

∂ρ
= −ρ

and by integration

ρ
∂ T (ρ)

∂ρ
= −ρ

2

2
+ c3

∂ T (ρ)

∂ρ
= −ρ

2
+
c3

ρ

T (ρ) = −ρ
2

4
+ c3 ln ρ+ c4

• Now we have to use the two compatibility conditions at ρ = 1 and ρ = 2. Values and derivatives at
those points have to coincide. This leads to

c1 = −12

4
+ c3 ln 1 + c4

0 = −2 · 1
4

+
c3

1

c2 ln
2

3
= −22

4
+ c3 ln 2 + c4

c2
1

2
= −2 · 2

4
+
c3

2

This leads to a system of 4 equations for the 4 unknown constants ci
1 0 0 −1

0 0 −1 0

0 ln 2
3 − ln 2 −1

0 1
2

−1
2 0




c1

c2

c3

c4

 =


−1
4
−1
2

−1

−1


The solution is given by 

c1

c2

c3

c4

 =


1.01162

−1.5

0.5

1.26162


The result can be seen in figure 4.1. This example shows that an exact solution can be available, but the
computations necessary to obtain it can be prohibitive (which was not the case here). If the shape of the
heating function f(ρ) is modified the computations have to be redone and there are no guarantees that an
exact solution can be found. A stable numerical scheme to find an approximate solution will be useful and
easy to use, once the method is programmed, see section 4.7.2.

4.2 Weak solutions

4.2.1 Two dimensional heat equation, weak formulation

The general steady state heat equation in two variables is

div (k h∇T (x, y)) + h f = 0

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 68

This equation has to be valid within the domain G ⊂ R2. The boundary ∂G of the domain is divided up into
two disjoint parts Γ1 and Γ2. On Γ1 the temperature is equals to a given function g1 (Dirichlet condition)
and on Γ2 the heat flux is prescribed to be g2 (Neumann condition). This leads to the problem

∇ · (k h∇T (x, y)) = −h f for (x, y) ∈ G
T (t, x, y) = g1(x, y) for (x, y) ∈ Γ1

h k∇T (t, x, y) · ~n = g2(x, y) for (x, y) ∈ Γ2

(4.3)

Now we consider test functions φ(x, y) that vanish on Γ1. The differential equations is integrated over the
domain G. For sake of shorter notation the arguments (x, y) are suppressed.∫∫

G

φ div (k h∇T) dA+

∫∫
G

φ h f dA = 0

Now we use a version of the divergence theorem (see appendix A.3)∫∫
G

f (div~v) dA =

∮
∂G
f ~v · ~n dA−

∫∫
G

(grad f) · ~v dA

and arrive at

0 =

∮
∂G
φ (k h∇T) · ~n ds+

∫∫
G

−∇φ · (k h∇T) + φh f dA

=

∮
Γ1∪Γ2

φk h ∇T · ~n ds+

∫∫
G

−k h ∇φ · ∇T + φh f dA

=

∮
Γ2

φ g2 ds+

∫∫
G

−k h ∇φ · ∇T + φh f dA

This leads to the definition of a weak solution of the equation (4.3). The function T (x, y) is called a weak
solution iff T (x, y) = g1 on Γ1 and∫∫

G

k h ∇φ · ∇T dA =

∮
Γ2

φ g2 ds+

∫∫
G

h f dA (4.4)

for ‘all’ functions φ vanishing on Γ1.

4.2.2 Advantages of weak solutions

At first sight the definition of a weak solution semms to be rather artificial, but it has a few decisive advan-
tages over the classical definition of a solution. The concept of weak solutions is the foundation of Hilbert
space methods to solve partial differential equations. The following comparison of weak and strong formu-
lations of differential equations is quoted from [OttoPete92, p. 59].

We have shown that the same differential equation can be formulated in a strong or weak form, where
the weak formulation is more involved and requires more mathematical results. So one may ask why we
have taken the trouble to obtain a weak form. The answer is fundamental for the establishment of the finite
element method: it is the weak form that the finite element formulation is based on.

In order to understand this point consider the differential equation in the strong form, i.e. (4.3). It
appears that the unknown function T is differentiated twice. The finite element approach is an approximate
method, so in one way or another we have to replace the true T -function by an approximate one. If this

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 69

approximation is made directly in (4.3), we need to deal with an approximating function, which is at least
twice differentiable. In the weak formulation, however, only the first derivative of the temperature function
T enters, (cf. (4.4)). That is, if we choose the weak form as the basis of the approximation, we may deal with
approximating functions which only need to be differentiable once. This aspect clearly favours the weak
form compared with the strong form, and it also suggests the terminology of weak and strong forms.

Another point, closely related to the above is the fact that weak forms provide in fact a more general
formulation than strong forms. For the weak form we only need the derivative of the temperature T to be
integrable (i.e. piecewise continuous). The temperature T need not be twice differentiable in simple appli-
cations. Consider a plate consisting of two different materials with different heat conduction coefficients k1

and k2 and consider a point of discontinuity of k. The heat flux vector is given by ~q = −k gradT . This
flux has to be continuous. On the two sides of the separation line of the materials we find

−k1∇T |material 1 = −k2∇T |material 2

As k changes the value the derivatives of T have to jump. Thus the derivatives of T may not be continuous
and there is no hope to find a second derivative. Weak formulations and finite element formulations are
perfectly capable to incorporate this type of problem.

In the next section we show that weak formulation may also be obtained by means of minimising a well
chosen functional. This will link the previous chapter to weak solutions.

4.2.3 Weak solution of heat equation on a circular plate

For cylindrical coordinates and functions depending on the radius only we use

∇T (ρ) = gradT (ρ) =
∂ T

∂ρ
~eρ

The domain to be considered is a circle of radius R and the temperature at the edge has to be zero. The
boundary consists of Γ1 only and h and k are assumed to be constant, thus equation (4.4) now reads as∫∫

G

k h ∇φ · ∇T dA =

∫∫
G

φh f dA

h

∫∫
G

k (
∂ φ

∂ρ
~eρ) · (

∂ T

∂ρ
~eρ) dA = h

∫∫
G

φ f dA

∫ R

0
2π ρ k φ′(ρ) · T ′(ρ) dρ =

∫ R

0
2π ρ φ(ρ) f(ρ) dρ∫ R

0
ρ k φ′(ρ) · T ′(ρ) dρ =

∫ R

0
ρ φ(ρ) f(ρ) dρ

This is the weak formulation of the steady state heat problem on a disk, assuming that the solution will
depend on the radius ρ only.

Now consider the functional

F (T) =

∫ R

0

ρ k

2

(
T ′(ρ)

)2 − ρ T (ρ) f(ρ) dA

and find
dF (T + εφ)

dε

∣∣∣∣
ε=0

=

∫ R

0
ρ k φ′(ρ) · T ′(ρ)− ρ φ(ρ) f(ρ) dρ

Observe that the function T (ρ) being a weak solution of the heat equation is equivalent to T (ρ) being a
critical point of the functional F , or in fact a minimiser of F . Thus we are lead to a minimisation problem,
to be solved by the finite element method.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 70

4.3 The general one dimensional problem

In section 3.1.5, equation (3.1) we considered functionals of the form

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

for given functions a(x), b(x) and g(x). The minimising function has to solve the corresponding Euler
Lagrange equation

d

dx

(
a(x)

d u(x)

dx

)
= b(x)u(x) + g(x)

This second order, linear differential equation has to be supplemented with appropriate boundary conditions.
We may use Dirichlet boundary conditions or Neumann boundary conditions.

Aiming for a numerical approximation to the true solution we divide the interval [a, b] in n subintervals
with a partition a = x0 < x1 < x2 < . . . < xn = b. The length of the i–th interval is ∆xi = xi − xi−1.
Such a subinterval is also called element. Instead of all (smooth) functions on [a, b] we consider only special
types of functions. The goal is to minimise the functional F (u) amongst this type of function. To acchieve
this we first outline the steps to be performed:

1. Find the energy on each element, using matrices.

2. Find a formula for the total energy, using a matrix.

3. Take boundary conditions into account.

4. Convert to a system of linear equations and solve.

5. Extract information about the solution, e.g. a plot.

We will carry out the above steps for two different type of elements:

1. First we use elements with linear functions and the simplest integration procedure possible. The
individual steps should be clearly visible and easy to understand. We could solve general problems
with this procedure, but it would not be very efficient.

2. As a second case we examine quadratic elements and use Gauss integration. Due to those improve-
ments we find a few more calculations to be done, but the resulting final code is rather efficient in
solving general problems.

4.4 First order elements

To simplify the calculation we first consider only the situation b(x) = 0 in equation (3.1). At the end this
contribution will be taken into account too.

On each subinterval [xi−1, xi] we consider a linear function. The function u is required to be continuous:
the value at the right endpoint of one subinterval has to coincide with the value at the left end point of the
next subinterval. This is a compatibility condition. We obtain a continuous, piecewise linear function u(x)
by a linear interpolation using the points of support (xi, u(xi)) = (xi, ui). Thus a complete description of
the function is given by the two vectors

~x = (x0, x1, x2, . . . , xn)T and ~u = (u0, u1, u2, . . . , un)T

This discretisation is visualized in Figure 4.2.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 71

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Figure 4.2: Approximation of a function by linear elements

4.4.1 Description of one element with a linear function

For the i–th element we have to consider xi−1 ≤ x ≤ xi with the values ui−1 and ui at the endpoints. For
the values of x in the interval we have

u(x) = ui−1 +
ui − ui−1

∆xi
(x− xi−1)

and the derivative is a constant given by

u′(x) =
ui − ui−1

∆xi

Thus the contribution to the functional F (~u) is given by

Fi =

∫ xi

xi−1

1

2
a(x) (u′(x))2 + g(x) · u(x) dx

Since we want to deal with general function a(x) and g(x) we have to approximate this integral numerically.
A simple approach is to use the trapezoidal rule∫ xi

xi−1

f(x) dx ≈ f(xi−1) + f(xi)

2
∆xi

This corresponds to replacing a linear function by the value at the midpoint of the interval. With this we
arrive at

Fi =

∫ xi

xi−1

1

2
a(x) (u′(x))2 + g(x) · u(x) dx

≈ 1

2

(
a(xi−1) + a(xi)

2

(
ui − ui−1

∆xi

)2

+ (g(xi−1)ui−1 + g(xi)ui)

)
∆xi

=
1

2

(
a(xi−1) + a(xi)

2 ∆xi
(ui − ui−1)2

)
+ (g(xi−1)ui−1 + g(xi)ui)

∆xi
2

=
1

2

a(xi−1) + a(xi)

2 ∆xi
〈

(
ui−1

ui

)
,

[
1 −1

−1 1

](
ui−1

ui

)
〉+

∆xi
2
〈

(
ui−1

ui

)
,

(
g(xi−1)

g(xi)

)
〉

=
1

2
〈

(
ui−1

ui

)
,Ki

(
ui−1

ui

)
〉+ 〈

(
ui−1

ui

)
,~bi〉

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 72

where the element stiffness matrix Ki is given by

Ki =
a(xi−1) + a(xi)

2 ∆xi

[
1 −1

−1 1

]
=

[
ki −ki
−ki ki

]
The coefficient ki is equals to the average value of the function a(x) at the two endpoints of the element,
divided by the length of the element. The vector~bi by

~bi = −∆xi
2

(
g(xi−1)

g(xi)

)
=

(
bi,0

bi,1

)

4.4.2 Add up the contributions from the elements

Now we have to compute the total functional by

F (~u) =
n∑
i=1

Fi

To examine the effects we consider first three terms only

F1 + F2 + F3 = +
1

2
〈

(
u0

u1

)
,

[
k1 −k1

−k1 k1

](
u0

u1

)
〉+ 〈

(
u0

u1

)
,

(
b1,0

b1,1

)
〉

+
1

2
〈

(
u1

u2

)
,

[
k2 −k2

−k2 k2

](
u1

u2

)
〉+ 〈

(
u1

u2

)
,

(
b2,0

b2,1

)
〉

+
1

2
〈

(
u2

u3

)
,

[
k3 −k3

−k3 k3

](
u2

u3

)
〉+ 〈

(
u2

u3

)
,

(
b3,0

b3,1

)
〉

= +
1

2
〈


u0

u1

u2

u3

 ,


k1 −k1 0 0

−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3

0 0 −k3 k3




u0

u1

u2

u3

〉

+〈


u0

u1

u2

u3

 ,


b1,0

b1,1 + b2,0

b2,1 + b3,0

b3,1

〉
With the above in mind it should not be too difficult to realise that the total stiffness matrix K and the
vector~b in

F (~u) =

n∑
i=1

Fi =
1

2
〈~u,K~u〉+ 〈~u,~b〉

are given by

K is a (n+ 1)× (n+ 1), tridiagonal, symmetric matrix

first upper diagonal = (−k1,−k2,−k3, . . . ,−kn−1,−kn)

main diagonal = (k1, k1 + k2, k2 + k3, . . . , kn−1 + kn, kn)

first lower diagonal = (−k1,−k2,−k3, . . . ,−kn−1,−kn)

(n+ 1) vector~b = (b1,0, b1,1 + b2,0, b2,1 + b3,0, . . . , bn−1,1 + bn,0, bn,1)

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 73

Now we have the functional F expressed as function of the unknown vector ~u, containing the values of the
function u(x) at the points of support xi. The main goal is to minimise F amongst all admissible functions.

4.4.3 Solve the system of linear equations and use boundary conditions

Minimising the F of the above form is equivalent to solving the system of linear equations

K · ~u = −~b (4.5)

(see Result 1–4). If one of the boundary values at x = a or x = b is fixed, the corresponding component
u0 or un of the vector ~u has to be equal to that given value and we are not free to choose it any more. As
an example we consider u(a) = u0 = A. In the derivation of the system (4.5) we used derivatives of F
with respect to the degrees of freedom ui. Since u0 is not free any more we can not set the corresponding
derivative to 0 and thus have to remove the first equation in (4.5). Since u0 = A is known its contribution
to the other equations is known and we can move it to the right hand side in (4.5). This leads to a modified
equation with one less variable and one less unknown. The ideas are used in the example below. Using
algorithms from numerical linear algebra the set of equations can often be solved. Then we can do a
piecewise linear interpolation to find an approximate solution to the original minimisation problem.

4.4.4 Examples

4–1 Example : We try to solve the boundary value problem1

u′′(x) = 1 for 0 < x < 1 and u(0) = 3 , u′(1) = 0

This corresponds to minimising (Euler Lagrange equation)

F (u) =

∫ 1

0

1

2

(
(u′′(x)

)2
+ u(x) dx

amongst all smooth functions with u(0) = 3. The condition u′(1) = 0 corresponds to a natural boundary
condition.

We will use five elements of equal length h = 0.2. To adapt the notation of equation (3.1) to this
example we have to set a(x) = 1 and g(x) = −1. Thus the element stiffness matrices Ki are given by

Ki =

[
1
h − 1

h

− 1
h

1
h

]

and the vectors~bi by

~bi =

(
−h
2
−h
2

)
The functional to be minimised is given by

F (~u) = 〈



u0

u1

u2

u3

u4

u5


,



1
h − 1

h 0 0 0 0

− 1
h

2
h − 1

h 0 0 0

0 − 1
h

2
h − 1

h 0 0

0 0 − 1
h

2
h − 1

h 0

0 0 0 − 1
h

2
h − 1

h

0 0 0 0 − 1
h

1
h





u0

u1

u2

u3

u4

u5


〉+ 〈



u0

u1

u2

u3

u4

u5


,



−h
2

−h
−h
−h
−h
−h
2


〉

1The exact solution is u(x) = 3− x+ 1
2
x2.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 74

This set of 6 linear equations for 6 unknowns does not take the boundary condition u(0) = u0 = 3 into
account. There are at least two different methods to incorporate the condition.

• Remove one equation using the boundary condition
This has to be minimised with respect to u1, u2,. . .u5. The derivative of the functional F with respect
to u0 has to be ignored, i.e. we have to drop the first equation. Using the condition u(0) = u0 = 3
we arrive at the system



− 1
h

2
h − 1

h 0 0 0

0 − 1
h

2
h − 1

h 0 0

0 0 − 1
h

2
h − 1

h 0

0 0 0 − 1
h

2
h − 1

h

0 0 0 0 − 1
h

1
h





3

u1

u2

u3

u4

u5


= −



h

h

h

h
h
2


The contribution of the first component u0 = 3 can be brought to the other side and we arrive at

2
h − 1

h 0 0 0

− 1
h

2
h − 1

h 0 0

0 − 1
h

2
h − 1

h 0

0 0 − 1
h

2
h − 1

h

0 0 0 − 1
h

1
h





u1

u2

u3

u4

u5


=



−h
−h
−h
−h
−h
2


+



3
h

0

0

0

0


This system of five equations has to be solved.

• Modify one equation to take the boundary condition into account
Instead of moving the contribution of u0 = 3 to the right hand side we can also add this linear equation
to the five others and ”reintroduce“ the unknown u0 by

1 0 0 0 0 0

− 1
h

2
h − 1

h 0 0 0

0 − 1
h

2
h − 1

h 0 0

0 0 − 1
h

2
h − 1

h 0

0 0 0 − 1
h

2
h − 1

h

0 0 0 0 − 1
h

1
h





u0

u1

u2

u3

u4

u5


=



3

−h
−h
−h
−h
−h
2


Now we can solve this system of 6 equations. The result is the values of the approximate solution at
the points of support.

The numerical calculations are best done with some software. First we find the exact solution with
Mathematica .

Mathematica
Clear[x,sol,uexact,u]
sol=DSolve[{u’’[x]==1,u[0]==3,u’[1]==0}, u[x],x];
uexact[x_] = u[x]/.sol[[1]]

Now generate the matrix and vector for the linear system to be solved, then solve.
Mathematica

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 75

0.2 0.4 0.6 0.8 1
x

2.5

2.6

2.7

2.8

2.9

u

Figure 4.3: Exact and approximate solution to an elementary boundary value problem

h=0.2;
x=Table[k*h,{k,0,5}];
(* construct the matrix m *)
m=Table[0,{6},{6}];
m[[1,1]]=1;
For[k=2,k<=5,k++,m[[k,k]]=2/h;m[[k,k-1]]=-1/h;m[[k,k+1]]=-1/h;]
m[[6,5]]=-1/h;m[[6,6]]=1/h;
(* construct the vector b *)
b=Table[-h,{6}];
b[[1]]=3; b[[6]]=-h/2;
(* Solve the equation *)
u=LinearSolve[m,b]

With the help of a piecewise linear interpolation we can compare the exact solution and the approximate
solution.

Mathematica
data=Transpose[{x,u}]
unum=Interpolation[data,InterpolationOrder ->1];
Plot[{uexact[x],unum[x]},{x,0,1},

AxesLabel->{"x","u"},
PlotStyle->{Dashing[{0.03,0.02}],Dashing[{}]}];

As can be seen in figure 4.3 the differences are very small. At the points of support the two solutions actually
coincide, but this is due to the fact that the exact solution is a polynomial of degree two. This will usually
not occur. ♦

4–2 Example : In chapter 2.2 we considered a horizontal bar with variable cross section A(x), stretched
by a force F . The energy of the bar is given by

E(u) =
E

2

∫ 100

0
A(x)u′(x)2 dx− F · u(100)

This problem can be solved by the method we used for the previous example, except for the force term
F u(100) at the right end point. This term can easily be incorporated. we divide the bar of length L = 100
again in three elements of equal length Li = 100

3 and use

~x =


x0

x1

x2

x3

 =


0

100
3

200
3

100

 , ~u =


u0

u1

u2

u3

 =


u(0)

u(100
3)

u(200
3)

u(100)

 ,


A0

A1

A2

A3

 =


A(0)

A(100
3)

A(200
3)

A(100)



SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 76

After some calculation we obtain the global stiffness matrix

K =


A0+A1

2L1
−A0+A1

2L1
0 0

−A0+A1
2L1

A0+A1
2L1

+ A1+A2
2L2

−A1+A2
2L2

0

0 −A1+A2
2L2

A1+A2
2L2

+ A2+A3
2L3

−A2+A3
2L3

0 0 −A2+A3
2L3

A2+A3
2L3


and the vector

~b =


0

0

0

F


The energy E can now be written as

E(~u) =
1

2
〈~u , K~u〉 − 〈~u , ~b〉

The minimiser (subject to the condition u(0) = u0 = 0) is identical to the solution found in chapter 2.2. ♦

4.4.5 General situation

Equation (3.1) is

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

and the corresponding ordinary differential equation is

d

dx

(
a(x)

d u(x)

dx

)
− b(x)u(x) = g(x) (4.6)

Sofar we ignored the contribution of the term b u2 to the functional. On each element now consider the
additional term∫ xi

xi−1

1

2
b(x)u(x)2 dx ≈ 1

2

(
b(xi−1)u2

i−1 + b(xi)u
2
i

2

)
∆xi

=
1

2
〈

(
ui−1

ui

)
,

[
b(xi−1) ∆xi

2 0

0 b(xi) ∆xi
2

] (
ui−1

ui

)
〉

This contribution has to be subtracted in the matrices in the previous sections. With the notations

ai = a(xi) , bi = b(xi) and gi = g(xi)

we find the contribution Fi by the i–th element to be

Fi =
1

2
〈

(
ui−1

ui

)
, Ki

(
ui−1

ui

)
〉+ 〈

(
ui−1

ui

)
,

(
gi−1 ∆xi

2
gi ∆xi

2

)
〉

where

Ki =

[
ai−1+ai

2 ∆xi
+ bi−1 ∆xi

2 −ai−1+ai
2 ∆xi

−ai−1+ai
2 ∆xi

ai−1+ai
2 ∆xi

+ bi ∆xi
2

]

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 77

These contributions from the individual elements have to be added up properly to find the global stiffness
matrix K with the entries ki,j for 0 ≤ i, j ≤ n. We find

k0,0 = a0+a1
2 ∆x1

+ b0 ∆x1
2

ki,i = ai−1+ai
2 ∆xi

+ bi−1 ∆xi
2 + ai+ai+1

2 ∆xi+1
+ bi ∆xi+1

2 for 1 ≤ i ≤ n− 1

ki,i−1 = ki,i+1 =−ai−1+ai
2 ∆xi

for 0 ≤ i ≤ n
kn,n = an−1+an

2 ∆xn
+ bn ∆xn

2

The right hand side vector~b is given by

b0 =
g0 ∆x1

2
, bi =

gi (∆xi+1 + ∆xi)

2
for 1 ≤ i ≤ n− 1 and bn =

gn ∆xn
2

To find the approximate solution to equation (4.6) we have to solve (n + 1) linear equations for (n + 1)
unknowns.

K ~u = ~b

But before solving the equations the boundary conditions have to be implemented.

4–3 Example : If the functions a, b and g are constants then the differential equation to be solved is

a u′′(x)− b u(x) = g

Now we choose a uniform step size ∆xi = h and the system of linear equations simplifies drastically.

a
h + b h

2 − a
h

− a
h

2 a
h + b h − a

h

− a
h

2 a
h + b h − a

h
.

− a
h

2 a
h + b h − a

h

− a
h

a
h + b h

2


·



u0

u1

u2

...

un−1

un


=



g h
2

g h

g h
...

g h
g h
2


The numbers not shown are all equal to 0. As an example consider the third equation

a

(
−u1 + 2u2 − u3

h

)
+ b h u2 = g h

Generally we find for 1 ≤ i ≤ n− 1

a

(
−ui−1 + 2ui − ui+1

h2

)
+ b ui = g (4.7)

In this special case the method of finite elements leads to a finite difference approximation to the differ-
ential equation (4.6). ♦

4.5 Second order element with Gauss integration

The goal is to find a minimiser of the functional

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

The solution found in the previous section is an approximate solution to the original problem. There are two
sources of possible approximation errors:

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 78

1. Instead of searching among all smooth functions we considered only piecewise continuous functions.
To reduce this error more functions have to be considered. This can be achieved by choosing more,
smaller elements. Another option is to use the same size and number of elements but use more general
functions on each element, e.g. parabola instead of lines.

2. The integration on each element is not exact, but performed with the trapezoidal rule. To reduce this
error one can user better integration routines, e.g. Simpson’s rule or Gaussian quadrature.

In this section we will implement improvements in both areas. To simplify the calculations we first examine
a standard element for the functional of the above type with −h ≤ x ≤ h. As degrees of freedom we chose
the values at the two endpoints and the midpoint. The situation is shown in figure 4.4. We will keep track
of the size of the errors as the length h of the element gets closer to 0.

-
x

6u

u−1

u0

u1

h−h

Figure 4.4: Second order element

4.5.1 Linear and quadratic interpolation

A given function U(x) on an interval a ≤ x ≤ b is discretised by evaluation u at a finite set of nodes
xi. Using the values ui at those points we try to reconstruct the function by interpolation. This leads to a
function u(x). There are different methods of interpolation but the goal is to keep the distance of U(x) and
u(x) as small as possible.

Linear interpolation

We want to find a polynomial u(x) of degree 1 such that

u(−h/2) = u−1 and u(/2) = u1

It is easy to see that the solution is

u(x) =
u1 + u−1

2
+
u1 − u−1

h
x

One can verify that for smooth functions the difference between the linear interpolation and the true function
is of the order h2 within the interval −h/2 ≤ x ≤ h/2. The derivative of the linear function is constant

u′(x) =
u1 − u−1

h

The error for the derivative is of the order h.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 79

Quadratic interpolation

We want to find a polynomial u(x) of degree 2 such that

u(−h) = u−1 , u(0) = u0 and u(h) = u1

There is a variety of methods to find the unique solution

u(x) = u0 +
u1 − u−1

2h
x+

u1 − 2u0 + u−1

2h2
x2

One can verify that for smooth functions the difference between the quadratic interpolation and the true
function is of the order h3 within the interval −h ≤ x ≤ h. The derivative is a linear function

u′(x) =
u1 − u−1

2h
+
u1 − 2u0 + u−1

h2
x

The error for the derivative is of the order h2.

linear interpolation quadratic interpolation

original function U(x) smooth U(x) smooth

discretisation ↓ ↓
vector ~u ∈ Rn ~u ∈ Rn

interpolation ↓ ↓
function u(x) piecewise linear u(x) piecewise quadratic

error of function u(x)− U(x) = O(h2) u(x)− U(x) = O(h3)

error of derivative u′(x)− U ′(x) = O(h) u′(x)− U ′(x) = O(h2)

Table 4.3: Comparison of linear and quadratic interpolation

Linear interpolation leads to errors of the order h2 for the function and order h for the derivative. Thus
quadratic interpolation is a clear improvement if h is sufficiently small. The result are shown in table 4.3.

4.5.2 Gauss integration

Gauss integration with two nodes

If we integrate a know function f(x) over a given interval of length h (e.g. −h
2 ≤ x ≤ h

2) we can also
evaluate the function at two nodes in the interval and replace the function by a straight line passing through
those points. For the classical trapezoidal rule the nodes are the two endpoints. The main idea of Gauss
integration is to choose the nodes such that as many polynomials as possible are integrated correctly. Due
to symmetry it is reasonable to choose the two nodes at ±x1 with equal weight w1. The situation is shown
in figure 4.5. Then the integral is approximated by

w1 f(−x1) + w1 f(x1) ≈
∫ h/2

−h/2
f(x) dx

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 80

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 4.5: Gauss integration and trapezoidal rule

The table below is looking at monomials of increasing degree and verifying that the integral is computed
exactly

f(x) w1 f(−x1) + w1 f(x1) =
∫ h/2
−h/2 f(x) dx resulting equation

1 w1 + w1 = h 2w1 = h

x −w1 x1 + w1 x1 = 0

x2 w1 x
2
1 + w1 x

2
1 = 1

12 h
3 2w1 x

2
1 = 1

12 h
3

x3 −w1 x
3
1 + w1 x

3
1 = 0

The two conditions in the above table lead to w1 = h
2 and x1 = 1

2
√

3
h. Thus we find the approximation

∫ h/2

−h/2
f(x) dx ≈ h

2

(
f(− 1

2
√

3
h) + f(

1

2
√

3
h)

)
The monomial x4 will not be integrated exactly. We find

w1 x
4
1 + w1 x

4
1 =

1

16 · 9
h5 but

∫ h/2

−h/2
x4 dx =

1

5 · 16
h5

Now we integrate a general function by replacing it by its Taylor approximation

f(x) ≈ f(0) = f ′(0)x+
f ′′(0)

2
x2 +

f (3)(0)

6
x3 +

f (4)(0)

24
x4 +O(x5)

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f (3)(0)

6
x3 +

f (4)(0)

24
x4 +O(x5)∫ h/2

−h/2
f(x) dx =

∫ h/2

−h/2
f(0) + f ′(0)x+

f ′′(0)

2
x2 +

f (3)(0)

6
x3 +

f (4)(0)

24
x4 dx+O(h6)

Combining the above we find

w1 f(−x1) + w1 f(x1)−
∫ h/2

−h/2
f(x) dx =

f (4)(0)

24 · 16

(
1

9
− 1

5

)
h5 +O(h6)

Thus the local integration error is of the order h5. The standard trapezoidal rule (nodes at endpoints) will
generate an error integrating x2 and the integration error is of the order h3. For small values of h integration
by Gauss is clearly superior.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 81

Gauss integration with three nodes

Instead of two nodes we can consider three nodes at x0 = 0 and ±x1 with corresponding weights and
approximate the integral by

w1 f(−x1) + w0 f(0) + w1 f(x1) ≈
∫ h/2

−h/2
f(x) dx

As before we generate a table of integrals for monomials of increasing order to find equations for w0, w1

and x1.

f(x) w1 f(−x1) + w0 f(0) + w1 f(x1) =
∫ h/2
−h/2 f(x) dx resulting equation

1 w1 + w0 + w1 = h w0 + 2w1 = h

x −w1 x1 + w1 x1 = 0

x2 w1 x
2
1 + w1 x

2
1 = 1

12 h
3 2w1 x

2
1 = 1

12 h
3

x3 −w1 x
3
1 + w1 x

3
1 = 0

x4 w1 x
4
1 + w1 x

4
1 = 1

16·5 h
5 2w1 x

4
1 = 1

80 h
5

x5 −w1 x
5
1 + w1 x

5
1 = 0

Dividing the last two equations yields x2
1 = 12

80 h
2 or x1 =

√
3

2
√

5
h. Using this we find w1 = h3

24x2
1

= 5
18 h.

and the w0 = 8
18 h. We have the approximation∫ h/2

−h/2
f(x) dx ≈ h

18

(
5 f(−

√
3

2
√

5
h) + 8 f(0) + 5 f(

√
3

2
√

5
h)

)

The monomial x6 will not be integrated exactly and thus the local integration error is of the order h7.
Mathematica has a package to generate all the information computed by hand above.

Mathematica
Needs["NumericalMath‘GaussianQuadrature‘"]
GaussianQuadratureWeights[3, -h/2, h/2]
GaussianQuadratureError[3,f, -h/2, h/2]
.
{{-0.387298 h,0.277778 h},{0,0.444444 h},{0.387298 h,0.277778 h}}

-7 7 (6)
-4.96032 10 h f

If the integration is performed over an integral of length 2h then the coefficients have to be adapted. The
result is ∫ h

−h
f(x) dx ≈ h

9

(
5 f(−

√
3√
5
h) + 8 f(0) + 5 f(

√
3√
5
h)

)
Gauss integration is a very powerful tool. As an example verify that the integral of sinx from 0 to π/2 with
three nodes is computed with an error smaller than 10−5. As a consequence Gauss integration is used almost
exclusively for finite element problems. Gauss will not perform well if there are edges within one element
as the expression will typically not be often differentiable. This situation can be avoided when choosing the
location of the elements. If Gauss integration is used properly the errors due to approximate integration can
be kept very small.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 82

We will from now on assume that the integral are computed exactly, knowing that the error should be
small.

4.5.3 Construction of an improved element

The goal is to combine the results of the two previous sections and construct an elements with

• three internal degrees of freedom and a quadratic interpolation within the element.

• Gaussian integration with three nodes to evaluate the functional.

If for given functions a(x), b(x) and g(x) the expression

F (u) =

∫ h

−h

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

has to be written in the form
1

2
〈~u , K ~u〉 − 〈~u , ~b〉

Now we consider the three contributions in the above integral separately.

Integrating the expression
∫
b(x)u(x)2 dx

Since it is the easiest term we first want to apply the above ideas to the expression

2F2(u) =

∫ h

−h
b(x)u(x)2 dx

only. The path of computations for one element is as follows

1. discretise and construct an interpolating function

2. evaluate the interpolated function at the nodes needed for Gauss integration

3. evaluate the integral

The obvious discretisation is u−1 = u(−h), u0 = u(0) and u1 = u(h). The interpolated function is given
by

u(x) = u0 +
u1 − u−1

2h
x+

u1 − 2u0 + u−1

2h2
x2

The Gaussian integration points are at x−1 = −
√

3√
5
h, x0 = 0 and x1 =

√
3√
5
h. The function to be integrated

has to be evaluated at the three nodes. As an intermediate result we compute u at the nodes and obtain the
values p−1, p0 and p1.

p−1

p0

p1

 =


u(x−1)

u(x0)

u(x1)

 =


u0 + u1−u−1

2h x−1 + u1−2u0+u−1

2h2 x2
−1

u0

u0 + u1−u−1

2h x1 + u1−2u0+u−1

2h2 x2
1



=


−x−1

2h +
x2
−1

2h2 1− x2
−1

h2
x−1

2h +
x2
−1

2h2

0 1 0

− x1
2h +

x2
1

2h2 1− x2
1
h2

x1
2h +

x2
1

2h2

 ·


u−1

u0

u1



=


√

3
2
√

5
+ 3

10
2
5 −

√
3

2
√

5
+ 3

10

0 1 0

−
√

3
2
√

5
+ 3

10
2
5

√
3

2
√

5
+ 3

10

 ·


u−1

u0

u1

 = M0 ·


u−1

u0

u1


SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 83

The matrix M0 allows to find the values of the interpolated function at the Gauss nodes, when the values
of the function at the end and mid points are known. It is worth observing that the matrix M0 contains
constants only. This matrix is one part of the description of the element. Using these values pi we can find
the values of the function to be integrated

b(x−1)u(x−1)2 = b(x−1) p2
−1

b(x0)u(x0)2 = b(0) p2
0

b(x1)u(x1)2 = b(x1) p2
1

The integral is (approximately) given by∫ h

−h
b(x)u(x)2 dx ≈ h

9

(
5 b(x−1) p2

−1 + 8 b(x0) p2
0 + 5 b(x1) p2

1

)

= 〈


p−1

p0

p1

 ,


5h
9 b(x−1) 0 0

0 8h
9 b(x0) 0

0 0 5h
9 b(x1)




p−1

p0

p1

〉

= 〈M0 ·


u−1

u0

u1

 ,


5h
9 b(x−1) 0 0

0 8h
9 b(x0) 0

0 0 5h
9 b(x1)

 ·M0 ·


u−1

u0

u1

〉

= 〈


u−1

u0

u1

 , MT
0 ·


5h
9 b(x−1) 0 0

0 8h
9 b(x0) 0

0 0 5h
9 b(x1)

 ·M0 ·


u−1

u0

u1

〉
This notation incorporates the steps discretisation, interpolation and Gauss integration in one formula.

Integrating the expression
∫
a(x) (u′(x))2 dx

Now we compute

2F1(u) =

∫ h

−h
a(x) (u′(x))2 dx

by a very similar method. The only additional problem stems from using the derivative u′ instead of u at the
Gauss nodes. The derivative of the interpolated function is

u′(x) =
u1 − u−1

2h
+
u1 − 2u0 + u−1

h2
x

We find 
p−1

p0

p1

 =


u′(x−1)

u′(x0)

u′(x1)

 =


u1−u−1

2h + u1−2u0+u−1

h2 x−1

u1−u−1

2h
u1−u−1

2h + u1−2u0+u−1

h2 x1



=


− 1

2h −
√

3√
5h

2
√

3√
5h

1
2h −

√
3√

5h

− 1
2h 0 1

2h

− 1
2h +

√
3√

5h
− 2
√

3√
5h

1
2h +

√
3√

5h

 ·


u−1

u0

u1

 = M1 ·


u−1

u0

u1


Except for the division by h the matrix M1 is constant. As above we find

∫ h

−h
a(x) (u′(x))2 dx ≈ 〈


u−1

u0

u1

 , MT
1


5h
9 a(x−1) 0 0

0 8h
9 a(x0) 0

0 0 5h
9 a(x1)

 M1 ·


u−1

u0

u1

〉
SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 84

Integrating the expression
∫
g(x)u(x) dx

Now we consider

F3(u) =

∫ h

−h
g(x)u(x) dx

This is comparable to the first integral to be computed. Again we have to compute the values of the function
u at the Gauss nodes by

p−1

p0

p1

 =


u(x−1)

u(x0)

u(x1)

 =


√

3
2
√

5
+ 3

10
2
5 −

√
3

2
√

5
+ 3

10

0 1 0

−
√

3
2
√

5
+ 3

10
2
5

√
3

2
√

5
+ 3

10

 ·


u−1

u0

u1

 = M0 ·


u−1

u0

u1


Using these values pi and the values of g at the Gauss nodes to find

g(x−1)u(x−1) = b(x−1) p−1

g(x0)u(x0) = b(0) p0

g(x1)u(x1) = b(x1) p1

The integral is (approximately) given by∫ h

−h
g(x)u(x) dx ≈ h

9
(5 g(x−1) p−1 + 8 g(x0) p0 + 5 g(x1) p1)

= 〈


p−1

p0

p1

 ,


5h
9 g(x−1)
8h
9 g(x0)

5h
9 g(x1)

〉 = 〈


u−1

u0

u1

 , MT
0 ·


5h
9 g(x−1)
8h
9 g(x0)

5h
9 g(x1)

〉
Combining all contributions

Finally we can combine the results above and arrive at

F (u) =

∫ h

−h

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx =

1

2
〈~u , K ~u〉 − 〈~u , ~b〉

with

K = MT
1


5h
9 a(x−1) 0 0

0 8h
9 a(x0) 0

0 0 5h
9 a(x1)

 M1 + MT
0 ·


5h
9 b(x−1) 0 0

0 8h
9 b(x0) 0

0 0 5h
9 b(x1)

 ·M0

and

~b = −MT
0 ·


5h
9 g(x−1)
8h
9 g(x0)

5h
9 g(x1)


where

M1 =


− 1

2h −
√

3√
5h

2
√

3√
5h

1
2h −

√
3√

5h

− 1
2h 0 1

2h

− 1
2h +

√
3√

5h
− 2
√

3√
5h

1
2h +

√
3√

5h

 and M0 =


√

3
2
√

5
+ 3

10
2
5 −

√
3

2
√

5
+ 3

10

0 1 0

−
√

3
2
√

5
+ 3

10
2
5

√
3

2
√

5
+ 3

10


SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 85

Now we have a complete description of an element with second order interpolation and Gauss integration
with three nodes.

Results from linear algebra show that the matrix K is positive definite if the two function a(x) and b(x)
are strictly positive. Thus the matrix K is invertible. If we only know that a is strictly positive and b might
be zero, then K is known to be positive semidefinite.

4.5.4 Comparison of interpolation and integration methods

In table 4.4 find a simple comparison of first and second order elements with different integration methods.
The table indicates that Gauss integration leads to very small integration errors if h is small. Thus Gauss
integration is used almost exclusively in finite element constructions. The discretisation error is usually a
much larger contribution to the total error and we will concentrate on its influence in the next section.

first order element second order element

Degrees of freedom 2 3

Length of one element h 2h

Interpolation of u(x) by straight line parabola

Order of error of u(x) h2 h3

Derivative u′(x) is constant linear

Order of error of u′(x) h h2

Integration method trapezoidal Simpson’s rule

Local integration error h3 h4

Integration method Gauss, 3 points

Local integration error h7

Table 4.4: Comparison of interpolation errors of first and second order elements

Sofar we considered elements of first and second order only, but the methods do apply to higher order
elements too. Some applications (e.g. bending of beams or plates) require higher order elements. An
example is examined in section 4.8.

4.6 Code in Mathematica for second order boundary value problems

In figure 4.6 find Mathematica code to solve a second order boundary value problem on an interval. This
package has to be loaded by <<BVP.m . The differential equation

d

dx

(
a(x)

d u(x)

dx

)
− b(x)u(x) = f(x)

can be solved on an interval with either Neumann or Dirichlet boundary conditions. As an example consider
the equation

−u′′(x)− 2u(x) = −x3 for 0 < x < 1

u(0) = 0

u(1) = 0.1

to be solved with 3 elements (4 points) by the code below.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 86

Mathematica
<<BVP.m;
Clear[a,b,c,f,x,n]
a=Function[x,-1];
b=Function[x,2];
f=Function[x,-xˆ3];
n=3;
x=Table[t,{t,0,1,1/n}];
data=BVP[a,b,f,x,{"D","D"},{0,0.1}];

The result data contains a list of values of independent and dependent variables. With this information the
solution can be plotted by ListPlot[] and combined with the exact solution.

Mathematica
g1=ListPlot[data,PlotStyle -> PointSize[0.02],DisplayFunction ->Identity] ;
yn[t_]=y[t]/.DSolve[{D[a[t]*y’[t],t]-b[t]*y[t]==f[t],

y[0]==0,y[1]==0.1},y[t],t];
g2=Plot[yn[t],{t,0,1},DisplayFunction -> Identity];
Show[{g1,g2},PlotRange -> All,DisplayFunction ->$DisplayFunction];

Since the second order finite element solution is based on piecewise quadratic interpolation we define
a Mathematica function to compute this interpolation using the result of the BVP[] command. Find the
content of Interpol2.m in figure 4.7. With the command in this package we can then plot the solution
and its derivative. In figure 4.8 find plots of the FEM solution and the exact solution generated by

Mathematica
<<Interpol2.m
Clear[x]
yfem[x_]:=Interpol2[x,data];
Plot[{yfem[x],yn[x]},{x,0,1}];
dyfem[x_]:=DInterpol2[x,data]; dyn[x_]=D[yn[x],x];
Plot[{dyfem[x],dyn[x]},{x,0,1}, PlotRange ->All];

The right half in figure 4.8 clearly shows that the derivative of the finite element solution is a piecewise
linear, noncontinuous function, as the derivative ‘jumps’.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 87

Mathematica
BeginPackage["BVP‘"];
BVP::usage="BVP[a,b,f,xvalues,BCType,BCValues]
solves a second order boundary value problem";

Begin["‘Private‘"];
M0={{0.6872983346207417, 0.4, -0.08729833462074164}, {0, 1, 0},
{-0.08729833462074164, 0.4, 0.6872983346207417}};

M1={{-1.274596669241483, 1.549193338482966, -0.2745966692414834},
{-(1/2), 0, 1/2},
{0.2745966692414834, -1.549193338482966, 1.274596669241483}};

ElementStiffnessMatrix[a_,b_,{xl_,xr_}] :=
Module[{pl,pc,pr,h,avalues,bvalues},

pc = (xl+xr)/2; h=(xr-xl)/2;
{pl,pr}={pc-Sqrt[3/5]*h,pc+Sqrt[3/5]*h};
avalues=Map[a,{pl,pc,pr}];
bvalues=Map[b,{pl,pc,pr}];
Return[Transpose[M1].DiagonalMatrix[avalues*{5,8,5}/9].M1/h+

Transpose[M0].DiagonalMatrix[bvalues*{5,8,5}/9*h].M0];]
ElementRHS[f_,{xl_,xr_}] :=

Module[{pl,pc,pr,w,h,fvalues},
pc = (xl+xr)/2; h=(xr-xl)/2;
{pl,pr}={pc-Sqrt[3/5]*h,pc+Sqrt[3/5]*h};
fvalues=Map[f,{pl,pc,pr}];
Return[-Transpose[M0].(fvalues*{5,8,5})/9*h]]

BVP[a_,b_,f_,xvalues_,BCType_,BCValues_]:=
Module[{n,x,u,M,mElement,RHS,mRHS},
n=Length[xvalues]; x=Table[0,{2*n-1}];
For[e=1,e<=n,e++,x[[2*e-1]]=xvalues[[e]]];

For[e=1,e<n,e++, x[[2*e]]=(xvalues[[e]]+xvalues[[e+1]])/2];
M=Table[0,{2*n-1},{2*n-1}];
RHS=Table[0,{2*n-1}];
For[e=1,e<n,e++,
mElement=N[ElementStiffnessMatrix[a,b,

{xvalues[[e]],xvalues[[e+1]]}]];
For[i=1,i<=3,i++,
For[j=1,j<=3,j++, M[[(e-1)*2+i,(e-1)*2+j]]+=mElement[[i,j]]]];

mRHS=N[ElementRHS[f,{xvalues[[e]],xvalues[[e+1]]}]];
For[i=1,i<=3,i++, RHS[[(e-1)*2+i]]+=mRHS[[i]]];

];
Which[BCType[[1]]=="D"||BCType[[1]]=="d",
M[[1]]=Table[0,{2*n-1}];M[[1,1]]=1;RHS[[1]]=BCValues[[1]],
BCType[[1]]=="N"||BCType[[1]]=="n", RHS[[1]]-=BCValues[[1]]];

Which[BCType[[2]]=="D"||BCType[[2]]=="d",
M[[2*n-1]]=Table[0,{2*n-1}];M[[2*n-1,2*n-1]]=1;

RHS[[2*n-1]]=BCValues[[2]],
BCType[[2]]=="N"||BCType[[2]]=="n", RHS[[2*n-1]]-=BCValues[[2]]];

u=LinearSolve[M,RHS];
Return[Transpose[{x,u}]];];

End[];
EndPackage[];

Figure 4.6: BVP.m, Mathematica code to solve a boundary value problem

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 88

Mathematica
BeginPackage["Interpol2‘"];
Interpol2::usage="Interpol2[x,data]
returns the value of the piecewise quadratic interpolation function,
determined by the given data";
DInterpol2::usage="DInterpol2[x,data]
returns the value of the derivative of the piecewise quadratic interpolation
function, determined by the given data";

Begin["‘Private‘"];
Interpol2[x_,data_]:= Module[{xp,yp,pos,f},

{xp,yp}=Transpose[data];
pos=Floor[(Length[Select[xp,(#<=x)&]]+1)/2];
f=Interpolation[data[[{2*pos-1,2*pos,2*pos+1}]],InterpolationOrder -> 2];
f[x]]

DInterpol2[x_,data_]:= Module[{xp,yp,pos,f},
{xp,yp}=Transpose[data];

pos=Floor[(Length[Select[xp,(#<=x)&]]+1)/2];
f=Interpolation[data[[{2*pos-1,2*pos,2*pos+1}]],InterpolationOrder -> 2];
f’[x]]

End[];
EndPackage[];

Figure 4.7: Interpol2.m, Mathematica code to compute piecewise quadratic interpolation

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.075

0.125

0.15

0.175

0.2

0.225

0.25

Figure 4.8: Test problem for the second order finite element, plot of solutions and its derivatives

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 89

4.7 Examples

4.7.1 The FEM solution to the standard truss problem
To test the produces in the previous section we use the example in section 2.2.2. The solution with 5 elements
is now easily computed by

Mathematica
<<BVP.m;
<<Interpol2.m;
Clear[A,b,f,x]
A=Function[x,-(10-0.09*x)*3*10ˆ6];
b=Function[x,0];
f=Function[x,0];
n=5;
x=Table[s,{s,0,100,100/n}];
data=BVP[A,b,f,x,{"D","N"},{0,2*10ˆ4}];

and leads to the solution shown in figure 4.9. This has to be compared with figure 2.7 on page 25. There
you find the solution with 10 elements of order 1. Both approaches require to solve a system of 11 linear
equations and thus the computational effort is comparable. But the second order elements lead to a better
approximation¿ To vervy this, compare the two graphs for the strain.

20 40 60 80 100
x

0.025

0.05

0.075

0.1

0.125

0.15

Displacement

20 40 60 80 100
x

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Strain

Figure 4.9: Displacement and strain in a truss with 5 elements of order 2

In figure 4.10 find the relative error of the displacement function. It can be seen that the error are larger
towards the right end point and thus more elements should be placed there. The accuracy in the left half
might be sufficient already.

20 40 60 80 100

-0.008

-0.006

-0.004

-0.002

0.002

0.004

Figure 4.10: Relative error of the displacement function

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 90

4.7.2 Radial heat problem

In section 4.1.4 (page 65) the boundary value problem

∂

∂ρ
(ρ
∂ T (ρ)

∂ρ
) = ρ T ′′(ρ) + T ′(ρ) = −ρ f(ρ) =


0 if 0 ≤ ρ < 1

−ρ if 1 ≤ ρ < 2

0 if 0 ≤ ρ ≤ 3

T (3) = 0

T ′(0) = 0

had to be solved for the unknown temperature T as function of the radius ρ. The solution can now be
computed by the code below. Figure 4.11 shows the approximate and the exact solution. The exact solution
is shown as a solid line and the FEM solution is indicated by the points. A simple computation (with
Mathematica) show that the relative error of the approximation is smaller than 0.3%.

Mathematica
<<BVP.m;
Clear[a,b,c,f,x,t,n];
a=Function[x,x];
b=Function[x,0];
f=Function[x,Which[x<1,0,x<2,-x,True,0]];
n=3;
x=Table[t,{t,0,3,3/n}];
data=BVP[a,b,f,x,{"N","D"},{0,0}];
ListPlot[data,PlotStyle -> PointSize[0.01],DisplayFunction -> Identity];

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 4.11: Solution of radial heat equation

In this example it is important to choose the elements such that the two points x = 1 and x = 2 are
separating different elements. The reason are the discontinuities of the function f(x) at those points. If they
would be inside an element, then the solution can not be often differentiable on the individual elements and
thus the high accuracy of Gauss integration would not apply. This can be experimentally verified by the
above code, e.g. set n = 10 and observe that the error is considerably larger than for n = 3.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 91

4.8 Vibrations of a beam

We want to examine vibration of a beam which is clamped at one end and free at the other end. In particular
we want to find the resonance frequencies of such a bar. This information is often useful when designing a
mechanical system.

4.8.1 Description of the static situation

We examine the transversal deformation of an elastic bar in horizontal position. Its displacement is given by
a function u(x) where 0 ≤ x ≤ L.

-

6

x

u

L

Figure 4.12: Bending of a beam

The basic equations from physics are

EI u′′ (x) = M (x)

EI u(4) (x) =
d2

dx2
M (x) = f (x)

where the meaning of the symbols is given in table 4.5.

symbol description units

x horizontal coordinate 0 ≤ x ≤ L m

y vertical displacement m

L length of the beam m

I moment of inertia of the cross section m4

E modulus of elasticity N
m2

f vertical force per length N
m

M bending moment N m

ρ mass per length kg
m

Table 4.5: Description of the physical quantities

The static situation can be considered as a minimization problem with the functional

F (u) =

∫ L

0

E I(x)

2

(
(u′′(x)

)2 − f(x) · u(x) dx

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 92

Calculus of variations and the notation a(x) = E I(x) imply

0 =

∫ L

0
a(x) u′′(x) · ϕ′′(x)− f(x) · ϕ(x) dx

= a(x) u′′(x) · ϕ′(x)
∣∣L
x=0
−
∫ L

0

(
a(x) u′′(x)

)′ · ϕ′(x)− f(x) · ϕ(x) dx

=
(
a(x) u′′(x) · ϕ′(x)− (a(x) u′′(x))′ · ϕ(x)

) ∣∣L
x=0

+

∫ L

0

(
a(x) u′′(x)

)′′ · ϕ(x)− f(x) · ϕ(x) dx

The above expression has to vanish for all smooth test-functions ϕ(x) with ϕ(0) = ϕ′(0) = 0. Thus we
obtain

(a(x) u′′(x))′′ = f(x) for all 0 < x < L

u(0) = u′(0) = 0

a(L) u′′(L) = 0

(a(L) u′′(L))′ = 0

Using a(L) > 0 the boundary condition simplifies to

(a(x) u′′(x))′′ = f(x) for all 0 < x < L

u(0) = u′(0) = 0

u′′(L) = u′′′(L) = 0

For a given force density f we have to solve an ordinary differential equation of order 4 with boundary
conditions.

4.8.2 Dynamic situation, separation of variables

Now we assume that the vertical displacement u(t, x) may depend on the space variable x and the time t.
For the static situation we considered the force f ∆x applied to a section of length ∆x of the beam. For the
beam to remain static the beam has to generate an internal elastic force of the same size, but opposite sign.
If the are no external forces then this internal force will lead to an acceleration of this section of the bar.
Using Newton’s law we then arrive at a partial differential equation of order 4.

ρ ü(t, x) = −
(
EI u′′

)′′
(t, x) (4.8)

To find solutions of this equation we use the idea of separation of variables. We look for a solution in
the form of a product of a function of t and a function of x only, i.e.

u(t, x) = T (t) · y(x)

This ansatz will be used in the equation (4.8). We obtain

ρ
∂2

∂t2
(T (t) · y(x)) = − ∂2

∂x2

(
EI · ∂

2

∂x2
(T (t) · y(x))

)
ρ y(x) · ∂

2

∂t2
T (t) = −T (t)

∂2

∂x2

(
EI · ∂

2

∂x2
y(x)

)
∂2

∂t2
T (t)

T (t)
= − 1

ρ(x) y(x)

∂2

∂x2

(
EI · ∂

2

∂x2
y(x)

)
Observe that the variables t and x are separated.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 93

• The LHS (left hand side) depends on t only and thus the RHS (right hand side) depends on t only too.

• The RHS depends on x only and thus the LHS depends on x only too.

• The above too statements imply that RHS and LHS have to equal a constant which we call −ω2,
ignoring a technical problem2.

Thus we obtain a differential equation for time dependence

∂2

∂t2
T (t) = −ω2 T (t)

and an equation for space the space variables y(x)

1

ρ

∂2

∂x2

(
EI · ∂

2

∂x2
y(x)

)
= ω2 y(x)

or equivalently to the generalized eigenvalue problem

∂2

∂x2

(
EI · ∂

2

∂x2
y(x)

)
= ω2 ρ(x) y(x) (4.9)

If we manage to solve both of the above equations for a common value of ω then we have a solution of the
original differential equation (4.8). This solution is given by u(t, x) = T (t) · y(x) .

We replace one difficult problem by two simpler problems. The method can only be called successful if
we manage to solve the two simpler problems.

4.8.3 From eigenvalues to frequencies

The general, complex solution of the above time equation is given by

T (t) = A1 e
i ω t +A2 e

−i ω t

As real solution we find the two linear independent functions cos(ωt) and sin(ωt). Thus we have periodic
solutions

T (t) = A cos(ωt+ δ)

with the frequency ν = ω
2π or the period T = 1

ν = 2π
ω .

The eigenvalue problem for the space dependence is given by

1

ρ

∂2

∂x2

(
EI · ∂

2

∂x2
y(x)

)
= λ y(x) (4.10)

If we find an eigenvalue λ the we can use ω2 = λ to determine ω and thus we find ν and the period T .

ω =
√
λ resp. ν =

ω

2π
=

√
λ

2π

This shows that the eigenvalues of the space problem determine the frequencies with which the bar can
vibrate.

2The notation −ω2 quietly assumes that this constant is negative. This assumption can be justified.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 94

4.8.4 A beam with constant cross section

If E, I and ρ are independent on x then we can proceed computing with exact expressions. Use the notation

k4 =
ρ

EI
or k = 4

√
ρ

EI

to arrive at
d4

dx4
y(x) = ω2 k4 y(x)

Thus we search a function whose fourth derivative equals the original function, up to a constant factor. The
general form of those functions is

y(x) = A cos(k
√
ω x) +B cosh(k

√
ω x) + C sin(k

√
ω x) +D sinh(k

√
ω x)

Now we can use the 4 boundary conditions to determine the constants A, B, C and D. Using the condition
at x = 0 we conclude

y(0) = 0 =⇒ A + B = 0

y′(0) = 0 =⇒ k
√
ω C + k

√
ωD = 0

This simplifies the general solution to

y(x) = A
(
cos(k

√
ω x)− cosh(k

√
ω x)

)
+ C

(
sin(k

√
ω x)− sinh(k

√
ω x)

)
Now use the constraints y′′(L) = 0 and y′′′(L) = 0 to find two equations for the unknowns A and C.

A
(
− cos(k

√
ω L)− cosh(k

√
ω L)

)
+ C

(
− sin(k

√
ω L)− sinh(k

√
ω L)

)
= 0

A
(
sin(k

√
ω L)− sinh(k

√
ω L)

)
+ C

(
− cos(k

√
ω L)− cosh(k

√
ω L)

)
= 0

This is a linear, homogeneous system of linear equation for A and C. Unless the determinant of the matrix
vanishes we only have the trivial solution A = C = 0, leading to y(x) = 0. This is not a very interesting
situation.

We have to determine the values of ω for which the determinate vanishes, i.e.(
cos(k

√
ω L) + cosh(k

√
ω L)

)2
+ sin2(k

√
ω L)− sinh2(k

√
ω L) = 0

Using sin2 z + cos2 z = 1 and cosh2 z − sinh2 z = 1 rewrite this equations to

2 + 2 cos(k
√
ω L) · cosh(k

√
ω L) = 0

Thus the interesting values are determined by the zeros of the auxiliary function

g(z) = 1 + cos(z) · cosh(z) = 0

Using a simple graphic and Mathematica we determine the first few zeros of this function. Exact solution
are not possible and we have to settle for approximate values. Since the cosh z function grows rapidly as
z � 1 the expression cos z has to be close to 0 for g(z) to vanish. We conclude that the zeros of g(z) should
be close to the known zeros of cos z. This is correct, except for the first zero. Using the information we can
use the Mathematica command FindRoot[] to determine the zeros with the help of Newton’s algorithm.
This is implemented in the code below.

Mathematica

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 95

g[z_]:= 1+Cos[z]*Cosh[z];
Plot[g[z],{z,0,20},PlotRange->{-1,1}];
{z/.FindRoot[g[z]==0,{z,2}],

Table[z/.FindRoot[g[z]==0,{z,Pi/2+k*Pi}],{k,1,6}]}//Flatten
.
{1.8751,4.69409,7.85476,10.9955,14.1372,17.2788,20.4204}

Using the above values for z = k
√
ωL we find the eigenvalues

λ = ω2 =
(z

k L

)4
=
EI

ρ

z4

L4

and the frequencies

ν =
ω

2π
=

1

2π

√
EI

ρ

z2

L2

This information is useful to determine the frequencies for a beam with constant cross section and to obtain
estimates for more complicated situations. To obtain better results for non constant cross section we have to
use numerical methods. The next section presents one of the possible solutions by a finite element method.

4.8.5 FEM description of the static situation

To solve the static problem we have to minimize the functional

F (u) =

∫ L

0

E I(x)

2

(
u′′(x)

)2 − f(x) · u(x) dx

The methods to be used are very similar to section 4.5, but we now have to find integrals of second deriva-
tives.

First we examine the integral on the standard interval [−h/2 , h/2] of length h . For beams the first
derivative u′(x) should be continuous, thus we choose u(−h/2), u′(−h/2), u(h/2) and u′(h/2) as degrees
of freedom for the element construction. We can then cover the length of the bean by a piecewise cubic
interpolation, assuring that the function and the slope are continuous along the beam.

Cubic interpolation in the interval [−h/2 , h/2]

On the interval [h2 ,
h
2] we consider polynomials of degree 3 as functions

u(x) = c0 + c1 x+ c2 x
2 + c3 x

3

The values and slopes at the endpoints are the degrees of freedom.

a1 = u(
−h
2

) , a2 = u′(
−h
2

) , a3 = u(
h

2
) , a4 = u′(

h

2
)

We need the coefficients ci of the polynomial as function of the degrees of freedom. Consider the system of
linear equations

u(−h2) = c0 −c1
h
2 +c2

h2

4 −c3
h3

8 = a1

u′(−h2) = c1 −c2 h +c3
3h2

4 = a2

u(h2) = c0 +c1
h
2 +c2

h2

4 +c3
h3

8 = a3

u′(h2) = c1 +c2 h +c3
3h2

4 = a4

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 96

or using a matrix 
a1

a2

a3

a4

 =


1 −h

2
h2

4 −h3

8

0 1 −h 3h2

4

1 h
2

h2

4
h3

8

0 1 h 3h2

4

 ·


c0

c1

c2

c3


Using the coefficients ci we can compute the function u(x) at any chosen point in the interval. This will be
used to compute the integral with Gauss integration.

Contribution of f(x) · u(x) to the functional

For a Gauss integration with three points of support we need values of the function

u(x) = c0 + c1 x+ c2 x
2 + c3 x

3

at the points (see section 4.5.2)

p−1 = u(−h
2

√
3

5
) , p0 = u(0) , p1 = u(

h

2

√
3

5
)

Using the above interpolation we obtain

p−1 = c0 −
√

3
5
h
2 c1 +3

5
h2

4 c2 −3
5

√
3
5
h3

8 c3

p0 = c0

p1 = c0 +
√

3
5
h
2 c1 +3

5
h2

4 c2 +3
5

√
3
5
h3

8 c3

or using matrices


p−1

p0

p1

 =


1 −1

2

√
3
5 h

3
20 h

2 − 3
40

√
3
5 h

3

1 0 0 0

1 1
2

√
3
5 h

3
20 h

2 3
40

√
3
5 h

3

 ·


c0

c1

c2

c3


We can also write


p−1

p0

p1

 =


1 −1

2

√
3
5 h

3
20 h

2 − 3
40

√
3
5 h

3

1 0 0 0

1 1
2

√
3
5 h

3
20 h

2 3
40

√
3
5 h

3

 ·


1 −h
2

h2

4 −h3

8

0 1 −h 3h2

4

1 h
2

h2

4
h3

8

0 1 h 3h2

4


−1

·


a0

a1

a2

a3


A calculation (done with Mathematica) shows, using the abbreviation s =

√
3
5 ,


p−1

p0

p1

 =


1
2 + s3 5+

√
15

100 h 1
2 − s

3 −5+
√

15
100 h

1
2

h
8

1
2 −h

8
1
2 − s

3 5−
√

15
100 h 1

2 + s3 −5−
√

15
100 h

 ·


a0

a1

a2

a3

 = M0 ·


a0

a1

a2

a3



SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 97

Now we can compute the function u(x) at the Gauss integration points, using the degrees of freedom of the
element. Using a Gauss integration we find∫ h/2

−h/2
f(x) u(x) dx ≈ h

18

(
5 f(−

√
3

5

h

2
) p−1 + 8 f(0) p0 + 5 f(

√
3

5

h

2
) p−1

)

=
h

18
(5 f−1 p−1 + 8 f0 p0 + 5 f1 p−1)

= 〈


p−1

p0

p1

 ,
h

18


5 f−1

8 f0

5 f1

〉 = 〈M0


a0

a1

a2

a3

 ,
h

18


5 f−1

8 f0

5 f1

〉

= 〈


a0

a1

a2

a3

 ,
h

18
MT

0 ·


5 f−1

8 f0

5 f1

〉

Contribution of (u′′)2 to the functional

In this case we need
u′′(x) = 2 c2 + 6 c3 x

at the three Gauss points

p−1 = u′′(−h
2

√
3

5
) , p0 = u′′(0) , p1 = u′′(

h

2

√
3

5
)

Thus
p−1 = 2 c2 −3

√
3
5 h c3

p0 = 2 c2

p1 = 2 c2 +3
√

3
5 h c3

or 
p−1

p0

p1

 =


0 0 2 −3

√
3
5 h

0 0 2 0

0 0 2 3
√

3
5 h

 ·


c0

c1

c2

c3


We may also write


p−1

p0

p1

 =


0 0 2 −3

√
3
5 h

0 0 2 0

0 0 2 3
√

3
5 h

 ·


1 −h
2

h2

4 −h3

8

0 1 −h 3h2

4

1 h
2

h2

4
h3

8

0 1 h 3h2

4


−1

·


a0

a1

a2

a3



SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 98

A calculation (with Mathematica) shows


p−1

p0

p1

 =
1

h


− 6
h

√
3
5 −1− 3

√
3
5 + 6

h

√
3
5 1− 3

√
3
5

0 −1 0 1

6
h

√
3
5 −1 + 3

√
3
5 − 6

h

√
3
5 1 + 3

√
3
5

 ·


a0

a1

a2

a3

 = M2 ·


a0

a1

a2

a3


Using a Gauss integration we now arrive at

1

2

∫ h/2

−h/2
EI(x) (u′′(x))2 dx ≈ 1

2

h

18

(
5EI(−

√
3

5

h

2
) p2
−1 + 8 EI(0) p2

0 + 5EI(

√
3

5

h

2
) p2
−1

)

=
1

2

h

18

(
5EI−1 p

2
−1 + 8 EI0 p

2
0 + 5EI1 p

2
−1

)
=

1

2
〈


p−1

p0

p1

 ,
h

18


5EI−1 0 0

0 8 EI0 0

0 0 5 EI1

 ·


p−1

p0

p1

〉

=
1

2
〈M2


a0

a1

a2

a3

 ,
h

18


5EI−1 0 0

0 8 EI0 0

0 0 5 EI1

 ·M2


a0

a1

a2

a3

〉

=
1

2
〈


a0

a1

a2

a3

 ,
h

18
MT

2 ·


5EI−1 0 0

0 8 EI0 0

0 0 5 EI1

 ·M2


a0

a1

a2

a3

〉

Now we have the element stiffness matrix. For the simplest case EI(x) = 1 we find

1

2

∫ h/2

−h/2
(u′′(x))2 dx ≈ 1

2
〈


a0

a1

a2

a3

 ,


12
h3

6
h2 − 12

h3
6
h2

6
h2

4
h − 6

h2
2
h

− 12
h3 − 6

h2
12
h3 − 6

h2

6
h2

2
h − 6

h2
4
h

 ·


a0

a1

a2

a3

〉

If u′′ is a polynomial with degree ≤ 2 then the above integration is exact.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 99

4.8.6 Assembling the system of equations, Octave code and a few tests

For our standard element on the interval −h/2 ≤ x ≤ h/2 we have∫ h/2
−h/2

1
2 EI(x) (u′′(x))2 − f(x) · u(x)dx ≈

≈ 1
2 〈


a0

a1

a2

a3

 , h
18 MT

2 ·


5EI−1 0 0

0 8 EI0 0

0 0 5 EI1

 ·M2


a0

a1

a2

a3

〉

− 〈


a0

a1

a2

a3

 , h
18 MT

0 ·


5 f−1

8 f0

5 f1

〉

Now we want to solve the static problem for given functions EI(x), ρ(x) and f(x). We also need to
give the length L of the bean and the desired number of elements. This is done by choosing all boundary
points of the elements.

As a concrete example we consider a beam of length L = 1 with a force density f(x) = 2− x.

Octave
n=10;
L=1;
x=linspace(0,L,n+1);

function r= EI(x) r=ones(size(x)); endfunction
function r = f(x) r=2-x; endfunction
function r = rho(x) r=ones(size(x)); endfunction

To solve the problem we need a function to determine the element stiffness matrix, using the formulas
of the previous section.

Octave
function mat = elementContribution(x,aFunc)
h=x(2)-x(1); s=sqrt(3/5);
xm=(x(1)+x(2))/2; xr=xm+s*h/2; xl=xm-s*h/2;
M2=[-6/h*s, -1-3*s,6/h*s,1-3*s;...

0,-1,0,1;...
6/h*s, -1+3*s,-6/h*s,1+3*s]/h;

mat=h/18*M2’*...
diag([5*feval(aFunc,xl),8*feval(aFunc,xm),5*feval(aFunc,xr)])*M2;

endfunction

Octave
function vec = elementVector(x,fFunc)
h=x(2)-x(1); s=sqrt(3/5);
xm=(x(1)+x(2))/2; xr=xm+s*h/2; xl=xm-s*h/2;
M0=[0.5+sˆ3, (5+sqrt(15))/100*h, 0.5-sˆ3, (-5+sqrt(15))/100*h;...

0.5,h/8,0.5,-h/8;...
0.5-sˆ3, (5-sqrt(15))/100*h, 0.5+sˆ3, (-5-sqrt(15))/100*h];

vec=h/18*M0’*[5*feval(fFunc,xl);8*feval(fFunc,xm);5*feval(fFunc,xr)];
endfunction

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 100

As degrees of freedom we have the values of uk and the slopes u′k at the points of support xk. Since for
our problem the beam is clamped at x = 0 we have u0 = u′0 = 0. Thus we have a total of 2n degrees of
freedom. Now we want to rewrite the function in the form

F (u) =

∫ L

0

E I(x)

2

(
u′′(x)

)2 − f(x) · u(x) dx

=
n∑
k=1

(∫ xk

xk−1

E I(x)

2

(
u′′(x)

)2 − f(x) · u(x) dx

)

≈ 1

2
〈



u1

u′1

u2

u′2
...

un

u′n


, A ·



u1

u′1

u2

u′2
...

un

u′n


〉+ 〈



u1

u′1

u2

u′2
...

un

u′n


, ~b〉

Given the 2n × 2n matrix A and the vector ~b we have to solve the linear system A ~u = ~b. The matrix
A contains all contributions from the individual elements. As an example consider the third element, its
contribution will end up in rows and columns 3 through 6.

Octave
A=zeros(2*(length(x)-1));
b=zeros(2*(length(x)-1),1);

% Dirichlet conditions at left end point: u(0)=u’(0)=0
Atmp=elementContribution([x(1), x(2)],’EI’);
A(1:2,1:2) = Atmp(3:4,3:4);
btmp=elementVector([x(1), x(2)],’f’);
b(1:2)=btmp(3:4);

for k=2:(length(x)-1);
A(2*k-3:2*k,2*k-3:2*k) = A(2*k-3:2*k,2*k-3:2*k) + ...

elementContribution([x(k), x(k+1)],’EI’);
b(2*k-3:2*k) = b(2*k-3:2*k) + elementVector([x(k), x(k+1)],’fF’);

endfor

u=A\b;

From the resulting vector ~u we can extract the values at the endpoints of the elements (ignoring the deriva-
tives), complement it with u(0) = 0 and then plot the solution.

Octave
u=reshape(u,2,length(x)-1);
y=[0 u(1,:)]
plot(x,y)

A first test

Consider the functional

F (u) =

∫ 1

0

1

2
(u′′(x))2 − u(x)dx

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 101

with the boundary condition u(0) = u′(0) = 0. The minimum is attained by the solution of the differential
equation

u(4)(x) = 1 , u(0) = u′(0) = u′′(1) = u′′′(1) = 0

Using u(0) = u′(0) = 0 we obtain

u(x) =
1

24
x4 + c1 x

2 + c2 x
3

The remaining boundary conditions are satisfied if

1
2 +2 c1 +6 c2 = 0

1 +6 c2 = 0

Since the solution of the above system is c2 = −1
6 , c1 = 1

4 we find the exact solution u(x) to be

u(x) =
1

24
x4 +

1

4
x2 − 1

6
x3

From this we find easily u(1) = 1
8 and u′(1) = 1

6 . The Octave code of the previous section reproduces this
result exactly. This is no surprise as the exact solution is a polynomial of degree 3 and the Gauss integration
is exact for polynomials up to degree 5 . Thus the integrals of (u′′)2 and u are exact.

A second test

The function f(x) = 2− x describes a load getting smaller as we move along the beam. The functional to
be considered is

F (u) =

∫ 1

0

1

2
(u′′(x))2 − (2− x) u(x)dx

Mathematica is capable of solving the resulting differential equation exactly.
Mathematica

s=DSolve[{D[u[x],{x,4}]==2-x,u[0]==0,u’[0]==0,u’’[1]==0,u’’’[1]==0},u[x],x];
us[x_]=u[x]/.s[[1]]
.
2 3 4 5
x x x x
-- - -- + -- - ---
3 4 12 120

i.e. the exact solution is

u(x) =
x2

3
− x3

4
+
x4

12
− x5

120

and thus u(1) = 19
120 ≈ 0.15833 and u′(1) = 5

24 ≈ 0.20833 . Again the Octave code of the previous section
reproduces this result exactly.

A third test

If f(x) = sin(x) the Mathematica yields the exact result u(1) = 0.0821057 and u′(1) = 0.111622. The
FEM code with 10 elements of equal length gives u(1) = 0.082106 and u′(1) = 0.11162 and thus a very
small error. Even a computation with only 3 elements yields a good approximation.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 102

4.8.7 Finding eigenvalues

To determine the eigenvalues λ in (4.10) the function f(x) has to be replaced by 1
2 λ ρ(x)u(x), where λ is

to be determined. This leads to 3

F (u) =

∫ h/2

−h/2

1

2
EI(x) (u′′(x))2 − λ 1

2
ρ(x)u2(x)dx

For the standard element we obtain∫ h/2
−h/2

1
2 EI(x) (u′′(x))2 − λ 1

2 ρ(x) u2(x)dx ≈

≈ 1
2 〈


a0

a1

a2

a3

 , h
18 MT

2 ·


5EI−1 0 0

0 8 EI0 0

0 0 5 EI1

 ·M2


a0

a1

a2

a3

〉

− λ 1
2 〈


a0

a1

a2

a3

 , h
18 MT

0 ·


5 ρ−1 0 0

0 8 ρ0 0

0 0 5 ρ1

M0


a0

a1

a2

a3

〉

The element contribution have to be combined again to a global expression

F (u) ≈ 1

2
〈~u , A · ~u〉 − 1

2
λ 〈~u , B · ~u〉

The vector ~u is to be chosen such that F is minimal. The corresponding system of linear equations has to
form

A ~u = λB ~u or B−1 A ~u = λ~u

Thus the eigenvalues of the matrix B−1 · A correspond to the eigenvalues of the differential operator

1

ρ(x)

∂2

∂x2

(
EI(x) · ∂

2

∂x2
y(x)

)
= λ y(x)

It is often advantageous4 not to invert the matrix B but to consider directly the generalized eigenvalue
problem

A ~u = λB ~u
∂2

∂x2

(
EI(x) · ∂

2

∂x2
y(x)

)
= λ ρ(x) y(x)

This corresponds to a discretization of equation (4.9). This type of problem is examined in section 11.6.
Considering the above we need the element contributions of the expression ρ(x)u2(x). The arguments

are very similar to the previous sections and thus not repeated here. The code below finds the corresponding
element contribution.

Octave
3The arguments are similar to section 4.8.1.
4The matrix B−1 · A is not symmetric, even if A and B are symmetric

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 103

function mat =evMatrix(x,rhoFunc)
h=x(2)-x(1);
s=sqrt(3/5);
xm=(x(1)+x(2))/2;
xr=xm+s*h/2;
xl=xm-s*h/2;
M0=[0.5+sˆ3, (5+sqrt(15))/100*h, 0.5-sˆ3, (-5+sqrt(15))/100*h;...

0.5,h/8,0.5,-h/8;...
0.5-sˆ3, (5-sqrt(15))/100*h, 0.5+sˆ3, (-5-sqrt(15))/100*h];

mat=h/18*M0’*diag([5*feval(rhoFunc,xl);8*feval(rhoFunc,xm);
5*feval(rhoFunc,xr)])*M0;

endfunction

Now all building blocks are at our disposition and we write code to determine the 10 lowest frequencies
and plot the shape of the first 4 eigenmodes.

Octave
evMat=zeros(2*(length(x)-1));
% Dirichlet conditions at left endpoint: u(0)=u’(0)=0
Atmp=evMatrix([x(1), x(2)],’rho’);
evMat(1:2,1:2) = Atmp(3:4,3:4);

for k=2:(length(x)-1);
evMat(2*k-3:2*k,2*k-3:2*k) = evMat(2*k-3:2*k,2*k-3:2*k) +...

evMatrix([x(k), x(k+1)],’rho’);
endfor

neig=10; %%% first 10 eigenvalues
[vec,lam]=eig(inv(evMat)*A);
[lam, index]=sort(diag(lam));
freq=sqrt(lam(1:neig))/(2*pi)

nvec=4; %%% first 4 eigenmodes
ploty=zeros(nvec,length(x));
for k=1:nvec
tmp=reshape(vec(:,index(k)) ,2,length(x)-1);
tmp=tmp(1,:);
tmp=tmp/max(abs(tmp));
ploty(k,:)=[0 tmp];

endfor

plot(x,ploty)

For the case of constant cross section we already know the exact results from section 4.8.3. Table 4.6
show the results for 10 and 50 elements of equal length. Verify that the computation with more elements
leads to smaller errors results, in particular for higher frequencies. The shape of the first 4 eigenmodes is
shown in figure 4.13.

Octave
n=10;
L=1;
x=linspace(0,L,n+1);

function r= EI(x)
r=ones(size(x));
endfunction

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 104

function r = rho(x)
r=ones(size(x));
endfunction

Elements 10 50 exakt

Frequency

1 0.55959 0.55959 0.55959

2 3.50701 3.50690 3.5069

3 9.82193 9.81942 9.8194

4 19.26067 19.24217 19.2421

5 31.89016 31.80877 31.8086

6 47.77946 47.51706 47.5166

7 67.05149 66.36742 66.3661

8 89.87237 88.36030 88.3573

9 116.31737 113.49639 113.490

10 144.93389 141.77674 141.764

Table 4.6: Eigen frequencies of a vibrating beam

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

line 1

line 2

line 3

line 4

Figure 4.13: Eigenmodes for a beam with constant cross section

4.8.8 Design of a force sensor

Consider a block of metal with the cross section shown in figure 4.14. A vertical force F is applied at the
right, leading to a deformation. The deformation can be measured we try to compute the applied force. This
essentially corresponds to finding the spring constant (force/length) for this system. Since the vertical force
applies only at the endpoint we have f(x) = 0 with the notation in the previous sections. Instead we have

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 105

r

h

L

F

Figure 4.14: Setup for a force sensor

to add a potential energy −F · u(L) to the functional. Thus we have to minimize the modified functional

F (u) =

∫ L

0

1

2
EI(x) (u′′(x))2dx− F · u(L)

The vector~b in section 4.8.5 contains zeros only. Except for the second to last component which equals the
value of F .

As a concrete example consider a block of aluminum of a sensor of width B with the following data.

h0 = 6.0 mm r = 2.9 mm

L = 20 mm B = 20 mm

ρ0 = 2.7 · 10−6 kg
mm3 E = 73 · 103 N

mm2

The height h(x) of the structure, as function of x, is given by

h(x) =

{
h0 − 2

√
r2 − (x− r)2 for 0 ≤ x ≤ 2 r

h0 for 2 r ≤ x ≤ L

and the moment of inertia of the cross section is

I(x) =
1

12
B h(x)3

The mass per length is
ρ(x) = ρ0 B h(x)

All essential data of the force sensor is known. Since most of the bending will happen in the narrow
section we place more elements in that part. Initially we divide the section 0 ≤ x ≤ 2 r into 4 elements of
equal length and only one element on the right. Then all elements are twice split up. We end up with 20
elements.

Octave
global h0=6;
global r=2.9;
global width = 20
global L=20;
global E=73*10ˆ3;
global rho0=2.7*10ˆ(-6);

x=[0 r/2 r 3*r/2 2*r L];

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 106

%%% doubling the number of elemente %%%%
xt=sort([x x+[diff(x)/2 0]]);x=xt(1:length(xt)-1);
xt=sort([x x+[diff(x)/2 0]]);x=xt(1:length(xt)-1);

%%%% height as function of the horizontal position %%%%
function res=h(x)
global h0 r;
if(x<2*r)
res=h0-2*sqrt(rˆ2-(x-r)ˆ2);

else
res=h0;

endif
endfunction

%%%% modulus of elasticity and moment of inertia of the surface %%%%
function r= EI(x)
global E width;
r=E/12*width*h(x)ˆ3;
endfunction

%%%% mass per length %%%%
function r = rho(x)
global rho0,width;
r=rho0*h(x)*width;
endfunction

If we set F = 1 N then the inverse of u(L) will give us the spring constant. This is done by the code
below. This example leads to a value of u(L) = 0.267 mm and thus a spring constant of k = 3.75 N

mm.
The code also generates a graphics with the shape of the deformation. Considering this graph in figure 4.15
it is obvious that the bending is concentrated to the section 2.5 < x < 3.5. This should not be a surprise as
the sensor has its thinnest section at x ≈ 3.

Octave
function mat =elementContribution(x,aFunc)
h=x(2)-x(1);
s=sqrt(3/5);
xm=(x(1)+x(2))/2;
xr=xm+s*h/2;
xl=xm-s*h/2;
M2=[-6/h*s, -1-3*s,6/h*s,1-3*s; 0,-1,0,1; 6/h*s, -1+3*s,-6/h*s,1+3*s]/h;
mat=h/18*M2’*diag([5*feval(aFunc,xl),8*feval(aFunc,xm),5*feval(aFunc,xr)])*M2;

endfunction

A=zeros(2*(length(x)-1));
b=zeros(2*(length(x)-1),1);
% Dirichlet condition at left end point: u(0)=u’(0)=0
Atmp=elementContribution([x(1), x(2)],’EI’);
A(1:2,1:2) = Atmp(3:4,3:4);
for k=2:(length(x)-1);
A(2*k-3:2*k,2*k-3:2*k) = A(2*k-3:2*k,2*k-3:2*k)...

+elementContribution([x(k), x(k+1)],’EI’);
endfor
b(2*length(x)-3)=1e3; # units in mm, not m

u=A\b; %% solving the system

u=reshape(u,2,length(x)-1);

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 107

y=[0 u(1,:)];
plot(x,y)
displacement=y(length(y))
springConstant=1/displacement

To find the eigenmodes the number of nodes should be increased. Using 80 nodes we find the first four
frequencies to be

ν1 ≈ 7.2 , ν2 ≈ 436 , ν3 ≈ 4500 , ν4 ≈ 11 · 103

and the corresponding modes are shown in the right half of figure 4.15.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

-1

-0.5

0

0.5

1

0 5 10 15 20

line 1

line 2

line 3

line 4

Figure 4.15: Displacment and first 4 eigenmodes of a force sensor

Once the above code is set up it is very easy to run the calculations again with modified parameters.
Only very few entries have to be changed. This illustrates an advantage of mathematical modeling. It is
very easy to modify parameters and ‘see what happens’. This might save an engineer from having to built a
few prototypes before finding a good solution.

4.9 Exercises

•Exercise 4–1:

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 108

Find an approximate solution to the boundary value problem

−x y′′(x)− y′(x) + 7 y(x) = sinx for 0 < x < 3

y(0) = 3

y′(3) = 0

using the Mathematica command BVP[] with 10 elements.

•Exercise 4–2:
The simplest useful finite element in one variable is based on piecewise linear interpolation. It is advis-
able to use Gauss integration to improve accuracy. This will lead to better results than the construction in
section 4.4.

• Construct the element matrices for a linear interpolation and Gauss integration with 2 points of sup-
port.

• Use the above result to write code in Mathematica similar to BVP[] to solve boundary values prob-
lems.

• Test your code with some typical examples.

•Exercise 4–3:
Recode the Mathematica command BVP[] in MATLAB and solve a few example problems to test the code.
A good documentation should be provided.

•Exercise 4–4:
Find the element matrices for a ‘new’ element with the help of Mathematica .

• Use the values of the function at the two endpoints and at three interior points as the five degrees of
freedom. An interpolating polynomial of degree four should be used.

• Base your integration on 5 Gauss points.

• Determine the order of convergence of this method.

One should be able to handle all terms in the functional.

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

The methods and calculations are similar to section 4.5.

•Exercise 4–5:
Use the results from the previous exercise to write code similar to BVP[]. Solve a few test problems.

•Exercise 4–6:
Find matrices for a ‘new’ element with Mathematica .

• Use the values of the function and its derivative at the endpoints as the four degrees of freedom. Cubic
interpolation should be used.

• Base your integration on 3 Gauss points.

• Determine the order of convergence of this method.

SHA 22-4-21

CHAPTER 4. FINITE ELEMENT PROBLEMS IN ONE VARIABLE 109

One should be able to handle all terms in the functional.

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

The methods and calculations are similar to section 4.5, starting on page 77.

•Exercise 4–7:
Use the results from the previous exercise to write code similar to BVP[]. Since the unknown function
and its derivative have to match at the connecting points of the intervals it is more difficult to assemble the
matrices in this case.

•Exercise 4–8:
Find the element matrices for a ‘new’ element with the help of Mathematica .

• Use the values of the function and its derivative at the endpoints as the four degrees of freedom. Cubic
interpolation should be used.

• Base your integration on 3 Gauss points.

• Determine the order of convergence of this method.

One should be able to handle all terms in the functional.

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

The methods and calculations are similar to section 4.5.

•Exercise 4–9:
Use the results from the previous exercise to write code similar to BVP[]. This approach has the advantage,
that the approximate solution will be continuously differentiable, i.e. no ”corners“ in the solution.

Since the unknown function and its derivative have to match at the connecting points of the intervals it
is more difficult to assemble the matrices in this case. Solve a few test problems.

•Exercise 4–10:
Find matrices for a ‘new’ element with Mathematica .

• Use the values of the function and its derivative at the endpoints as the four degrees of freedom. Cubic
interpolation should be used.

• Base your integration on 3 Gauss points.

One should be able to handle all terms in the functional

F (u) =

∫ b

a

1

2
a(x) (u′′(x))2 +

1

2
b(x) (u′(x))2 +

1

2
c(x)u(x)2 + g(x) · u(x) dx

Thus boundary value problems of fourth order can be handled. The methods and calculations are comparable
to section 4.5, starting on page 77.

•Exercise 4–11:
Use the results from the previous exercise to write code similar to BVP[]. This code will alow to solve
problems of a bending beam or the bending of a circular plate.

SHA 22-4-21

Chapter 5

Convergence and finite difference schemes

5.1 Convergence of the approximate solutions for boundary value problems

The differential equations to be solved correspond to minimum of the functional

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx

(see page 34). The corresponding differential equation is

d

dx

(
a(x)

d u(x)

dx

)
− b(x)u(x) = g(x) (5.1)

(see also equation (4.6) on page 76) and we also considered weak solution, i.e.∫ b

a
a(x)u′(x)φ′(x) + b(x)u(x)φ(x) dx =

∫ b

a
g(x)φ(x) dx

for ‘all’ function φ(x). The boundary conditions have to be added. We can have Dirichlet or Neumann
boundary conditions.

Dirichlet condition u(x) =h(x) for x = a or x = b

Neumann condition a(x) d udx = r(x) for x = a or x = b

From now on we assume that at either end point one boundary condition has to be satisfied, together with
the differential equation (5.1). Thus we arrive at a BVP (Boundary Value Problem).

In general the exact ue solution can not be found and we have to settle for an approximate solution
uh, where the parameter h corresponds to the typical length of the elements used for the approximation.
Obviously we hope for the solution uh to converge to the exact solution ue as h approaches 0. It is the goal
of this section to show under what circumstances this is in fact the case and also to determine the rate of
convergence. The methods and ideas used can also be applied to partial differential equations of multiple
variables.

5.1.1 Basic assumptions and regularity results

For the results of this section the be correct we need assumptions on the functions a(x), b(x) and g(x), such
that the solution of the boundary value problem is well behaved. Throughout the section we assume:

• a(x), b(x) and g(x) continuous, bounded functions.

110

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 111

• There is a positive number α0 such that 0 < α0 ≤ a(x) ≤ α1 and 0 ≤ b(x) ≤ β1 for all x.

• The quadratic functional F (u) is strictly positive definite. This condition is satisfied if

– either at least one Dirichlet boundary condition is imposed.

– or the function b(x) is strictly positive on a subinterval.

There are other combinations of conditions to arrive at a strictly positive functional, but the above two
are easiest to verify.

With the above assumptions we have the following result, whose proof is left to mathematicians.

5–1 Theorem : For each function g(x) the BVP (5.1) has exactly one solution u. If the functions a(x)
and b(x) are smooth then we have the estimate∫ b

a
|u(x)|2 + |u′(x)|2 + |u′′(x)|2 dx ≤ C

∫ b

a
|g(x)|2 dx

for some constant C, independent on the function g.
As a rule of thumb we know that the solution u is (k + 2)-times differentiable if g is k-times differen-
tiable. 3

This mathematical result tells us that there is a unique solution of the boundary value problem, but it
does not give the solution. Now we use the finite element method to find numerical approximations uh(x)
to this exact solution ue(x).

5.1.2 Function spaces, norms and continuous functionals

In view of the above definition of a weak solution we define for functions u and v

〈u, v〉 :=

∫ b

a
u(x) v(x) dx

A(u, v) :=

∫ b

a
a(x)u′(x) v′(x) + b(x)u(x) v(x) dx

Basic properties of the integral imply that A is symmetric and linear with respect to each argument, i.e. for
λi ∈ R we have

A(u, v) = A(v, u)

A(λ1u1 + λ2u2, v) = λ1A(u1, v) + λ2A(u2, v)

A(u, λ1v1 + λ2v2) = λ1A(u, v1) + λ2A(u, v2)

Now u is a weak solution if
A(u, φ) = 〈g, φ〉 for all functions φ

We can also search for a minimum of

F (u) =
1

2
A(u, u) + 〈g, u〉

The only new aspect is a new notation. For the subsequent observations it is convenient to introduce two
spaces of functions.

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 112

5–2 Definition : Let u be a piecewise differentiable function defined on the interval [a, b]. Then L2 and V
denote two sets of functions, both spaces equipped with a norm.1

L2 := {u : [a, b]→ R | u is square integrable}

‖u‖22 := 〈u, u〉 =

∫ b

a
u2(x) dx

For the function u(x) to be in the smaller subspace V we require the function u and its derivative u′ to be
square integrable and u has to satisfy the Dirichlet boundary condition (if there are any imposed). The norm
in this space is given by

‖u‖2V := ‖u′‖22 + ‖u‖22 =

∫ b

a
(u′(x))2 + u2(x) dx

L2 and V are vector spaces and 〈 . , . 〉 is a scalar product on L2. Obviously we have

V ⊂ L2 and ‖u‖2 ≤ ‖u‖V

Since the ‘energy’ to be minimised

F (u) = A(u, u) =

∫ b

a
a(x) (u′(x))2 + b(x)u2(x) dx

is closely related to ‖u‖2V this norm is often called an energy norm.

If u v ∈ V the expression A(u, v) can be computed and we find

|A(u, v)| =

∣∣∣∣∫ b

a
a(x)u′(x) v′(x) + b(x)u(x) v(x) dx

∣∣∣∣
≤

∫ b

a
|a(x)| |u′(x)| |v′(x)|+ |b(x)| |u(x)| |v(x)| dx

≤ α1

∫ b

a
|u′(x)| |v′(x)| dx+ β1

∫ b

a
|u(x)| |v(x)| dx

≤ α1 ‖u′‖2 ‖v′‖2 + β1 ‖u‖2 ‖v‖2
≤ (α1 + β1) ‖u‖V ‖v‖V

If we assume that 0 < β0 ≤ b(x) for all x then

A(u, u) =

∫ b

a
a(x)u′(x)u′(x) + b(x)u(x)u(x) dx

≥
∫ b

a
a(x) |u′(x)|2 + b(x) |u(x)|2 dx

≥
∫ b

a
α0 |u′(x)|2 + β0 |u(x)|2 dx

≥ min{α0, β0}
∫ b

a
|u′(x)|2 + |u(x)|2 dx

= γ0‖u‖2V
1A mathematically correct introduction of these function spaces is well beyond the scope of these notes. The tools of Lebesgue

integration and completion of spaces is not available. As a consequence we ignore most of the mathematical problems.

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 113

It can be shown that the final inequality is correct as long as the assumptions in section 5.1.1 are satisfied.
Thus we find

γ0 ‖u‖2V ≤ A(u, u) ≤ (α1 + β1) ‖u‖2V for all u ∈ V (5.2)

This inequality is the starting point for most theoretical results on boundary value problems of the type we
consider in these notes.

5.1.3 Convergence of the finite dimensional approximation

The space V contains all piecewise differentiable, continuous functions and thus V is not a finite dimensional
vectors space. For a fixed parameter h > 0 we choose a discretisation of the interval [a, b] in finite many
intervals of typical length h. Then we consider only continuous functions that are polynomials of a given
degree (e.g. 2) on each of the intervals, i.e. a piecewise quadratic function. This leads to a finite dimensional
subspace Vh, i.e. finitely many degrees of freedom.

Vh ⊂ V finite dimensional subspace

Instead of searching for a minimum on all of V we now only consider the functions in Vh ⊂ V to find the
minimiser of the functional. This is illustrated in table 5.1. We hope that the minimum uh ∈ Vh we close to
the exact solution ue ∈ V . The main goal of this section is to show that this is in fact the case. The ideas
of proofs are adapted from [John87, p.54] and [Davi80, §7] and can also be used in more general situations,
e.g. for differential equations with more independent variables. To simplify the proof of the abstract error
estimate we use two lemmas.

original problem approximate problem

functional to minimise F (u) = 1
2 A(u, u) + 〈g, u〉 F (uh) = 1

2 A(uh, uh) + 〈g, uh〉
amongst functions u ∈ V (infinite dimensional) uh ∈ Vh (finite dimensional)

necessary condition A(u, φ) + 〈g, φ〉 = 0 A(uh, φh) + 〈g, φh〉 = 0

for minimum for all φ ∈ V for all φh ∈ Vh
main goal uh −→ u as h→ 0

Table 5.1: Minimisation of original and approximate problem

5–3 Lemma : If uh is a minimiser of the functional F on Vh, i.e.

F (uh) =
1

2
A(uh, uh) + 〈g, uh〉 ≤

1

2
A(vh, vh) + 〈g, vh〉 = F (vh) for all vh ∈ Vh

then
A(uh, φh) + 〈g, φh〉 = 0 for all φh ∈ Vh

3

Proof : The derivative of

g(t) = F (uh + tφ) =
1

2
A(uh + tφ, uh + tφ) + 〈g, uh + tφ〉

=
1

2
A(uh, uh) + 〈g, uh〉+ t (A(uh, φ) + 〈g, φ〉) + t2

1

2
A(φh, φh)

has to vanish at t = 0 for all φh ∈ Vh. This implies the result. 2

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 114

5–4 Lemma : Let ue ∈ V be the minimiser of the functional F on all of V and let uh ∈ Vh be the
minimiser of

F (ψh) =
1

2
A(ψh, ψh) + 〈g, ψh〉

amongst all ψh ∈ Vh. This implies that uh ∈ Vh is also the minimiser of

G(ψh) = A(ue − ψh, ue − ψh)

amongst all ψh ∈ Vh. 3

Proof : If uh ∈ Vh minimises F in Vh and ue ∈ V minimises F in V then the previous lemma implies

A(ue, φh) = −〈g, φh〉 for all φh ∈ Vh
A(uh, φh) = −〈g, φh〉 for all φh ∈ Vh

and thus A(ue − uh, φh) = 0. This leads to

G(uh + φh) = A(ue − uh − φh, ue − uh − φh)

= A(ue − uh, ue − uh)− 2 A(ue − uh, φh) +A(φh, φh)

= A(ue − uh, ue − uh) +A(φh, φh)

≥ A(ue − uh, ue − uh)

Equality occurs only if φh = 0. Thus φh = 0 ∈ Vh is the unique minimiser of the above function and the
result is established. 2

5–5 Theorem : (Abstract error estimate)
If ue is the minimiser of the functional

F (u) =
1

2
A(u, u) + 〈g, u〉

amongst all u ∈ V and uh ∈ Vh is the minimiser of F amongst all uh in the subspace Vh ⊂ V , then
the distance of ue and uh (in the V –norm) can be estimated. There exists a positive constant k such
that

‖ue − uh‖V ≤ k min
ψh∈Vh

‖ue − ψh‖V

The constant k is independent on h. 3

The above result carries the name of Lemma of Céa.

As a consequence of this result we have to be able to approximate an the exact solution ue ∈ V by
approximate function ψh ∈ Vh and the error of the finite element solution uh ∈ Vh is smaller than the
approximation error, except for the factor k. Thus the lemma reduces the question of estimating the error
of the approximate solution to a question of estimationd the approximation error of a function in the appro-
priate norm. Standard interpolation result allow to estimate the error of the approximation, assuming some
regularity on the exact solution u.

Proof : Use equation (5.2) and the above lemma to conclude that

γ0 ‖ue − uh‖2V ≤ A(ue − uh, ue − uh) ≤ A(ue − uh − φh, ue − uh − φh)

≤ (α1 + β1) ‖ue − uh − φh‖2V for all φh ∈ Vh
and thus

‖ue − uh‖V ≤

√
α1 + β1

γ0
‖ue − uh − φh‖V for all φh ∈ Vh

As φh ∈ Vh is arbitrary we find the claimed result. 2

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 115

Let u be a smooth function and divide the interval [a, b] in subintervals of typical length h. On each
subinterval the two endpoints (and may be interior points) are used to construct an interpolating function
Πhu. The operator Πh can be considered a projection operator of V onto the finite dimensional subspace
Vh. We have

Πh : V −→ Vh , u 7→ Πhu

The following two results can be found in many books on calculus in one variable or numerical analysis.
We omit the proof.

5–6 Result : (Piecewise linear interpolation)
If u is at least twice differentiable we use the values at the endpoints of the subintervals to construct the

function Πhu, the piecewise linear interpolation function. Basic approximation theory implies that there
is a constant M , such that

|u(x)−Πhu(x)| ≤ M h2 for all a ≤ x ≤ b
|u′(x)−Πhu

′(x)| ≤ M h for all a ≤ x ≤ b

Thus an integration implies that there is a constant c such that

‖u−Πhu‖V ≤ c h

The constant depends on the maximal value of the second derivative of the original function u. 3

5–7 Result : (Piecewise quadratic interpolation)
If u is at least three times differentiable we use the values at the endpoints and the midpoint of the subinter-
vals to construct the function Πhu, the piecewise quadratic interpolation function. Basic approximation
theory implies that there is a constant M , such that

|u(x)−Πhu(x)| ≤ M h3 for all a ≤ x ≤ b
|u′(x)−Πhu

′(x)| ≤ M h2 for all a ≤ x ≤ b

Thus an integration implies that there is a constant c such that

‖u−Πhu‖V ≤ c h2

The constant depends on the maximal value of the third derivative of the original function u. 3

To obtain an improved convergence result 5–10 we need an additional interpolation estimate. The proof
of this result uses the lemma below.

5–8 Lemma : Let a = x0 < x1 < x2 < . . . < xn = b a partition of the interval [a, b] with maxi{xi −
xi−1} ≤ h. If u is a continuous function on [a, b] with u(xi) = 0, twice differentiable on each subinterval
[xi−1, xi] then

‖u‖V ≤
√

2 h ‖u′′‖2 and ‖u‖2 ≤ h2 ‖u′′‖2
3

Proof : Consider a function u with u(0) = u(h) = 0. Thus there is a 0 < ξ < h such that u′(ξ) = 0. Then
we find for 0 ≤ x ≤ h

u(x) = u(0) +

∫ x

0
u′(s) ds

|u(x)| ≤
∫ x

0
|u′(s)| · 1 ds

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 116

≤
(∫ x

0
|u′(s)|2 ds

)1/2

·
(∫ x

0
1 ds

)1/2

≤
(∫ h

0
|u′(s)|2 ds

)1/2

·
√
h =
√
h ‖u′‖2

‖u‖22 =

∫ h

0
|u(x)|2 dx ≤

∫ h

0
h ‖u′‖22 dx = h2 ‖u′‖22

By similar arguments and the intermediate value theorem we arrive at

|u′(x)| ≤
√
h ‖u′′‖2

‖u′‖22 =

∫ h

0
|u′(x)|2 dx ≤ h2 ‖u′′‖22

and thus conclude

‖u‖22 ≤ h2 ‖u′‖22 ≤ h4 ‖u′′‖22
‖u‖2V = ‖u‖22 + ‖u′‖22 ≤ (h4 + h2) ‖u′′‖22 ≤ (1 + h2)h2 ‖u′′‖22 ≤ 2h2 ‖u′′‖22

if h < 1. Thus the required inequalities are verified on the interval [0, h]. Now consider the interval [a, b]
and its partition. The above computation is valid on each subinterval and a summation will lead to the
claimed result. 2

5–9 Result : (Estimate of interpolation error)
Let u be a twice differentiable function and Πhu the piecewise linear interpolation. Then w = u − Πhu

satisfies the assumptions of the previous lemma and (u−Πhu)′′ = u′′. Thus we conclude

‖u−Πhu‖V ≤ c h ‖u′′‖2

3

Proof : This is an immediate consequence of the above lemma.
2

Now we have all the ingredients to state and proof the basic convergence results for finite element
solutions to boundary value problems in one variable. The exact solution u0 ∈ V to be approximated is the
minimum of the functional

F (u) =

∫ b

a

1

2
a(x) (u′(x))2 +

1

2
b(x)u(x)2 + g(x) · u(x) dx =

1

2
A(u, u) + 〈g, u〉

The exact solution u0 is smooth (often differentiable) if g is (theorem 5–1). Instead of searching on the space
V we restrict the search on the finite dimensional subspace Vh and arrive at the approximate minimiser uh.
Thus the error function e = uh − u0 has to be as small as possible for the approximation to be of a good
quality. In fact we hope for a convergence

uh −→ uo as h −→ 0

in some sense to be specified.

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 117

5–10 Theorem : If the subspace Vh is generated by the piecewise linear interpolation operator Πh

then we find
‖uh − u0‖V ≤ C h and ‖uh − u0‖2 ≤ C1 h

2

for some constants C and C1 independent on h.
We may say that

• uh converges to u0 with an error proportional to h2 as h→ 0.

• u′h converges to u′0 with an error proportional to h as h→ 0.
3

Proof : The interpolation result 5–6 and the abstract error estimate 5–5 imply immediately

‖uh − u0‖V ≤ k min
φh∈Vh

‖ψh − u0‖V ≤ k ‖Πhu0 − u0‖V ≤ k c h

Which is already the first of the desired estimates. The second estimate requires considerably more work.
The method of proof is known as Nitsche trick and is due to Nitsche and Aubin. A good presentation is
given in [StraFix73, §3.4] or [KnabAnge00, Satz 3.37].

Let w ∈ V be the minimiser of the functional
1

2
A(u, u) + 〈e, u〉

The fundamental theorem 5–1 implies ‖w′′‖22 ≤ k ‖e‖22 . The interpolation result 5–9 and theorem 5–5
imply

A(w,w) ≤ A(w −Πhw,w −Πhw) ≤ (α1 + β1) ‖w −Πhw‖2V
≤ c2 h2 (α1 + β1) ‖w′′‖22
≤ k c2 h2 (α1 + β1) ‖e‖22

Since w is a minimiser of the functional we conclude

A(w,ψ) + 〈e, ψ〉 = 0 for all ψ ∈ V

By choosing ψ = e we arrive at
−A(w, e) = 〈e, e〉 = ‖e‖22

Now use the Cauchy–Schwartz inequality to conclude that

‖e‖22 = |A(w, e)| ≤ (A(w,w))1/2 · (A(e, e))1/2

≤ c h
√
k (α1 + β1) ‖e‖2 · C h

A division by ‖e‖2 leads to
‖e‖2 ≤ C1 h

2

2

5–11 Theorem : If the subspace Vh is generated by the piecewise quadratic interpolation operator
then we find

‖uh − u0‖V ≤ C h2 and ‖uh − u0‖2 ≤ C1 h
3

for some constants C and C1 independent on h.
We may say that

• uh converges to u0 with an error proportional to h3 as h→ 0.

• u′h converges to u′0 with an error proportional to h2 as h→ 0.
3

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 118

Proof : The interpolation result 5–7 and the abstract error estimate 5–5 imply immediately

‖uh − u0‖V ≤ k min
φh∈Vh

‖ψh − u0‖V ≤ k ‖Πhu0 − u0‖V ≤ k c h2

Which is already the first of the desired estimates. The second estimate would again ask for some more
work, but the computations are identical to the proof of theorem 5–10. 2

The method used in the Mathematica code BVP[] leads to the results in theorem 5–11. Thus we can
illustrate the result with e few sample computations.

5–12 Example : Consider the boundary value problem

2u′′ − u = sin(π2 − x) for 0 < x < 2

u′(0) = 0

u(2) = 0

Using the packages
Mathematica

<<BVP.m;
<<Interpol2.m;

we can find an finite element solution with the commands
Mathematica

Clear[a,b,c,f,x,t,n];
a=Function[x,2];
b=Function[x,-1];
f=Function[x,Sin[Pi/2-x]];
n=22;
x=Table[t,{t,0,2,2/n}];
data=BVP[a,b,f,x,{"N","D"},{0,0}];
ListPlot[data,PlotStyle -> PointSize[0.01]];

Clear[x]
uexact[x_]=y[x]/.DSolve[{D[a[x]*D[y[x],x],x]-b[x]*y[x]==f[x],y’[0]==0,y[2]==0},

y[x],x][[1]]
Duexact[x_]=D[uexact[x],x]

The last two lines compute the exact solution and its derivative.
The above code shows that it is possible to compute the solution for different numbers of elements, i.e.

for smaller and smaller values of h. With the code below such a list is generated for values at x = 1.01.
Mathematica

testx=1.01;
res=Table[{n=3*k+1,x=Table[t,{t,0,2,2/n}];

data=BVP[a,b,f,x,{"N","D"},{0,0}];
Abs[Interpol2[testx,data]-uexact[testx]],
Abs[DInterpol2[testx,data]-Duexact[testx]]},

{k,1,30,3}]

Since h ∼ 1
n we expect for the error function e(x) the behaviour

e(x) ≈ c1
1

n3
and e′(x) ≈ c2

1

n2

By applying the logarithm function we find

log e(x) ≈ log c1 − 3 log n and log e′(x) ≈ log c2 − 2 log n

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 119

Thus we should find straight lines with slopes of −3 (resp. −2). BVP[] shows that the rate of convergence
is in fact h3 for the error and h2 for its derivative. The figure 5.1 shows the logarithmic plot of the error
e(1.01) as function of log n.

Mathematica
resu=Map[Drop[#,-1]&,res];
ListPlot[Log[resu],PlotJoined ->True,PlotRange->All];

logresu=Log[Abs[resu]];
n=Length[resu];
(logresu[[1,2]]-logresu[[n,2]])/(logresu[[1,1]]-logresu[[n,1]])
.
-2.93686

Mathematica
logresu=Log[Abs[resu]];n=Length[logresu];
(logresu[[1,2]]-logresu[[n,2]])/(logresu[[1,1]]-logresu[[n,1]])
.
-2.17034

1.5 2.5 3 3.5 4 4.5

-16

-14

-12

-10

Figure 5.1: Logarithmic plot of the approximation error

Surprisingly the error e(x) converges like h4 at the grid points. This can be verified by choosing
testx=1.00 in the above calculations. The author has not found a good explanation for this yet. ♦

5.2 A finite difference approximation to an ordinary differential equation

As an first example we consider the ordinary differential equation

ẏ(t) = −1

2
y(t) with y(0) = y0

with the exact solution y(t) = y0 e
−t/2. Since

ẏ(t) = lim
h→0+

y(t+ h)− y(t)

h

we use the approximate equation

y(t+ h)− y(t)

h
= −1

2
y(t) =⇒ y(t+ h) = y(t) + h

−1

2
y(t) =

(
1 + h

−1

2

)
y(t)

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 120

to construct the solution at discrete times tk = k · h . We obtain

y(k · h) ≈ yk = (1− h

2
) yk−1 = (1− h

2
)2 yk−2 = . . . = (1− h

2
)k y0

If we divide the interval [0 , T] in n subintervals of equal length h = T
n we obtain

y(T) ≈ (1− T

2n
)n y0 −→

n→∞
e−T/2 y0 = y(T)

Thus the approximate solution converges to the exact solution as the stepsize h approaches 0 . Exact and
approximate solution are shown in figure 5.2.

1 2 3 4

0.2

0.4

0.6

0.8

1

Figure 5.2: Exact and approximate solution to an ODE

5.2.1 Finite difference approximations

Using the Taylor approximation

y(t+ x) = y(t) = y′(t) · x+
y′′(t)

2
x2 +

y′′′(t)

3!
x3 + +

y′′(t)

4!
x4 +O(x5)

with different values for x (x = ±h) one can verify that

y′(t) =
y(t+ h)− y(t)

h
− y′′(t)

2
h+O(h2) =

y(t+ h)− y(t)

h
+O(h)

This and other finite difference approximations of derivatives are given in table 5.2 .

forward difference y′(t) = y(t+h)−y(t)
h +O(h)

backward difference y′(t) = y(t)−y(t−h)
h +O(h)

centered difference y′(t) = y(t+h/2)−y(t−h/2)
h +O(h2)

y′′(t) = y(t−h)−2 y(t)+y(t+h)
h2 +O(h2)

y′′′(t) = −y(t−h)+3 y(t)−3 y(t+h)+y(t+2h)
h3 +O(h)

y′′′(t) = −y(t−3h/2)+3 y(t−h/2)−3 y(t+h/2)+y(t+3h/2)
h3 +O(h2)

y(4)(t) = y(t−2h)−4 y(t−h)+6 y(t)−4 y(t+h)+y(t+2h)
h2 +O(h2)

Table 5.2: Finite difference approximations

As a sample problem we consider the initial values problem

y′(t) = −λ y(t) with y(0) = y0 (5.3)

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 121

with the exact solution Y (t) = y0 e
−λ t. We assume that λ > 0 and thus the solution is bounded and will

converges to 0 as t tends to infinity. We expect approximate solution to exhibit the same behavior. Now we
choose a step size h > 0 and discretize the time domain 0 ≤ t < ∞ by tn = nh. Then we try to find
approximate values yn ≈ Y (nh) be considering finite difference approximation to (5.3).

5–13 Definition : The finite difference approximation is said to be consistent if for a smooth solution y(t)
of equation (5.3) the difference approximation converges to the differential equation as h tends to 0.

The finite difference approximation is said to be stable if the absolut values of all solutions remain
bounded, independent on h.

The finite difference approximation is said to be convergent if for a fixed value of T the approximate
solution at T converges towards the exact solution Y (T) as h→ 0+.

Now we examine stability and consistency of a few approximation schemes for equation (5.3).

5.2.2 Forward difference

Due to the first line in table 5.2 the forward difference approximation is consistent of order 1.

1

h
(y(t+ h)− y(t)) = −λ y(t)

y(t+ h) = y(t)− hλ y(t) = (1− λh) y(t)

With yi = y(i h) we find yi+1 = (1− λh) yi. The initial condition now reads y0 = y(0). With an iteration
we arrive at yn = (1− λh)n y0 .

yn = (1− λh)n y0 −→ 0 as n→∞ if λh < 2

yn = (1− λh)n y0 diverges as n→∞ if λh > 2

Thus the solutions will only remain bounded if 0 < h < 2/λ, thus we have conditional stability.
For a fixed value of the time T we consider h = T/n

y(T) ≈ yn = (1− λ T
n

)n y0 −→ e−λT y0 as n→∞

and thus the approximation scheme is convergent.

5.2.3 Backward difference

Again based on table 5.2 the backward difference approximation is consistent of order 1.

1

h
(y(t+ h)− y(t)) = −λ y(t+ h)

(1 + λh) y(t+ h) = y(t)

y(t+ h) =
1

1 + λh
y(t)

yn =

(
1

1 + λh

)n
y0 −→ 0 as n→∞

Since λh > 0 we find that the system is unconditionally stable. Convergence is verified by

y(T) ≈ yn =

(
1

1 + λ T
n

)n
y0 =

(
1 +

λT

n

)−n
y0 −→ e−λT y0 as n→∞

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 122

5.2.4 Centered difference

The centered difference scheme is consistent of order 2.

1

h
(y(t+ h)− y(t)) = −λ y(t) + y(t+ h)

2
(1 + λh/2) y(t+ h) = (1− λh/2) y(t)

y(t+ h) =
1− λh/2
1 + λh/2

y(t)

yn =

(
1− λh/2
1 + λh/2

)n
y0 −→ 0 as n→∞

With calculations similar to the backward difference scheme we verify that this approximation is also un-
conditionally stable and convergent.

y(T) ≈ yn =

(
1− λ T

2n

1 + λ T
2n

)n
y0 =

(
1−

2 · λ T
2n

1 + λ T
2n

)n
y0

=

(
1− λT

n+ λT/2

)n
y0 −→ e−λT y0 as n→∞

5.3 General difference approximations, consistency, stability and conver-
gence

To explain the approximation behavior of finite difference schemes we use the example problem

−y′′(x) = f(x) for 0 < x < L with boundary conditions y(0) = y(L) = 0 (5.4)

We assume that for a given function f the exact solution is given by y. This differential equation is replaced
by a difference equation. For n ∈ N discretize the interval by xk = k · h = k L

n+1 and then consider an
approximate solution uk ≈ y(k · h) for k = 0, 1, 2, . . . , n, n+ 1. The finite difference approximation of the
second derivative in list 5.2 leads for interior points to

−uk−1 − 2uk + uk+1

h2
= fk = f(k · h) for k = 1, 2, 3, . . . , n (5.5)

The boundary conditions lead to u0 = un+1 = 0 . These equation can be written in the form

1

h2



2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2


·



u1

u2

u3

...

un−1

un


=



f1

f2

f3

...

fn−1

fn


The solution of this linear system will create the values of the approximate solution at the grid points. Exact
and approximate solution are shown in figure 5.3. As h → 0 we hope that u will converge to the exact
solution y .

To examine the behavior of the approximate solution we use a general framework for finite difference
approximations to boundary value problems.

Consider functions defined on a domain Ω ⊂ RN and for a fixed mesh size h cover the domain with a
discrete set of points xk ∈ Ω. This leads to the following vector spaces:

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 123

0.5 1 1.5 2 2.5 3

1

2

3

4

5

6

Figure 5.3: Exact and approximate solution to a boundary value problem

• E1 is a space of functions defined on Ω. In the above example consider u ∈ C2([0, L] , R) with
u(0) = u(L) = 0. On this space use the norm ‖u‖E1 = max{|u(x)| : 0 ≤ x ≤ L}.

• E2 is a space of functions defined on Ω. In the above example consider f ∈ C0([0, L] , R) with the
norm ‖f‖E2 = max{|f(x)| : 0 ≤ x ≤ L}.

• Eh1 is a space of discretized functions. In the above example consider ~u ∈ Rn = Eh1 , where uk =
u(k · h). The vector space Eh1 is equipped with the norm ‖~u‖Eh1 = max{|uk| : 1 ≤ k ≤ n}.

• Eh2 is also a space of discretized functions. In the above example consider ~f ∈ Rn = Eh1 , where
fk = f(k · h). The vector space Eh2 is equipped with the norm ‖~f‖Eh2 = max{|fk| : 1 ≤ k ≤ n}.

On these space we examine the following linear operations:

• For u ∈ E1 let F : E1 → E2 be the linear differential operator. In the above example F (u) = u′′.

• For ~u ∈ Eh1 let Fh : Eh1 → Eh2 be the linear difference operator. In the above example

Fh(~u)k =
uk−1 − 2uk + uk+1

h2

• For u ∈ E1 let ~u = P h1 (u) ∈ Eh1 be the projection of the function u ∈ E1 onto Eh1 . It is determined
by evaluation the function at the points xk.

• For f ∈ E2 let ~f = P h2 (f) ∈ Eh2 be the projection of the function f ∈ E2 onto Eh2 . It is determined
by evaluation the function at the points xk.

The above operations are illustrated in figure 5.4

uh ∈ Eh1
?

P h1

u ∈ E1

-
Fh

-
F

fh ∈ Eh2
?

P h2

f ∈ E2
h −→ 0

‖P h1 u‖ −→ ‖u‖
‖P h2 v‖ −→ ‖v‖

P h2 (F (u)) ≈ Fh(P h1 (u))

Figure 5.4: A general approximation scheme for boundary value problems

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 124

5–14 Definition : For a given f ∈ E2 let u ∈ E1 be the solution of F (u) = f and ~u the solution of
Fh(~u) = P h2 (f).

• The above approximation scheme is said to be convergent of order p if

‖P h1 (u)− ~u‖Eh1 ≤ c1 h
p

where the constant c1 is independent on h, but it may depend on u.

• The above approximation scheme is said to be consistent of order p if

‖Fh(P h1 (u))− P h2 (F (u))‖Eh2 ≤ c2 h
p

where the constant c2 is independent on h, but it may depend on u. This implies that the diagram in
figure 5.4 is almost commutative as h approaches 0 .

• The above approximation scheme is said to be stable if the linear operator Fh ∈ L(Eh1 , E
h
2) is

invertible and the exists a constant M , independent on h, such that

‖uh‖Eh1 ≤M ‖Fh(uh)‖Eh2 for all uh ∈ Eh1

This is equivalent to ‖F−1
h ‖ ≤ M , i.e. the inverse linear operators of the approximate problems are

uniformly bounded.

Now we can state a fundamental result for finite difference approximations to differential equations. The
theorem is also known as Lax equivalence theorem. The result applies to a large variety of problems. We
will examine a only a few of them.

5–15 Theorem : If a finite difference scheme is consistent of order p and stable, then it is convergent
of order p. A short formulation is:

consistency and stability imply convergence
3

Proof : Let u be the solution of F (u) = f and ~u the solution of Fh(~u) = P h2 (f). Since the scheme is stable
and consistent of order p we find

‖P h1 (u)− ~u‖Eh1 = ‖F−1
h

(
Fh(P h1 (u)− ~u)

)
‖Eh1

≤ ‖F−1
h ‖ ‖Fh(P h1 (u))− Fh(~u)‖Eh2

= M ‖Fh(P h1 (u))− P h2 (f)‖Eh2
= M ‖Fh(P h1 (u))− P h2 (F (u))‖Eh2
≤ M c hp

Thus the finite difference approximation is convergent. 2

The table 5.3 illustrates the abstract concept using the example equation (5.4).

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 125

general problem sample problem (5.4)

exact equation F (u) = f u′′(x) = f(x)

approximate right hand side P h2 (f) ∈ Eh2 fk = f(k · h)

differential/difference expression F (u) = u′′ Fh(~u) =
uk−1−2uk+uk+1

h2

approximate equation Fh(~u) = P 2
h (f)

uk−1−2uk+uk+1

h2 = f(k · h)

stability ‖uh‖Eh1 ≤M ‖Fh(uh)‖Eh2 max{|uk|} ≤M max{|fk|}
convergence, as h→ 0 ‖P h1 (u)− ~u‖Eh1 → 0 max{|u(k · h)− uk|} → 0

Table 5.3: Exact and approximate boundary value problem

5–16 Result : To verify convergence of the solution of the finite difference of approximation of equa-
tion (5.4) to the exact solution we have to assure that the scheme is consistent and stable.

• Consistency: According to table 5.2 (page 120) the scheme is consistent of order 2.

• Stability: Let ~u be the solution of the equation (5.5) with right hand side ~f . Then

max
1≤k≤n

{|uk|} ≤
L2

2
max

1≤k≤n
{|fk|} (5.6)

3

Proof : The proof of stability of this finite difference scheme is based on a discrete maximum principle2.
We proceed in two stages.

• The first claim a discrete maximum principle. If fk ≥ 0 for k = 0, 1, 2, . . . , n, (n+ 1) and

uk−1 − 2uk + uk+1

h2
= fk = f(k · h) for k = 1, 2, 3, . . . , n

then
max

0≤k≤n+1
{uk} = max{u0, un+1}

To prove the statement we assume that max1≤k≤n{|uk|} = ui for some index 1 ≤ i ≤ n. Then

ui−1 − 2ui + ui+1 = h2 fi

ui =
1

2
(ui−1 + ui+1)− h2 fi ≤ ui − 0

Thus we find ui−1 = ui = ui+1 and fi = 0. The process can be repeated with indices i− 1 and i+ 1
to finally obtain the desired estimate. The computations also imply that ~u = ~0 is the only solution of
the homogeneous problem, thus the matrix representing Fh is invertible.

• Use the vector ~v ∈ Rn defined by vk =
(
k
h

)2
=
(
k L
n+1

)2
. The vector corresponds to the discretization

of the function v(x) = x2. Verify that

vk−1 − 2 vk + vk+1

h2
= 2 for k = 1, 2, 3, . . . , n

2Readers familiar with partial differential equations will recognize the maximum principle and the construction of sub- and
super–solutions to obtain à priori bounds.

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 126

Let C = max{|fk| : 1 ≤ k ≤ n} and f+
k = fk + C ≥ 0. Then ~w+ = ~u + C

2 ~v is the solution of
Fh(~w+) = ~f+ and based on the first part of the proof and u0 = un+1 = 0 we find

max
1≤k≤n

{uk +
C

2
vk} ≤

C

2
max{v0, vk+1} =

C

2
L2

A similar argument with f+
k = fk − C ≤ 0 and ~w− = ~u− C

2 ~v implies

min
1≤k≤n

{uk −
C

2
vk} ≥ −

C

2
L2

These two inequalities imply

−C L2

2
≤ uk ≤

C L2

2
for k = 1, 2, 3, . . . , n

and thus the stability estimate (5.6).

2

In this section we only introduced the basic keywords and illustrated them with one sample application.
The above proof for stability of finite difference approximations to elliptic boundary value problems can
be applied to two dimensional problems, e.g. [Smit84, p. 255]. Further information can be found in many
books on numerical methods to solve PDE’s are also in [IsaaKell66, §9.5], [Wlok82].

5.4 Parabolic problems, heat equation

A one dimensional heat equation is given by the partial differential equation

∂
∂t u(x, t) = κ ∂2

∂x2 u(x, t) for 0 < x < L and t > 0

u(0, t) = u(L, t) = 0 for t > 0

u(x, 0) = f(x) for 0 < x < L

(5.7)

The maximum principle implies that for all t ≥ 0 we find

max{|u(x, t)| : 0 ≤ x ≤ L} ≤ max{|f(x)| : 0 ≤ x ≤ L}

The finite difference scheme should satisfy this property too, leading to the stability condition.
The two dimensional domain (x, t) ∈ [0, L] × R+ is discretized as illustrated in figure 5.5. For step

sizes ∆x = L
n+1 and ∆t we set

ui,j = u(i ·∆x , j ·∆t) for i = 0, 1, 2, . . . , n, n+ 1 and j ≥ 0

The boundary condition u(0, t) = u(L, t) = 0 implies u0,j = un+1,j = 0 and the initial condition u(x, 0) =
f(x) leads to ui,0 = f(i ·∆x). The PDE (5.7) is replaced by a finite difference approximation on the grid
shown in figure 5.5 and the result is examined.

5.4.1 A special matrix

The solution of the finite difference equation we be computed with the help of time steps, i.e. we use the
values at one time level t = j ·∆t and then compute the values at the next level t+ ∆t = (j + 1) ∆t. Thus
we put all values at one time level t = j∆t into a vector ~uj

~uj = (u1,j , u2,j , u3,j , . . . un−1,j , un,j)
T

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 127

-
x

6
t

j

HH

i u(x, 0) = f(x)

u = 0 u = 0

0 L

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH

tui,j

Figure 5.5: A finite difference grid for a heat equation

A good finite difference approximation to the second order space derivative is given by (see table 5.2)

κ
∂2

∂x2
u(x, t) = κ

u(x−∆x)− 2u(x, t) + u(x+ ∆x, t)

(∆x)2
+O((∆x)2) (5.8)

Thus the values of the space derivatives at one time level can be written as

− κ

(∆x)2
An · ~uj

where the symmetric n× n matrix An is given by

An =



2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2


To examine the different possible approximations to the equation (5.7) we need the exact eigenvalues and
eigenvectors of An given by

λk = 2 + 2 cos
k π

n+ 1
= 4 sin2 k π

2 (n+ 1)

and

~vk =

(
sin

1 k π

n+ 1
, sin

2 k π

n+ 1
, sin

3 k π

n+ 1
, . . . , sin

(n− 1) k π

n+ 1
, sin

nk π

n+ 1

)T
SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 128

where k = 1, 2, 3, . . . , n. Thus the eigenvectors are discretizations of the functions sin(k x) on the interval
[0 , π] . These functions have exactly k local extremas in the interval. The higher the value of k the more
the eigenfunction will oscillate. For a proof of the above statements see [Smit84, p. 154].

Since the matrix An is symmetric the eigenvectors are orthogonal and form a basis. If the eigenvectors
are normalized , then any vector ~f can be written as linear combination of normalized eigenvectors ~vk of
the matrix An, i.e.

~u =
n∑
k=1

αk ~vk with αk = 〈~u,~vk〉

For arbitrary t ≥ 0 we may consider the vector ~u(t) of the discretized (in space) solution. The differential
equation (5.8) reads as

d

d t
~u(t) = − κ

(∆x)2
An · ~u(t)

If the solution ~u(t) is written as linear combination of eigenvectors

~u(t) =
n∑
k=1

αk(t) ~vk

the above system of n linear equations is converted to n linear, first order differential equations

d

d t
αk(t) = − κ

(∆x)2
λk αk(t) for k = 1, 2, 3, . . . , n

The initial values for the coefficient functions are given by αk(0) = 〈~f,~vk〉 . For these equations we use the
methods and results in section 5.2.

5.4.2 Explicit finite difference approximation to the heat equation

The time derivative in the PDE (5.7) can be approximated by a forward difference

∂

∂t
u(x, t) =

u(x, t+ ∆t)− u(t, x)

∆t
+O(∆t)

This can be combined with the space derivatives in equation (5.8) to obtain the scheme illustrated in fig-
ure 5.6. The results in table 5.2 imply that the scheme is consistent with the error of the order O(∆t) +
O((∆x)2).

ui,j+1 − ui,j
∆t

= κ
ui−1,j − 2ui,j + ui+1,j

(∆x)2

-
x

6t

j

j–1

j+1

ii–1 i+1

uu u u

Figure 5.6: Explicit finite difference approximation

Using a matrix notation the finite difference equation can be written as

~uj+1 = ~uj −
κ∆t

(∆x)2
An · ~uj = (In − rAn) · ~uj

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 129

with r = κ∆t
(∆x)2 . If the vector ~uj is known the values at the next time level ~uj+1 can be computed without

solving a system of linear equations, thus this is called an explicit method. Starting with the discretization
of the initial values ~u0 = ~f and applying the above formula repeatedly we find the solution

~uj = (In − rAn)j · ~f

The goal is to examine the stability of this finite difference scheme. Since for eigenvalues λk and eigenvec-
tors ~vk we have

(In − rAn)j · ~vk = (1− r λk)j · ~vk
and the solution will remain bounded as j →∞ only if r λk < 2 for all k = 1, 2, 3, . . . , n. This corresponds
to the stability condition.

Since we want to use the results of section 5.2.2 on solutions of the ordinary differential equation we
translate to the coefficient functions αk(t) and find

d

d t
αk(t) = − κ

(∆x)2
λk αk(t) approximated by

αk(t+ h)− αk(t)
h

= − κ λk
(∆x)2

αk(t)

and thus

αk(t+ h) =

(
1− h κ

(∆x)2
λk

)
αk(t)

αk(j · h) =

(
1− h κ

(∆x)2
λk

)j
αk(0)

The scheme is stable if the absolute value of the bracketed expression is smaller than 1, i.e.

h κ

(∆x)2
λk < 2

Since the largest eigenvalue of An is λn = 4 sin2 nπ
2 (n+1) ≈ 4 sin2 π

2 = 4 we find the stability condition

r =
κ∆t

(∆x)2
<

1

2
⇐⇒ ∆t <

1

2κ
(∆x)2

Thus we have conditional stability. The restriction on the size of the timestep ∆t is severe, since for small
∆x the ∆t will need to be much smaller.

In figure 5.7 a solution of

∂
∂t u(x, t) = κ ∂2

∂x2 u(x, t) for 0 < x < 1 and t > 0

u(0, t) = u(1, t) = 0 for t > 0

u(x, 0) =

{
2x for 0 < x ≤ 0.5

2− 2x for 0.5 ≤ x < 1

is shown for values of r slightly smaller or larger than the critical value of r = 0.5 . Since the largest
eigenvalue of An will be the first to exhibit instability we examine the corresponding eigenvector

~vn =

(
sin

1nπ

n+ 1
, sin

2nπ

n+ 1
, sin

3nπ

n+ 1
, . . . , sin

(n− 1)nπ

n+ 1
, sin

nk π

n+ 1

)T
the corresponding eigenfunction has n extrema in the interval. Thus the instability should exhibit n extrema,
this is confirmed by figure 5.7 where the calculation is done with n = 9, as shown in the Octave–code below.
The deviation from the correct solution exhibits 9 local extrema in the interval.

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 130

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

Figure 5.7: Solution of 1-d heat equation with explicit scheme with r = 0.48 and r = 0.52

Octave
global L=1; # length of the space interval
n=9; # number of interior grid points
r=0.48; # ratio to compute time step
T=0.5; # final time

function r=iv(x);
global L;
r=min([2*x/L,2-2*x/L]’)’;

endfunction

dx=L/(n+1);
dt= r*dxˆ2;
x=linspace(0,L,n+2)’;

y=iv(x);
ynew=y;
gset nokey
gset yrange [0:1]
for t=0:dt:T+dt;
for k=2:n+1
ynew(k)=(1-2*r)*y(k)+r*(y(k-1)+y(k+1));

endfor
y=ynew;
plot(x,y)
sleep(0.5);

endfor

In the above code we verify that for each time step approximately 2 · n multiplications/additions are
necessary. Thus the computational cost of one time step is 2n.

5.4.3 Implicit finite difference approximation to the heat equation

The time derivative in the PDE (5.7) can be approximated by a backward difference

∂

∂t
u(x, t) =

u(x, t)− u(t−∆t, x)

∆t
+O(∆t)

This will lead to the finite difference scheme shown in figure 5.8. The results in table 5.2 again imply that
the scheme is consistent with the error of the order O(∆t) +O((∆x)2).

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 131

ui,j+1 − ui,j
∆t

= κ
ui−1,j+1 − 2ui,j+1 + ui+1,j+1

(∆x)2

-
x

6t

j

j–1

j+1

ii–1 i+1

uu u u

Figure 5.8: Implicit finite difference approximation

Using the matrix notation again we find

~uj+1 − ~uj = − κ ∆t

(∆x)2
An · ~uj

or
(In + rAn) · ~uj+1 = ~uj

with r = κ ∆t
(∆x)2 . If the values ~uj at a given time are known we have to solve a system of linear equations to

determine the values ~uj+1 at the next time level. We have an implicit method. As in the previous section we
can use the eigenvalues and vectors of An to examine stability of the scheme. We are lead to the iteration
scheme

~uj = (In + rAn)−j · ~f

and thus

(In + rAn)−j · ~vk =

(
1

1 + r λk

)j
· ~vk

Since λk > 0 we find that this scheme is unconditionally stable, i.e. there are no restrictions on the step
sizes ∆x and ∆t. This is confirmed by the results in figure 5.9. It was generated by code similar to the one
below.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

Figure 5.9: Solution of 1-d heat equation with implicit scheme with r = 0.5 and r = 2.0

Octave
global L=1; # length of the space interval
n=9; # number of interior grid points

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 132

r=2.0; # ratio to compute time step
T=0.5; # final time
plots=3; # number of plots to be saved

function r=iv(x);
global L;
r=min([2*x/L,2-2*x/L]’)’;

endfunction

dx=L/(n+1);
dt=2*r*dxˆ2;
x=linspace(0,L,n+2)’;
initval=iv(x(2:n+1));

yplot=zeros(plots,n+2);
plotc=1;

Adiag=ones(1,n)*(1+2*r);
Aoffdiag =-ones(1,n-1)*r;

y=initval;
for t=0:dt:T+dt;
y=trisolve(Adiag,Aoffdiag,y);
if min(abs(tplot-t))<dt/2
yplot(plotc,2:n+1)=y’;
plotc++;

endif
endfor
plot(x,yplot)

To perform one time-step one has to solve a system of n linear equations where the matrix is symmetric,
tridiagonal and positive definite. There are excellent algorithms for this type of problem (e.g. [GoluVanLoan96]),
requiring only 5n multiplications. If the matrix decomposition and the back-substitution are separately
coded this can even be reduce to an operation count for one time-step of only 2n multiplication.

5.4.4 Crank–Nicolson approximation to the heat equation

When using a centered difference approximation

∂

∂t
u(x, t) =

u(x, t+ ∆t/2)− u(t−∆t/2, x)

∆t
+O((∆t)2)

at the midpoint between time levels we are lead to the scheme in figure 5.10. The results in table 5.2 again
imply that the scheme is consistent with the error of the order O((∆t)2) +O((∆x)2). Thus we gained one
order of convergence in time.

The matrix notation leads to

~uj+1 − ~uj = − κ ∆t

2 (∆x)2
(An · ~uj+1 + An · ~uj)

or (
In +

r

2
An

)
· ~uj+1 =

(
In −

r

2
An

)
· ~uj

again with r = κ ∆t
(∆x)2 . If the values ~uj at a given time are known we have to multiply the vector with a matrix

and then solve a system of linear equations to determine the values ~uj+1 at the next time level. We have

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 133

ui,j+1 − ui,j
κ ∆t

=
ui−1,j − 2ui,j + ui+1,j

2 (∆x)2

+
ui−1,j+1 − 2ui,j+1 + ui+1,j+1

2 (∆x)2

-
x

6t

j

j–1

j+1

ii–1 i+1

u u uu u u

Figure 5.10: Crank–Nicolson finite difference approximation

an implicit method. As in the previous section we can use the eigenvalues and vectors of An to examine
stability of the scheme. We are lead to examine the inequality(

2− r λk
2 + r λk

)j
< 1

Since λk > 0 we find that this scheme is also unconditionally stable.

5.4.5 General parabolic problems

In table 5.4 find a comparison of the three different finite difference approximations to equation (5.7). As a
consequence one should use either an implicit method or Crank–Nicolson for this type of problem.

method order of consistency stability condition operation count

explicit O(∆t) +O((∆x)2) ∆t < 1
2κ (∆x)2 2n

implicit O(∆t) +O((∆x)2) unconditional 2n

Crank–Nicolson O((∆t)2) +O((∆x)2) unconditional 4n

advantage Crank–Nicolson implicit and C–N implicit and explicit

Table 5.4: Comparison of finite difference schemes for the heat equation

In the previous section we considered only a special case of the space discretization operator A =
κ

(∆x)2 An. A more general situation may be described by the equation

d

dt
~u(t) = −A · ~u(t)

where the symmetric, positive definite matrix A has eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn. When
using either Crank–Nicolson or the fully implicit method the resulting finite difference scheme will be
unconditionally stable. The explicit method leads to

~u(t+ ∆t) = ~u(t)−∆t A · u(t) = (I−∆t A) · u(t)

and thus to the stability condition

∆t · λn < 2 ⇐⇒ ∆t <
2

λn

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 134

This condition remains valid, also for problems with more than one space dimension. To use the explicit
method for these type of problems one needs to estimate the largest eigenvalue of the space discretiza-
tion. Estimates of this type can be given, based on the condition number of the discretization matrix, e.g.
[KnabAnge00, Satz 3.45]. For higher space dimensions the effort to solve one linear system equations for
the implicit methods will increase drastically, as the resulting matrices will not be tridiagonal, but only have
a band structure. Nonetheless this structure can be used in efficient implementations. An introduction is
given in chapter 11.

For many dynamic problems the mass matrix M has to be taken into account too. Consider a discretized
systems of the form

d

dt
M · ~u(t) = −A · ~u(t)

Often linear systems of equations with the matrix M are easily solved, e.g. M might be a diagonal matrix.
The generalized eigenvalues and eigenvectors are nontrivial solutions of

A · ~v = λM · ~v

The explicit discretization scheme leads to

1

∆t
M (~u(t+ ∆t)− ~u(t)) = −A · ~u(t)

~u(t+ ∆t) = ~u(t)−∆t M−1 A · ~u(t) =
(
I−∆t M−1 A

)
· ~u(t)

Thus the stability condition is again ∆t < 2/λn .
The fully implicit scheme will lead to

1

∆t
M (~u(t+ ∆t)− ~u(t)) = −A · ~u(t+ ∆t)

(M + ∆t A) · ~u(t+ ∆t) = M · ~u(t)

and is unconditionally stable.

5.5 Hyperbolic problems, wave equation

The simplest form of a wave equation is

∂2

∂t2
u(x, t) = κ2 ∂2

∂x2 u(x, t) for 0 < x < L and t > 0

u(0, t) = u(L, t) = 0 for t > 0

u(x, 0) = u0(x) for 0 < x < L

u̇(x, 0) = u1(x) for 0 < x < L

(5.9)

Again we examine an explicit and an implicit approximation.

5.5.1 Explicit approximation

A finite difference approximation we be examined on a grid given by figure 5.5 . This scheme is consistent
of order (∆x)2 + (∆t)2 .

~uj+1 − 2 ~uj + ~uj−1 = −κ2 (∆t)2

(∆x)2
An · ~uj

Since we have time derivatives of order 2 we first have to examine the ordinary differential equation

ÿ(t) = −λ y(t) approximated by
y(t+ h)− 2 y(t) + y(t− h)

h2
= −λ y(h)

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 135

ui,j+1 − 2ui,j + ui,j−1

(∆t)2
= κ2 ui−1,j − 2ui,j + ui+1,j

(∆x)2

-
x

6t

j

j–1

j+1

ii–1 i+1

uu u uu

Figure 5.11: Explicit finite difference approximation for the wave equation

and thus
y(t+ h) = 2 y(t)− y(t− h)− h2 λ y(t)

Using a matrix we find (
y(t)

y(t+ h)

)
=

[
0 1

−1 2− λh2

]
·

(
y(t− h)

y(t)

)

With an iteration we find (
y(j h)

y((j + 1)h)

)
=

[
0 1

−1 2− λh2

]j
·

(
y(0)

y(h)

)

These solutions remain bounded as j → ∞ if the eigenvalues µ of the matrix have absolute values smaller
than 1 . Thus we examine the solutions of the characteristic equation

µ2 − µ (2− λh2) + 1 = 0

Thus µ1 · µ2 = 1 and for |µ1,2| ≤ 1 to be correct we need conjugate complex values. The solutions are
given by

µ1,2 =
1

2

(
2− λh2 ±

√
(2− λh2)2 − 4

)
=

1

2

(
2− λh2 ±

√
λ2 h4 − 4λh2

)
=

2− λh2

2
±
√
λh2

√
λ h2 − 4

Thus a necessary and sufficient condition for stability is

λh2 ≤ 4 ⇐⇒ h2 ≤ 4

λ

Now we return to the wave equation. With the notation from the previous section we can write the
discretization scheme in figure 5.11 in the form

~uj+1 − 2 ~uj + ~uj−1 = −κ2 (∆t)2

(∆x)2
An · ~uj

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 136

or when solved for ~uj+1

~uj+1 = (2 In − rAn) · ~uj − ~uj−1

with r = κ2 (∆t)2

(∆x)2 . With a block matrix notation this can be transformed in a form similar to the ODE
situation above. (

~uj

~uj+1

)
=

[
0 In
−In 2 In − rAn

]
·

(
~uj−1

~uj

)
The stability condition for the ODE leads to r λk ≤ 4 for k = 1, 2, 3, . . . , n. Since the largest eigenvalue is
given by λn = 4 sin2 nπ

2 (n+1) ≈ 4 sin2 π/2 = 4 we find the stability condition

r = κ2 (∆t)2

(∆x)2
≤ 1 ⇐⇒ κ2 (∆t)2 ≤ (∆x)2

Since the solution at two time levels has to be known to get the finite difference scheme started we have to use
the initial conditions to construct the vectors u0 and u1. The first initial condition in equation (5.9) obviously
implies that ~u0 should be the discretization of u(x, 0) = u0(x). As ~u1 one can use the discretization of
u0(x)+hu1(x) . The Octave–code below is an elementary implementation of the presented finite difference
scheme.

Octave
global L=3; # length of the space interval
n=150; # number of interior grid points
r=0.8; # ratio to compute time step
T=5; # final time

function r=iv(x); # initial displacement
global L;
r=min([2*x,2-2*x]’)’; r=max([r,0*x]’)’;

endfunction

dx=L/(n+1);
dt=sqrt(r)*dx;
x=linspace(0,L,n+2)’;

y0=iv(x); y0(1)=0; y0(n+2)=0;
y1=y0; # use zero initial speed
y2=y0;
for t=0:dt:T+dt;
plot(x,y0)
for k=2:n+1
y2(k)=(2-2*r)*y1(k)+r*(y1(k-1)+y1(k+1))-y0(k);

endfor
y0=y1; y1=y2;

endfor

5.5.2 Implicit approximation

Since the explicit method is again conditionally stable we consider also an implicit method, which turns out
to be unconditionally stable. The space discretization at time level j in the previous section is replaced by a
weighted average of discretizations at levels j − 1, j and j + 1 .

~uj+1 − 2 ~uj + ~uj−1

(∆t)2
= − κ2

4 (∆x)2
(An · ~uj+1 + 2 An · ~uj + An · ~uj−1)

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 137

The difference scheme is consistent of order (∆x)2 + (∆t)2 . This leads to a linear system of equations for
~uj+1 .(

1 + κ2 (∆t)2

4 (∆x)2
An

)
~uj+1 =

(
2− 2κ2 (∆t)2

4 (∆x)2
An

)
~uj −

(
1 + κ2 (∆t)2

4 (∆x)2
An

)
~uj−1

-
x

6t

j

j–1

j+1

ii–1 i+1

u u uu u uu u u

Figure 5.12: Implicit finite difference approximation for the wave equation

By considering eigenvalues and vectors we use

c = κ2 λ
(∆t)2

4 (∆x)2
≥ 0

and are lead to examine the time discretization

y(t+ ∆t)− 2 y(t) + y(t−∆t) = −κ2 λ
(∆t)2

4 (∆x)2
(y(t+ ∆t) + 2 y(t) + y(t−∆t))

(1 + c) y(t+ ∆t) = (2− 2 c) y(t)− (1 + c) y(t−∆t)(
y(t)

y(t+ ∆t)

)
=

[
0 1

−1 2−2 c
1+c

] (
y(t−∆t)

y(t)

)
Examine the eigenvalues of this matrix

det

[
−µ 1

−1 2 1−c
1+c − µ

]
= µ2 − 2− 2 c

1 + c
µ+ 1 = 0

and observe that µ1 · µ2 = 1 and

4

(
1− c
1 + c

)2

− 4 ≤ 0

Thus the two values are complex conjugate. This imples |µ1| = |µ2| = 1 and the scheme is unconditionally
stable.

5.5.3 General wave type problems

A more general form of a wave type, dynamic boundary value problem may be given in the form

d

dt2
M · ~u(t) = −A · ~u(t)

and the corresponding explicit scheme is

M · (~uj+1 − 2 ~uj + ~uj−1) = −(∆t)2 A · ~uj

SHA 22-4-21

CHAPTER 5. CONVERGENCE AND FINITE DIFFERENCE SCHEMES 138

or
M · ~uj+1 =

(
2 M− (∆t)2 A

)
· ~uj −M · ~uj−1

The scheme will be stable if
(∆t)2 < 4/λn

where λn is the largest of the generalized eigenvalues, i.e. nonzero solutions of

A · ~v = λ M · ~v

5.6 Comments and bibliography

• In [Ciar02] a very precise presentation of convergence of finite element methods for elliptic problems
is given.

• The text book [KnabAnge00, §3] gives a brief recapitulation of the results in the book by Ph. Ciarlet.

• A general presentation of the concepts stability and consistency was given by H. B. Keller in [Kell92,
Appendix C.2] in a reprint of an other article [Kell75]. It is also applicable to nonlinear problems.

SHA 22-4-21

Chapter 6

Calculus of variations for functions for
multiple variables

6.1 An electrostatic example

The energy density ρ in an electric field ~E is given by

ρ = ‖ ~E‖2 = E2
1 + E2

2 + E2
3

The relation between the electric field ~E and the potential Φ is

~E = − gradV = −~∇Φ

Thus the total energy in a domain Ω is given by

Energy =

∫∫∫
Ω

‖ ~E‖2 dV =

∫∫∫
Ω

(
∂ Φ

∂x

)2

+

(
∂ Φ

∂y

)2

+

(
∂ Φ

∂z

)2

dV

Now consider the situation where Ω ⊂ R3 is very long in the z direction with a constant cross section
parallel to the xy–plane. Then we can restrict the calculations to a domain in R2, again called Ω. Use the
notation

Φx =
∂Φ

∂x
and Φy =

∂Φ

∂y

then the above is given by a two dimensional integral.

I (Φx,Φy) =

∫∫
Ω

Φ2
x + Φ2

y dx dy

It is a fundamental physical law that the electric fields will be such that this energy will be minimized, if
there are no electric charges. Thus we are lead to a problem of the type

Minimise F (ux, uy) =

∫∫
Ω

f (ux, uy) dx dy where f(ux, uy) = u2
x + u2

y

where f is a given function and the function u = u(x, y) might be the unknown minimizer of the functional.
In the next section we will find that the Euler Lagrange equation for this type of problem is

∂

∂x

∂ f

∂ux
+

∂

∂x

∂ f

∂ux
= 0

139

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 140

In the example of the electric field above we find the Euler Lagrange equation

f(Φx,Φy) = Φ2
x + Φ2

y

2
∂ Φx

∂x
+ 2

∂ Φy

∂y
= 0

Φxx + Φyy = ∆Φ = 0

Thus the electric potential Φ has to satisfy the second order differential equation ∆Φ = 0 and appropriate
boundary conditions.

In this slightly simpler example we can also argue directly by using calculus for multiple variables. We
choose an arbitrary perturbation function η and a real parameter ε and define

F (ε) =

∫∫
Ω

(Φx + ε ηx)2 + (Φy + ε ηy)
2 dx dy

Since Φ is the function minimizing the energy the function F has a minimum at ε = 0 and thus the derivative
should be equal to zero. This leads to the necessary condition

∂

∂ε
F (ε) = 2

∫∫
Ω

(Φx + ε ηx) ηx + (Φy + ε ηy) ηy dx dy

∂

∂ε
F (ε)

ε=0
= 2

∫∫
Ω

Φx ηx + Φy ηy dx dy

= 2

∫∫
Ω

(
Φx

Φy

)
·

(
ηx

ηy

)
dx dy = 0

If Φ is to be the optimal solution (with minimal energy), then the above double integral has to vanish for
‘all’ test functions η. Thus Green’s theorem (see appendix A.3) and the product rule

div

(
η

(
Φx

Φy

))
=

d (ηΦx)

dx
+
d (ηΦy)

dy
= η

d Φx

dx
+ Φx

d η

dx
+ η

d Φy

dy
+ Φy

d η

dy

= η (Φxx + Φyy) +

(
ηx

ηy

)
·

(
Φx

Φy

)

imply ∫∫
Ω

(
Φx

Φy

)
·

(
ηx

ηy

)
dx dy =

∫∫
Ω

η (Φxx + Φyy) dx dy +

∮
∂Ω
η ~n ·

(
Φx

Φy

)
ds = 0

Since this expression has to vanish for arbitrary functions η we conclude that the Laplace equation
below has to be satisfied.

Φxx + Φyy = 0 in Ω

~n ·

(
Φx

Φy

)
= 0 on Γ

This has to be supplemented with the condition for prescribed values of the electric potential on parts of the
boundary.

SHA 22-4-21

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 141

6.2 Minimization of a functional of two variables

For a ‘nice’ domain Ω ⊂ R2 and a known function f we try to find a function u(x, y), such that the
functional

F (u) =

∫∫
Ω

f(x, y, u, ux, uy) dA

is minimized. We use the notation

∇u =

(
ux

uy

)
=

(
d u
dx
d u
dy

)
We assume that the boundary ∂Ω = Γ1∪Γ2 of the domain consists of two disjoint parts. On Γ1 the value of
the function u(x, y) are given by a known function g(x, y), while on Γ2 we are free to choose u. The outer
unit normal vector is denoted by ~n. We reuse ideas and techniques from chapter 3.

We assume that the function u = u(x, y) is the optimal solution and consider perturbation w(x, y) =
u(x, y) = ε · η(x, y) for ‘arbitrary’ function η and a small parameter ε ∈ R. Since u is a mini-miser of the
functional F we have the necessary condition

∂

∂ε
F (u+ ε · η)

ε=0
= 0 for ‘all’ functions η

Using a linear approximation1 we find

f(x, y, u+ εη, ux + εηx, uy + εηy) ≈ f(x, y, u, ux, uy) + ε
∂ f

∂u
η + ε

∂ f

∂ux
ηx + ε

∂ f

∂uy
ηy

and thus
F (u+ ε · η) ≈ F (u) + ε

∫∫
Ω

∂ f

∂u
η +

∂ f

∂ux
ηx +

∂ f

∂uy
ηy dA

If F is minimal for ε = 0 we find

0 =

∫∫
Ω

∂ f

∂u
η +

(
∂ f
∂ux
∂ f
∂uy

)
·

(
ηx

ηy

)
dA

The divergence theorem in Appendix A.3 reads as∫∫
G

∇f · ∇g dA =

∮
∂G
f ∇g · ~n ds−

∫∫
G

f ∆g dA

∫∫
G

f (div~v) dA =

∮
∂G
f ~v · ~n ds−

∫∫
G

grad f · ~v dA

and thus leads to

0 =

∫∫
Ω

η
∂ f

∂u
+

(
ηx

ηy

)
·

(
∂ f
∂ux
∂ f
∂uy

)
dA

=

∫∫
Ω

η
∂ f

∂u
+ η

(
d

dx

∂ f

∂ux
+

d

dy

∂ f

∂uy

)
dA+

∮
∂Ω
η

(
∂ f
∂ux
∂ f
∂uy

)
· ~n ds

=

∫∫
Ω

η

(
∂ f

∂u
+

d

dx

∂ f

∂ux
+

d

dy

∂ f

∂uy

)
dA+

∮
∂Ω
η

(
∂ f
∂ux
∂ f
∂uy

)
· ~n ds

The fundamental lemma of the calculus of variations for two variables now implies
1Instead of using a linear approximation we may also differentiate the resulting integral with respect to the parameter ε and then

set ε = 0

SHA 22-4-21

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 142

∂ f
∂u + d

dx
∂ f
∂ux

+ d
dy

∂ f
∂uy

= 0 for (x, y) ∈ Ω

u(x, y) = g(x, y) for (x, y) ∈ Γ1(
∂ f
∂ux
∂ f
∂uy

)
· ~n = 0 for (x, y) ∈ Γ2

(6.1)

These are the Euler Lagrange equations for problems with two independent variables x and y. For general
functions f this partial differential equations may be nonlinear and thus usually difficult to solve. The most
common case are linear differential equations, which are generated by quadratic functionals F .

6.3 The general quadratic functional

Consider a domain Ω ⊂ R2 with a boundary ∂Ω = Γ1 ∪ Γ2 consisting of two disjoint parts. For given
functions a, f , g1 and g (all depending on x and y) we search a yet unknown function u, such that the
functional

F (u) =

∫∫
Ω

1

2
a (∇u)2 +

1

2
b u2 + f · u dA−

∫
Γ2

g2 u ds (6.2)

is minimal amongst all functions u which satisfy

u(x, y) = g1(x, y) for (x, y) ∈ Γ1

To find the necessary equations we assume that φ and ∇φ are small and use the approximations

(u+ φ)2 = u2 + 2uφ+ φ2 ≈ u2 + 2uφ

(∇(u+ φ))2 = ∇u · ∇u+ 2∇u · ∇φ+∇φ · ∇φ ≈ ∇u · ∇u+ 2∇u · ∇φ

to conclude

F (u+ φ)− F (u) ≈
∫∫
Ω

a∇u · ∇φ+ b u φ+ f · φ dA−
∫

Γ2

g2 φ ds

=

∫∫
Ω

(−∇(a∇u) + b u+ f) · φ dA+

∫
Γ
a~n · ∇u φ ds−

∫
Γ2

g2 φ ds

=

∫∫
Ω

(−∇(a∇u) + b u+ f) · φ dA+

∫
Γ2

(a~n · ∇u− g2)φ ds

The test-function φ is arbitrary, but has to vanish on Γ1. If the functional F is minimal for the function u
then the above integral has to vanish for all test-functions φ. First consider only test-functions that vanish on
Γ2 and use the fundamental lemma A–2 to conclude that the expression in the bracket in the integral over the
domain Ω has to be zero. Then use arbitrary test functions φ to conclude that the expression in the integral
over Γ2 has to vanish too. Thus the resulting linear partial differential equation with boundary conditions is
given by

∇ · (a∇u)− b u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a~n · ∇u = g2 for (x, y) ∈ Γ2

(6.3)

SHA 22-4-21

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 143

The functions a, b f and gi are known functions and we have to determine the solution u, all depending on
the independent variables (x, y) ∈ Ω . The vector ~n is the outer unit normal vector. The expression

~n · ∇u = n1
∂ u

∂x
+ n2

∂ u

∂y
=
∂ u

∂~n

equals the directional derivative of the function u in the direction of the outer normal ~n.

A list of typical applications of elliptic equations of second order is shown in table 6.1, copied from [Redd84,
p. 32]. The static heat conduction problem in section 4.1.3 (page 64) is a further example. A description of
the ground water flow problem is given in [OttoPete92, p. 87]. This table clearly illustrates the importance
of the above type of problem.

6.4 A minimal surface problem

On the boundary of a domain Ω ⊂ R2 the values of a function u are given by g. We search for the function
u, such that the total area of the surface is minimal. A physical setup of this is given by soap bubbles. The
boundary can be given by a closed piece of wire in space. Then the soap film will form a surface between
the wire with minimal area. Further description can be found in [HildTrom86] and [Isen78]. The roof of the
Olympic Stadium in Munich is a well known example of a minimal surface.

From calculus we know that the area of a surface given by z = u(x, y) and (x, y) ∈ Ω ⊂ R2 is given by

F (u) =

∫∫
Ω

√
1 + u2

x + u2
y dA

Thus we have an example of the type in section 6.2 with

f(ux, uy) =
√

1 + u2
x + u2

y

∂

∂ux
f(ux, uy) =

ux√
1 + u2

x + u2
y

∂

∂uy
f(ux, uy) =

uy√
1 + u2

x + u2
y

Thus the Euler Lagrange equation 6.1 for this problem reads as

∂ f

∂u
+

∂

∂x

∂ f

∂ux
+

∂

∂y

∂ f

∂uy
= 0

∂

∂x

ux√
1 + u2

x + u2
y

+
∂

∂y

uy√
1 + u2

x + u2
y

= 0

This is a nonlinear partial differential equation.
If the slopes are known to be small (|ux| � 1 and |uy| � 1) we may use the Taylor approximation√

1 + s ≈ 1 + 1
2 s and obtain an approximate functional

F (u) ≈
∫∫
Ω

1 +
1

2

(
u2
x + u2

y

)
dA

Minimizing this new functional is equivalent to finding a minimum of the quadratic functional

Fl(u) =

∫∫
Ω

1

2
(∇u)2 dA

SHA 22-4-21

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 144

Fi
el

d
of

ap
pl

ic
at

io
n

Pr
im

ar
y

va
ri

ab
le

M
at

er
ia

lc
on

st
an

t
So

ur
ce

va
ri

ab
le

Se
co

nd
ar

y
va

ri
ab

le
s

G
en

er
al

si
tu

at
io

n
u

a
f

q,
∂
u
∂
x

,
∂
u
∂
y

H
ea

tt
ra

ns
fe

r
Te

m
pe

ra
tu

re
T

C
on

du
ct

iv
ity

k
H

ea
ts

ou
rc

e
Q

H
ea

tfl
ow

de
ns

ity
~q

~q
=
−
k
∇
T

E
le

ct
ro

st
at

ic
s

Sc
al

ar
po

te
nt

ia
lΦ

D
ie

le
ct

ri
c

co
ns

ta
nt
ε

C
ha

rg
e

de
ns

ity
ρ

E
le

ct
ri

c
flu

x
de

ns
ity

D

M
ag

ne
to

st
at

ic
s

M
ag

ne
tic

po
te

nt
ia

lΦ
Pe

rm
ea

bi
lit

y
ν

C
ha

rg
e

de
ns

ity
ρ

M
ag

ne
tic

flu
x

de
ns

ity
B

Tr
an

sv
er

se
de

fle
ct

io
n

of
el

as
tic

m
em

br
an

e
Tr

an
sv

er
se

de
fle

ct
io

n
u

Te
ns

io
n

of
m

em
br

an
e
T

Tr
an

sv
er

se
ly

di
st

ri
bu

te
d

lo
ad

N
or

m
al

fo
rc

e
q

To
rs

io
n

of
a

ba
r

W
ar

pi
ng

fu
nc

tio
n
φ

C
on

st
an

t1
C

on
st

an
t0

St
re

ss
τ

τ x
z

=
E
α

2
(1

+
ν
)

(−
y

+
∂
φ
∂
x

)

τ y
z

=
E
α

2
(1

+
ν
)

(x
+

∂
φ
∂
y

)

Ir
ro

ta
tio

na
lfl

ow

of
an

id
ea

lfl
ui

d
St

re
am

fu
nc

tio
n

Ψ
D

en
si

ty
ρ

M
as

s
pr

od
uc

tio
n
σ

(u
su

al
ly

ze
ro

)

V
el

oc
ity

(u
,v

)T

d
Ψ
∂
x

=
−
u

d
Ψ
∂
y

=
v

V
el

oc
ity

po
te

nt
ia

lΦ
d
Φ
∂
x

=
u

d
Φ
∂
y

=
v

G
ro

un
d-

w
at

er
flo

w
Pi

ez
om

et
ri

c
he

ad
Φ

Pe
rm

ea
bi

lit
y
K

R
ec

ha
rg

e
Q

(o
rp

um
pi

ng
−
Q

)

se
ep

ag
e
q

=
K

∂
Φ
∂
n

ve
lo

ci
tie

s

u
=
−
K

d
Φ
∂
x

v
=
−
K

d
Ψ
∂
y

Table 6.1: Some examples of Poisson’s equation −∇ (a∇u) = f

SHA 22-4-21

CHAPTER 6. CALCULUS OF VARIATIONS, MULTIPLE VARIABLES 145

and thus we have an example of section 6.3 with a = 1 and b = f = 0. The corresponding linear partial
differential equation is thus given by equation (6.3) and simplifies to

∆u = uxx + uyy = 0 for (x, y) ∈ Ω

u = g for (x, y) ∈ Γ

This is a standard problem for the Finite Element Method.

SHA 22-4-21

Chapter 7

Finite element problems in two variables

We want to find solutions of the linear partial differential equation (6.3)

∇ · (a∇u)− b u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂~nu = g2 for (x, y) ∈ Γ2

(7.1)

This corresponds to a minimizer of the functional given in equation (6.2)

F (u) =

∫∫
Ω

(
1

2
a (∇u)2 +

1

2
b u2 + f · u

)
dA−

∫
Γ2

g2 u ds

with respect to all function u that coincide with g1 on Γ1.

Under rather general assumption, similar to section 5.1.1 on page 110 the quadratic functional F (u) is
strictly positive definite and the partial differential equation (7.1) will have a unique solution. The Finite
Element Method will lead to an approximation uh of the exact solution u. The convergence results in
section 5.1 (see page 110ff) can be applied to this problem too, thus we use a similar notation. Let V be the
function space1 of once differentiable function, where all derivative are square integrable.

V = {u ∈ C2(Ω) |
∫∫
Ω

u2 + u2
x + u2

y dA <∞ }

The space V is infinite dimensional and will be approximated by a finite dimensional subspace Vh ⊂ V . On
this subspace we will minimize the above functional F (see also table 5.1 on page 113).

7.1 Description of the general procedure

In this section we describe the algorithm for a Finite Element code, based on piecewise linear interpolation.
This will be done in a few separate steps:

• Approximate the domain Ω ⊂ R2 by a collection of triangles and consider the values of the functions
u at the nodes as degrees of freedom. On each triangle the functions u is replaced by a linear function.
The set of all those piecewise linear functions will form the finite dimensional subspace Vh, where the
parameter h is a measure of the typical size of the triangles.

• Compute the contribution of each triangle to the functional F (u).

1The mathematically correct spaces are Sobolev spaces, but we omit the technicalities

146

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 147

• Compute the contribution of the boundary sections to the functional F (u).

• Add up all the above contributions and take the boundary conditions into account. Then minimize

F (u) ≈ Fh(~u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉

which corresponds to solving the linear system of equations

A ~u+~b = ~0

• The solution is then the minimum of the functional F amongst all functions u in the subspace Vh.

7.1.1 Approximation of the domain Ω, triangularization

We approximate the domain Ω by a finite set of triangles. If the domain
has only straight line segments as boundary then we can generate the
domain exactly. This leads to a finite number of nodes (xi, yi) ∈ Ω,
1 ≤ i ≤ n. On each triangle the function u is to be replaced by a plane,
determined by the values ui = u (xi, yi) at the nodes. Thus we have
a finite number of degrees of freedom. Integral over the domain Ω are
now split up into a sum of integrals over each triangle ∆k∫∫

Ω

. . . dA =
∑
k

∫∫
∆k

. . . dA

On each triangle ∆k the integration will be done with the linearly inter-
polated function u. The above integral will be replaced by a summation
over all triangles and we have to find the values ui such that the value
of the sum is minimal.

7.1.2 Integration over one triangle

If a triangle is given by its three corners ~x1, ~x2 and ~x3, then its areaA is given by a cross product calculation

A =
1

2
‖(~x2 − ~x1)× (~x3 − ~x1)‖ =

1

2
|(x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1)|

If the values of a general function f are given at the tree corners of the triangle by f1, f2 and f3 we can
replace the exact function by a linearly interpolated function and find an approximate integral by∫

∆
f dA ≈ A · f1 + f2 + f3

3

Observe that there is a systematic error due to replacing the true function by an approximate, linear function.
This leads to ∫

∆
f · u dA ≈ A

3
(f1 u1 + f2 u2 + f3 u3)∫

∆

1

2
b u2 dA ≈ 1

2

A

3
(b1 u

2
1 + b2 u

2
2 + b3 u

2
3)

Using a vector notation we find

∫
∆

1

2
b u2 + f · u dA ≈ 1

2

A

3
〈


u1

u2

u3

 ,


b1 0 0

0 b2 0

0 0 b3




u1

u2

u3

〉+
A

3
〈


f1

f2

f3

 ,


u1

u2

u3

〉
SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 148

This is one of the contributions in equation (6.2). To examine the other contribution we first need to compute
the gradient of the function u. If the true function is replaced by a linear interpolation on the triangle, then
the gradient is constant on this triangle and can be determined with the help of a normal vector of the plane
passing through the three points

x1

y1

u1

 ,


x2

y2

u2

 and


x3

y3

u3


A normal vector is given by the vector product

~n =


x2 − x1

y2 − y1

u2 − u1

×


x3 − x1

y3 − y1

u3 − u1

 =


+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

+(x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1)


The third component of this vector equals twice the oriented2 area A of the triangle. To obtain the gradient
in the first two components the vector has to be normalized, such that the third component equals −1. We
find

∇u =

(
d u
∂x
d u
∂y

)
=
−1

2A

(
+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

)
This formula can be written as

∇u =
−1

2A

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1

u2

u3

 =
−1

2A
M ·


u1

u2

u3

 (7.2)

This leads to

〈∇u , ∇u〉 =
1

4A2
〈M


u1

u2

u3

 , M


u1

u2

u3

〉 =
1

4A2
〈


u1

u2

u3

 , MT ·M


u1

u2

u3

〉
and thus ∫

∆

1

2
a (∇u)2 dA ≈ a1 + a2 + a3

2 · 3 · 4A
〈


u1

u2

u3

 , MT ·M


u1

u2

u3

〉
Exercise 7–1 verifies that the matrix MT ·M is symmetric and positive semidefinite. The expression vanishes
if and only if u1 = u2 = u3.

Collecting the above results we find

∫
∆

1

2
a (∇u)2 +

1

2
b u2 + f · u dA ≈ 1

2
〈


u1

u2

u3

 , A∆


u1

u2

u3

〉+ 〈


u1

u2

u3

 , ~b∆〉

2We quietly assumed that the third component of ~n is positive. As we use only the square of the gradient the influence of this
ignorance will disappear.

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 149

where

A∆ =
a1 + a2 + a3

12A
MT ·M +

A

3


b1 0 0

0 b2 0

0 0 b3

 (7.3)

~b∆ =
A

3


f1

f2

f3

 (7.4)

If bi ≥ 0 then the element stiffness matrix A∆ is positive semidefinite.

7.1.3 Integration the contribution on the boundary

For the section Γ2 of the boundary with Neumann boundary condition we have to approximate the integral.∫
Γ2

g2 u ds

As each section consists of a straight line we choose the simple approximation

length
2

(value at left endpoint + value at right endpoint)

If we denote the two endpoints by ~x1 and ~x2 and the values of the function u by u1, u2, then we find the
approximation ∫

edge
g2 u ds ≈

√
(x2 − x1)2 + (y2 − y1)2

2
〈

(
u1

u2

)
,

(
g2(~x1)

g2(~x2)

)
〉

This approximate integration leads to the exact result if the function u(~x) · g(~x) is a polynomial of degree
1, or a constant.

An improved approach can be based on Gauss integration (see section 4.5.2). Instead of the two end-
points ~x1 and ~x2 we used the values at the two Gauss integration points

~p1 = 1
2 (~x1 + ~x2) + 1

2
√

3
(~x1 − ~x2)

~p2 = 1
2 (~x1 + ~x2)− 1

2
√

3
(~x1 − ~x2)

By linear interpolation between the points ~x1 and ~x2 we find the values of the function u at the Gauss points
to be

u(~p1) = (1− w)u1 + w u2

u(~p2) = w u1 + (1− w)u2

where w = 1−1/
√

3
2 ≈ 0.211325. This leads to the approximation∫

edge
g2 u ds ≈

√
(x2 − x1)2 + (y2 − y1)2

2
〈

(
u1

u2

)
,

(
(1− w) g2(~p1) + w g2(~p2)

w g2(~p1) + (1− w) g2(~p2)

)
〉

This approximate integration leads to the exact result if the function u(~x) · g(~x) is a polynomial of degree
3, or less. In addition the function g2 need not be evaluated at the endpoints but at interior points of the
segment. This is helpful at corners with two different types of boundary conditions. Thus this approach is
clearly preferable.

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 150

7.1.4 Assembling the system of equations

Using the results of the previous sections we write the contribution of each triangle ∆k to the functional F
as

1

2
〈~u∆ , A∆ ~u∆〉+ 〈~u∆ , ~b∆〉

where the vector ~u∆ contains the values of the function u at the three corners of the triangle and A∆ is the
element stiffness matrix. For each u ∈ Vh we have

F (u) =
∑
∆

1

2
〈~u∆ , A∆ ~u∆〉+ 〈~u∆ , ~b∆〉

where the summation is over all triangles. Now we want to find the global stiffness matrix A and the vector
~b such that

F (u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉 for all u ∈ Vh

the vector ~u consists of the values of the unknown function u at all the nodes of the triangularization. Thus
we will use both symbols u and ~u to denote the function.

for each element (resp. edge)

A∆ 3× 3 matrix, symmetric
~b∆ vector with 3 components

~u∆ vector of unknowns with 3 components

for the complete structure

A n× n matrix, symmetric
~b vector with n components

~u vector of unknowns with n components

The problem to solve now is to combine the contributions from all triangles and edges.
To illustrate this procedure we use an example. If the triangle ∆ has the corners (x1, y1), (x4, y4) and

(x5, y5) and the matrix is given by

A∆ =


11 −2 −3

−2 22 −1

−3 −1 99

 and ~b∆ =


4

7

11


and the complete structure has 7 nodes. Then we extend the above matrix artificially to a 7 × 7 matrix
by adding rows and columns of zeros The nonzero numbers of the element matrix A∆ have to go into
rows/columns 1, 4 and 5 of the global matrix A. Thus we construct

A∆ =



11 0 0 −2 −3 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−2 0 0 22 −1 0 0

−3 0 0 −1 99 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


and ~b∆ =



4

0

0

7

11

0

0


SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 151

Observe that the new matrix A∆ is still symmetric and

1

2
〈~u∆ , A∆ ~u∆〉+ 〈~u∆ , ~b∆〉 =

1

2
〈~u , A∆ ~u〉+ 〈~u , ~b∆〉

where the scalar product is computed with vectors with 3 components on the left, respectively 7 components
on the right. The size of the new matrices and vectors are independent of the element and the numbering
of the nodes decides on where to put the nonzero numbers. This process has to be done for each element.
Verify that

F (u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉 =

∑
∆

1

2
〈~u , A∆ ~u〉+ 〈~u , ~b∆〉

and thus
A =

∑
∆

A∆ and ~b =
∑
∆

~b∆

i.e. a matrices and vectors can be added up. If the Finite Element Method is to be implemented on a computer
then the matrices A∆ should not be created explicitely but rather the algorithm below can be used.

• create a n× n matrix A and the n vector~b, filled with zeros.

• for each element ∆:

– compute A∆ and~b∆
– add the values in A∆ and~b∆ to the correct rows/columns in A and~b.

• the final matrix A and vector~b can then be used to solve for the unknown values ~u by minimizing

F (~u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉

Observe that the Dirichlet boundary condition u = g1 on Γ1 has not been taken into account yet.

7.1.5 Taking the Dirichlet boundary condition into account

If we were free to choose all components of the vector ~u then the minimum of F (~u) is attained at the solution
of A ~u + ~b = ~0. This is a consequence of the result 1–4 (page 4). But if the point ~xi is on the Dirichlet
boundary Γ1 the value of ui is given by g1(~xi) and we obtain no corresponding equation. If we are free to
choose the value of ui then the derivative of F (~u) with respect to ui has to vanish. This leads to the linear
equation ∑

j

ai,j uj = −bi

where aa,j are the components of the matrix A. If ~xk ∈ Γ1 then the value of the solution is given by
uk = g1(~xk). Then the above equation can be written as∑

~xj /∈Γ1

ai,j uj = −bi −
∑
~xk∈Γ1

ai,g g1(~xk)

If ~xi ∈ Γ1 then the derivative of F (~u) with respect to ui is not necessarily zero and thus we do not obtain
a corresponding equation. This leads to a reduced matrix Ar and vector ~br and a smaller system of linear
equations

Ar ~ur = −~br
to be solved. Since we have exactly as many unknowns ui as equations the matrix Ar will be square.

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 152

7.1.6 Applying periodic boundary conditions

The total energy of the system is given by

F (~u) =
1

2
〈~u , A ~u〉+ 〈~u , ~b〉

If we are to consider a problem with periodic boundary conditions, then some of the degrees of freedom
have to be eliminated, i.e. we have the additional condition up = uq for some values of p and q. Since those
two degrees of freedom are coupled now we define a new function f(t) = F (~u), where up = uq = t. Then
the total derivative of f(t), with respect to t equals the sum of the partial derivatives of F (~u) with respect to
up and uq. In exercise 1–3 we found

∂

∂up
F (~u) =

n∑
j=1,

ap,j uj + bp

Thus we arrive at a modified system of linear equations to be solved.

• replace all coefficients in row p in the matrix A by ap,j + aq,j , i.e. add row q to row p

• replace bp by bp + bq in the vector~b

• replace row q in the matrix A by the condition up − uq = 0

This leads to a modified system of equations to be solved. Unfortunately the symmetry of the matrix A is
lost. If the symmetry is important we may modify the above procedure. We arrive at a system of fewer
equations, but have the extra condition up = uq.

• replace all coefficients in row p in the matrix A by ap,j + aq,j , i.e. add row q to row p

• replace all coefficients in column p in the matrix A by aj,p + aj,q, i.e. add column q to column p

• replace bp by bp + bq in the vector~b

• the resulting new matrix A has one fewer row and column.

• take the condition up − uq = 0 into account later on.

7.1.7 Solving the set of linear equations, visualization and interpretation

After solving the above equation for ~ur all components of the original vector ~u can be constructed by adding
the components corresponding to nodes on Γ1. Now the data of an approximate solution of problem (7.1) is
generated and can be analyzed or visualized by appropriate tools.

7.2 The eigenvalue problem

Instead of equation (7.1) we examine the general eigenvalues problem

−∇ · (a∇u) + b u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂~nu = 0 for (x, y) ∈ Γ2

(7.5)

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 153

For known functions a, b and f the equation has always the trivial solution u = 0. The number λ ∈ R is
called an eigenvalue if the problem has a nontrivial solution. The function u is called an eigenfunction.
This is equivalent to finding a function u and a value of λ such that∫∫

Ω

(−∇(a∇u) + b u) · φ dA = λ

∫∫
Ω

f uφ dA

for all test functions φ vanishing on Γ1 .
Now we first examine the contribution to the integral on the RHS when integrating over one triangle ∆

of the mesh. In section 7.1.2 we found ∫
∆
f dA ≈ A · f1 + f2 + f3

3

This leads to ∫
∆
f · u · φ dA ≈ A

3
(f1 u1 φ1 + f2 u2 φ2 + f3 u3 φ3)

=
A

3
〈


f1 0 0

0 f2 0

0 0 f3




u1

u2

u3

 ,


φ1

φ2

φ3

〉
= 〈M∆ ~u∆ , ~φ∆〉

By comparing with computations in the previous section we find

B∆ = diag(~b∆)

i.e. the coefficients of the matrix B∆ may be computed by the same algorithm as the components of ~b∆ in
equation (7.4). By adding the contributions of all triangles we find∫∫

Ω

f · u · φ dA ≈ 〈B ~u , ~φ〉

where B = diag(~b) is a diagonal matrix whose entries are given by the contribution of the RHS f in
equation (7.1) to the vector~b .

The previous section implies∫∫
Ω

(−∇(a∇u) + b u) · φ dA ≈ 〈A ~u , ~φ〉

where the global stiffness matrix A is identical to the one in the previous section. Thus the FEM approxi-
mation of the above integral is given by

〈A ~u , ~φ〉 = λ 〈B ~u , ~φ〉

for all vectors ~φ ∈ Rn. This is equivalent to the generalized eigenvalue problem

A ~u = λB ~u

There in no need to write new code to set up this problem since the matrix A and B = diag(~b) are also
given in the linear system A ~u = −~b in the previous section. In section 11.6 an algorithm to compute the
eigenvalues is presented.

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 154

7.3 From the finite element method to a finite difference method

We examine a very simple, but important special case of the general situation (7.1) on page 146.

uxx + uyy = f(x, y) for (x, y) ∈ Ω = (0, a)× (0, b)

u(x, y) = 0 for (x, y) on boundary ∂Ω
(7.6)

This corresponds to the problem of minimizing the functional

F (u) =

∫
Ω

1

2

((
∂ u

∂x

)2

+

(
∂ u

∂y

)2
)

+ u · f dA

The domain Ω is shown in figure 7.1 with a uniform rectangular mesh. The mesh has nx interior nodes in x
direction and ny interior nodes in y direction. The nodes are uniformly spaced. In the shown example we
have nx = 18 and ny = 5. The step sizes are then given by

hx =
a

nx+ 1
and hy =

b

ny + 1

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
6

-x

y
(a, b)

Figure 7.1: A simple rectangular mesh

7.3.1 Element contributions

In the mesh in figure 7.1 we find only two types of triangles, shown in figure 7.2 and thus we can compute
all element contributions with the help of those two standard triangles.

�
�
�
�
�
�
�

hx

hy

1 2

3

A

�
�
�
�
�
�
�

hx

hy

1

3 2

B

Figure 7.2: The two types of triangles in a rectangular mesh

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 155

Contributions from type A triangles

If the values ui of the function at the three corners of a type A triangle are known then we have the gradient
of the linearly interpolated function given by

∇u =
−1

2A

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1

u2

u3

 =
−1

2A
M ·


u1

u2

u3


Using equation (7.2) we find

∇u =
−1

2A
M ·


u1

u2

u3

 =
−1

hx · hy

[
hy −hy 0

0 hx −hx

]
·


u1

u2

u3


and

MT ·M =


hy 0

−hy hx

0 −hx

 ·
[
hy −hy 0

0 hx −hx

]
=


hy2 −hy2 0

−hy2 hy2 + hx2 −hx2

0 −hx2 hx2


Observe that the zeros in the off-diagonal corners are based on the facts y1 = y2 and x2 = x3. Equation (7.3)
now leads to the element stiffness matrix

A∆A
=

a1 + a2 + a3

12A
MT ·M

=
1

2hxhy


hy2 −hy2 0

−hy2 hy2 + hx2 −hx2

0 −hx2 hx2


and

~b∆A
=
A

3


f1

f2

f3

 =
hxhy

6


f1

f2

f3


Contributions from type B triangles

Similar calculations lead to the element stiffness matrix

A∆B
=

1

2hxhy


hx2 0 −hx2

0 hy2 −hy2

−hx2 −hy2 hy2 + hx2


and~b∆B

= ~b∆A
. The details of the computations are left as an exercise.

7.3.2 The linear equation associated with an interior node

Now we construct the system of linear equations for the boundary value problem (7.6) on the mesh in
figure 7.1. For this we consider the mesh point in column i and row j (starting at the bottom) in the mesh
and denote the value of the solution at this point by ui,j . In figure 7.1 we see that ui,j is directly connected

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 156

"!

ui,j "!

ui+1,j"!

ui−1,j

"!

ui,j+1

"!

ui,j−1

"!

ui+1,j+1

"!

ui−1,j−1

�
�
�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

1

2

3

4

5

6

Figure 7.3: FEM stencil and neighboring triangles of a mesh point

to 6 neighboring points and 6 triangles are used to built the connections. This is visualized in figure 7.3, the
left part of that figure represents the stencil of the point in the mesh.

We first examine the contributions to
∫

Ω u · f dA involving the coefficients ui,j . As the coefficients in
~b∆A

= ~b∆B
are all constant we obtain six contributions of the size hxhy

6 fi,j leading to a total of hxhy fi,j

fi,j → 6

(
hxhy

6

)
= hx hy

With similar arguments we have to examine the contributions to 1
2

∫
Ω∇u · ∇u dA. The expressions below,

multiplied by 1
2 ui,j will contribute. Use the basic element matrices A∆A

, A∆B
and figure 7.3 to verify the

terms below.

ui,j →
1

2 hx hy

(
hy2 + hx2 + (hx2 + hy2) + hy2 + hx2 + (hx2 + hy2)

)
=

2 (hx2 + hy2)

hx hy

ui+1,j →
1

2 hx hy

(
−hx2 + 0 + 0 + 0 + 0− hx2

)
=
−hx2

hx hy

ui−1,j →
1

2 hx hy

(
0 + 0− hx2 − hx2 + 0 + 0

)
=
−hx2

hx hy

ui,j+1 → 1

2 hx hy

(
0− hy2 − hy2 + 0 + 0 + 0

)
=
−hy2

hx hy

ui,j−1 → 1

2 hx hy

(
0 + 0 + 0 + 0− hy2 − hy2

)
=
−hy2

hx hy

ui+1,j+1 → 1

2 hx hy
(0 + 0 + 0 + 0 + 0 + 0) = 0

ui−1,j−1 → 1

2 hx hy
(0 + 0 + 0 + 0 + 0 + 0) = 0

Observe that the two diagonal connections in the stencil lead to zero contributions. This is correct for the
rectangular mesh. Thus the resulting equation for the degree of freedom ui,j is given by

ui,j
2 (hx2 + hy2)

hx hy
− ui+1,j

hx2

hx hy
− ui−1,j

hx2

hx hy
− ui,j+1

hy2

hx hy
− ui,j−1

hy2

hx hy
+ fi,j hx hy = 0

or by rearranging
−ui+1,j + 2 ui,j − ui−1,j

hx2
+
−ui,j+1 + 2 ui,j − ui,j−1

hy2
= −fi,j (7.7)

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 157

For the special case hx = hy we obtain

1

hx2
(4 ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1) = −fi,j

This is the finite difference approximation to the differential equation (7.6). It can be obtained directly3.
This leads to the well know finite difference stencil in figure 7.4.

��
��

4 ��
��
−1��

��
−1

��
��
−1

��
��
−1

Figure 7.4: Finite difference stencil for −uxx − uyy if hx = hy

7.3.3 Assembling the system of linear equations

Now we want to examine the system of linear equations to be solved. For this we have to number the degrees
of freedom (interior nodes) in the mesh 7.1 sequentially. Starting in the lower left corner we number row
by row. Thus the first row of interior nodes obtains numbers 1 through nx, the second row numbers nx+ 1
through 2nx. The top right corner will have the largest number nx · ny. Thus if we are to move one
row up we have to increase the number by nx. Steps to the right increase the number by 1. Now we use
equation (7.7) to generate the square matrix A of size (nx ·ny)×(nx ·ny). We also have to use the Dirichlet
boundary conditions in (7.6). As a stencil reaches the boundary the corresponding contribution will be set
to 0. We generate the matrix by the following rules:

• Use the coefficient of ui,j to determine that along the diagonal all entries are 2
hx2 + 2

hy2 .

• The coefficient of ui±1,j in (7.7) is −1
hx2 and thus the first upper and lower diagonal are filled with this

number. This corresponds to the stencil reaching one step to the right and left.

• If the point is on the last interior column then there is no contribution by the point on its right, due to
the boundary condition. Thus if the number k of the point is a multiple of nx we have to set ak,k+1

to 0. If the point is on the first interior column then there is no contribution by the point on its left,
due to the boundary condition. Thus if the number k of the point is a multiple of nx plus 1 then we
have to set ak,k−1 to 0. The matrix remains symmetric by these operations.

• The coefficient of ui,j±1 in (7.7) is −1
hy2 . This number has to be filled into the diagonals of by nx units

above and below the main diagonal. This corresponds to the stencil reaching one step up and down.

• The first row of interior points should not ‘see’ contributions from below, due to the boundary con-
ditions. This is automatically the case since for the first nx rows of the matrix the nx-subdiagonal
diagonal reaches out of the matrix on the left. A similar effect occurs for the top row.

3Use u′i−1/2 ≈ 1
h

(ui − ui−1), u′i+1/2 ≈ 1
h

(ui+1 − ui1) and u′′i ≈ 1
h

(u′i+1/2 − u′i−1/2) to arrive at

−u′′i ≈
−ui+1 + 2 ui − ui−1

h2

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 158

The above procedure may be implemented as in the C++ code segment below. Since the matrix A has to be
symmetric some of the above steps can be skipped. The data type TMatSymBand assures that the lower
part of A is correct if we supply the upper part.

TMatSymBand A(nx*ny,nx+1); // create the matrix
A.fill(0.0); // initialize all values to 0
A.fillDiag(0,2.0*(1/(hx*hx)+1/(hy*hy))); // fill the main diagonal
A.fillDiag(1,-1/(hx*hx)); // fill the first upper diagonal
A.fillDiag(nx,-1/(hy*hy)); // fill the upper diagonal nx
for(int j=1;j<ny;j++){ A(j*nx,j*nx+1)=0.0;} // apply the boundary conditions

One has to observe that the resulting matrix has a band structure: all entries further than nx away from the
main diagonal will remain zero. As an example we can consider the case a = b = 1 and nx = 3, ny = 4.
This leads to 1

hx2 = 16 and 1
hy2 = 25. The mesh, the numbering of the interior nodes and an approximate

solution of the differential equation are shown in figure 7.5.

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

#
#
##

6

-x

y

1 2 3

4 5 6

7 8 9

10 11 12

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6
0.8

1

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 7.5: Solution on a small rectangular grid

The resulting symmetric matrix A with semi-bandwidth 4 is

A =



82 −16 0 −25 · · · · · · · ·
−16 82 −16 0 −25 · · · · · · ·

0 −16 82 0 0 −25 · · · · · ·
−25 0 0 82 −16 0 −25 · · · · ·
· −25 0 −16 82 −16 0 −25 · · · ·
· · −25 0 −16 82 0 0 −25 · · ·
· · · −25 0 0 82 −16 0 −25 · ·
· · · · −25 0 −16 82 −16 0 −25 ·
· · · · · −25 0 −16 82 0 0 −25

· · · · · · −25 0 0 82 −16 0

· · · · · · · −25 0 −16 82 −16

· · · · · · · · −25 0 −16 82


If we choose the function f(x, y) = 2 (x− 1) x+ 2 (y − 1) y then the vector~b is given by

~b = − (0.695 , 0.820 , 0.695 , 0.855 , 0.980 , 0.855 , 0.855 , 0.980 , 0.855 , 0.695 , 0.820 , 0.695)T

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 159

and we can solve the system of 12 linear equations A · ~x = −~b and obtain the solution.

~x = (0.03 , 0.04 , 0.03 , 0.045 , 0.06 , 0.045 , 0.045 , 0.06 , 0.045 , 0.03 , 0.04 , 0.03)T

This leads to the solution in figure 7.5.
If we set nx = 30 and ny = 40 then we find a system of 1200 linear equations, but the matrix has

semi-bandwidth 31. We can still setup and solve the system and arrive at the solution in figure 7.6.

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6
0.8

1

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Figure 7.6: Solution on a larger rectangular grid

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 160

7.4 FEM code in Mathematica

The computations of the previous section can be implemented in Mathematica and then the code will be
used to solve a problems. We present the code and illustrate it usage by simple examples.

7.4.1 Description of the sample problem

The sample problem to be considered is

uxx + uyy = −1 for (x, y) ∈ (0, 5)× (0, 4)

u(x, y) = y
10 for x ∈ (0, 5) and y ∈ {0, 4}

∂ u
∂~nu(x, y) = −1 for x ∈ {0, 5} and y ∈ (0, 4)

i.e. in equation (7.1) we set

a(x, y) = 1 , b(x, y) = 0 , f(x, y) = −1 , g1(x, y) =
y

10
and g2(x, y) = 1

The graph of the solution is shown in figure 7.7. We use the left part to illustrate the code in Mathematica .

0

2

4x

0

1

2

3

4

y

0

0.5

1

1.5

u

0

2

4x

0

0.5

1

1.5

0

2

4x

0

1

2

3

4

y

0

0.5

1

1.5

u

0

2

4x

0

0.5

1

1.5

Figure 7.7: Solution of the test problem with few and many triangles

7.4.2 Mesh generation by EasyMesh

The program EasyMesh can be used to generate meshes for rather general domains. Documentation and
source for this program can be found at the WWW site of the author4. The program can be compiled on
many platforms and the additional program ShowMesh will show the resulting mesh, but on X Window
systems only.

As a simple example we consider a rectangle 0 < x < 5 and 0 < y < 4. We aim for a mesh with
very few nodes. We consider a problem with Dirichlet condition at the lower and upper boundary (type 1)
and Neumann conditions at the left and right boundary (type 2). The input file test1.d does contain all
necessary information (see the documentation of EasyMesh) and the command EasyMesh test1 will
generate three output files:

test1.d input file with all information on the domain

test1.n output file with data of the nodes

test1.e output file with data of the elements

test1.s output file with data of the line segments

4http://www-dinma.univ.trieste.it/˜nirftc/research/easymesh/

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 161

The three output files of EasyMesh have to be read by Mathematica . The resulting mesh is shown in
figure 7.8, including the numbering of nodes and elements. Observe that the numbering of nodes and
elements in the output files of EasyMesh and in the right part of figure 7.8 differ by one. This is due to that
fact that EasyMesh starts numbering with 0 while we use 1 as the first number.

this is the file test1.d
#=========
| POINTS |
=========#
5 # number of points #

Nodes which define the boundary
0: 0 0 2 1
1: 5 0 2 1
2: 5 4 2 1
3: 0 4 2 1

material marker
4: 2 2 0 1 # material 1 #

#===========
| SEGMENTS |
===========#
4 # Number of segments #

Boundary segments
0: 0 1 1
1: 1 2 2
2: 2 3 1
3: 3 0 2

-

6

x

y

0

3

1

2

side 0

side 2

side 3 side 1material 1

(5, 4)

1

3

2

4
5

8
11

15

16

13

1210

7

6

9

14

8 12

72

5

4

6

11

13

10

14

3

1

9

Figure 7.8: Input information for EasyMesh and the resulting mesh

7.4.3 Reading the mesh information

We have to read the three output files of EasyMesh and store the information about nodes, elements and
segments in appropriate Mathematica variables. This will be put in one function ReadMesh[] to be found

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 162

in table 7.1. To be able to understand the code in this table one has to look at the precise format of the output
files of EasyMesh.

Now read information from files EasyMesh/test1.* by
Mathematica

{nodes,elements,segments}=ReadMesh["EasyMesh/test1"];

and the command MatrixForm[nodes] will lead (almost) to the result below. The first line is added to
document the format of the variable nodes. The marker indicates the type of node. In the input file the
Dirichlet boundary was marked as type 1, thus the points 2, 7, 8 11, 12, 13 and 14 have markers 1 . The two
points 4 and 10 on the Neumann boundary have markers 2 . The result has to be compared with the nodes
in the right part of figure 7.8.

nodes =



number x coordinate y coordinate marker

1 1.40 1.20 0

2 0.00 0.00 1

3 2.00 0.00 1

4 0.00 2.00 2

5 2.95 1.43 0

6 2.05 2.57 0

7 3.67 0.00 1

8 1.33 4.00 1

9 3.60 2.80 0

10 5.00 2.00 2

11 0.00 4.00 1

12 3.00 4.00 1

13 5.00 0.00 1

14 5.00 4.00 1


The format of the variable elements below needs no explanation. Since the rectangle consists of one type

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 163

Mathematica
ReadMesh[filename_String]:=Module[{instream,n,nodes,elements,segements},

(* read all the nodes *)
instream=OpenRead[StringJoin[filename,".n"]];
n=Read[instream,Number];
nodes=Table[{},{n}];
For[k=1,k<=n,k+=1,

tmp=Read[instream,{Number,Character,Real,Real,Number}];
nodes[[k]]=Drop[tmp,{2}];
nodes[[k,1]]+=1; (* numbering starts at 1 *)
];

Close[instream];

(* read the elements *)
instream=OpenRead[StringJoin[filename,".e"]];
n=Read[instream,Number];
elements=Table[{},{n}];
For[k=1,k<=n,k+=1,

tmp=Read[instream,{Number,Character,Number,Number,Number,
Number,Number,Number,Number,Number,Number,
Real,Real,Number}];

elements[[k]]={tmp[[1]]+1,tmp[[3]]+1,tmp[[4]]+1,tmp[[5]]+1,Last[tmp]}
(* numbering starts at 1 *)

];
Close[instream];

(* read all segments *)
instream=OpenRead[StringJoin[filename,".s"]];
n=Read[instream,Number];
segments=Table[{},{n}];
For[k=1,k<=n,k+=1,

tmp=Read[instream,{Number,Character,
Number,Number,Number,Number,Number}];

segments[[k]]=Drop[Drop[tmp,2],{3,4}];
segments[[k,1]]+=1;
segments[[k,2]]+=1; (* numbering starts at 1 *)

];
Close[instream];
segments=Select[segments,Last[#]>0&];
(* return all results *)
{nodes,elements,segments}]

Table 7.1: Mathematica code for ReadMesh[]

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 164

only the last entry in each line equals 1 .

elements =



number corner 1 corner 2 corner 3 material

1 1 2 3 1

2 1 4 2 1

3 1 3 5 1

4 1 6 4 1

5 1 5 6 1

6 5 3 7 1

7 4 6 8 1

8 5 9 6 1

9 5 7 10 1

10 4 8 11 1

11 5 10 9 1

12 6 12 8 1

13 6 9 12 1

14 10 7 13 1

15 9 10 14 1

16 9 14 12 1


The variable segments contains information about the boundary segments. The marker indicates Dirich-
let (1) or Neumann (2) boundary conditions along the straight line segment.

segments =



node 1 node 2 marker

2 3 1

2 4 2

3 7 1

11 4 2

8 11 1

7 13 1

12 8 1

13 10 2

10 14 2

14 12 1


Now we have all information needed for the Finite Element Method.

7.4.4 Element and edge contributions

We have to compute contribution due to the integral∫∫
∆

1

2
a (∇u)2 +

1

2
b u2 + f · u dA

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 165

for each triangle (see section 7.1.2). This cane be done with the function ElementContribution[], it
will generate the element stiffness matrix and also the vector.

Mathematica
(* Integration over one triangle: ElementContribution[] *)
ElementContribution[corners_List,aCoeff_Function,bCoeff_Function,

fCoeff_Function]:=
Module[{area,a,b,c,M},
a=Flatten[{corners[[2]]-corners[[1]],0}];
b=Flatten[{corners[[3]]-corners[[1]],0}];
c=Cross[a,b];
area=Abs[c[[3]]]/2;
M={
{corners[[3,2]]-corners[[2,2]],corners[[1,2]]-corners[[3,2]],

corners[[2,2]]-corners[[1,2]]},
{corners[[2,1]]-corners[[3,1]],corners[[3,1]]-corners[[1,1]],

corners[[1,1]]-corners[[2,1]]}};
{(aCoeff[corners[[1,1]],corners[[1,2]]]+aCoeff[corners[[2,1]],corners[[2,2]]] +
aCoeff[corners[[3,1]],corners[[3,2]]])/(12*area)*
Transpose[M].M +

area/3* {{bCoeff[corners[[1,1]],corners[[1,2]]],0,0},
{0,bCoeff[corners[[2,1]],corners[[2,2]]],0},
{0,0,bCoeff[corners[[3,1]],corners[[3,2]]]}},

area/3* {fCoeff[corners[[1,1]],corners[[1,2]]],
fCoeff[corners[[2,1]],corners[[2,2]]],
fCoeff[corners[[3,1]],corners[[3,2]]]}

}]

As an example we consider a triangle with corners at (0, 0), (1, 0) and (1, 0) with functions a(x, y) = 1,
b(x, y) = 0 and f(x, y) = 7.

Mathematica
a=Function[{x,y},1];
b=Function[{x,y},0];
f=Function[{x,y},7];
{elemMat,elemVec}=ElementContribution[{{0,0},{1,0},{0,1}},a,b,f]
.

1 1 1 1 1 1
{{{1, -(-), -(-)}, {-(-), -, 0}, {-(-), 0, -}},

2 2 2 2 2 2

7 7 7
{-, -, -}}
6 6 6

The matrix and vector are given by
1 −1

2 −1
2

−1
2

1
2 0

−1
2 0 1

2

 and


7
6
7
6
7
6


The integration over a boundary segment is done with similar code. The Gauss intgeration in sec-

tion 7.1.3 leads to the code below.
Mathematica

ElementContributionEdge[corners_List,g_Function]:=

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 166

Module[{p1,p2,m,w},
m=(corners[[1]]+corners[[2]])/2;
p1=m+(corners[[1]]-corners[[2]])/Sqrt[3]/2;
p2=m-(corners[[1]]-corners[[2]])/Sqrt[3]/2;
w=N[(1-1/Sqrt[3])/2];

Sqrt[(corners[[1,1]]-corners[[2,1]])ˆ2+(corners[[1,2]]-corners[[2,2]])ˆ2]/2*
{g[p1[[1]],p1[[2]]]*(1-w)+g[p2[[1]],p2[[2]]]*w,
g[p1[[1]],p1[[2]]]*w +g[p2[[1]],p2[[2]]]*(1-w)}

]

7.4.5 Assembling the equations
Now that the contributions of isolated triangles and edges can be computed we have to generate the system
of linear equations to be solved. At first we determine the actual degrees of freedom and number them.

Mathematica
(* Numbering of the degrees of freedom: FindDOF[] *)
FindDOF[nodes_]:=Module[{counter,Node2Degree},
counter=0;
Node2Degree=Table[0,{Length[nodes]}];
For[k=1,k<=Length[nodes],k+=1,

If[nodes[[k,4]]==0,counter+=1;Node2Degree[[k]]=counter;,];
If[nodes[[k,4]]==2,counter+=1;Node2Degree[[k]]=counter;,]

];
{counter,Node2Degree}];

For our example problem we obtain
Mathematica

{dof,Node2Degree} = FindDOF[nodes]
.
{6,{1,0,0,2,3,4,0,0,5,6,0,0,0,0}}

Thus in our sample problem we have only 6 nodes where the value of the function has to be computed,
namely the nodes 1, 4, 5, 6, 9 and 10. This information gives the correct size of the global stiffness matrix,
a 6× 6 matrix for our example.

For each element the element stiffness matrix and vector have to be added to the global stiffness matrix
and vector at the correct location, given in the vector Node2Degree.

Mathematica
insertElement[element_List,aCoeff_Function,bCoeff_Function,fCoeff_Function,

gCoeff_Function,nodes_List,Node2Degree_List] :=
Block[{elMat,elVec,corners,dofs,tMat},
corners={{nodes[[element[[1]],2]],nodes[[element[[1]],3]]},

{nodes[[element[[2]],2]],nodes[[element[[2]],3]]},
{nodes[[element[[3]],2]],nodes[[element[[3]],3]]}};

{elMat,elVec}=ElementContribution[corners,aCoeff,bCoeff,fCoeff];
dofs={Node2Degree[[element[[1]]]],Node2Degree[[element[[2]]]],

Node2Degree[[element[[3]]]]};
For[k1=1,k1<=3,k1+=1,

If[dofs[[k1]]>0,
For[k2=1,k2<=3,k2+=1,

If[dofs[[k2]]>0,
Aglobal[[dofs[[k1]],dofs[[k2]]]]+=elMat[[k1,k2]];,

(*else*)
bglobal[[dofs[[k1]]]]+=
(elMat[[k1,k2]]*gCoeff[corners[[k2,1]],corners[[k2,2]]]);

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 167

](*if k2*)
];(*for k2*)

bglobal[[dofs[[k1]]]]+= elVec[[k1]];
](*if k1*);

](*for k1*);
](*block*)

The same has to be done for each segment on the boundary.
Mathematica

insertElementEdge[edge_List,g_Function,nodes_List,Node2Degree_List] :=
Block[{elVec,corners,dofs,k},
corners={{nodes[[edge[[1]],2]],nodes[[edge[[1]],3]]},

{nodes[[edge[[2]],2]],nodes[[edge[[2]],3]]}};
elVec=ElementContributionEdge[corners,g];
dofs={Node2Degree[[edge[[1]]]], Node2Degree[[edge[[2]]]]};
For[k=1,k<=2,k+=1,

If[dofs[[k]]>0,bglobal[[dofs[[k]]]] -= elVec[[k]]];
](*for k*);
](*block*)

Now all necessary tools are available and we can attempt to solve the problem.

7.4.6 Solving the equations
All of the above routines are now combined a single command to solve a given boundary value problem.

Mathematica
FEMSolve[a_Function,b_Function,f_Function,g1_Function,g2_Function,

nodes_List,elements_List,segments_List]:=
Block[{uglobal,dof,Node2Degree},
{dof , Node2Degree} = FindDOF[nodes];
Aglobal=Table[0,{dof},{dof}];
bglobal=Table[0,{dof}];
For[k=1,k<=Length[elements],k+=1,

insertElement[Take[elements[[k]],{2,4}],a,b,f,g1,nodes,Node2Degree]] ;
For[k=1,k<=Length[segments],k+=1,

If[segments[[k,3]]==2,
insertElementEdge[Take[segments[[k]],2],g2,nodes,Node2Degree]]];

(* solve the system of linesr equations *)
uglobal=LinearSolve[Aglobal,-bglobal];
Table[{nodes[[k,2]],nodes[[k,3]],

Which[Node2Degree[[k]]>0,uglobal[[Node2Degree[[k]]]],
True,g1[nodes[[k,2]],nodes[[k,3]]]]},

{k,Length[nodes]}]
]

Now the result can be generated with very little code, thanks to the above functions.
Mathematica

a=Function[{x,y},1];
b=Function[{x,y},0];
f=Function[{x,y},-1];
gDirichlet=Function[{x,y},y/10];
gNeumann=Function[{x,y},-1];

points=FEMSolve[a,b,f,gDirichlet,gNeumann,nodes,elements,segments]
.

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 168

{{1.4,1.200,1.290},{0.,0.,0.},{2.,0.,0.},{0.,2.,0.948}, {2.952,1.429,1.539},
{2.048,2.571,1.654},{3.667,0.,0.},{1.333,4.,0.4},{3.6,2.800,1.459},
{5.,2.,0.948},{0.,4.,0.4},{3.,4.,0.4},{5.,0.,0.},{5.,4.,0.4}}

The variable points contains the three components of all nodes of the mesh.
All of the above code can be put in one file BVP2.m and will form a Mathematica package. Only the

two commands FEMSolve[] and ReadMesh[] have to be exported.

7.4.7 Visualization
With the information in points and elements the graph of the solution can be generated by the code
below and leads to figure 7.7 on page 160.

Mathematica
g=FEMSurface[points,elements];
solution=Show[g,

PlotRange ->All,
Axes->True,
AxesLabel->{"x","y","u"},

AspectRatio ->1,
ViewPoint->{4,-4,2}];

The package BVP2.m also contains command to visualizs the mesh and create level curves on the surface
describing the solution. The example in figure 7.9 and the code below speaks for itself.

Mathematica
Show[MeshGraphics[nodes,elements]];

gsurf= FEMSurfaceNoMesh[points,elements];
glevel=LevelGraphics3D[points,elements,Table[le,{le,0,2,0.1}]];
gg4=Show[{gsurf,glevel},

PlotRange ->All,
Axes->True,
AxesLabel->{"x","y","u"},
AspectRatio ->1,
ViewPoint->{4,-4,4}]

SHA 22-4-21

CHAPTER 7. FINITE ELEMENT PROBLEMS IN TWO VARIABLES 169

0

2

4

x

0

1

2

3

4

y

0

0.5

1

1.5

u
0

2

4

x

0

0.5

1

1.5

Figure 7.9: Visualization of the mesh and the solution of the test problem

7.5 Exercises

•Exercise 7–1:
According to equation (7.2) on page 148 the element stiffness matrix A∆ is given by

A∆ =
1

4 A2
MT ·M =

1

4A2


(y3 − y2) (x2 − x3)

(y1 − y3) (x3 − x1)

(y2 − y1) (x1 − x2)

 ·
[

(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]

Consider the special case x1 = y2 = 0 and compute A∆. Then verify the following:

(a) The matrix is symmetric and all diagonal elements in A∆ are strictly positive.

(b) The sum of the entries along each row is zero. Thus the matrix is diagonally dominant (see sec-
tion 11.2).

(c) Use the identity
〈M · ~u , M · ~u〉 = ‖M · ~u‖2

to verify that A∆ is positive semidefinite. The above expression is zero if and only if u1 = u2 = u3.

•Exercise 7–2:
Use the problem in section 7.3 with increasing values for nx = ny to examine the error as a function of h.
Use the exact solution u(x, y) = −5π2 sin(π x) · sin(2π y) of the equation ∆u = sin(π x) · sin(2π y).
Observe the average of the squared error and the computation time. Also keep track of the time needed to
set up the system of equations and to solve the system. The basic code should be provided by the instructor.

SHA 22-4-21

Chapter 8

Some Applications

Most of the applications in this section are solve with help of the Octave package FEMoctave, available
at [www:sha]. All problems can be solved with the help of the MATLAB toolbox.

8.1 Computing a capacitance

8.1.1 State the problem

We examine a circular plate capacitance as shown in figure 8.1. Based on the radial symmetry one should
be able to consider a two dimensional section only for the computations.

x

y

1 3

45

6

89

2

7

Figure 8.1: The capacitance and the section used for the modeling

Consider the voltage u as unknown. On the upper conductor we assume u = 1 and on the lower
conductor u = −1. Based on the symmetry we consider a section only and use u = 0 in the plane centered
between the conductors. We use the Laplace operator in cylindrical coordinates (see Appendix A.2.4).
Based on the results listed in Appendix A.6 the following boundary value problem has to be solved.

div(x gradu(x, y)) = 0 in domain

u(x, 0) = 0 along edge y = 0

u(x, y) = 1 along edges of upper conductor
∂ u(x,y)
∂n = 0 on remaining boundary

(8.1)

We assume that the domain is embedded in the rectangle 0 ≤ x ≤ R and 0 ≤ y ≤ H . The lower edge of
the conductor is at y = h and 0 ≤ x ≤ r. If h� r we expect the gradient of u to be 1/h between the plates
and zero away from the plates. Thus

flux =

∫∫
disk

~n · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx ≈ 2π

∫ r

0
x

1

h
dx =

π r2

h

170

CHAPTER 8. SOME APPLICATIONS 171

Because the electric field will not be homogeneous around the boundaries of the disk we expect deviations
from the result of an idealized circular disk. With the divergence theorem (Appendix A.3) and a physical
argument one can verify that the flux trough the midplane is proportional to the capacitance.

By applying the following steps we will compute the capacitance by analyzing the solution of a boundary
value problem. We apply the following steps:

1. Create a mesh for the domain in question.

2. Define parameters and boundary conditions.

3. Solve the partial differential equation and visualize the solution.

4. Compute the flux through the midplane as an integral to determine the capacitance.

8.1.2 Create the mesh

According to figure 8.1 we create a mesh with the following data.

h = 0.2 distance between midplane and lower edge of capacitance

r = 1.0 radius of disk of the capacitance

H = 0.5 height of the enclosing rectangle

R = 2.5 radius of the enclosing rectangle

As input for the mesh generating code triangle (see [www:triangle]) we need

• the coordinates of the corner points, numbered according to figure 8.1

• a list of all the connecting edges and the type of boundary conditions to be used

• information of the desired area of the triangles to be generated

We use two different sizes of the triangles since we want to have a finer mesh between the plates, expecting
large variations in the solution. Below find the listing of the file capacitance.poly with this informa-
tion. The numbering of the nodes is also visible in figure 8.1.

nodes
9 2 0 1
1 0 0 1
2 2.0 0 1
3 2.5 0 1
4 2.5 0.5 2
5 0.1 0.5 1
6 0.1 0.3 1
7 1.0 0.3 1
8 1.0 0.2 1
9 0.0 0.2 1
segments
10 1
1 1 2 1
2 2 3 1
3 3 4 2
4 4 5 2
5 5 6 1
6 6 7 1
7 7 8 1

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 172

8 8 9 1
9 9 1 2
10 2 7 0
holes
0
area markers
2
1 0.1 0.01 0 0.0002
2 2.1 0.01 0 0.001

With the above we now use the two commands triangle and CuthillMcKee.

triangle -pqa capacitance.poly
CuthillMcKee -v -s0 capacitance.1

The first line generates the mesh. Since we need a small bandwidth of the resulting global stiffness matrix
we renumber the nodes with the help of the Cuthill–McKee algorithm. More information on this algorithm
is given in section 11.4. Now we may use Octave to load and display the generated mesh. Find the result
in figure 8.2. The mesh consists of 2189 nodes, forming 4036 triangles. The resulting semi-bandwidth is
smaller that 43.

Octave
clear *
[nodes,elem,edges]=ReadMeshTriangle("./capacitance.1");
ShowMesh(nodes,elem)

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5

Figure 8.2: A mesh on the domain

8.1.3 Creating the functions for Octave

To solve the differential equation (8.1) we need a definition of the coefficient function and the Dirichlet
boundary function.

Octave
global h=0.2; r=1; R=2.5;

function res = aF(xy)
res=xy(:,1);

endfunction

function res = volt(xy)
global h;
[n,m]=size(xy);
res=zeros(n,1);

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 173

for k=1:n
if (xy(k,2)<h/2) res(k)=0;
else res(k)=1;endif

endfor
endfunction

8.1.4 Solve the system and show the solution

Now we can set up and solve the system of linear equations. We end up with a system for 1937 unknowns
and a semi-bandwidth of 41.

Octave
[A,b,n2d] = FEMEquation(nodes,elem,edges,’aF’,0,0,’volt’,0);
sprintf("The stiffnes matrix has size %i with semi-bandwidth %i",size(A))
u = FEMSolveSym(nodes,A,b,n2d,’volt’);

Now we can generate a plot of the voltage u(x, y) and its level curves by the following commands. Find
the results in figures 8.3 and 8.4.

Octave
figure(1);
gset xrange [*:*]
gset yrange [*:*]
ShowLevelCurves(nodes,elem,u,linspace(0,1.1,12));
figure(2);
ShowSolution(nodes,elem,u);

0
0.5

1
1.5

2
2.5 0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

Figure 8.3: The voltage within the capacitance

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 174

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5

Figure 8.4: Level curves for the voltage in the capacitance

8.1.5 Compute the capacitance

It remains to compute the flux through the midplane. For this we first compute the gradient of the voltage u
along the line y = 0. Find the plot of the normal component in figure 8.5. The graph confirms that between
the plates the gradient is approximately 1/h = 1/0.2 = 5 and vanishes away from the plate.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

Figure 8.5: Normal component of the gradient along midplane

Then a simple trapezoidal rule is used to determine the flux accross the midplane with the integral.

flux =

∫∫
disk

~n · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx

For the chosen values of h, H , r and R we obtain a factor of 1.52 between result of the boundary value
problem and the idealized approximation π r2/h.

Octave
N=201; # number of grid points to use for numerical integration
x=linspace(0,R,N);
y=0.0*ones(1,N);
[uVal,grad]=FEMValue([x;y]’,nodes,elem,u);

plot(x,grad(:,2))

trapezoidal integration and normalization
flux=2*pi*(x*grad(:,2)-x(1)*grad(1,2)/2-x(N)*grad(N,2)/2)*R/(N-1)*(h/(pi*r**2))

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 175

8.2 Heat conduction on a circuit board

Consider an elementary circuit board with one heat generating chip on the board, as shown in figure 8.6. As
the chip will add thermal energy to the board it will heat up and reach a stable heat distribution. We use the
following assumptions:

• The integrated circuit is the only heat generating device and the heat generated per time and area is
assumed to be constant across the chip.

• The board will dissipate energy into the surrounding air with a rate proportional to the difference of
the temperature on the board and the air.

• The temperature will be independent on the height z.

• We neglect the heat flux across the lateral boundary of the chip.

�x

-
y

-
x

6y

f = f1

ρ = ρ1

f = 0 ρ = ρ0

∂ u
∂n = 0∂ u

∂n = 0

∂ u
∂n = 0

∂ u
∂n = 0

Figure 8.6: A circuit board

The dynamic heat equation (4.2) on page 65 has to be supplemented by a term representing the dis-
sipation of heat proportional to the difference u of the temperature T on the board and the surrounding
temperature. We arrive at the PDE

ρ
∂ u

∂t
= c div (∇u)− b u+ f

with Neumann boundary conditions.
For the sample computations we consider the board with coordinates 0 ≤ x ≤ 4 and 0 ≤ y ≤ 3 and the

IC is placed at 1.5 ≤ x ≤ 3 and 1 ≤ y ≤ 2.5 . To generate a mesh we use the program triangle with the
input file board.poly shown below.

nodes
8 2 0 1
1 0 0 1
2 4 0 1
3 4 3 1
4 0 3 1
5 1.5 1 0
6 3 1 0
7 3 2.5 0
8 1.5 2.5 0
segments
8 1

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 176

1 1 2 2
2 2 3 2
3 3 4 2
4 4 1 2
5 5 6 0
6 6 7 0
7 7 8 0
8 8 5 0
holes
0

Then we create the mesh and renumber the nodes by

triangle -pqa0.01 board.poly
CuthillMcKee -v -s0 board.1

We arrive at a mesh with 991 nodes and a semi-bandwidth of 47.

8.2.1 The static situation

The static temperature distribution u(x, y) has to solve the PDE

−c div (∇u) + b u = −f =

{
−f0

0
in Ω

∂ u
∂n = 0 on Γ

For sake of simplicity we solve the problem with c = b = f0 = 1. For real world problems those constants
have to be determined using physical data.

First we provide code to compute the heating function f(x, y).

Octave
function res=HeatFunction(xy)
res=-ones(size(xy)(1),1);
select=(xy(:,1)>1.5).*(xy(:,1)<3.0).*(xy(:,2)>1.0).*(xy(:,2)<2.5);
res=res.*select;

endfunction

Then we read the mesh information, display the mesh and verify the correct coding for the function f .

Octave
% read the mesh
[nodes,elem,edges]=ReadMeshTriangle("./board.1");
% verify the mesh
ShowMesh(nodes,elem)
% disp("Hit RETURN");pause();
% verify the coding of the heat function
ShowSolution(nodes,elem,-HeatFunction(nodes));

Now the boundary value problem can be solved and the graph of the solution displayed, leading to the
solution in figure 8.7.

Octave
[A,b,n2d] = FEMEquation(nodes,elem,edges,1,1,’HeatFunction’,0,0);

printf("The stiffnes matrix has size %i with semi-bandwidth %i\n",size(A));
u = FEMSolveSym(nodes,A,b,n2d,0);
printf("The values of the solution vary between %f and %f\n",min(u),max(u));

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 177

% show the graph of the solution
figure(1);
ShowSolution(nodes,elem,u);
% show the level curves of the solution
figure(2);
ShowLevelCurves(nodes,elem,u,linspace(0,max(u),11));

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 8.7: The static temperature and level curves for the circuit board

The output of the code implies that for the temperature u we have 0.063 ≤ u ≤ 0.344 . This implies
that the temperature difference on the IC is by a factor of 6 larger than at the edges of the board.

It is interesting to observe how the temperature u depends on the values of the constant b.

8.2.2 The dynamic situation

We assume that the circuit board starts out with initial temperature u0 = 0. The dynamic temperature
distribution u(t, x, y) has to solve the PDE

ρ u̇− c div (∇u) + b u = −f =

{
−f0

0
for (t, x, y) ∈ R+ × Ω

∂ u
∂n = 0 for (t, x, y) ∈ R+ × Γ

u(0, x, y) = 0 for (x, y) ∈ Ω

For sake of simplicity we solve the problem with c = b = f0 = 1. For real world problems those constants
have to be determined.

Using a FEM discretization for the space variable the above is transformed into

M · ~̇u(t) + A · ~u(t) = ~f(t) with ~u(0) = ~0

Using a fully implicit approximation scheme with time step ∆t as presented in section 5.4.5 we find the
time step

M (~u(t+ ∆t)− ~u(t)) = ∆t
(
−A · ~u(t+ ∆t) + ~f(t+ ∆t)

)
(M + ∆t A) · ~u(t+ ∆t) = M · ~u(t) + ∆t · ~f(t+ ∆t)

(8.2)

Since a fully implicit scheme is unconditionally stable there are no restrictions on the size of the time step
∆t .

We used the same values for the constants as in the static example. The density ρ of the material was
assumed to be ρ = 1 on the board and ρ = 2 on the IC. First we have to define the basic functions for
FEMoctave.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 178

Octave
[nodes,elem,edges]=ReadMeshTriangle("./board.1"); % read the mesh
nn=size(nodes)(1);

function res=rho(xy)
res=ones(size(xy)(1),1);
select=(xy(:,1)>1.5).*(xy(:,1)<3.0).*(xy(:,2)>1.0).*(xy(:,2)<2.5);
res=res+res.*select;

endfunction

Then the diagonal mass matrix M is created as the RHS of the correct boundary value problem1. Then
the matrix A and the constant vector ~f are determined.

Octave
% determine the mass matrix M
[A,M,n2d] = FEMEquation(nodes,elem,edges,1,1,’rho’,0,0);
% determine matrix A and vector b
[A,b,n2d] = FEMEquation(nodes,elem,edges,1,1,’HeatFunction’,0,0);

To perform the time steps in equation (8.2) we choose the size of the time step ∆t and then compute the
matrix for the linear system to be solved and its Cholesky factorization. The used algorithm is based on the
results in section 11.2 (page 262).

M + ∆t ·A = RT ·D ·R

This leads to efficient code to solve the resulting systems of linear equations.

Octave
% time steps setup
uold=zeros(size(b)); % initialize the vectors to contain the solution.
unew=uold;
dt=0.1;
% form the new matrix M + dt*A
A *= dt;
A(:,1) += M;
R=SBFactor(A); % determine the Cholesky decomposition

Now we can compute the graphs of the solutions at different time levels and create a poor man’s animation
on the screen. The result is shown in figure 8.8.

Octave
gset zrange [0:0.35]
t=0;
for kk=0:50
eval(sprintf(...

"gset title \" solution at time t = %1.2f, min(u)=%0.4f, max(u)=%0.3f \""...
,t,min(unew),max(unew)));

ShowSolution(nodes,elem,unew); % show the solution
unew=SBBacksub(R,M.*uold-dt*b); % solve one time step
uold=unew; t +=dt;
usleep(0.5e6)

endfor
gset zrange [*:*]

In figure 8.8 we observe that the solution barely changes any more for larger values of t. Most of the
changes occur for small times t. To examine the solutions we choose a smaller time step and show the level
curves of the solutions, where the different curves indicate a difference of 0.02 in the values of u. The code

1This author is fully aware that he should write code to compute the contribution separately.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 179

 solution at time t = 0.00, min(u)=0.0000, max(u)=0.000

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

 solution at time t = 1.00, min(u)=0.0132, max(u)=0.235

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

 solution at time t = 2.00, min(u)=0.0364, max(u)=0.298

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

 solution at time t = 3.00, min(u)=0.0504, max(u)=0.324

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

 solution at time t = 4.00, min(u)=0.0572, max(u)=0.335

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

 solution at time t = 5.00, min(u)=0.0604, max(u)=0.340

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.5

1
1.5

2
2.5

3

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Figure 8.8: The temperatures for the dynamic solution on a circuit board

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 180

below will create the results in figure 8.9. The coding is slightly simplified, since we have no Dirichlet
boundary conditions. Thus the value of the function at each node correspond to a degree of freedom. There
is no need to compute the solutions at the Dirichlet nodes.

Octave
% time steps setup
uold=zeros(size(b));
unew=uold;
dt=0.02;

% form the new matrix M + dt*A
A *= dt;
A(:,1) += M;
R=SBFactor(A); % determine the Cholesky decomposition

gset zrange [0:0.35]
gset xrange [0:4]
gset yrange [0:3]
t=0;
for kk=0:50
eval(sprintf(...

"gset title \" solution at time t = %1.2f, min(u)=%0.4f, max(u)=%0.3f \""...
,t,min(unew),max(unew)));

ShowLevelCurves(nodes,elem,unew,linspace(0,0.4,21)); % show the solution
unew=SBBacksub(R,M.*uold-dt*b); % solve one time step
uold=unew; t +=dt;
usleep(0.9e6);

endfor
gset zrange [*:*]

Obviously the above computations are easy to repeat with different values for the parameters and phys-
ical constants. This allows to examine the effects of possible modifications to the setup, without building a
new device. It is up to the user to draw the correct conclusions from the results of such simulations.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 181

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.10, min(u)=0.0000, max(u)=0.047

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.20, min(u)=0.0001, max(u)=0.087

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.30, min(u)=0.0003, max(u)=0.120

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.40, min(u)=0.0010, max(u)=0.146

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.50, min(u)=0.0021, max(u)=0.168

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.60, min(u)=0.0037, max(u)=0.187

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.70, min(u)=0.0056, max(u)=0.203

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.80, min(u)=0.0079, max(u)=0.217

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 0.90, min(u)=0.0104, max(u)=0.229

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

 solution at time t = 1.00, min(u)=0.0130, max(u)=0.239

Figure 8.9: The level curves for the temperatures on a circuit board

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 182

8.3 Torsion of a shaft

In section 9.4 on page 220 the problem of torsion of shaft with constant cross is considered. Assume that
the shaft extends in z–direction and the cross section is given by Ω ⊂ R2. The domain has to be placed such
that its center of gravity is at the origin. We denote the boundary by Γ and ~n is the outer unit normal. Then
we have to solve the following boundary value problem for the warp function φ.

div(∇φ) = 0 in Ω ⊂ R2

∇φ · ~n = ~n ·

(
y

−x

)
on Γ = ∂Ω

(8.3)

Then the torsional rigidity J is given by the integral

J =

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA (8.4)

and thus for a shaft of length L the total change of angle β caused by a torque T is determined by

β = L · α =
2 (1 + ν)

J E
L · T

The resulting normal stresses are 0 and

σ = ±T
J

√(
x+

∂ φ

∂y

)2

+

(
−y +

∂ φ

∂x

)2

(8.5)

This result is a copy of equation (9.8) on page 225. If we apply a standard torque of J = 1 we can then
determine the stress across the section and also the maximal stress. This information may be useful for
applications.

8.3.1 Torsional rigidity of a square

As a first example we consider a square section with unit area. The mesh is generated by the code below.
One point of the mesh has to be declared to be a Dirichlet node since the solution of the boundary value
problem (8.3) is only determined up to an additive constant. Thus we have to give the value of φ at one point
to find a unique solution.

Octave
xy=[-0.5,-0.5,2; 0.5,-0.5,2; 0.5,0.5,2; -0.5,0.5,2];
CreateMeshTriangleQ("square",xy,0.0005);
[nodes,elem,edges]=ReadMeshTriangle("square.1");
nodes(1,3)=1; % mark one point as Dirichlet node

The boundary Γ of the square consists of four section and we have to define a function to compute the
RHS of the boundary condition in (8.3).

Octave
function res = gN(xy)
[n,m]=size(xy);
res=zeros(n,1);
for kk=1:n
if (xy(kk,2)>abs(xy(kk,1))) res(kk)=-xy(kk,1);
elseif (xy(kk,1)>abs(xy(kk,2))) res(kk)=xy(kk,2);
elseif (xy(kk,2)<-abs(xy(kk,1))) res(kk)=xy(kk,1);
elseif (xy(kk,1)<-abs(xy(kk,2))) res(kk)=-xy(kk,2);
endif

endfor
endfunction

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 183

Now the PDE is easily solved and a graph of the warp function is shown in figure 8.10.

Octave
[A,b,n2d] = FEMEquation(nodes,elem,edges,1,0,0,0,’gN’);
printf("The stiffnes matrix has size %i with semi-bandwidth %i\n",size(A));
u = FEMSolveSym(nodes,A,b,n2d,0);

figure(1);
ShowSolution(nodes,elem,u);
figure(2);
ShowLevelCurves(nodes,elem,u,linspace(min(u),max(u),11));

-0.6
-0.4

-0.2
0

0.2
0.4

0.6 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 8.10: The warp function and its level curves for a square

To compute the rigidity J we use (8.4), thus we need to compute the gradient of the warp function φ and
then find J as an integral over the domain.

J =

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA

Octave
grad=FEMGradient(nodes,elem,u);
f=nodes(:,1).ˆ2+nodes(:,2).ˆ2 +nodes(:,1).*grad(:,2)-nodes(:,2).*grad(:,1);
rigidity=FEMIntegrate(nodes,elem,f)

This leads to a result of J ≈ 0.141.

According equation (8.5) we can compute the resulting stresses in the shaft and create figure 8.11. The
maximal stress is 4.77 .

Octave
f=sqrt((nodes(:,1)+grad(:,2)).ˆ2+(-nodes(:,2)+grad(:,1)).ˆ2)/rigidity;
maximalStress=max(f)
figure(3);
ShowSolution(nodes,elem,f);
figure(4);
ShowLevelCurves(nodes,elem,f,linspace(0,max(f),11));

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 184

-0.6
-0.4

-0.2
0

0.2
0.4

0.6 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 8.11: The stress function and its level curves for a square

8.3.2 Torsional rigidity of a circle and a circle with hole

If the section of the shaft is a circle with radius R we have to solve the problem

div(∇φ) = 0 for ‖~x‖ < R

∇φ · ~n = 0 for ‖~x‖ = R

The only solutions to this problem are φ(~x) = const and thus the torsional rigidity is given by

J =

∫ ∫
x2+y2<R

x2 + y2 dA =
π

2
R4

and the resulting stresses are

σ = ±T
J

√
x2 + y2 =

r

J
=

2

π R4

For a circle with area equal to 1 we find R = 1/
√
π ≈ 0.564 and thus

J =
π

2

(
1√
π

)4

=
1

2π
≈ 0.159

Thus a circle is slightly more rigid than a square of the same area and also shows a smaller maximal stress
of σ = 3.54.

If a hollow circular cylinder with inner radius R1 and outer radius R2 is considered we find

J =
π

2

(
R4

2 −R4
1

)
and

σ =
r

J
=

2 r

π (R4
2 −R4

1)

By choosing R1 = 0.317 and R2 = 0.647 we have an area of 1 and J = 0.260 and a maximal tension
σ = 2.49. As is to be expected we find larger rigidity and a smaller maximal stress.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 185

8.3.3 Torsional rigidity of a rectangle

The above computations for a square can be modified to handle a rectangle. For a rectangle with width 1
1.2

and height 1.2 we obtain figures 8.12 and 8.13. The rigidity of J ≈ 0.133 is smaller than for the square and
the maximal stress σ ≈ 5.22 turns out to be larger.

-0.5
-0.4

-0.3
-0.2

-0.1
0

0.1
0.2

0.3
0.4

0.5 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 8.12: The warp function and its level curves for a rectangle

-0.5
-0.4

-0.3
-0.2

-0.1
0

0.1
0.2

0.3
0.4

0.5 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

0

1

2

3

4

5

6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 8.13: The stress function and its level curves for a rectangle

8.3.4 Torsional rigidity of a square with hole

The above computations for a square can be modified to handle a square with a hole with total area 1 again.
With inner length d1 = 0.75 and outer length d2 = 1.25 we obtain figures 8.14 and 8.15. The rigidity of
J ≈ 0.289 is large and the maximal stress turns out to be σ ≈ 2.75 .

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 186

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

0.8 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 8.14: The warp function and its level curves for a square with hole

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

0.8 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 8.15: The stress function and its level curves for a square with hole

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 187

8.3.5 Comparison of different sections

In the previous section we computed the torsional rigidity of five different sections, each with area equal
to 1 . On each section a standard torque of J = 1 was applied an then the resulting maximal stress computed.
For the two hollow structures the same area was cut out, i.e. d2

1 = π R2
1. Find the results in table 8.1.

form of section, area 1 and applied torque T = 1 rigidity J maximal stress σ

circle, R = 0.564 J = 0.159 σ = 3.54

square, size 1× 1 J = 0.141 σ = 4.77

rectangle, size 1.2× 1
1.2 J = 0.133 σ = 5.22

square with hole, d1 = 0.75, d2 = 1.25 J = 0.289 σ = 2.78

circular hollow shaft, R1 = 0.317, R2 = 0.647 J = 0.260 σ = 2.49

Table 8.1: Comparison of torsional rigidity and maximal stress

For the above calculations we used a standard area of 1 . If the width and depth of the sections are
multiplied with a factor α, then the rigidity J has to be multiplied with α4 and the maximal tension has to
be divided by α3 .

8.4 Vibrations of a membrane

According to Table 6.1 (page 144) the vertical displacement u of membrane under tension T on the domain
Ω ⊂ R2 has to solve the boundary value problem

−div (T gradu) = f in Ω

u = 0 on Γ = ∂Ω

where f represents the vertical force density (units
[
N/m2

]
). If no external force is applied the force density

will lead to a vertical acceleration of the membrane with f = ρ ü, where ρ is the mass per area. Thus we
are lead to an wave type equation

−div (T gradu) = ρ ü or −∆u =
ρ

T
ü

Now consider the eigenvalue problem

−∆u = λ u in Ω

u = 0 on Γ = ∂Ω

then the above wave equation is solved by cos(ω t) u(~x) where the angular velocity is given by

ω =

√
T

ρ

√
λ

Thus for each eigenvalue λ there is a corresponding eigenfrequency ω. For a bounded domain Ω ⊂ R2

there is a discrete set of positive eigenvalues λ and the resulting frequencies. Using FEMoctave numerical
approximations of these eigenvalues can be computed.

For a disk Ω ⊂ R2 with radius 1 the code below will compute four eigenvalues and eigenfunctions,
leading to figure 8.16.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 188

Octave
R=1; % radius of circle
nR = 40 ; % number of divisions to create circle
area=0.004;
w=linspace(0,2*pi*(1-1/nR),nR); % angles of points on circle
xy=[R*cos(w);R*sin(w);ones(1,nR)]’;
CreateMeshTriangleQ("circle",xy,area)
[nodes,elem,edges]=ReadMeshTriangle("./circle.1");

[la,vec]=FEMEig(nodes,elem,edges,1,0,1,4,1e-6);
la=la’

figure(1);ShowSolution(nodes,elem,vec(:,1))
figure(2);vmin=min(vec(:,1)); vmax=max(vec(:,1));
ShowLevelCurves(nodes,elem,vec(:,1),linspace(vmin,vmax,11))
disp("Hit RETURN"); pause();

figure(1); ShowSolution(nodes,elem,vec(:,2))
figure(2); vmin=min(vec(:,2)); vmax=max(vec(:,2));
ShowLevelCurves(nodes,elem,vec(:,2),linspace(vmin,vmax,11))
disp("Hit RETURN"); pause();

figure(1); ShowSolution(nodes,elem,vec(:,4))
figure(2); vmin=min(vec(:,4)); vmax=max(vec(:,4));
ShowLevelCurves(nodes,elem,vec(:,4),linspace(vmin,vmax,11))

A separation of variable argument shows that the exact eigenvalues are given by
√
λ = zn,m = mth zero of Jn(r)

where Jn(r) are the Bessel functions of the first kind. The eigenfunctions are

u(r, φ) = Jn(r/zn,m) · cos(
n

2π
φ) and u(r, φ) = Jn(r/zn,m) · sin(

n

2π
φ)

Thus we can compare the results of this code with the exact solution. Observe that for n ≥ 1 we have
eigenvalues of multiplicity 2. The table below compares the first 20 eigenvalues (resp.

√
λ) computed by

FEMoctave with the exact values zn,m.

1 2 3 4 5 6 7 8 9 10
√
λ 2.4089 3.8365 3.8365 5.1393 5.1390 5.5226 6.3799 6.3802 7.0120 7.0122

zn,m 2.4048 3.8317 5.1356 5.5201 6.3802 7.0156

n 0 1 1 2 2 0 3 3 1 1

m 1 1 1 1 1 2 1 1 2 2

11 12 13 14 15 16 17 18 19 20
√
λ 7.5826 7.5810 8.4047 8.4028 8.6384 8.7552 8.7555 9.7363 9.7307 9.9043

zn,m 7.5883 8.4172 8.6537 8.7715 9.7610 9.9361

n 4 4 2 2 0 5 5 3 3 6

m 1 1 2 2 3 1 1 2 2 1

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 189

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 8.16: The first, second and fourth eigenfunction of a vibrating membrane

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 190

8.5 Sound in a bottle

8.5.1 The question

By blowing air across the opening of an empty bottle one can create a sound. The frequency of the sound
will depend on the shape and size of the bottle. We will determine the possible frequencies. This will
leads to a wave equation for the unknown pressure function u(t, ~x). The question is then reduced to a static
eigenvalue problem with the help of separation of variables. A few different, but comparable configurations
are examined.

8.5.2 Finding the correct equation, based on conservation laws

With basic laws of physics we will derive the equation to be solved for the above problem. A slightly more
detailed presentation is given in [GuenLee96, §1.7, §12.2]. The physical quantities to be considered are the
density ρ of the gas, its pressure p and the average particle velocity ~v, all as function of time t ∈ R and at
~x ∈ R3.

• Conservation of mass
If a gas with density ρ is moving with velocity ~v the change of mass in a volume Ω ⊂ R3 with
boundary ∂Ω with outer unit normal ~n is given by

d

dt
M =

∫∫∫
Ω

ρ̇ dV = −
∫i∫
∂Ω

~n · (ρ~v) dA = −
∫∫∫

Ω

div(ρ~v) dV

Since the volume Ω is arbitrary we conclude

ρ̇ = − div(ρ~v)

• Newton’s second law
The only external forces acting on the gas in the volume Ω ⊂ R3 is the pressure p on its surface. Thus
the total force on the volume is

~F = −
∫i∫
∂Ω

p~n dA

For i = 1, 2, 3 we use ni = ~ei · ~n and then the component of the force in the direction of ~ei created
by the pressure is given by p ni. Thus

Fi = −
∫i∫
∂Ω

p ~ei · ~n dA = −
∫∫∫

Ω

div(p~ei) dV = −
∫∫∫

Ω

∂

∂xi
p dA

Since the total momentum of the gas in the Ω is given by∫∫∫
Ω

ρ~v dV

Newton’s second law implies

d

dt

∫∫∫
Ω

ρ~v dV = −
∫∫∫

Ω

grad p dV

and thus2

d

dt
(ρ~v) = − grad p

2We ignore terms due to gas moving in or out of the volume Ω, since those terms are of higher order and would be thrown away
by linearization anyhow.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 191

or writing out the components again

d

dt
(ρ vi) = − ∂

∂xi
p for i = 1, 2, 3

• Linear approximations
Now we use ρ = ρ0 + u, where ρ0 is the constant standard pressure. We assume that u (and its
derivatives) are considerably smaller that ρ0 and thus

div(ρ~v) = ρ0 div~v + u div~v + gradu · ~v ≈ ρ0 div~v

Similarly
d

dt
(ρ~v) = u̇ ~v + ρ0 ~̇v ≈ ρ0 ~̇v

As a consequence of the above simplifications we obtain the two conservation laws

u̇ = −ρ0 div~v

ρ0 ~̇v = − grad p

Now differentiate the first equation with respect to t and compare with the divergence of the second
equation to conclude that

ü = div(grad p)

Use p = p0 + β u and thus grad p = β gradu. The coefficient β is given as β = ∂ p
∂ρ . We obtain the

standard wave equation
ü = β div(gradu)

We need to determine the boundary conditions for the above PDE. There are two different types of
conditions.

• open boundary
Far away we expect no forces and displacements and thus ρ = const = ρ0, i.e. we find a Dirichlet
boundary condition u = 0 .

• hard boundary
Along the surface of the bottle no gas transport orthogonal to the surface is possible, thus ~n · ~v = 0.
This implies

~n · ~̇v =
1

ρ0
~n · grad p =

β

ρ0
~n · gradu = 0

Thus we find a Neumann boundary condition ~n · gradu = 0 .

The above has to be supplemented with the initial conditions to finally find the equation to be solved.

ü(t, ~x) = β div gradu(t, ~x) in Ω ⊂ R3

u(t, ~x) = 0 on Γ0

∂
∂n u(t, ~x) = 0 on Γ1

u(0, ~x) = u0(~x) in Ω

u̇(0, ~x) = u1(~x) in Ω

(8.6)

The constant
√
β represents the speed of sound for this problem.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 192

8.5.3 Separation of variables

We seek a solution of the form
u(t, r, φ, z) = T (t) · Φ(φ) · U(r, z)

using cylindrical coordinates.

In Appendix A.2.4 the Laplace operator is given in cylindrical coordinates

∆u = div gradu =
1

r

∂

∂r
(r
∂ u

∂r
) +

1

r2

∂2 u

∂φ2
+
∂2 u

∂z2

Thus we may rewrite the PDE a for the function u(t, r, φ, z) in the form

1

β
ü =

1

r

∂

∂r
(r
∂ u

∂r
) +

1

r2

∂2 u

∂φ2
+
∂2 u

∂z2

Separation time–space

Assuming that we can write the solution u as a product of a function T (t), depending on time t only, and a
function V (r, φ, z) we find the equation

1

β

T̈

T
=

1

V

(
1

r

∂

∂r
(r
∂ V

∂r
) +

1

r2

∂2 V

∂φ2
+
∂2 V

∂z2

)
Since the LHS depends on t only and the RHS on space variables only, both sides have to equal to a constant
−ν and we find the two equations

T̈ (t) = −ν β T (t)

1

r

∂

∂r
(r
∂ V

∂r
) +

1

r2

∂2 V

∂φ2
+
∂2 V

∂z2
= −ν V

If ν > 0 the first equation has the obvious solution

T (t) = A cos(
√
ν β t) +B sin(

√
ν β t) = C cos(

√
ν β t+ δ)

and thus the final solution has angular velocity ω =
√
β ν and is periodic with period P = 2π

ω . Thus the

frequency is f = 1
P =

√
β ν

2π .

Separation of the angular component

The second of the above equations can be separated again V (r, φ, z) = Φ(φ) · U(r, z) and we find the
equation

1

r

∂

∂r
(r
∂ V

∂r
) +

∂2 V

∂z2
+ ν V = − 1

r2

∂2 V

∂φ2

r2

U

(
1

r

∂

∂r
(r
∂ U

∂r
) +

∂2 U

∂z2
+ ν U

)
= − 1

Φ

∂2 Φ

∂φ2

Both sides have to be constant again. The radial function Φ(φ) needs to be 2π–periodic. The resulting
ordinary differential equation

∂2

∂φ2
Φ(φ) = −µΦ(φ) with Φ(0) = Φ(2π) and Φ′(0) = Φ′(2π)

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 193

has nontrivial solutions only if µ = n2 for some n ∈ N0. The solution is Φ(φ) = sin(nφ+ δ) . The special
case n = µ = 0 corresponds to solutions independent on the angle φ.

For the remaining space variables r and z we have thus to examine the equation

1

r

∂

∂r
(r
∂ U

∂r
) +

∂2 U

∂z2
+ ν U =

n2

r2
U

or equivalently
∂

∂r
(r
∂ U

∂r
) +

∂

∂z
(r
∂ U

∂z
)− n2

r
U = −ν r U

If we find an eigenvalue ν for this problem, then we have the frequency and solution of the PDE (8.6) is
given by

u(t, r, φ, z) = C cos(
√
β ν t+ δ1) · cos(nφ+ δ2) · U(r, z)

Solutions independent on the angle φ

If we consider only solutions independent on φ (i.e. n = 0), then the above problem is a special case of the
generalized eigenvalue problem (7.5) on page 152.

− ∂

∂r
(r
∂ U

∂r
)− ∂

∂z
(r
∂ U

∂z
) = +ν r U in Ω ⊂ R2

U(r, z) = 0 on Γ0

∂
∂n U(r, z) = 0 on Γ1

(8.7)

The finite element method will translate this boundary value problem in a generalized eigenvalue problem

A · ~v = ν B · ~v

with symmetric, positive definite matrices A and B.

8.5.4 The open organ pipe

As a first example we consider a cylinder of radius R and height H with open top. This might be an organ
pipe open on one side. A section is shown in figure 8.17. In this simple situation it is possible to give an
exact solution of the eigenvalue problem. A separation of the variables r and φ leads to

− 1

r R

∂

∂r
(r
∂ R

∂r
)− ν =

1

Z

∂

∂z
(
∂ Z

∂z
)

and thus the two ordinary boundary value problems

− ∂

∂z
(
∂ Z(z)

∂z
) = λz Z(z) with

∂ Z(0)

∂z
= 0 and Z(H) = 0

and

−1

r

∂

∂r
(r
∂ R(r)

∂r
) = λr R(r) with

∂ R(0)

∂r
= 0 and

∂ R(R0)

∂r
= 0

The solutions are

Z(z) = sin((2 k − 1)
π

2H
(H − z)) and R(r) = J0(

αj
R
r)

and the eigenvalues are given by

λr =
(

(2 k − 1)
π

2H

)2
and λr =

(αj
R

)2

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 194

-r

6y

R0

H
U = 0

∂ U
∂z = 0

∂ U
∂r = 0∂ U

∂r = 0 −∆U = ν U

Figure 8.17: An open organ pipe

where J0(z) is a Bessel function and αj are the zeros3 of the derivatives of this function. The corresponding
solutions of the PDE are

U(r, z) = sin((2 k − 1)
π

2H
(H − z)) · J0(

αj
R
r)

with eigenvalues

νk,j =
(

(2 k − 1)
π

2H

)2
+
(αj
R

)2

The graph of this solution will show k − 1 interior, local extrema in z–direction and j − 2 interior, local
extrema in r–direction. Below find a table of those eigenvalues where we choose R0 = 4 and H = 6.

k \ j 1 2 2 4 5 6

1 0.068539 0.986162 3.144692 6.537255 11.163587 17.023642

2 0.616850 1.534473 3.693004 7.085566 11.711898 17.571954

3 1.713473 2.631096 4.789627 8.182189 12.808521 18.668576

4 3.358407 4.276030 6.434561 9.827123 14.453455 20.313510

5 5.551652 6.469276 8.627806 12.020368 16.646700 22.506756

6 8.293209 9.210832 11.369363 14.761925 19.388257 25.248313

A finite element computation with 1935 nodes leads to numerical approximations of the eigenvalues.
The table also shows their identification with the exact eigenvalues by giving the indices k and j. Assuming
that dimensions are given in units of cm and we use a speed of sound

√
β = 330 m

s = 3.3 · 104 cm
s we

obtain resonance frequencies of f =
√
β ν

2π ≈
√
ν 5252 Hz. Observe that the second frequency equals

three times the first frequency, as should be the case since the z dependence of the two modes is given by
3A table or mathematical software will give the values of αj as

α1 = 0 , α2 = 3.8317060 , α3 = 7.0155867 , α4 = 10.1734681 , α5 = 13.3236919 , α6 = 16.4706301

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 195

sin(π
2H (H − z)) and sin(3 π

2H (H − z)).

ν k j frequency

0.068534 1 1 1375 Hz

0.616478 2 1 4124 Hz

0.986261 1 2 5216 Hz

1.534120 2 2 6505 Hz

1.710429 3 1 6869 Hz

2.627742 3 2 8514 Hz

(8.8)

In figure 8.18 find the solution corresponding4 to the fourth eigenvalue.

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 8.18: The graph of the fourth eigenfunction and its level-curves for the organ pipe problem

8.5.5 A can with a circular hole

As next example we place a lid with a circular hole on top of the organ pipe from the previous section. The
setup is shown in figure 8.19 and obviously similar to the previous section. The only change to be made
concerns the semi closed top. For 0 < R1 < r < R we have to replace the Dirichlet condition U = 0 by
the Neumann condition ∂

∂z U = 0. As a consequence the separation of the variables r and z will not work
and no analytical solutions are available.

With help of FEM we can compute the first few eigenvalues of the problem and thus also the resulting
frequencies. The result in figure 8.19 and has to be compared with the results in (8.8) for the open organ
pipe. The values used are R1 = 1, R0 = 4 and H = 6. In figure 8.20 find the first six eigenfunctions.

8.5.6 A can with a circular neck

As next example we place circular neck on top of the can from the previous section. The setup is shown in
figure 8.21 and obviously similar to the previous section. Separation of the variables is again not possible
and no analytical solutions are available.

With help of FEM we can compute the first few eigenvalues of the problem and thus also the resulting
frequencies. The result in figure 8.21 and has to be compared with the results in (8.8) and figure 8.19 for the

4The actual graph of the solution was created with fewer triangles to obtain a visually more pleasant picture.

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 196

-r

6y

R0

H
R1

U = 0 ∂ U
∂z = 0

∂ U
∂z = 0

∂ U
∂r = 0∂ U

∂r = 0 −∆U = ν U

ν frequency

0.0168 680 Hz

0.3096 2922 Hz

0.9638 5156 Hz

1.1109 5535 Hz

1.4166 6251 Hz

2.2152 7817 Hz

Figure 8.19: A can with hole and the resulting eigenvalues and frequencies

other configurations. The values used are R1 = 1, R0 = 4, H = 6 and a neck of height 1 was added. In
figure 8.22 find the first four eigenfunctions.

8.5.7 A can with a circular neck, with air gap

For all previous examples we assumed that U = 0 at the opening edge of the containers. This is a drastic
simplification. One should actually assume that U ≈ 0 far away from the opening. Some of the air close
to the opening will certainly also vibrate. To examine this effect one can repeat the calculations of the
previous example but add some air space around the opening. The boundary condition for the air section is
U = 0. The setup and the resulting frequencies are shown in figure 8.23, together with the results of the
simplified problem. The third eigenfunction and its level curves are shown in figure 8.24. The results justify
the simplifying assumption. In particular we find U ≈ 0 outside of the container.

8.5.8 Conclusion

not written yet

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 197

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0
0.5

1
1.5

2
2.5

3
3.5

4

0
1

2
3

4
5

6

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 8.20: The first six eigenfunctions of a can with a hole

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 198

-r

6y

R0

H

H + 1

R1

U = 0

∂ U
∂n = 0

∂ U
∂z = 0

∂ U
∂r = 0∂ U

∂r = 0 −∆U = ν U

ν frequency frequency

with neck no neck

0.0063 416 Hz 680 Hz

0.2861 2809 Hz 2922 Hz

0.9376 5086 Hz 5156 Hz

1.1024 5514 Hz 5535 Hz

1.2393 5847 Hz 6251 Hz

2.0326 7488 Hz 7817 Hz

Figure 8.21: A can with a neck and the resulting eigenvalues and frequencies

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 199

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 8.22: The first four eigenfunction of a can with a neck

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 200

-r

6y

R0

H

H + 1

H + 3

R1

U = 0

U = 0

U = 0

∂ U
∂n = 0

∂ U
∂z = 0

∂ U
∂r = 0∂ U

∂r = 0 −∆U = ν U

frequency frequency

with air gap no air gap

387 Hz 416 Hz

2799 Hz 2809 Hz

5067 Hz 5086 Hz

5507 Hz 5514 Hz

5775 Hz 5847 Hz

7360 Hz 7488 Hz

Figure 8.23: Comparison of frequencies without and with the air gap

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7 8 9

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 8.24: The third eigenfunction of a can with a neck and air gap

SHA 22-4-21

CHAPTER 8. SOME APPLICATIONS 201

8.6 Ultrasonic distance measurements

8.7 Asparagus

8.8 Heating a disk

SHA 22-4-21

Chapter 9

Linear Elasticity

9.1 Description of stress and strain

An elastic solid can be fixed at its left edge and be pulled on at the right edge by a force. Figure 9.1 shows
a simple situation. The original shape (dotted line) will change into a deformed state (full line). The goal is
to give a mathematical description of the deformation of the solid (strain) and the forces that will occur in
the solid (stress). For a given point ~x in the solid is moved to ~x+ ~u(~x).

(
x

y

)
→

(
x

y

)
+

(
u1(x, y)

u2(x, y)

)

Figure 9.1: Deformation of an elastic solid

The results will be used to give a formula for the elastic energy stored in the deformed solid. Based
on this information we construct a finite element solution to the problem. For a given force we search the
displacement vector field ~u(~x).

In order to simplify the treatment enormously we assume that the displacement of the structure are
very small compared to the dimensions of the solid.

9.1.1 Description of strain

The strain will give us a mathematical description of the deformation of a given object. It is a purely
geometrical description and at this point not related to elasticity problems.

First we examine the strain for the deformation of an object in a plane. Later we will extend the con-
struction to object in space.

Of a large object to be deformed and moved in a plane (see figure 9.1) we consider only a small rectangle
of width ∆x and height ∆y and examine its behavior under the deformation. The original rectangleABCD
and the deformed shape A′B′C ′D′ is shown in figure 9.2.

Since ∆x and ∆y are assumed to be very small the deformation is very close to an affine deformation,
i.e. a linear deformation and a translation. Since the deformations are small we also know that the deformed

202

CHAPTER 9. LINEAR ELASTICITY 203

-x

6
y

∆x

∆y

A B

C D

��
��

�
��

�
��
�*

~u

(((
((((

((
�
�
�
�
�
�
�
(((

((((
((

�
�
�
�
�
�
�

A′
B′

C ′
D′

Figure 9.2: Definition of strain

rectangle has to be almost horizontal, thus figure 9.2 is correct. A straightforward Taylor approximation
shows that the following behavior for the four corners of the rectangle.

A =

(
x

y

)
−→ A′ =

(
x

y

)
+

(
u1(x, y)

u2(x, y)

)

B =

(
x+ ∆x

y

)
−→ B′ =

(
x+ ∆x

y

)
+

(
u1(x, y)

u2(x, y)

)
+

(
∂u1(x,y)

∂x ∆x
∂u2(x,y)

∂x ∆x

)

C =

(
x

y + ∆y

)
−→ C ′ =

(
x

y + ∆y

)
+

(
u1(x, y)

u2(x, y)

)
+

(
∂u1(x,y)

∂y ∆y
∂u2(x,y)

∂y ∆y

)

D =

(
x+ ∆x

y + ∆y

)
−→ D′ =

(
x+ ∆x

y + ∆y

)
+

(
u1(x, y)

u2(x, y)

)
+

(
∂u1(x,y)

∂x ∆x+ ∂u1(x,y)
∂y ∆y

∂u2(x,y)
∂x ∆x+ ∂u2(x,y)

∂y ∆y

)

The last equation can be rewritten as(
∆u1

∆u2

)
=

(
u1(x+ ∆x, y + ∆y)

u2(x+ ∆x, y + ∆y)

)
−

(
u1(x, y)

u2(x, y)

)
=

[
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

]
·

(
∆x

∆y

)

=
1

2

[
∂u1
∂x + ∂u1

∂x
∂u1
∂y + ∂u2

∂x
∂u2
∂x + ∂u1

∂y
∂u2
∂y + ∂u2

∂y

]
·

(
∆x

∆y

)
+

1

2

[
0 ∂u1

∂y −
∂u2
∂x

∂u2
∂x −

∂u1
∂y 0

]
·

(
∆x

∆y

)

= A ·

(
∆x

∆y

)
+ R ·

(
∆x

∆y

)

Observe that the matrix A is symmetric and R is antisymmetric1.
Since we assume that our structure is only slightly deformed we assume2 that ∆u1 and ∆u2 are con-

siderably smaller than ∆x and ∆y. Now we compute the distance of the points A′ and D′ in the deformed
1This implies 〈~v , A · ~w〉 = 〈AT · ~v , ~w〉 = 〈A · ~v , ~w〉 and 〈~v , R · ~w〉 = 〈RT · ~v , ~w〉 = −〈R · ~v , ~w〉
2Due to this simplification we will later encouter a problem with rotations about large angles

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 204

body

|A′D′|2 = (∆x+ ∆u1)2 + (∆y + ∆u2)2 = 〈

(
∆x+ ∆u1

∆y + ∆u2

)
,

(
∆x+ ∆u1

∆y + ∆u2

)
〉

≈ 〈

(
∆x

∆y

)
,

(
∆x

∆y

)
〉+ 〈

(
∆x

∆y

)
, A ·

(
∆x

∆y

)
+ R ·

(
∆x

∆y

)
〉+

〈A ·

(
∆x

∆y

)
+ R ·

(
∆x

∆y

)
,

(
∆x

∆y

)
〉

= 〈

(
∆x

∆y

)
,

(
∆x

∆y

)
〉+ 2 〈

(
∆x

∆y

)
, A ·

(
∆x

∆y

)
〉

Thus we observe that the term in the matrix R do not lead to changes of distances in the body. They
correspond to rotations. Only the term in A are to be considered.

If we set ∆y = 0 in the above formula we can compute the distance |A′B′| as

|A′B′|2 = (∆x)2 + 2
u1

∂x
(∆x)2

|A′B′| =

√
1 + 2

u1

∂x
∆x ≈ ∆x+

u1

∂x
∆x

Now we can compute the ratio of the change of length over the original length to obtain the normal strains
εxx and εyy in the direction of the two axes.

εxx =
change of length in x direction

length in x direction
=

∂u1(x,y)
∂x ∆x

∆x
=
∂u1(x, y)

∂x

εyy =
change of length in y direction

length in y direction
=

∂u2(x,y)
∂y ∆y

∆y
=
∂u2(x, y)

∂y

To find the geometric interpretation of the shear strain

εxy = εyx =
1

2

(
∂ u1

∂y
+
∂ u2

∂x

)
we assume that the rectangle ABCD is not rotated an in fact in the situation shown in figure 9.2. Let γ1 be
the angle formed by the line A′B′ with the x axis and γ2 the angle between the line A′C ′ and the y axis.
The sign convention is such that both angles in figure 9.2 are positive. Since tanφ ≈ φ for small angles we
find

tan γ1 =
∂u2(x,y)

∂x ∆x

∆x
=
∂u2(x, y)

∂x

tan γ2 =

∂u1(x,y)
∂y ∆y

∆y
=
∂u1(x, y)

∂y
2 εxy = tan γ1 + tan γ2 ≈ γ1 + γ2

Thus the number εxy indicates by how much a right angle between the x and y axis would be diminished by
the given deformation.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 205

9–1 Example : It is a good exercise to compute the strain components for a few simple deformations.

• pure translation:
If the displacement vector ~u is constant we have the situation of a pure translation, without defor-
mation. Since all derivatives of u1 and u2 vanish we find εxx = εyy = εxy = 0, i.e. the strain
components are all zero.

• pure rotation:
A pure rotation by angle φ is given by(

x

y

)
−→

[
cosφ − sinφ

sinφ cosφ

]
·

(
x

y

)
=

(
cosφ x− sinφ y

sinφ x+ cosφ y

)

and thus the displacement vector is given by(
u1(x, y)

u2(x, y)

)
=

(
cosφ x− sinφ y − x
sinφ x+ cosφ y − y

)

Since the overall displacement has to be small we can only compute with small angles φ. This leads
to

εxx =
∂u1

∂x
= cosφ− 1 ≈ 0

εyy =
∂u2

∂y
= cosφ− 1 ≈ 0

2 εxy =
∂u1

∂y
+
∂u2

∂x
= 0

Again all components of the strain vanish.

• stretching in both directions:
the displacement (

u1(x, y)

u2(x, y)

)
= λ

(
x

y

)
corresponds to a stretching of the solid by the factor λ in both directions. The components of the
strain are given by

εxx =
∂u1

∂x
= λ

εyy =
∂u2

∂y
= λ

2 εxy =
∂u1

∂y
+
∂u2

∂x
= 0

i.e. there is no shear stress in this situation.

• stretching in x direction only:
the displacement (

u1(x, y)

u2(x, y)

)
= λ

(
x

0

)

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 206

corresponds to a stretching by the factor λ along the x axis. The components of the strain are given
by

εxx =
∂u1

∂x
= λ

εyy =
∂u2

∂y
= 0

2 εxy =
∂u1

∂y
+
∂u2

∂x
= 0

• stretching in 45◦ direction:
the displacement (

u1(x, y)

u2(x, y)

)
=
λ

2

(
x+ y

x+ y

)
corresponds to a stretching by the factor λ along the axis x = y. The straight line y = −x is left
unchanged. To verify this observe(

u1(x, x)

u2(x, x)

)
= λ

(
x

x

)
and

(
u1(x,−x)

u2(x,−x)

)
= λ

(
0

0

)

The components of the strain are given by

εxx =
∂u1

∂x
=
λ

2

εyy =
∂u2

∂y
=
λ

2

2 εxy =
∂u1

∂y
+
∂u2

∂x
= λ

• The two previous examples both stretch the solid in one direction by a factor λ and leave the orthogo-
nal direction unchanged. Thus it is the same type of deformation, the difference being the coordinate
system used to examine the result. Observe that the expressions

εxx , εyy , εxy depend on the coordinate system

εxx + εyy and
∂ u1

∂y
− ∂ u2

∂x
do not depend on the coordinate system

This observation will be confirmed and proven in the next result,

♦

9–2 Observation : Consider two coordinate systems, where one is generated by rotating the first coordinate
axes by an angle α. The situation is shown in figure 9.3 with α = π

6 = 30◦. Now we want to express a
vector ~u (components in xy–system) also in the x′, y′–system. To achieve this rotate the vector ~u by α and
read of the components. In our example we have ~u = (1 , 1)T and thus

~u′ = RT · ~u =

[
cosφ sinφ

− sinφ cosφ

]
·

(
u1

u2

)
≈

[
0.866 0.5

−0.5 0.866

]
·

(
1

1

)
=

(
1.366

0.366

)

The numbers are confirmed by figure 9.3 . ♦

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 207

-x

6
y

��
��

�
��*
x̂

A
A
A
A
A
AAK
ŷ

q����
A
A
A

��
��

~x′ = RT · ~x =

[
cosφ sinφ

− sinφ cosφ

]
·

(
x

y

)

~x = R · ~x′ =

[
cosφ − sinφ

sinφ cosφ

]
·

(
x′

y′

)

Figure 9.3: Rotation of the coordinate system

9–3 Result : A given strain situation is examined in two different coordinate system, as show in figure 9.3.
Then we have

εxx + εyy = ε′x′x′ + ε′y′y′

∂ u1

∂y
− ∂ u2

∂x
=

∂ u′1
∂y′
− ∂ u′2

∂x′

and the strain components transform according to the formula[
ε′x′x′ ε′x′y′

ε′x′y′ ε′y′y′

]
=

[
cosφ sinφ

− sinφ cosφ

]
·

[
εxx εxy

εxy εyy

]
·

[
cosφ − sinφ

sinφ cosφ

]
3

Proof : Since the deformations at a given point are identical we have

~u′(~x′) = RT · ~u(~x) = RT · ~u(R · ~x′)

u′1(~x′) =
[

cosφ sinφ
]
· ~u(R · ~x′) = cosφ u1(~x) + sinφ u2(~x)

u′2(~x′) =
[
− sinφ cosφ

]
· ~u(R · ~x′) = − sinφ u1(~x) + cosφ u2(~x)

u′1(~x′) = cosφ u1(cosφx′ − sinφ y′, sinφx′ + cosφ y′) +

+ sinφ u2(cosφx′ − sinφ y′, sinφx′ + cosφ y′)

u′2(~x′) = − sinφ u1(cosφx′ − sinφ y′, sinφx′ + cosφ y′) +

+ cosφ u2(cosφx′ − sinφ y′, sinφx′ + cosφ y′)

With elementary, but lengthy computations we find

∂

∂x′
u′1(~x′) = cosφ

(
∂u1

∂x
cosφ+

∂u1

∂y
sinφ

)
+ sinφ

(
∂u2

∂x
cosφ+

∂u2

∂y
sinφ

)
= cos2 φ

∂u1

∂x
+ sin2 φ

∂u2

∂y
+ cosφ sinφ

(
∂u1

∂y
+
∂u2

∂x

)
∂

∂y′
u′1(~x′) = cosφ

(
−∂u1

∂x
sinφ+

∂u1

∂y
cosφ

)
+ sinφ

(
−∂u2

∂x
sinφ+

∂u2

∂y
cosφ

)
= − cosφ sinφ

∂u1

∂x
+ cosφ sinφ

∂u2

∂y
+ cos2 φ

∂u1

∂y
− sin2 φ

∂u2

∂x

∂

∂x′
u′2(~x′) = − sinφ

(
∂u1

∂x
cosφ+

∂u1

∂y
sinφ

)
+ cosφ

(
∂u2

∂x
cosφ+

∂u2

∂y
sinφ

)
= − cosφ sinφ

∂u1

∂x
+ cosφ sinφ

∂u2

∂y
− sin2 φ

∂u1

∂y
+ cos2 φ

∂u2

∂x

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 208

∂

∂y′
u′2(~x′) = − sinφ

(
−∂u1

∂x
sinφ+

∂u1

∂y
cosφ

)
+ cosφ

(
−∂u2

∂x
sinφ+

∂u2

∂y
cosφ

)
= sin2 φ

∂u1

∂x
+ cos2 φ

∂u1

∂y
− cosφ sinφ

(
∂u1

∂y
+
∂u2

∂x

)
Now it is easily verified that

ε′x′x′ + ε′y′y′ =
∂ u′1
∂x′

+
∂ u′2
∂y′

=
∂ u1

∂x
+
∂ u2

∂y
= εxx + εyy

∂ u′1
∂y′
− ∂ u′2

∂x′
=

∂ u1

∂y
− ∂ u2

∂x

These two expressions are thus independent on the orientation of the coordinate system we choose. Find
namesIf the matrix multiplication below is carried one step further, then the claimed transformation formula

will appear.

RT ·

[
2 εxx 2 εxy

2 εxy 2 εyy

]
·R =

=

[
cosφ sinφ

− sinφ cosφ

]
·

[
2 ∂ u1

∂x
∂ u2
∂x + ∂ u1

∂y
∂ u2
∂x + ∂ u1

∂y 2 ∂ u2
∂y

]
·

[
cosφ − sinφ

sinφ cosφ

]

=

[
cosφ sinφ

− sinφ cosφ

]
·

[
2 cosφ ∂ u1

∂x + sinφ(∂ u2
∂x + ∂ u1

∂y) −2 sinφ ∂ u1
∂x + cosφ(∂ u2

∂x + ∂ u1
∂y)

cosφ (∂ u2
∂x + ∂ u1

∂y) + 2 sinφ ∂ u2
∂y − sinφ (∂ u2

∂x + ∂ u1
∂y) + 2 cosφ ∂ u2

∂y

]
2

Since the strain matrix is symmetric there always exists (see section A.1.3) an angle φ such that the
strain matrix in the new coordinate system is diagonal, i.e.[

ε′x′x′ 0

0 ε′y′y′

]
=

[
cosφ − sinφ

sinφ cosφ

]
·

[
εxx εxy

εxy εyy

]
·

[
cosφ sinφ

− sinφ cosφ

]

Thus at least close to the examined point the deformation consists of stretching the x′ axis and stretching
the y′ axis. The displacement is given by(

x′

y′

)
−→

(
x′

y′

)
+

(
ε′x′x′ x

′

ε′y′y′ y
′

)

The values of ε′x′x′ and ε′y′y′ can be found as eigenvalues of the original strain matrix, i.e. solutions of the
equation

f(λ) = det

[
εxx − λ εxy

εxy εyy − λ

]
= 0

The eigenvectors indicate the directions of pure strain, i.e. in that coordinate system you find no shear strain.

So far all calculations were made in the plane, but they can readily be adapted to solids in space. If the
deformation of a solid is given by the deformation vector filed ~u, i.e.

~x =


x

y

z

 −→ ~x+ ~u =


x

y

z

+


u1

u2

u3


SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 209

symbol formula interpretation

εxx
∂ u1
∂x ratio of change of length divided by length in x direction

εyy
∂ u2
∂y ratio of change of length divided by length in y direction

εzz
∂ u3
∂z ratio of change of length divided by length in z direction

εxy = εyx
1
2

(
∂ u1
∂y + ∂ u2

∂x

)
the angle between the x and y axis is diminished by 2 εxy

εxz = εzx
1
2

(
∂ u1
∂z + ∂ u3

∂x

)
the angle between the x and z axis is diminished by 2 εxz

εyz = εzy
1
2

(
∂ u2
∂z + ∂ u3

∂y

)
the angle between the y and z axis is diminished by 2 εyz

Table 9.1: Normal and shear strains in space

then we can compute the three normal and three strain components by the formulas in table 9.13.
The above results about transformation of strains in a rotated coordinate system do also apply. Thus for

a given strain there is a rotation of the coordinate system, given by the orthonormal matrix R such that
ε′x′x′ 0 0

0 ε′y′y′ 0

0 0 ε′z′z′

 = RT ·


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 ·R
9.1.2 Description of stress

For sake of simplicity we first consider again only planar situations and at the end of the section apply the
obvious extensions to the realistic situation in space.

Consider an elastic body where all forces are parallel to the xy plane and the contour of the solid is
independent on z. We assume all stress forces are parallel to the xy plane an independent on z. Now
consider a small rectangular box of this solid with width ∆x, height ∆y and depth ∆z. A cut parallel to the
xy plane is shown in figure 9.4. Based on the formula

stress =
force
area

we now examine the normal stress and tangential stress components on the surfaces of this rectangle. We
assume that the small box is an a static situation and there are no body forces. Balancing all components of
forces and moments leads to the conditions

σ2
x = σ1

x , σ3
y = σ4

y , τ1
yx = τ2

yx , τ3
xy = τ4

xy

Thus the situation simplifies as shown on the right in figure 9.4.
The stress situation of a solid is described by all components of the stress, typically as functions of the

location.

Normal and tangential stress in an arbitrary direction

Figure 9.5 shows an virtual cut in a sold such that the normal vector ~n = (cosα, sin α)T forms an angle α
with the x axis. Now examine the normal stress σ and the tangential stress τ .

3In part of the literature (e.g. [Prze68]) the shear stresses are defined without the division by 2. All results can be adapted
accordingly

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 210

12

3

4

- σ1
x�σ2

x

6

σ3
y

?
σ4
y

6
τ1
yx

?τ2
yx

- τ3
xy

�
τ4
xy

- σx�σx

6

σy

?
σy

6
τxy

?τxy

- τxy

�
τxy

Figure 9.4: Definition of stress in a plane, initial (left) and simplified (right) situation

- x

6

y

J
J
J
J
J
J
J

�
��3

~n

Ay

Ax

A
�
�
�
��3
σ
J
Ĵ
τ

���
���:

s�σx
?τxy

�
τxy
?σy

Figure 9.5: Normal and tangential stress in an arbitrary direction

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 211

Since Ax = A sin α and Ay = A cos α the condition of balance of force leads to

sx A = σx Ay + τxy Ax =⇒ sx = σx cos α+ τxy sin α

sy A = σy Ax + τxy Ay =⇒ sy = τxy cos α+ σy sin α

where ~s = (sx, sy)
T . Using matrices we may write(

sx

sy

)
=

[
σx τxy

τxy σy

] (
cos α

sin α

)
or ~s = S · ~n

where the symmetric stress matrix is given by

S =

[
σx τxy

τxy σy

]

The stress vector ~s may be decomposed in a normal component σ and a tangential component τ . We find as
component of ~σ in the direction of ~n

σ = 〈~n , ~s〉 = ~nT · ~s

= (cos α, sin α) ·

[
σx τxy

τxy σy

] (
cos α

sin α

)

τ = (− sin α, cos α) ·

[
σx τxy

τxy σy

] (
cos α

sin α

)

The value of τ is positive if ~τ is point out of the solid and σ is positive if ~σ is pointing upward in figure 9.4.
This allows us to consider a new coordinate system, generated by rotation the xy system by an angle φ

(see figure 9.3, page 207). We obtain

σx′ = (cos φ, sin φ) ·

[
σx τxy

τxy σy

] (
cos φ

sin φ

)

σy′ = (− sin φ, cos φ) ·

[
σx τxy

τxy σy

] (
− sin φ

cos φ

)

τx′y′ = (− sin φ, cos φ) ·

[
σx τxy

τxy σy

] (
cos φ

sin φ

)

An elementary matrix multiplication shows that this is equivalent to[
σx′ τx′y′

τx′y′ σy′

]
=

[
cos φ sin φ

− sin φ cos φ

]
·

[
σx τxy

τxy σy

]
·

[
cos φ − sin φ

sin φ cos φ

]

This transformation formula should be compared with result9–3 on page 207. It show that the behavior
transformation under coordinate rotations for the stress matrix and the strain matrix is the same.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 212

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�	x

- y

6z

-
6

��	

τyz

σz

τxz

-
6

��	

τyx

τzx

σx

-
6

��	

σy

τzy

τxy

Figure 9.6: Components of stress in space

symbol description

σx normal stress at a surface orthogonal to x = const

σy normal stress at a surface orthogonal to y = const

σz normal stress at a surface orthogonal to z = const

τxy = τyx
tangential stress in y direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to y = const

τxz = τzx
tangential stress in z direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to z = const

τyz = τzy
tangential stress in z direction at surface orthogonal to y = const

tangential stress in y direction at surface orthogonal to z = const

Table 9.2: Description of normal and tangential stress in space

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 213

Normal and tangential stress in space

All the above observation can be adapted to the situation in space. Figure 9.6 shows the notational conven-
tion and table 9.2 gives a short description.

The symmetric stress matrix S is given by

S =


σx τxy τxz

τxy σy τyz

τxz τyz σz


and the stress vector ~s at a plane orthogonal to ~n is given by

~s = S · ~n

The behavior of S under rotation of the coordinate system ~x′ = R · ~x is given by

S′ =


σ′x τ ′xy τ ′xz

τ ′xy σ′y τ ′yz

τ ′xz τ ′yz σ′z

 = RT ·


σx τxy τxz

τxy σy τyz

τxz τyz σz

 ·R
When solving the cubic equation

det(S − λ I3) = det


σx − λ τxy τxz

τxy σy − λ τyz

τxz τyz σz − λ

 = 0

for the three eigenvalues λ1,2,3 and the corresponding orthonormal eigenvectors ~e1, ~e2 and ~e3, we compute
a coordinate system in which all tangential stress components vanish. We have only normal stresses, i.e. the
stress matrix S′ has the form 

σ′x 0 0

0 σ′y 0

0 0 σ′z


This can be very useful to extract results out of stress computations. When asked to find the stress at a given
point in a solid many different forms of answers are possible:

• Give all six components of the stress in a given coordinate system.

• Find the three normal stresses and render those as a result. One might also give the corresponding
directions.

• Give the maximal normal stress.

• Give the maximal and minimal normal stress.

• Give the von Mises stress

The ‘correct’ form of answer depends on the context.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 214

9.1.3 Von Mises stress

σ2
M = σ2

x + σ2
y + σ2

z − σx σy − σy σz − σz σx + 3 τ2
xy + 3 τ2

yz + 3 τ2
zx

=
1

2

(
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

)
+ 3

(
τ2
xy + τ2

yz + τ2
zx

)
This expression is independent on orientation of coordinate system. If reduced to pure stress (no tangential
stresses) we find

2σ2
M = (σ′x − σ′y)2 + (σ′y − σ′z)2 + (σ′z − σ′x)2

Thus the von Mises stress is a measure of the differences among the three principal stresses.

9.2 Hooke’s law and elastic energy

Using tables 9.1 (page 209) and 9.2 (page 212) we can now formulate the basic connection between the
geometric deformations (strain) and the resulting forces (stress). It is a basic physical law, confirmed by
many measurements. The show formulation is valid as long as all stress and strains are small. For large
strains we would have to enter the field of nonlinear elasticity.

9.2.1 Hooke’s law

This is the general form of Hooke’s law for a homogeneous material. This is the foundation of linear
elasticity and any book on elasticity see will show a formulation, e.g. [Prze68, §2.2]4, [Wein74, §10.1]).



εxx

εyy

εzz

εxy

εxz

εyz


=

1

E



1 −ν −ν
−ν 1 −ν
−ν −ν 1

0

0

1 + ν

1 + ν

1 + ν


·



σx

σy

σz

τxy

τxz

τyz


(9.1)

or by inverting the matrix

σx

σy

σz

τxy

τxz

τyz


=

E

(1 + ν) (1− 2 ν)



1− ν ν ν

ν 1− ν ν

ν ν 1− ν
0

0

1− 2 ν

1− 2 ν

1− 2 ν


·



εxx

εyy

εzz

εxy

εxz

εyz


(9.2)

With the obvious notation equation (9.2) may be written in the form

~σ = H · ~ε

Observe that the equations decouple and we can equivalently write
4The missing factors 2 are due to the different definition of the shear strains

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 215


σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz




τxy

τxz

τyz

 =
E

(1 + ν)


εxy

εxz

εyz


(9.3)

Now we want to find the formula for the energy density of a deformed body. For this we consider
a small block width ∆x, height ∆y and depth ∆z, located at the fixed origin. For a fixed displacement
vector ~u of the corner P = (∆x,∆y,∆z) we deform the block by a sequence of affine deformations, such
that P point moves along straight line. The displacement vector of P is given by the formula t ~u where
t varies from 0 to 1. If the final strain is denoted by ~ε then the strains during the deformation are given
by t ε. Accordingly the stresses are given by t σ where the final tress σ can be computed by Hooke’s law
(e.g. equation (9.3)). Now we compute the total work needed to deform this block, using the basic formula
work = force · distance. There are six different contributions:

�
�
��

�
�
��

�
�
��

P = (∆x,∆y,∆z)

��	x

-y

6
z

Figure 9.7: Block to be deformed to determine the elastic energy

• The face x = ∆x moves from ∆x to ∆x (1 + εxx). For a time step dt at time 0 < t < 1 the distance
is thus t εxx ∆x. The force is determined by th area ∆y ·∆z and the normal strain σx. The first energy
contribution can now be integrated by∫ 1

0
(∆y ·∆z · σx) · t εxx ∆x dt = ∆y ·∆z ·∆x · σx · εxx

∫ 1

0
t dt =

1

2
∆V · σx · εxx

• Similarly normal displacement of the faces at y = ∆y and z = ∆z lead to contributions

1

2
∆V · σy · εyy and

1

2
∆V · σz · εzz

• The face x = ∆x also moves tangentially from (1, 0, 0)T∆x to (1, ∂ u2
∂x ,

∂ u3
∂x)T∆x. The forces along

this path are t (0, σyx, σzx)T∆y∆z. And again a similar integration leads to the energy contribution

1

2
(∆y ·∆z ·∆x) ·

(
∂ u2

∂x
σyx +

∂ u3

∂x
σzx

)
=

1

2
∆V ·

(
∂ u2

∂x
σyx +

∂ u3

∂x
σzx

)

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 216

• From the other two faces we obtain similar contributions

1

2
∆V ·

(
∂ u1

∂y
σxy +

∂ u3

∂y
σzy

)
and

1

2
∆V ·

(
∂ u1

∂z
σxz +

∂ u2

∂z
σyz

)
Adding all six contributions and then dividing by the volume ∆V we obtain the energy density

e =
1

2
(σxεxx + σyεyy + σzεzz) +

+
1

2

(
(
∂ u2

∂x
+
∂ u1

∂y
)σxy + (

∂ u3

∂x
+
∂ u1

∂z
)σxz + (

∂ u3

∂y
+
∂ u2

∂z
)σyz

)
=

1

2
(σxεxx + σyεyy + σzεzz) + (σxyεxy + σxzεxz + σyzεyz)

This can be written as scalar product in the form

e =
1

2
〈


σx

σy

σz

 ,


εxx

εyy

εzz

〉+ 〈


τxy

τyz

τzx

 ,


εxy

εyz

εzx

〉 (9.4)

or according to Hooke’s law in the form of equation (9.3) also as

e =
1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


εxx

εyy

εzz

〉+ (9.5)

+
E

(1 + ν)
〈


εxy

εxz

εyz

 ,


εxy

εxz

εyz

〉 (9.6)

9.2.2 Some exemplary situations

Now we illustrate Hooke’s law by considering a few simple examples.

9–4 Example : Hooke’s basic law
Consider the situation in figure 9.8 with the following assumptions:

• The solid of length L has constant cross section perpendicular to the x axis, with area A = ∆y ·∆z.

• The left face is fixed in the x direction, but free to move in the other directions.

• The constant normal stress σx at the right face is given by σx = F
A .

• There are no forces in the y and z directions.

This leads to the consequences:

• All stresses in y and z direction vanish, i.e.

σy = σz = τxy = τxz = τyz = 0

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 217

-
x

6

z

�
��

y
��

��

��

Figure 9.8: Situation for the most elementary versions of Hooke’s law

• Hooke’s law (9.1) implies
εxx

εyy

εzz

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

 ·


F
A

0

0

 =
1

E

F

A


1

−ν
−ν


• The first component of the above equations leads to the classical, most simple form of Hooke’s law

εxx =
∆L

L
=

1

E

F

A

This is the standard definition of Young’s modulus of elasticity. The solid is stretched by a factor(
1 + 1

E
F
A

)
.

• In the y and z direction the solid is contracted by a factor of
(
1− ν

E
F
A

)
. This is a simple interpretation

of Poisson’s ratio ν.
εyy = −ν εxx

Multiply the relative change if length in the x direction by ν to obtain the relative change if length in
the y and z direction. One would expect ν ≥ 0.

• The energy density e can be found by equation (9.5)

e =
1

2
〈


σx

σy

σz

 ,


εxx

εyy

εzz

〉+
1

2
〈


τxy

τxz

τyz

 ,


εxy

εxz

εyz

〉

=
1

2

1

E

(
F

A

)2

〈


1

0

0

 ,


1

−ν
−ν

〉+ 0 =
1

2

1

E

(
F

A

)2

=
1

2
E ε2

xx

♦

9–5 Example : Solid under constant pressure
If a rectangular block is submitted to a constant pressure p then we know all components of the stress
(assuming they are constant throughout the solid), namely

σx = στ = σz = −p and τxy = τxz = τyz = 0

Hooke’s law now leads to
εxy = εxz = εyz = 0

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 218

and 
εxx

εyy

εzz

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

 ·


p

p

p

 = −p (1− 2ν)

E


1

1

1


i.e. in each direction the solid is compressed by a factor of 1− p (1−2ν)

E . Since putting a solid under pressure
should make it shrink the Poisson’s ratio must satisfy the condition 0 ≤ ν ≤ 1

2 .
Since each direction is compressed by the same factor we obtain the relative change of volume

∆V

V
= 1 +

(
1− p (1− 2ν)

E

)3

≈ 3
p (1− 2ν)

E

is the pressure is small enough.
The energy density e is given by

e =
1

2
〈


σx

σy

σz

 ,


εxx

εyy

εzz

〉+
1

2
〈


τxy

τxz

τyz

 ,


εxy

εxz

εyz

〉

= −1

2

p (1− 2ν)

E
〈


−p
−p
−p

 ,


1

1

1

〉+ 0 =
1

2

(1− 2ν)

E
3 p2

♦

9–6 Example : Shear modulus
To the block in figure 9.7 we apply a force of strength F in direction of the x axis to the top (area ∆x ·∆y).
No forces in the y direction are applied. The corresponding forces have to be applied to the faces at x = 0
and x = ∆x for the block to be in equilibrium. No other forces apply. We find

τxz =
F

A
and τxy = τyz = σx = σy = σz = 0

Now Hooke’s law (9.1) leads to

εxx = εyy = εzz = εxy = εyz = 0

and
εxz =

1 + ν

E

F

A

This is the reason why some presentations introduce the shear modulus5 G = E
1+ν . ♦

9.3 Volume and surface forces, thermoelasticity

9.3.1 Volume forces

A force applied to the volume of the solid can be introduced by means of a volume force density ~f (units:
N
m3). By adding the potential energy

UV ol = −
∫∫∫

Ω

~f · ~u dV

to the elastic energy and then minimizing we are lead to the correct force term.
5Some books define strains without the factor 1

2
. Then the shear modulus will be given by G = E

2 (1+ν)

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 219

9.3.2 Surface forces

By adding a surface potential energy, using the surface force density ~g (units: N
m2),

USurf = −
∫∫
∂Ω

~g · ~u dA

we can also consider forces applied to the surface only.

9.3.3 Thermoelasticity

The effects of temperature changes can be introduced to the theory of linear elasticity. Let T denote the
temperature change. For T > 0 most material will expand slightly. This material property can be described
by α, the coefficient of linear thermal expansion. The stress strain relations have to be adapted accordingly.
We find (e.g. [Prze68, §2.2], [Sout73, §2.8])

α T (1 , 1 , 1 , 0 , 0 , 0)T to be added to RHS in equation (9.1)

α T
E

1− 2 ν
(1 , 1 , 1 , 0 , 0 , 0)T to be subtracted from RHS in equation (9.2)

If a material is expanded by a constant temperature change, the Hooke’s law
σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

− α T E

1− 2 ν


1

1

1


leads to

E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


αT

αT

αT

− α T E

1− 2 ν


1

1

1

 =


0

0

0


This corresponds to the fact that no external stresses apply.

The computations leading to the energy density in equation (9.4) can be modified to take the additional
forces into account. In computing the energy needed to move the top, the normal strain τz has to be decreased
by α T E

1−2 ν , independent on the strain. This leads to an additional term −α T E
1−2 ν εxx in the energy.

Adding up the terms from all sides of the box we obtain an energy density, due to the temperature change of

−α T E

1− 2 ν
(εxx + εyy + εzz)

This can be integrated to find the contribution to the total energy

UThermo = −
∫∫∫

Ω

α T
E

1− 2 ν
(εxx + εyy + εzz) dV (9.7)

As another simple example consider a rectangular block, heated to temperature T > 0. The total energy
of the block is (assuming constant strains and stresses and εxy = εxz = εyz = 0) given by

E

V
=

1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


εxx

εyy

εzz

〉 −

− α T E

1− 2 ν
〈


εxx

εyy

εzz

 ,


1

1

1

〉
SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 220

This expression is minimal (as function of ~ε) iff

1

(1 + ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 = α T


1

1

1


According to Hooke’s law in the form (9.2) (modified for the contribution of the heat expansion) this leads
to a situation with vanishing stresses, i.e. no external forces applied. Thus if no extrenal forces are applied,
the deformation is such that the total energy is minimal. This is another example of the principle of least
energy.

9.4 Torsion of a shaft

In this section we discuss the torsion of a shaft with constant cross section. Based on a few assumtions we
will determine the deformation of the shaft under torsion. The problem is treated in [Sout73, §12].

T

z

y

x

- x

6

y

�
�
�
�
�
�
�

�
�
�
�
�
�
�
� (x, y)

(x+ u1, y + u2)

θ

β

Figure 9.9: Torsion of a shaft

9.4.1 Basic description

Consider a vertical shaft with constant cross section. The centers of gravity of the cross section are along the
z axis and the bottom of the shaft is fixed. The top surface is twisted by a total torque T . The situation of a
circular cross section is shown in figure 9.9. We do not specify exactly how the forces and twisting moments
are applied to the two ends. Based on Saint-Venant principle (see [Sout73, §5.6]) we assume that the stress
distribution in the cross sections does not depend on z, except very close to the two ends. We assume that
the twisting leads to a rotation of each cross section by an angle β where

β = z · α

The constant α is a measure of the change of angle per unit length of the shaft. Its value α has to be
determined, using the moment T . Based on this we determine the horizontal displacements for small angles
β by the right part of figure 9.9 and a linear approximation

u1(x, y) = r cos(β + θ)− r cos(θ) ≈ −β r sin θ = −y β = −y z α
u2(x, y) = r sin(β + θ)− r sin(θ) ≈ +β r cos θ = +xβ = +x z α

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 221

We also assume that the vertical displacement is independent of z and given by a warping function φ(x, y).
This leads to the displacements

u1 = −y z α , u2 = x z α , u3 = αφ(x, y)

and thus the strain components

εxx = εyy = εzz = εxy = 0 , εxz = −1

2
α y +

1

2
α
∂ φ

∂x
, εyz =

1

2
αx+

1

2
α
∂ φ

∂y

Using Hooke’s law we find the stress components

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y +

∂ φ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ φ

∂y
)

Using the stresses we can determine the horizontal forces and the torsion along a hypothetical horizontal
cross section. Since the origin is the center of gravity of the cross section Ω the first moments vanish and
we find

Fx =

∫∫
Ω

τxz dA =
E α

2 (1 + ν)

∫∫
Ω

−y +
∂ φ

∂x
dA = 0

Fy =

∫∫
Ω

τyz dA =
E α

2 (1 + ν)

∫∫
Ω

x+
∂ φ

∂y
dA = 0

T =

∫∫
Ω

x τyz − y τyz dA

=
E α

2 (1 + ν)

∫∫
Ω

x (x+
∂ φ

∂y
)− y (−y +

∂ φ

∂x
) dA

=
E α

2 (1 + ν)

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA =

E α

2 (1 + ν)
J

Using the torsional rigidity J with

J =

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA

we can now determine the constant α by

α =
2 (1 + ν)

J E
T

and thus for a shaft of height H the total change of angle β as

β = H · α =
2 (1 + ν)

J E
H · T

The only difficult part is to determine the function φ, then J is determined by an integration.

9.4.2 Deriving the differential equation, using calculus of variations

The above computations allow to compute the energy E in one cross section Ω as

E =

∫∫
Ω

εxz τxz + εyz τyz dA =
E α

4 (1 + ν)

∫∫
Ω

(x+
∂ φ

∂y
)2 + (−y +

∂ φ

∂x
)2 dA

=
E α

4 (1 + ν)

∫∫
Ω

(
∂ φ

∂x
)2 + (

∂ φ

∂y
)2 − 2 y

∂ φ

∂x
+ 2x

∂ φ

∂y
+ x2 + y2 dA

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 222

Thus minimizing the total energy is equivalent to minimizing the functional

F (φ) =

∫∫
Ω

1

2
‖∇φ‖2 − y ∂ φ

∂x
+ x

∂ φ

∂y
dA =

∫∫
Ω

1

2
〈∇φ , ∇φ〉+ 〈

(
−y
x

)
, ∇φ〉 dA

=

∫∫
Ω

1

2
〈∇φ , ∇φ〉 − 0 dA+

∮
∂Ω

(
−y
x

)
· ~n φ ds

For the last step we used Green’s formula in Appendix A.3∫∫
Ω

f (div~v) dA =

∮
∂Ω
f ~v · ~n ds−

∫∫
Ω

(grad f) · ~v dA

with f = ψ and ~v = ∇φ+

(
−y
x

)
.

A necessary condition for this functional F (φ) to be minimized at φ is

0 =

∫∫
Ω

〈∇φ , ∇ψ〉 dA+

∮
∂Ω

(
−y
x

)
· ~n ψ ds

= −
∫∫
Ω

div (∇φ) ψ dA+

∮
∂Ω

(
∇φ+

(
−y
x

))
· ~n ψ ds for all functions ψ

Since this expression has to vanish for arbitrary testfunctions ψ we conclude

div (∇φ) = ∇∇φ = 0 in the cross section Ω

∇φ · ~n =

(
y

−x

)
· ~n on the boundary ∂Ω

Since the stress components are given by

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y +

∂ φ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ φ

∂y
)

the boundary condition can be written as (
τxz

τyz

)
· ~n = 0

This equation implies that there is no stress on the lateral surface of the shaft. This condition is consistent
with the mechanical setup.

9.4.3 Uniqueness and existence of the solution

This leads to an elliptic partial differential equation of the type of equation (6.3) (page 142) in section 6.3

∇ · ∇φ = 0 for (x, y) ∈ Ω

~n · ∇φ = g2 for (x, y) ∈ ∂Ω

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 223

where g2(x, y) = y n1(x, y)− xn2(x, y) is a known function along the boundary of the domain. Since we
have no Dirichlet condition the solution can only be determined up to an additive constant. This corresponds
to the obvious fact that we can move the shaft along the z axis, without changing the deformation. In a
numerical calculation we add the condtion that the function φ has to vanish at an arbitrary chosen point.

If φ1 and φ2 are two solutions to the differential equation with identical RHS g2, then

∇ · ∇(φ1 − φ2) = 0 for (x, y) ∈ Ω

~n · ∇(φ1 − φ2) = 0 for (x, y) ∈ ∂Ω

Multiplying this equation by (φ1 − φ2) and applying Green’s formula lead to∫∫
Ω

‖∇(φ1 − φ2)‖2 dA = 0

Since the expression under the integral is nonnegative we conclude that ∇(φ1 − φ2) = and thus the two
solutions differ by a constant6.

If φ is in fact a solution of the above problem, then the divergence theorem implies

0 =

∫∫
Ω

0 dA =

∫∫
Ω

div∇φ dA =

∮
∂Ω
~n · ∇φ ds =

∮
∂Ω
g2 ds

Thus we have the necessary condition that the integral of g2 along the boundary has to vanish. The diver-
gence theorem implies∮

∂Ω
~n ·

(
−y
x

)
ds =

∫∫
Ω

div

(
−y
x

)
dA =

∫∫
Ω

0 da = 0

and thus the condition is satisfied. It can be shown that this condition implies that the problem does have a
solution.

9.4.4 Torsion of a shaft with circular cross section

In the situation of a circular cross section with radius R we find

g2 = ~n ·

(
y

−x

)
=

1

R

(
x

y

)
·

(
y

−x

)
= 0

and thus the partial differential equation has only the trivial solution φ = 0. The torsional rigidity is given
by

J =

∫∫
Ω

x2 + y2 dA = 2π

∫ R

0
r2 r dr =

π

2
R4

and thus

α =
T 2 (1 + ν)

J E
=
T 4 (1 + ν)

π E R4

The stress matrix has the structure
σx τxy τxz

τxy σy τyz

τxz τyz σz

 =
E α

2 (1 + ν)


0 0 −y + ∂ φ

∂x

0 0 x+ ∂ φ
∂y

−y + ∂ φ
∂x x+ ∂ φ

∂y 0

 =
T

J


0 0 −y
0 0 x

−y x 0


6We quietly assume that the solutions are smooth enough and the domain is connected.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 224

Since the symmetric matrix 
0 0 a

0 0 b

a b 0


has the eigenvalues and eigenvectors

λ1 = 0 , ~e1 =


−b
a

0

 and λ2,3 = ±
√
a2 + b2 , ~e2,3 =


±a
±b

√
a2 + b2


we find that the shaft is stress free in the direction (x, y, 0)T at the points (x, y, z)T and is streched with
resulting stress

λ2 =
T

J

√
x2 + y2 =

T

J
r in the direction of


−y
x

r


and compressed with resulting stress

λ3 = −T
J

√
x2 + y2 = −T

J
r in the direction of


y

−x
r


Both stress directions form an angle of 45◦ with the xy plane and are orthogonal to (x, y, 0)T .

9.4.5 Torsion of a shaft with square cross section

For a shaft with square cross section we consider the domain in figure 9.10. In this situation the boundary
function g2 does not vanish and we have to solve the equation for the warping function φ. The mesh for
the finite element method is generated by EasyMesh. Observe that we mark point 3 as a Dirichlet point to
assure a unique solution of the differential equation. Point 5 is used as a material marker and is not useful
in this simple example.

Then we can use the Mathematica package BVP2.m to solve the equation.
Mathematica

<<./BVP2.m
{nodes,elements,segments}=ReadMesh["./Torsion"];
gD[x_,y_]=0;
n[x_,y_]=Which[y==-1,{0,-1}, y==1,{0,1},x==1,{1,0},x==-1,{-1,0}];
a=Function[{x,y},1];
b=Function[{x,y},0];
f=Function[{x,y},0];
gDirichlet=Function[{x,y},gD[x,y]];
gNeumann=Function[{x,y}, n[x,y].{y,-x}];
points=FEMSolve[a,b,f,gDirichlet,gNeumann,nodes,elements,segments];

and generate the plots of the warping function φ and its level curves in figure 9.11.
Mathematica

g=FEMSurface[points,elements];
Show[g,Axes->True,AxesLabel->{"x","y","u"},AspectRatio->1,

PlotRange->All,ViewPoint->{1.582,-2.9,0.647}];

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 225

-

6

0

12

3

4

6

0: 1 -1 0.1 2

1: 1 1 0.1 2

2: -1 1 0.1 2

3: -1 0 0.1 1

4: -1 -1 0.1 2

5: 0 0 1 1

5

0: 0 1 2

1: 1 2 2

2: 2 3 2

3: 3 4 2

4: 4 0 2

Figure 9.10: A square cross section and its description in EasyMesh

minVal=Min[Transpose[points][[3]]];
maxVal=Max[Transpose[points][[3]]];
levels=Table[j,{j,minVal,maxVal,(maxVal-minVal)/20}];
glevel=LevelGraphics2D[points,elements,levels];
Show[glevel,AspectRatio->Automatic];

-1

-0.5

0

0.5

1
x

-1

-0.5

0

0.5

1

y

-0.1

0

0.1

u

-1

-0.5

0

0.5

-1

-0.5

0

0.5

Figure 9.11: Warping functions and its level curves for a square cross section

As in the previous section the resulting stress is given by

E α

2 (1 + ν)

√(
x+

∂ φ

∂y

)2

+

(
−y +

∂ φ

∂x

)2

(9.8)

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 226

We can use Mathematica again to compute the stress and create the figure 9.12. It can be seen that the stress
is maximal at the center of the faces. The stress distribution is far from being uniform.

Mathematica
grad=FEMGradient[points,elements];
stress=Table[Flatten[{points[[k,{1,2}]],

Sqrt[(points[[k,1]]+grad[[k,2]])ˆ2 +
(-points[[k,2]]+grad[[k,1]])ˆ2]}],

{k,Length[points]}];
g=FEMSurface[stress,elements];
stressfig=Show[g,Axes->True,AxesLabel->{"x","y","u"},AspectRatio->1,

PlotRange->All,ViewPoint->{1.582,-2.9,1.647}];

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1
y

0.5

1

u

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1
y

Figure 9.12: The stress distribution in a square shaft, subject to torsion

9.4.6 Using the Prandtl stress function

An alternative approach is using the Prandtl stress funktion χ.

∂χ

∂y
= −y +

∂φ

∂x
=

2 (1 + ν)

E α
τxz and − ∂χ

∂x
= x+

∂φ

∂y
=

2 (1 + ν)

E α
τyz

By differentiating the above equations by y (resp. x) and subtracting we find

∆χ =
∂2χ

∂x2
+
∂2χ

∂y2
= −2

Since we consider a shaft we use again σx = σy = σz = τxy = 0 . To find boundary conditions for χ we
use fact that there are no external forces on the boundary.(

τxz

τyz

)
· ~n = 0 =⇒

(
∂ χ
∂y

−∂ χ
∂x

)
· ~n = ∇χ · ~t = 0

where ~t is a tangential vector of the boundary curve. This implies that χ is constant on each component of
the curve. Since only information about the derivatives of χ is given we are free to choose the value of χ

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 227

on the outer boundary. We choose χ = C0 = 0 on Γ0. To determine the values Ci on an interior section
Γi we use that the warp function is well defined and thus the following integral over a closed section of the
boundary has to vanish.

0 =

∮
Γi

∇φ · ~ds =

∮
Γi

(
∂ φ
∂y

−∂ φ
∂x

)
· ~n ds =

∮
Γi

(
−x− ∂ χ

∂x

−y − ∂ χ
∂y

)
· ~n ds

∮
Γi

∇χ · ~n ds =

∮
Γi

(
−x
−y

)
· ~n ds =

∮
Γi

(
−y
x

)
· ~ds = −2 Ai

whereAi is the area of the enclosed section. Observe that the orientation of Γi as boundary ofAi is negative.
The situation is illustrated in Figure 9.13.

C2

C1

C0

Figure 9.13: A cross section with holes

Thus we arrive at the boundary value problem

div (∇χ) = ∇∇χ = −2 in the cross section Ω

χ = Ci on the boundary sections Γi

On the outer boundary Γ0 we have C0 = 0. The constants Ci on the other sections Γi of the boundary have
to be determined such that ∮

Γi

∇χ · ~n ds = −2 Ai

These additional conditions allow to determine a unique solution of the above boundary value problem.

Using equation (9.8) we find the resulting stresses as

σ = ± E α

2 (1 + ν)

√(
x+

∂ φ

∂y

)2

+

(
−y +

∂ φ

∂x

)2

= ± E α

2 (1 + ν)

√(
∂ χ

∂x

)2

+

(
∂ χ

∂y

)2

= ± E α

2 (1 + ν)
‖∇χ‖

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 228

The energy in one cross section is given by

1

2

E α

4 (1 + ν)

∫∫
Ω

(x+
∂ φ

∂y
)2 + (−y +

∂ φ

∂x
)2 dA =

1

2

E α

4 (1 + ν)

∫∫
Ω

(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 dA

If the center of gravity of the section is at the origin then the torsional rigidity is given by

J =

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA

=

∫∫
Ω

x2 + y2 + x (−x− ∂ χ

∂x
)− y (y +

∂ χ

∂y
) dA

= −
∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA

With the help of the divergence theorem we may rewrite this intgeral.

div(χ

(
x

y

)
) = ∇χ ·

(
x

y

)
+ 2 χ

J = −
∫∫
Ω

∇χ ·

(
x

y

)
dA =

∫∫
Ω

2 χ− div(χ

(
x

y

)
) dA

= 2

∫∫
Ω

χ dA−
∫
∂Ω
χ

(
x

y

)
· ~n ds = 2

∫∫
Ω

χ dA−
∑
i≥1

Ci

∫
Γi

(
x

y

)
· ~n ds

= 2

∫∫
Ω

χ dA+ 2
∑
i≥1

Ci Ai

If the section Ω is simply connected (no holes) the additional constraints on the boundary are of no
importance and we have a rather simple boundary values problem and the torsional rigidity is given by the
integral

J = 2

∫∫
Ω

χ dA

We conclude that the Prandtl stress function leads to an easier formulation if the domain is simply connected.
If the domain has holes we can choose between the non-homogeneous boundary condition for the warp
function and the additional conditions for the interiour boundary values for the Prandtl stress function.

9.5 Plane strain

In these only problems depending on two variables are solved by the finite element method. Thus to consider
elasticity problems we have to simplify the situation such that only two independent variables x and y come
into play. There are two important setups leading to this situation: plane strain and plane stress. In both
cases a solid with a constant cross section ω (parallel to the xy plane) is considered and horizontal forces
are applied to the solid. If the solid is long (in the z direction) we have the situation of plane strain. If the
solid is thin we have a plane stress situation. This is illustrated in figure 9.14.

Consider a situation where the z component of the displacement vector is a constant

u3 independent on x, y and z

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 229

all external forces act horizontally

� �
� �

�
�
�
�

plane strain
εzz = εxz = εyz = 0

τxz = τyz = 0

but σz 6= 0

� �
� �
�
�
�
�plane stress

σz = τxz = τyz = 0

εxz = εyx = 0

but εzz 6= 0

Figure 9.14: Plane strain and plane stress

and
u1 = u1(x, y) , u2 = u2(x, y) independent on z

This leads to vanishing strains in z direction

εzz = εxz = εyz = 0

and thus this is called a plane strain situation. It can be realized by a long solid in the direction of the z axis
with constant cross section and a force distribution parallel to the xy plane, independent on z. The two ends
are to be fixed. Due to Saint–Venants’s principle (see e.g. [Sout73, §5.6] the boundary effects at the two far
ends can safely be ignored.

Hooke’s law in the form (9.3) implies
σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

0

 and

τxy = E
(1+ν) εxy

τxz = E
(1+ν) 0

τyz = E
(1+ν) 0

or equivalently 
σx

σy

τxy

 = E
(1+ν) (1−2 ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν

 ·


εxx

εyy

εxy



σz =
E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
, τxz = τyz = 0

(9.9)

The energy density can be found by equation (9.4) in the form

e =
1

2
〈~σ , ~ε〉 =

1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 (9.10)

As unknown functions we consider the two components of the displacement vector ~u = (u1, u2)T , as
function of x and y. The components of the strain can be computed as derivatives of ~u. Thus if ~u is known,
all other expressions can be computed.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 230

If the volume and surface forces are parallel to the xy plane and independent on z then the corresponding
energy contributions7 can be written as integrals over the domain Ω ⊂ R2, resp. the boundary ∂Ω. We obtain
the total energy as a functional of the yet unknown function ~u.

U(~u) = Uelast + UV ol + USurf

=

∫∫
Ω

1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 dx dy −
−
∫∫
Ω

~f · ~u dx dy −
∮
∂Ω
~g · ~u ds

As in many other situations we use again a principle of least energy to find the equilibrium states of a
deformed solid:

If the above solid is in equilibrium, then the displacement function ~u is a minimizer of the above
energy functional, subject to the given boundary conditions.

This is the basis for a finite element solution to plane strain problems.

9–7 Example : Consider a horizontal plate, stretched in x direction by a force F applied to its right edge.
We assume that all strains are constant and εxx is given. Now εyy and εxy can be determined by minimizing
the energy density. From equation (9.10) we obtain

e =
1

2

E

(1 + ν) (1− 2 ν)

(
(1− ν) ε2

xx + 2 ν εxx εyy + (1− ν) ε2
yy + (1− 2 ν) ε2

xy

)
As a necessary condition for a minimum the partial derivatives with respect to εyy and εxy have to vanish.
This leads to

+2 ν εxx + 2 (1− ν) εyy = 0 and εxy = 0

This leads to a modified Poisson’s ratio ν∗ for the plane strain situation.

εyy = − ν

1− ν
εxx = −ν∗ εxx

The energy density is the given by

e =
1

2

E

(1 + ν) (1− 2 ν)

(
(1− ν) ε2

xx − 2
ν2

1− ν
ε2
xx +

ν2 (1− ν)

(1− ν)2
ε2
xx

)
=

1

2

E

(1 + ν) (1− 2 ν)

(
1− 2 ν + ν2

1− ν
− 2 ν2

1− ν
+

ν2

1− ν

)
ε2
xx

=
1

2

E

1− ν2
ε2
xx

By comparing this situation with the situation of a simple stretched shaft (example 9–4, page 216) we find a
modified modulus of elasticity

E∗ =
1

1− ν2
E

7Observe that we quietly switch from a domain in Ω × [0, H] ⊂ R3 to the planar domain Ω ⊂ R2. The ‘energy’ U actually
denotes the ‘energy divided by height H’.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 231

and the force density needed to stretch the plate is given by

F

A
= E∗

∆L

L
= E∗ εxx

Similarly modified constants are used in [Sout73, p. 87] to formulate the partial differential equations
governing this situation. ♦

9.5.1 From the minimization formulation to a system of PDE’s

The displacement vector u has to minimize to total energy of the system, given by

U(~u) = Uelast + UV ol + USurf

=

∫∫
Ω

1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 dx dy −
−
∫∫
Ω

~f · ~u dx dy −
∮
∂Ω
~g · ~u ds

This can be used to derive a system of partial differential equations that are solved by the actual displacement
function. Use the abreviation

k =
1

2

E

(1 + ν) (1− 2 ν)

to find the main expression for the elastic energy given by

Uelast =

∫∫
Ω

〈


εxx

εyy

εxy

 , k


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

〉 dx dy

=

∫∫
Ω

〈


∂ u1
∂x
∂ u2
∂y

1
2

(
∂ u1
∂y + ∂ u2

∂x

)
 , k


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

〉 dx dy

=

∫∫
Ω

〈

(
∂ u1
∂x
∂ u1
∂y

)
, k

[
1− ν ν 0

0 0 1− 2 ν

]
·


εxx

εyy

εxy

〉 dx dy

+

∫∫
Ω

〈

(
∂ u2
∂x
∂ u2
∂y

)
, k

[
0 0 1− 2 ν

ν 1− ν 0

]
·


εxx

εyy

εxy

〉 dx dy
Using the divergence theorem (Appendix A.3) on the two integrals we find

Uelast = −
∫∫
Ω

u1 div

k
[

1− ν ν 0

0 0 1− 2 ν

]
·


εxx

εyy

εxy


 dx dy

+

∮
∂Ω
u1 〈~n , k

[
1− ν ν 0

0 0 1− 2 ν

]
·


εxx

εyy

εxy

〉 ds
SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 232

−
∫∫
Ω

u2 div

k
[

0 0 1− 2 ν

ν 1− ν 0

]
·


εxx

εyy

εxy


 dx dy

+

∮
∂Ω
u2 〈~n , k

[
0 0 1− 2 ν

ν 1− ν 0

]
·


εxx

εyy

εxy

〉 ds
Using a calculus of variations argument with perturbations of u1 vanishing on the boundary we conclude

div

 E

(1 + ν) (1− 2 ν)

[
1− ν ν 0

0 0 1− 2 ν

]
·


εxx

εyy

εxy


 = −f1

div

 E

(1 + ν) (1− 2 ν)

 (1− ν) ∂ u1
∂x + ν ∂ u2

∂y
1−2 ν

2

(
∂ u1
∂y + ∂ u2

∂x

)  = −f1

and similarly

div

 E

(1 + ν) (1− 2 ν)

 1−2 ν
2

(
∂ u1
∂y + ∂ u2

∂x

)
ν ∂ u1

∂x + (1− ν) ∂ u2
∂y

 = −f2

We have a system of second order partial differential equations (PDE) for the unknown displacement vector
function ~u. If the coefficients E and ν are constant we can juggle with these equations and arrive at different
formulations. The first equation may be rewritten as

E

2 (1 + ν)

(
2 (1− ν)

(1− 2 ν)

∂2 u1

∂x2
+

2 ν

(1− 2 ν)

∂2 u2

∂y ∂x
+
∂2 u1

∂y2
+
∂2 u2

∂x ∂y

)
= −f1

E

2 (1 + ν)

(
1 + (1− 2 ν)

(1− 2 ν)

∂2 u1

∂x2
+
∂2 u1

∂y2
+

1

(1− 2 ν)

∂2 u2

∂y ∂x

)
= −f1

E

2 (1 + ν)

(
∂2 u1

∂x2
+
∂2 u1

∂y2
+

1

(1− 2 ν)

∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= −f1

By rewriting the second differential equation in a similar fashion we arrive at a formulation given in [Sout73,
p. 87].

E

2 (1 + ν)

(
∆u1 +

1

(1− 2 ν)

∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= −f1

E

2 (1 + ν)

(
∆u2 +

1

(1− 2 ν)

∂

∂y

(
∂ u1

∂x
+
∂ u2

∂y

))
= −f2

With the usual definitions of the operators ~∇ and ∆ this can be written in the dense form

E

2 (1 + ν)

(
∆ ~u+

1

1− 2 ν
~∇
(
~∇ · ~u

))
= −~f (9.11)

9.5.2 Boundary conditions

There are different types of useful boundary conditions. We only examine the most important situations.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 233

Prescribed displacement

If on a section Γ1 of the boundary ∂Ω the displacement vector ~u is known we can use this as a boundary
condition on the section Γ1. Thus we find Dirichlet conditions on this section of the boundary.

Given boundary forces, no constraints

If on a section Γ2 of the boundary ∂Ω the displacement ~u is free, then we use calculus of variations again
and have to examine all contributions of the integral over the boundary section Γ2 in the total energy Uelast+
UV ol + USurf

∫
Γ2

. . . ds =

∫
Γ2

u1 〈~n , k

[
1− ν ν 0

0 0 1− 2 ν

]
·


εxx

εyy

εxy

〉 ds

+

∫
Γ2

u2 〈~n , k

[
0 0 1− 2 ν

ν 1− ν 0

]
·


εxx

εyy

εxy

〉 ds− ∫
Γ2

~g · ~u ds

=

∫
Γ2

u1 〈~n , k ·

(
(1− ν) εxx + ν εyy

(1− 2 ν) εxy

)
〉 ds−

∫
Γ2

g1 u1 ds

+

∫
Γ2

u2 〈~n , k ·

(
(1− 2 ν) εxy

ν εxx + (1− ν) εyy

)
〉 ds−

∫
Γ2

g2 u2 ds

This leads to the two boundary conditions

E

(1 + ν) (1− 2 ν)
〈~n ,

(
(1− ν) εxx + ν εyy

(1− 2 ν) εxy

)
〉 = g1

E

(1 + ν) (1− 2 ν)
〈~n ,

(
(1− 2 ν) εxy

ν εxx + (1− ν) εyy

)
〉 = g2

Using Hooke’s law (equation (9.3)) we can also reformulate these conditions in terms of external stresses.
This leads to

〈~n ,

(
σx

τxy

)
〉 = nx σx + ny τxy = g1

〈~n ,

(
τxy

σy

)
〉 = ny σy + nx τxy = g2

This allows a mechanical verification of the equations.
The above boundary conditions have to be written in terms of the unknown displacement vector ~u and

we find

E

(1 + ν) (1− 2 ν)

(
nx

(
(1− ν)

∂ u1

∂x
+ ν

∂ u2

∂y

)
+ ny

1− 2 ν

2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g1

E

(1 + ν) (1− 2 ν)

(
ny

(
(1− ν)

∂ u2

∂y
+ ν

∂ u1

∂x

)
+ nx

1− 2 ν

2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g2

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 234

9.5.3 Thermoelasticity

If the solid is at a temperature T which may depend on the position, then thermal stresses will be created.
This leads to an additional energy contribution. Based on equation (9.7) (page 219) we find in the plain
strain setup (εzz = 0) the energy contribution

UThermo = −
∫∫
Ω

α T
E

1− 2 ν
(εxx + εyy) dV

= −
∫∫
Ω

α T
E

1− 2 ν

(
∂ u1

∂x
+
∂ u2

∂y

)
dV

= −
∫∫
Ω

α T
E

1− 2 ν
div ~u dV

= −
∮
∂Ω
α T

E

1− 2 ν
〈~n , ~u〉 ds+

∫∫
Ω

grad(α T
E

1− 2 ν
) · ~u dV

Thus we find the system of partial differential equations

E

2 (1 + ν)

(
∆ ~u+

1

(1− 2 ν)
~∇
(
~∇ · ~u

))
= −~f +

α E

1− 2 ν
~∇T

and additional contributions on the boundary Γ2

E

(1 + ν) (1− 2 ν)
〈~n ,

(
(1− ν) εxx + ν εyy

(1− 2 ν) εxy

)
〉 = g1 + nx α T

E

1− 2 ν

E

(1 + ν) (1− 2 ν)
〈~n ,

(
(1− 2 ν) εxy

ν εxx + (1− ν) εyy

)
〉 = g2 + ny α T

E

1− 2 ν

Thus we can treat the thermal stress with the help of an extra external force based on the gradient of the
temperature and an additional boundary term.

9–8 Example : If we consider a plate with 0 ≤ x ≤ L and a constant temperature distribution T (x, y) = T
and no external forces. On the left boundary at x = 0 we require u1(0, y) = 0. On the lower edge (y = 0)
we ask for u2 = 0 and no forces apply to the upper and right edge.

-

6

T (x, y) = constu1 = 0

u2 = 0

no force

no force

Figure 9.15: Heat stress in plain strain problem, free boundary

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 235

Thus we find the differential equations

E

2 (1 + ν)

(
∂2 u1

∂x2
+
∂2 u1

∂y2
+

1

(1− 2 ν)

∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= 0

E

2 (1 + ν)

(
∂2 u2

∂x2
+
∂2 u2

∂y2
+

1

(1− 2 ν)

∂

∂y

(
∂ u1

∂x
+
∂ u2

∂y

))
= 0

and along the right edge the boundary conditions

E

(1 + ν) (1− 2 ν)

(
(1− ν)

∂ u1

∂x
+ ν

∂ u2

∂y

)
= αT

E

1− 2 ν

E

2 (1 + ν)

(
∂ u1

∂y
+
∂ u2

∂x

)
= 0

Along the upper edge we find

E

2 (1 + ν)

(
∂ u1

∂y
+
∂ u2

∂x

)
= 0

E

(1 + ν) (1− 2 ν)

(
ν
∂ u1

∂x
+ (1− ν)

∂ u2

∂y

)
= αT

E

1− 2 ν

All the above conditions are satisfied by the functions

u1(x, y) = (1 + ν)αT x and u2(x, y) = (1 + ν)αT y

Thus the solid will not expand by a factor αT but with a larger expansion factor in x and y direction. This
is caused by the plain strain condition, i.e. no displacement allowed in z direction. ♦

9–9 Example : In the previous example we require in addition along the upper edge that u2 = 0 and thus
there will be no displacement in y direction in the solid.

-

6

T (x, y) = constu1 = 0

u2 = 0

no force

u2 = 0

Figure 9.16: Heat stress in plain strain problem, clamped

The displacement u1 will depend on x only and we find the differential equations

E

2 (1 + ν)

(
∂2 u1

∂x2
+

1

(1− 2 ν)

∂

∂x

(
∂ u1

∂x
+ 0

))
= 0

E

2 (1 + ν)

(
0 +

1

(1− 2 ν)

∂

∂y

(
∂ u1

∂x
+ 0

))
= 0

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 236

and along the right edge the boundary conditions

E

(1 + ν) (1− 2 ν)

(
(1− ν)

∂ u1

∂x
+ ν 0

)
= α T

E

1− 2 ν

E

2 (1 + ν)

(
∂ u1

∂y
+ 0

)
= 0

The solution is given by

u1(x, y) =
αT (1 + ν)

1− ν
x and u2(x, y) = 0

Thus the solid will expand by an even larger expansion factor. This is again caused by the constraints. ♦

9–10 Example : If we consider the plate in the above example with a temperature distribution T (x, y) =
β x and no external forces in the solid.

-

6

T (x, y) = β xu1 = 0

u2 = 0

no force

u2 = 0

Figure 9.17: Heat stress in plain strain problem with variable temperature

We conclude that u1 will not depend on y and u2 will be a constant. Thus we find an ordinary differential
equation for u1(x)

E

2 (1 + ν)

(
∂2 u1

∂x2
+

1

(1− 2 ν)

∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= +

α E

1− 2 ν
β(

1 +
1

1− 2 ν

)
∂2 u1

∂x2
=

α 2 (1 + ν)

1− 2 ν
β(

2− 2 ν

1− 2 ν

)
∂2 u1

∂x2
=

α 2 (1 + ν)

1− 2 ν
β

∂2 u1

∂x2
=

α (1 + ν)

1− ν
β

and the boundary conditions at x = 0 with u1(0) = 0 and at x = L lead to the equation

E

(1 + ν) (1− 2 ν)

(
(1− ν)

∂ u1(L)

∂x
+ ν 0

)
= α T

E

1− 2 ν
= α β L

E

1− 2 ν

∂ u1(L)

∂x
= αβ L

1 + ν

1− ν

The solution is given by

u1(x) =
αβ

2

1 + ν

1− ν
x2

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 237

and we arrive at the strain function

εxx(x) = u′1(x) = αβ
1 + ν

1− ν
x

Thus the strain created by the temperature gradient increases from left to right with the maximal value given
by

εxx(L) = u′1(L) = αβ
1 + ν

1− ν
L

This result may be verified with a FEM calculation for this situation. ♦

9.6 Plane stress

Consider the situation of a thin (thickness h) plate in the plane Ω ⊂ R2. There are no external stresses on
the top and bottom surface and no vertical forces within the plate. Thus we assume that σz = 0 within the
plate and τxz = τyz = 0, i.e all stress components in z direction vanish. Thus this is called a plane stress
situation.

σz = τxz = τyz = 0

Hooke’s law in the form (9.1) implies

εxx

εyy

εzz

εxy

εxz

εyz


=

1

E



1 −ν −ν
−ν 1 −ν
−ν −ν 1

0

0

1 + ν 0 0

0 1 + ν 0

0 0 1 + ν


·



σx

σy

0

τxy

0

0


or by eliminating vanishing terms

εxx

εyy

εxy

 =
1

E


1 −ν 0

−ν 1 0

0 0 1 + ν




σx

σy

τxy

 and

εzz = −ν
E (σx + σy)

εxz = 0

εyz = 0

This matrix can be inverted and we arrive at
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




εxx

εyy

εxy

 and

εzz = −ν
1−ν (εxx + εyy)

εxz = 0

εyz = 0

The energy density can be found by equation (9.4) as

e =
1

2
〈


σx

σy

2 τxy

 ,


εxx

εyy

εxy

〉 =
1

2

E

(1− ν2)
〈


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 (9.12)

This equation is very similar to the expression for a plane strain situation in equation (9.10) (page 229).
The only difference is in the coefficients. As a starting point for a finite element solution of a plane stress

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 238

problem we will minimize the energy

U(~u) = Uelast + UV ol + USurf

=

∫∫
Ω

1

2

E

(1− ν2)
〈


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 dx dy −
−
∫∫
Ω

~f · ~u dx dy −
∮
∂Ω
~g · ~u ds

Using the divergnce theorem we may rewrite the elastiv energy as

Uelast =
1

2

∫∫
Ω

E

(1− ν2)
〈


∂ u1
∂x
∂ u2
∂y

1
2 (∂ u1

∂y + ∂ u2
∂x)

 ,


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

〉 dx dy

=
E

2 (1− ν2)

∫∫
Ω

〈

(
∂ u1
∂x
∂ u1
∂y

)
,

[
1 ν 0

0 0 1− ν

]
·


εxx

εyy

εxy

〉 dx dy

+
E

2 (1− ν2)

∫∫
Ω

〈

(
∂ u2
∂x
∂ u2
∂y

)
,

[
0 0 1− ν
ν 1 0

]
·


εxx

εyy

εxy

〉 dx dy

= − E

2 (1− ν2)

∫∫
Ω

u1 div


[

1 ν 0

0 0 1− ν

]
·


εxx

εyy

εxy


 dx dy

+
E

2 (1− ν2)

∮
∂Ω
u1 〈~n ,

[
1 ν 0

0 0 1− ν

]
·


εxx

εyy

εxy

〉 ds

− E

2 (1− ν2)

∫∫
Ω

u2 div


[

0 0 1− ν
ν 1 0

]
·


εxx

εyy

εxy


 dx dy

+
E

2 (1− ν2)

∮
∂Ω
u2 〈~n ,

[
0 0 1− ν
ν 1 0

]
·


εxx

εyy

εxy

〉 ds
Reconsidering the calculations for the plane strain situation we will only have to make a few minor changes
to adapt the results to the above plane stress situation to arrive at the system of partial differential equations.

div

 E

1− ν2

 ∂ u1
∂x + ν ∂ u2

∂y
1−ν

2

(
∂ u1
∂y + ∂ u2

∂x

)  = −f1

div

 E

1− ν2

 1−ν
2

(
∂ u1
∂y + ∂ u2

∂x

)
ν ∂ u1

∂x + ∂ u2
∂y

 = −f2

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 239

Using elementary, tedious operations we find

E

2 (1 + ν)

(
∂2u1

∂x2
+
∂2 u1

∂y2
+

1 + ν

1− ν
∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= −f1

E

2 (1 + ν)

(
∂2u2

∂x2
+
∂2 u2

∂y2
+

1 + ν

1− ν
∂

∂y

(
∂ u1

∂x
+
∂ u2

∂y

))
= −f2

or with a shorter notation
E

2 (1 + ν)

(
∆~u+

1 + ν

1− ν
~∇
(
~∇~u
))

= −~f (9.13)

This has a structure similar to the equations (9.11) for the plain strain situation. If we set

ν? =
ν

1− ν

then we find
1 + ν?

1− ν?
=

1 + ν
1−ν

1− ν
1−ν

=
1

1− 2 ν

And thus the plain strain equations (9.11) take the form

E

2 (1 + ν)

(
∆~u+

1 + ν?

1− ν?
~∇
(
~∇~u
))

= −~f

and thus are very similar to the plain stress equations (9.13).

9.6.1 Boundary conditions

Again we consider only two types of boundary conditions:

• On a section Γ1 of the boundary we assume that the displacement vector ~u is known and thus we find
Dirichlet boundary conditions.

• On the section Γ2 the displacement ~u is not submitted to constraints, but we apply and external force
~g. Again we use a calculus of variations argument to find the resulting boundary conditions.

The contributions of the integral over the boundary section Γ2 in the total energy Uelast +UV ol +USurf are
given by

∫
Γ2

. . . ds =
E

2 (1− ν2)

∫
Γ2

u1 〈~n ,

[
1 ν 0

0 0 1− ν

]
·


εxx

εyy

εxy

〉 ds

+
E

2 (1− ν2)

∫
Γ2

u2 〈~n ,

[
0 0 1− ν
ν 1 0

]
·


εxx

εyy

εxy

〉 ds− ∫
Γ2

~g · ~u ds

=
E

2 (1− ν2)

∫
Γ2

u1 〈~n ,

(
εxx + ν εyy

(1− ν) εxy

)
〉 ds

+
E

2 (1− ν2)

∫
Γ2

u2 〈~n ,

(
(1− ν) εxy

ν εxx + εyy

)
〉 ds−

∫
Γ2

g1 u1 + g2 u2 ds

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 240

This leads to the two boundary conditions

E

1− ν2
〈~n ,

(
εxx + ν εyy

(1− ν) εxy

)
〉 = g1

E

1− ν2
〈~n ,

(
(1− ν) εxy

ν εxx + εyy

)
〉 = g2

The above boundary conditions have to be written in terms of the unknown displacement vector ~u and we
find

E

1− ν2

(
nx

(
∂ u1

∂x
+ ν

∂ u2

∂y

)
+ ny

1− ν
2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g1

E

1− ν2

(
ny

(
∂ u2

∂y
+ ν

∂ u1

∂x

)
+ nx

1− ν
2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g2

9.6.2 Thermoelasticity

We have to adapt Hooke’s law (9.1) to the plain stress situation and the thermal expansion. This leads to

εxx

εyy

εzz

εxy

εxz

εyz


=

1

E



1 −ν −ν
−ν 1 −ν
−ν −ν 1

0

0

1 + ν 0 0

0 1 + ν 0

0 0 1 + ν


·



σx

σy

0

τxy

0

0


+ αT



1

1

1

0

0

0


or by eliminating vanishing terms

εxx

εyy

εxy

 =
1

E


1 −ν 0

−ν 1 0

0 0 1 + ν




σx

σy

τxy

+αT


1

1

0

 and

εzz = −ν
E (σx + σy) + αT

εxz = 0

εyz = 0

This matrix can be inverted and we arrive at
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




εxx

εyy

εxy

− αT E

1− ν


1

1

0


and

εzz =
−ν
E

(σx + σy) + αT =
−ν
E

E (1 + ν)

1− ν2
(εxx + εyy) +

2 ν αT

E

E

1− ν
+ αT

=
−ν

1− ν
(εxx + εyy) +

2 ν αT

1− ν
+ αT =

−ν
1− ν

(εxx + εyy) +
1 + ν

1− ν
αT

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 241

9–11 Example : As a elementary example we consider the situation of constant termperature T and thus
εxx = εyy = αT . This leads to

σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




αT

αT

0

− αT E

1− ν


1

1

0

 =


0

0

0


εzz =

−ν
1− ν

(εxx + εyy) +
1 + ν

1− ν
αT =

−ν
1− ν

(αT + αT) +
1 + ν

1− ν
αT = αT

Thus we confirm that there are no external stresses and εzz = αT . ♦

If the solid is at a temperature T which may depend on the position, then thermal stresses will be created.
This leads to an additional energy contribution. Based on equation (9.7) (page 219) we find in the plain stress
setup the energy contribution

UThermo = −
∫∫
Ω

α T
E

1− 2 ν
(εxx + εyy + εzz) dV

= −
∫∫
Ω

α T
E

1− 2 ν

(
εxx + εyy −

ν

1− ν
(εxx + εyy) +

1 + ν

1− ν
αT

)
dV

= K(T)−
∫∫
Ω

α T
E

1− ν
(εxx + εyy) dV

= K(T)−
∫∫
Ω

α T
E

1− ν

(
∂ u1

∂x
+
∂ u2

∂y

)
dV = K(T)−

∫∫
Ω

α T
E

1− ν
div ~u dV

= K(T)−
∮
∂Ω
α T

E

1− ν
〈~n , ~u〉 ds+

∫∫
Ω

grad(α T
E

1− ν
) · ~u dV

Thus we find the system of partial differential equations

E

2 (1 + ν)

(
∆~u+

1 + ν

1− ν
~∇
(
~∇~u
))

= −~f + α
E

1− ν
~∇T

and additional contributions on the boundary Γ2

E

1− ν2

(
nx

(
∂ u1

∂x
+ ν

∂ u2

∂y

)
+ ny

1− ν
2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g1 + nx α

E

1− ν
T

E

1− ν2

(
ny

(
∂ u2

∂y
+ ν

∂ u1

∂x

)
+ nx

1− ν
2

(
∂ u1

∂y
+
∂ u2

∂x

))
= g2 + ny α

E

1− ν
T

9–12 Example : If we consider a plate with 0 ≤ x ≤ L and a constant temperature distribution T (x, y) = T
and no external forces. On the left boundary at x = 0 we require u1(0, y) = 0. On the lower edge (y = 0)
we ask for u2 = 0 and no forces apply to the upper and right edge.

Thus we find the differential equations

E

2 (1 + ν)

(
∂2 u1

∂x2
+
∂2 u1

∂y2
+

1 + ν

(1− ν)

∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= 0

E

2 (1 + ν)

(
∂2 u2

∂x2
+
∂2 u2

∂y2
+

1 + ν

(1− ν)

∂

∂y

(
∂ u1

∂x
+
∂ u2

∂y

))
= 0

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 242

-

6

T (x, y) = constu1 = 0

u2 = 0

no force

no force

Figure 9.18: Heat stress in plain stress problem, free boundary

and along the right edge the boundary conditions

E

1− ν2

(
∂ u1

∂x
+ ν

∂ u2

∂y

)
= α

E

1− ν
T

E

2 (1 + ν)

(
∂ u1

∂y
+
∂ u2

∂x

)
= 0

Along the upper edge we find

E

2 (1 + ν)

(
∂ u1

∂y
+
∂ u2

∂x

)
= 0

E

1− ν2

(
∂ u2

∂y
+ ν

∂ u1

∂x

)
= α

E

1− ν
T

All the above conditions are satisfied by the functions

u1(x, y) = αT x and u2(x, y) = αT y

This leads to
εxx = εyy = αT , εzz =

−ν
1− ν

(εxx + εyy) +
1 + ν

1− ν
αT = αT

and thus the solid will expand by a factor αT in all directions. One may verify, using Hooke’s law, that all
stesses vanish. ♦

9–13 Example : Next we consider a plate in Figure 9.19 with a temperature distribution T (x, y) = β x and
no external forces in the solid.

We conclude that u1 will not depend on y and u2 will be a constant. Thus we find an ordinary differential
equation for u1(x)

E

2 (1 + ν)

(
∂2 u1

∂x2
+

1 + ν

1− ν
∂

∂x

(
∂ u1

∂x
+
∂ u2

∂y

))
= +

α E

1− ν
β(

1 +
1 + ν

1− ν

)
∂2 u1

∂x2
=

α 2 (1 + ν)

1− ν
β

∂2 u1

∂x2
= α (1 + ν) β

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 243

-

6

T (x, y) = β xu1 = 0

u2 = 0

no force

u2 = 0

Figure 9.19: Heat stress in plain stress problem with variable temperature

and the boundary conditions at x = 0 with u1(0) = 0 and at x = L lead to the equation

E

1− ν2

(
∂ u1(L)

∂x
+ 0

)
= α T

E

1− ν
= α β L

E

1− ν
∂ u1(L)

∂x
= αβ L (1 + ν)

The solution is given by

u1(x) =
αβ

2
(1 + ν) x2

and we arrive at the strain function

εxx(x) = u′1(x) = αβ (1 + ν) x

Thus the strain created by the temperature gradient increases from left to right with the maximal value given
by

εxx(L) = u′1(L) = αβ (1 + ν) L

This result may be verified with a FEM calculation for this situation. ♦

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 244

9.7 FEM solution for plane strain problems

First we consider the contributions to the total energy from an individual triangular element and from a
individual boundary segment. We assume that there are no constraints on the displacement vector ~u. Then
we focus on possible boundary constraints.

9.7.1 A single element contribution

For given linear functions u1(x, y) and u2(x, y) on a triangle with corners at (xi, yi) we want to compute the
components εxx = ∂ u1

∂x , εyy = ∂ u2
∂y and εxy = 1

2

(
∂ u1
∂y + ∂ u2

∂x

)
of the strain. We denote the two comonents

of ~u at the node i with u1,i and u2,i. Based on equation (7.2) (page 148) we find the first partial derivatives.

(
∂ u1
∂x
∂ u1
∂y

)
=
−1

2A

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1,1

u1,2

u1,3


(

∂ u2
∂x
∂ u2
∂y

)
=
−1

2A

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u2,1

u2,2

u2,3


and thus

εxx

εyy

εxy

 =


∂ u1
∂x
∂ u2
∂y

1
2

(
∂ u1
∂y + ∂ u2

∂x

)


=
−1

2A


y3 − y2 0 y1 − y3 0 y2 − y1 0

0 x2 − x3 0 x3 − x1 0 x1 − x2

x2−x3
2

y3−y2

2
x3−x1

2
y1−y3

2
x1−x2

2
y2−y1

2





u1,1

u2,1

u1,2

u2,2

u1,3

u2,3


=
−1

2A
M · ~U∆

Since the derivatives of the displacement are constant, this expression can easily be integrated over the
triangle, leading to

Uelast =

∫∫
∆

1

2

E

(1 + ν) (1− 2 ν)
〈


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

〉 dx dy

=
1

2

E

4A (1 + ν) (1− 2 ν)
〈M · ~U∆ ,


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·M · ~U∆〉

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 245

The element stiffness matrix for this problem is thus given by

A∆ =
E

4A (1 + ν) (1− 2 ν)
MT ·


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·M
A∆ is a positive semidefinte, symmetric 6× 6 matrix8.

The volume force expression can be approximated by

UV ol = −
∫∫
∆

~f · ~u dx dy

≈ −A
3

(f1,1 u1,1 + f2,1 u2,1 + f1,2 u1,2 + f2,2 u2,2 + f1,3 u1,3 + f2,3 u2,3) = −A
3
〈~F , ~U∆〉

and thus
~b∆ = −A

3
(f1,1 , f2,1 , f1,2 , f2,2 , f1,3 , f2,3)T

Now the energy contribution of one triangular element with area A is given by

1

2
〈A∆

~U∆ , ~U∆〉+ 〈~b∆ , ~U∆〉

9.7.2 Edge segment contribution

We evaluate the vector function ~g at the node i and obtain the result (g1,i, g2,i)
T . The integration along an

edge can be approximated by (trapezoidal rule)

−
∫

edge
~g · ~u ds ≈ −L

2
(u1,1 g1,1 + u2,1 g2,1 + u1,2 g1,2 + u2,2 g2,2) = −L

2
〈


u1,1

u2,1

u1,2

u2,2

 ,


g1,1

g2,1

g1,2

g2,2

〉

where L =
√

(x2 − x1)2 + (y2 − y1)2 is the length of the segment.
But again (as in section 7.1.3, page 149) it is better solution to use a Gauss integration along an edge.

To do so we use the Gauss integration points

~p1 =
1

2
(~x1 + ~x2) +

1

2
√

3
(~x1 − ~x2) and ~p2 =

1

2
(~x1 + ~x2)− 1

2
√

3
(~x1 − ~x2)

By linear interpolation between the points ~x1 and ~x2 we find the values of the function ~u at the Gauss points
to be

~u(~p1) = (1− w) ~u1 + w~u2 and ~u(~p2) = w~u1 + (1− w) ~u2

8Observe that with a = (1 +
√

1− 2ν)/2 we find
a 1− a 0

1− a a 0

0 0
√

1− 2ν


2

=


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν


This identity may be usefull when implementing the computations.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 246

where w = 1−1/
√

3
2 ≈ 0.211325. This leads to the approximation

−
∫

edge
~g ~u ds ≈ −L

2
〈


u1,1

u2,1

u1,2

u2,2

 ,


(1− w) g1,1 + w g1,2

(1− w) g2,1 + w g2,2

w g1,1 + (1− w) g1,2

w g2,1 + (1− w) g2,2

〉

where (g1,i, g2,i)
T is the value of ~g at ~pi.

9.7.3 Boundary constraints

Along the boundary of the domain different type of conditions have to be considered. We consider three
types of boundary conditions:

• Type 1: prescribed displacement

• Type 2: displacement along a straight line and possibly a surface force

• Type 3: no constraints, but possibly a surface force

Type 1 : prescribed displacement

If the displacement at a node is given by u1 = c1 and u2 = c2, then these degrees of freedom are not
available and the corresponding rows in the stiffness matrix have to be eliminated. The contributions in
the other rows can be moved to the element vector. A very similar procedure was used in section 7.1.5 on
page 151. The energy is given by

1

2

∑
i

∑
j

ai,j ui uj +
∑
i

bi ui

For this expression to be minimized the partial derivative with respect to uk has to vanish, iff uk is a fre
variable. Since ai,j = aj,i this leads to

1

2

∑
i

∑
j

(ai,j δi,k uj + ai,j ui δj,k) +
∑
i

fi δi,k =
∑
i

ai,k ui + bk = 0

If the values of ui for i ∈ I1 are free and ui = ci for i ∈ I2 then we find∑
i∈I1

ai,k ui = bk −
∑
i∈I2

ai,k ci

Instead of adding the term ai,k to the global stiffness matrix we have to subtract ai,kck from the global RHS
vector.

Type 2 : constrained along a straight line

We consider a node whose displacement has to move along a given straight line. This line can be given by
an angle β and the distance c of the line from the origin. Thus the node has to move a distance c in with an
angle β against the x axis. The situation is shown in figure 9.20. Instead of two degrees of freedom (u1 and
u2) we work with the single degree of freedom p.

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 247

-
u1

6u2

�
�
�
��S

S
S
S

S
S
S
S
So
p

β

c

c = cosβ u1 + sinβ u2(
u1

u2

)
= c

(
cosβ

sinβ

)
+ p

(
− sinβ

cosβ

)

Figure 9.20: Linear constraint on a node

This operation can also be considered as a rotation into a new coordinate system with coordinates c
(fixed) and p (free). In fact we find(

u1

u2

)
=

[
cosβ − sinβ

sinβ cosβ

]
·

(
c

p

)
To illustrate the effect of this transformation let us assume that the first node in a triangle is submitted to
such a constraint and the other two nodes are free to move.


εxx

εyy

εxy

 =
−1

2A
M



u1,1

u2,1

u1,2

u2,2

u1,3

u2,3


=
−1

2A
M



cosβ − sinβ 0 0 0 0

sinβ cosβ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





c

p

u1,2

u2,2

u1,3

u2,3


=
−1

2A
M T ~̃U∆ =

−1

2A
M ~̃U∆

This leads to a slightly modified element stiffness matrix

A∆ =
E

4A (1 + ν) (1− 2 ν)
M

T ·


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν

 ·M
For the new matrix the first row/column corresponds to c and thus has to treated like a fixed value when
generating the global stiffness matrix. The second row/column corresponds to p and is an actual degree of
freedom. The implementation is similar to the Type 1 constraints.

Similar procedures apply to the volume force and edge contributions. As an example we consider an
edge whose first corner is free to move along a straight line. Thus instead of u1,1 and u2,1 we have the
degree of freedom p, the value of c is prescribed. Since(

u1,1

u2,1

)
=

[
cosβ − sinβ

sinβ cosβ

] (
c

p

)
we find

−
∫

edge
~g ~u ds ≈ −L

2
〈


u1,1

u2,1

u1,2

u2,2

 ,


(1− w) g1,1 + w g1,2

(1− w) g2,1 + w g2,2

w g1,1 + (1− w) g1,2

w g2,1 + (1− w) g2,2

〉

SHA 22-4-21

CHAPTER 9. LINEAR ELASTICITY 248

= −L
2
〈


cosβ − sinβ 0 0

sinβ cosβ 0 0

0 0 1 0

0 0 0 1




c

p

u1,2

u2,2

 ,


(1− w) g1,1 + w g1,2

(1− w) g2,1 + w g2,2

w g1,1 + (1− w) g1,2

w g2,1 + (1− w) g2,2

〉

= −L
2
〈


c

p

u1,2

u2,2

 ,


cosβ sinβ 0 0

− sinβ cosβ 0 0

0 0 1 0

0 0 0 1




(1− w) g1,1 + w g1,2

(1− w) g2,1 + w g2,2

w g1,1 + (1− w) g1,2

w g2,1 + (1− w) g2,2

〉

Thus for the degree of freedom p we find the contribution

−L
2
p (− sinβ ((1− w) g1,1 + w g1,2) + cosβ ((1− w) g2,1 + w g2,2))

???

Type 3 : unconstrained boundary

If there are no fixed constraints on the displacement at a node, but a possible surface force is applied, then
the results in section 9.7.2 apply.

SHA 22-4-21

Chapter 10

Matlab PDE–Toolbox

The mathematical software MATLAB does have a nice add-on, called PDE toolbox to solve partial differen-
tial equations depending on two independent variables. We present a few examples and instructions on how
to solve the equations. This chapter can by no means replace the manual [PDEToolbox95].

The previous chapters should have prepared the reader to understand the steps MATLAB is doing behind
the scene when the individual commands are applied.

10.1 Starting the toolbox and demos

The first step is certainly to start MATLAB on the system. By typing help pde you will get a very brief
description of the commands in the PDE toolbox. The demonstrations pdedemo1 to pdedemo8 will give
illustrative examples on how to use the toolbox, but no details are given.1

To start the graphical user interface type pdetool. A window with many buttons and menus should pop
up. This will be used to solve our model problem. The toolbox also has an efficient and flexible command
line interface which is documented in [PDEToolbox95] and the included demo’s can serve as examples.

10.2 A heat conduction problem

As a first example we consider a heat conduction problem in a u–shaped profile, see figure 10.1. The
temperature is set to 0 along the boundary, except at the lower edge where we have a thermal insulation.
There is internal heating in a rectangle inside the profile. As a result we search the temperature curve and
the heat flux within the profile. The deviation of the corresponding equation (4.2) is given in section 4.1.3
on page 64. We consider only the static situation, i.e. we wait long enough for the temperature to be
independent on the time.

We have to solve the linear partial differential equation

∇ · ∇u = f(x, y) for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

∂ u
∂~nu = 0 for (x, y) ∈ Γ2

where Ω ⊂ R2 corresponds to the profile, Γ2 is the lower edge and Γ1 the remaining part of the boundary.
The function f is given by

f(x, y) =

{
1 if (x, y) in rectangle

0 if (x, y) not in rectangle

1At the HTA Biel the source files for these examples are in the directory /tools/matlab/toolbox/pde/ and can be
copied and modified.

249

CHAPTER 10. MATLAB PDE–TOOLBOX 250

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 Contour: T Vector field: −grad(T)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10.1: Solution of a heat problem with MATLAB

Use the menue Options → Application → Heat Transfer to specify the type of problem at
hand. MATLAB will use a notation adapted to the physical context, e.g. T for the temperature instead of u.

10.2.1 Setting up the domain

The buttons at the upper left will allow you to construct rectangle, ellipses and some combinations. As an
example construct the domain in figure 10.1. The boundary of the domain Ω is determined by straight lines
connecting the points (−1,−1), (1,−1), (1,−0.4), (0.5,−0.4), (0.5, 0.2), (1, 0.2), (1, 1), and (−1, 1). Put
the MATLAB interface in draw mode by clicking on the polygon button and then enter the above list of points
with the mouse. As the last point reenter the first point to close the polygon. The the rectangle inside is
generated by pushing the rectangle button and specifying the lower left corner at (−0.5,−0.4) and the upper
right corner at (0, 0.2). Now the domain is completely specified.

10.2.2 Specifying boundary conditions

Use Boundary → Boundary Mode to specify the boundary conditions.

No flux condition at the lower edge

Along the lower edge we have want
∂u(x, y)

∂~n
= 0

1. click on this section of the boundary, it will turn black.

2. choose Boundary → Specify Boundary Conditions and a menu will pop up. We use
Neumann conditions. The equation has the form ~n k∇T + q T = g, where the functions q and g can
be specified. In our case we want q = 0 and g = 0.

3. confirm you choice with OK.

SHA 22-4-21

CHAPTER 10. MATLAB PDE–TOOLBOX 251

Prescribed temperature at the boundary

Along the other parts of the boundary we want

u(x, y) = 0

1. click on all remaining parts of the boundary (keep shift pressed) to select it.

2. choose Boundary → Specify Boundary Conditions and a menu will pop up. Here we
want Dirichlet conditions with h = 1 and r = 0.

Now the lower edge should be blue and the other parts red to indicate the different type of boundary
conditions.

10.2.3 Specifying the differential equation

Click on the button PDE to get to the menu to specify the differential equation in the form

−div(c ∗ grad(u)) + a ∗ u = f

or with the MATLAB notation for heat problems

−div(k ∗ grad(T)) = Q+ h (Text − T)

with functions k, Q and Text to be chosen.
First choose the menue PDE → PDE Mode and the click inside the small rectangle. Here we need to

set k(x, y) = 1, h = 0, Text = 0 and f = 1. Choose the menue PDE → PDE Specification and
modify the functions, then click OK. Now click within the profile, but outside of the rectangle and go the
PDE Specification menue again. The only change concerns the function Q, which has to be Q = 0 here.
Now the differential equations are set up.

10.2.4 Setting up the mesh

Now a mesh for the Finite Element Method has to be generated. There are two options to generate this
mesh.

• Click on the button with the large triangle to generate the mesh and on the button with four triangles
to refine the mesh.

• Choose the menu Mesh and appropriate subcommands.

10.2.5 Solving the differential equation and plotting the solution

Now either push the button = or apply commands in the menu Solve to solve the equation and generate a
first plot, see figure 10.1. With the button showing the meshed surface or the menu Plot more elaborate
figures can be generated. Play with the options and consult the manual [PDEToolbox95].

10.3 A partial differential equation in polar coordinates

10.3.1 The equation to be solved

The domain Ω ⊂ R3 is a cylinder with radius 2 and height 3. As a model problem we solve the following
differential equation with boundary conditions.

−∆u = 4− sin 3
πz in Ω

u (x, y, 0) = 1− x2 − y2 for z = 0 and z = 2

u (x, y, z) = 1− x2 − y2 if x2 + y2 = 22

SHA 22-4-21

CHAPTER 10. MATLAB PDE–TOOLBOX 252

Observe that the equation and solution will depend on the radius r and the hight z only. Thus polar coordi-
nates should be used. The exact solution is given by

u(r, z) = 1− x2 − y2 −
(π

3

)2
sin

3

π
z

10.3.2 Using cylindrical coordinates

In cylindrical coordinates the Laplace operator can be expressed with derivatives with respect to the variables
r, θ and z. We have

∆u =
1

r

(
∂

∂r

(
r
∂ u

∂r

)
+

1

r

∂2 u

∂θ2
+ r

∂2 u

∂z2

)
Thus if a function f and the solution u are know not to depend on the angle θ we can rewrite the equation
−∆u = f as follows

− ∂

∂r

(
r
∂ u

∂r

)
− r ∂

2 u

∂z2
= r f (r, z)

Along the edge r = 0 the solution has to satisfy the Neumann boundary condition ∂ u
∂r = 0. Now the original

problem can be formulated as a partial differential equation on the rectangle 0 < r < 2, 0 < z < π with
four parts of the boundary.

− ∂
∂r

(
r ∂ u∂r

)
− r ∂2 u

∂z2 = r (4− sin 3
πz) in Ω = [0, 2]× [0, 3]

u (r, 0) = 1− r2 for r ∈ [0, 2]

u (r, π) = 1− r2 for r ∈ [0, 2]

u (2, z) = −3− sin 3
πz for z ∈ [0, 3]

∂
∂r u (0, z) = 0 for z ∈ [0, 3]

10.3.3 Setting up the domain

The rectangular domain for our problem is 0 < r < 2 and 0 < z < 3, but the variables in the toolbox
need to have the names x and y. We translate r → x and z → y. With the menu Options → Axes
Limits the visible domain can be adjusted. If you want to chose only points on a grid you can toggle the
switch Options → Grid. Now click on the rectangle on the very left, then move the mouse pointer to
the point (0, 0), hold the left mouse button, move to the point (2, 3) and the release the mouse button. Now
you should see a grey rectangle on which we will solve the problem.

10.3.4 Specifying boundary conditions

Use Boundary → Boundary Mode to specify the boundary conditions.

Right edge

Along the right edge we have to specify

u(2, y) = −3− sin
3

π
y

1. click on the right boundary, it will turn black.

2. choose Boundary → Specify Boundary Conditions and a menu will pop up. The equa-
tion has the form h*u=r, where the functions hand r can be specified. In our case we want h = 1
and r = −3− sin(3 ∗ y/π)

3. confirm you choice with OK.

SHA 22-4-21

CHAPTER 10. MATLAB PDE–TOOLBOX 253

Lower and upper edge

Along the lower and upper edge we have to specify

u(x, 0) = u(x, 3) = 1− x2

1. click on the lower boundary, it will turn black. Press the shift key and click on the upper boundary.
Both should turn black.

2. choose Boundary → Specify Boundary Conditions and a menu will pop up. Here we
want h = 1 and r = 1−x2. The precise syntax for the second function is 1-x.ˆ2 or also 1-x.*x .
With these commands the elements in the vector x will be multiplied component by component.

3. confirm you choice with OK.

Left edge

Along the left edge we have the Neumann condition

∂

∂x
u(x, 0) = 0

1. click on the left boundary, it will turn black.

2. choose Boundary → Specify Boundary Conditions and a menu will pop up. Now we
have to switch to the Neumann condition with the button on the left. The condition has to be specified
in the form

~n · c∇u+ q · u = g

with the functions g and q to be chosen. The function c has to be given when specifying the differential
equation. Here we want q = 0 and g = 0

3. confirm you choice with OK. The left edge should now be blue, to indicate the different type of
boundary condition.

10.3.5 Specifying the differential equation

Click on the button PDE to get to the menu to specify the differential equation

− ∂

∂r

(
r
∂ u

∂r

)
− r ∂

2 u

∂z2
= r (4− sin z)

Our problem is of elliptic type and thus the appropriate box has to be marked. The MATLAB notation for the
differential equation is

−div(c ∗ grad(u)) + a ∗ u = f

with functions c, a and f to be chosen. If we set c(x, y) = x, a = 0 and f(x, y) = x · (4 − sin y) the we
have

div

(
c ∂ u
∂x

c ∂ u
∂y

)
+ a u =

∂

∂x

(
x
∂ u

∂x

)
+

∂

∂y

(
x
∂ u

∂y

)
= x (4− sin y)

Thus the differential equation is set up.

SHA 22-4-21

CHAPTER 10. MATLAB PDE–TOOLBOX 254

10.3.6 Setting up the mesh

Now a mesh for the Finite Element Method has to be generated. There are two options to generate this
mesh.

• Click on the button with the large triangle to generate the mesh and on the button with four triangles
to refine the mesh.

• Choose the menu Mesh and appropriate subcommands.

10.3.7 Solving the differential equation and plotting the solution

Now either push the button = or apply commands in the menu Solve to solve the equation and generate
a first plot. With the button showing the meshed surface or the menu Plot more elaborate figures can be
generated. Play with the options and consult the manual [PDEToolbox95].

10.4 A two dimensional fluid flow problem

Consider a laminar flow between two plates with an obstacle between the two plates. We assume that
the situation is independent on one of the spatial variables and consider a cross section only shown in the
figure 10.2. The goal is to find the velocity field ~v of the fluid.

-

6

@
@@

-
-
-
-
-
-
-

-
-
-
-
-
-
-

Φ = 0 Φ = 1

Figure 10.2: Fluid flow between two plates, the setup

According to table 6.1 on page 144 we can introduce a velocity potential Φ(x, y). The velocity vector ~v
is then given by

~v =

(
vx

vy

)
=

(
∂ Φ
∂x
∂ Φ
∂y

)
The flow is assumed to be uniform far away from the obstacle. Thus we set the potential to Φ = 0 (resp.
Φ = 1) at the left (resp. right) end of the plates. Since the fluid can not flow through the plates we know
that the normal component of the velocity has to vanish at the upper and lower boundary. The differential
equation to be satisfied by Φ is

∆Φ = div (grad Φ) = 0

This boundary value problem can be solved by MATLAB and a possible result2 is shown in figure 10.3 After
the numerical solution is found you may export the information about the mesh and the solution to the
MATLAB environment and find a velocity profile along a given height y = 0.5, only the x–component of the
velocity is computed. The code below and leads to figure 10.4. Documentation can be found in the online
help or in [PDEToolbox95].

2Since MATLAB plots − grad Φ we actually set Φ = 1 on the left border and Φ = 0 on the right border. Thus the fluid will
move from left to right.

SHA 22-4-21

CHAPTER 10. MATLAB PDE–TOOLBOX 255

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3
 Contour: u Vector field: −grad(u)

Figure 10.3: Fluid flow between two plates, the result

Matlab
% export mesh to p e t
% export solution to u
x=linspace(0,6,100);
y=0.5;
phix=tri2grid(p,t,u,x,y);

dx=x(2)-x(1);
xcenter=x(1:length(x)-1)+dx/2;
vx=-diff(phix)/dx;
plot(xcenter,vx)
axis([0 6 0 0.3]);

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 10.4: Fluid flow between two plates, a speed profile

SHA 22-4-21

Chapter 11

Some matrix computations

The bible for matrix computations is [GoluVanLoan96] and this presentation is based on this standard ref-
erence. Other useful references are [Demm97] or [Axel94].

In this chapter we present some results from numerical linear analysis needed to solve the systems
arising from the type of FEM problems considered in these notes. Thus we restrict the results to positive
definite symmetric matrices and will exploit the band structure of the matrices to obtain efficient algorithms
to solve the system of equations and find a few eigenvalues. Then the conjugate gradient will be examined
as a typical and important iterative solution method.

11.1 A few basic definitions for matrices

When solving systems of linear equations errors will occur. Matrix norms and conditions numbers can be
used to examine and control the errors.

11–1 Definition : The norm1 of a real n× n matrix is defined as

‖A‖ = max
‖~x‖=1

‖A ~x‖ = max
~x∈Rn

‖A ~x‖
‖~x‖

If the matrix A is invertible then the number

κ = ‖A‖ · ‖A−1‖

is called the condition number of the matrix.

The definition of a matrix norm implies

‖A ~x‖ ≤ ‖A‖ ‖~x‖ for all ~x ∈ Rn

The norm of a matrix A is the factor by which a vector will be stretched at most if multiplied by A. Thus it
is no surprise that the eigenvalues are related to the norm of a matrix.

11–2 Result : If A is a symmetric matrix with eigenvalues λi then

‖A‖ = max
i
|λi|

3

1We only consider the matrix norm based on the Euclidean norm on Rn, i.e. ‖~x‖ =
√∑

i x
2
i

256

CHAPTER 11. SOME MATRIX COMPUTATIONS 257

This result applies only to symmetric matrices as the example

A =

[
0 1

0 0

]

clearly illustrates.
Proof : Use the diagonalization A = Q D QT with an orthogonal matrix Q. The eigenvalues λi form the
diagonal of D. Based on exercise 11–3 and ‖QT ~x‖ = ‖~x‖ we obtain

‖A ~x‖ = ‖Q D QT ~x‖ = ‖Q D ~y‖ = ‖D ~y‖

where ~y = QT ~x. This implies κ(A) = κ(D), using exercise 11–1. 2

Since A−1 =
(
Q D QT

)−1
= Q D−1 QT we obtain

‖A−1‖ = min
i
|λi|

Now we can characterize the condition number of a symmetric matrix. Computing κ is a different story
though, as the eigenvalues are not readily computed.

11–3 Result : The condition number of a symmetric, invertible matrix with eigenvalues λ1 is given by

κ =
maxi |λi|
mini |λi|

3

Now we show that the condition number contains information about the precision of the solution of a
system of linear equations.

11–4 Result : Consider a system of linear equations A ~x = ~b. But instead of the exact values of the
RHS ~b a perturbed vector ~b + ~∆b is used, leading to a perturbed solution ~x + ~∆x. Then we find for
the relative error

‖ ~∆x‖
‖~x‖

≤ κ ‖
~∆b‖
‖~b‖

i.e. the relative error is (at worst) multiplied by the condition number. 3

As an example consider a matrix with condition number κ = 1′000 = 103 and an input vector ~b with
5 digits known to be correct. Then the result might have only 5 − 3 = 2 correct digits. This problem can
not be avoided, it is inherent to the equation to be solved. A stable algorithm will not worsen the problem.
The above is clearly a worst case scenario. For many FEM problems the actual error will be considerably
smaller. A good heuristic explanation for this, based on eigenvalues and eigenvectors, is given in [Axel94,
p. 606]. Exercise 11–2 also illustrates the effect. Nonetheless the condition number is a good indicator
for possible precision problems. One can show that the Cholesky algorithm, without pivoting, is stable,
i.e. does not lead to unnecessary errors, see e.g. [Wilk63] or [GoluVanLoan96]. Find a description of the
essential steps in section 11.2.3.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 258

Proof : Since the equation is linear we find A ~∆x = ~∆b and thus

‖ ~∆x‖ = ‖A−1 ~∆b‖ ≤ ‖A−1‖ ‖ ~∆b‖

and since ‖~b‖ = ‖A ~x‖ ≤ ‖A‖ ‖~x‖ we find

‖~x‖ ≥ 1

‖A‖
‖~b‖

Now divide the two inequalities

‖ ~∆x‖
‖~x‖

≤ ‖A‖ ‖A−1‖ ‖
~∆b‖
‖~b‖

= κ
‖ ~∆b‖
‖~b‖

2

The above result can be extended to the situation where the matrix A is perturbed by a matrix ∆A, i.e.
we solve

(A + ∆A) (~x+ ~∆x) = ~b+ ~∆b

Then the relative error can be estimated by the following computation, if ‖A−1 ∆A‖ < 1.

(A + ∆A) (~x+ ~∆x) = ~b+ ~∆b

A ~∆x = −∆A (~x+ ∆~x) + ~∆b

~∆x = −A−1 ∆A (~x+ ∆~x) + A−1 ~∆b

‖ ~∆x‖
‖~x‖

≤ ‖A−1 ∆A‖ ‖~x+ ∆~x‖
‖~x‖

+ ‖A−1‖‖A ~x‖
‖~x‖

‖ ~∆b‖
‖~b‖

≤ ‖A−1 ∆A‖
(

1 +
‖∆~x‖
‖~x‖

)
+ κ(~x)

‖ ~∆b‖
‖~b‖(

1− ‖A−1 ∆A‖
) ‖ ~∆x‖
‖~x‖

≤ ‖A−1 ∆A‖+ κ(~x)
‖ ~∆b‖
‖~b‖

‖ ~∆x‖
‖~x‖

≤ 1

1− ‖A−1 ∆A‖

(
‖A−1 ∆A‖+ κ(~x)

‖ ~∆b‖
‖~b‖

)
Using

‖A−1 ∆A‖ ≤ ‖A−1‖ ‖∆A‖ = ‖A‖ ‖A−1‖ ‖∆A‖
‖A‖

= κ
‖∆A‖
‖A‖

and κ(~x) ≤ κ (see exercise 11–2) this leads to the bound on the relative error. Again the condition number
κ plays an important role.

‖ ~∆x‖
‖~x‖

≤ κ

1− ‖A−1 ∆A‖

(
‖∆A‖
‖A‖

+
‖ ~∆b‖
‖~b‖

)
(11.1)

11–5 Definition : A symmetric, real matrix A is called positive definite if and only if

〈A · ~x , ~x〉 = 〈~x , A · ~x〉 > 0 for all ~x 6= ~0

The matrix is called positive semidefinite if and only if

〈A · ~x , ~x〉 = 〈~x , A · ~x〉 ≥ 0 for all ~x

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 259

11–6 Result : If the matrix A = (ai,j)1≤i,j≤n is positive definite then

• ai,i > 0 for 1 ≤ i ≤ n, i.e. the numbers on the diagonal are positive.

• max |ai,j | = max ai,i, i.e. the maximal value has to be on the diagonal.

3

Proof :
• Choose ~x = ~ei and compute 〈~ei , A · ~ei〉 = ai,i > 0

• Assume max |ai,j | = max ak,l with k 6= l. Choose ~x = ~ek− sign(ak,l) ~ek and compute 〈~x , A ·~x〉 =
ak,k + al,l − 2 |ak,l| ≤ 0, contradicting positive definiteness.

2

The above allows to verify quickly that a matrix is not positive definite, but it does not contain a criterion
to quickly decide that A is positive definite. The eigenvalues contain all information about definiteness of a
symmetric matrix.

11–7 Result : The matrix A is positive definite iff all eigenvalues are strictly positive. The matrix A is
positive semidefinite iff all eigenvalues are positive or zero. 3

Proof : This is a direct consequence of the diagonalization result A = Q D QT in section A.1.3 2

This result is of little help to decide whether a given large matrix is positive definite or not. Finding all
eigenvalues is not an option, as it is computationally rather expensive. A positive answer can be given using
diagonal dominance and reducible matrices, see e.g. [Axel94, §4].

11–8 Definition : Consider a symmetric n× n matrix A.

• A is called strictly diagonally dominant iff |ai,i| > σi for all 1 ≤ i ≤ n, where

σi =
∑

j 6=i , 1≤j≤n
|ai,j |

Along each column/row the sum of the off-diagonal elements is smaller than the diagonal element.

• A is called diagonally dominant iff |ai,i| ≥ σi for all 1 ≤ i ≤ n.

• A is called reducible if the exists a permutation matrix P and square matrices B1, B2 and a matrix
B3 such that

P ·A ·PT =

[
B1 B3

0 B2

]
Since A is symmetric the matrix P ·A ·PT is also symmetric and the block B3 has to vanish, i.e. we
have the condition

P ·A ·PT =

[
B1 0
0 B2

]
This leads to an easy interpretation of a reducible matrix A: the system of linear equation A ~u = ~b
can be decomposed into two smaller systems B1 ~u1 = ~b1 and B2 ~u2 = ~b2. To arrive at this situation
all one has to do is renumber the equations and variables.

• A is called irreducible if it is not reducible.

• A is called irreducibly diagonally dominant if A is irreducible and

– |ai,i| ≥ σi for all 1 ≤ i ≤ n
– |ai,i| > σi for at least one 1 ≤ i ≤ n

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 260

11–9 Observation : If the matrix A is generated by a finite element problem, then there is a simple criterion
to decide where A is irreducible. The method is based on graph theory. A symmetric n × n matrix leads
to a graph by the following procedure:

• For each row (number i) in the matrix A draw a point Pi in the plane.

• Two points Pi and Pj are directly connected if ai,j = aj,i 6= 0. In this case draw a line from Pi to Pj .

• The resulting graph is said to be strongly connected if for each pair of points there is a path connection
the points.

If the matrix is generated by a finite element problem, based on linear interpolation on a given mesh then
we already have the graphical representation of the graph: the mesh. The matrix is strongly connected if
the mesh consists of one piece, i.e. we can walk from any point to any other point on the mesh. For a given
problem this is often very easy to verify by looking at the mesh.

It can be shown ([Axel94, Theorem4.3]) that a symmetric matrix is irreducible if and only if its graph is
connected. ♦

11–10 Example : The matrix below is strongly connected, as can be seen by a possible representation of
its graph on the right.



1 1 1 0 0

1 1 0 1 0

1 0 1 1 1

0 1 1 1 1

0 0 1 1 1

 t 2

t
1
t

3

t4
t 5

�
�
��

@
@
@@

A modification leads to a matrix that is not strongly connected.



1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

 t 2

t
1
t

3

t4
t 5

�
�
��

@
@
@@

For the above two example one can quickly decide whether the matrices are reducible or not. But a renum-
bering of the rows and columns will lead to matrices where it is not as easy to decide. The graphs on the
right will not change by reordering rows and columns. ♦

11–11 Example : A discretization of the boundary value problem u′′(x) = f(x) for 0 < x < 1 and
u(0) = u(1) = 0 leads to the matrix

A =



2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2


SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 261

See also Example 4–1 on page 73. This matrix is diagonally dominant, but not strictly diagonally dominant.
The matrix is irreducible and thus irreducibly diagonally dominant.

Most global stiffness matrices for FEM problems satisfy similar properties. This is based on the fact
that the element stiffness matrices are diagonally dominant and positive semidefinite, see also exercise 7–1.

♦

11–12 Example : A positive definite matrix need not be diagonally dominant. As an example consider the
square of the matrix A above

A2 =



5 −4 1

−4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1
.

1 −4 6 −4 1

1 −4 6 −4

1 −4 5


Since the eigenvalues of A2 are the squares of the eigenvalues of A this matrix is positive definite. But it is
clearly not diagonally dominant. ♦

11–13 Result : (see e.g. [Axel94, Theorem 4.9])
Consider a real symmetric matrix A with positive numbers along the diagonal. If A is strictly diago-
nally dominant or irreducibly diagonally dominant, then A is positive definite. 3

This result is a consequence of Gershgorin’s theorem and we omit its proof. The following results are
useful too to decide whether matrices arising from FEM problems will be positive definite.

11–14 Result : Consider the positive definite, symmetric matrix A ∈ Rn×n and B ∈ Rn×m is such that
B ~x 6= ~0 if ~x 6= ~0, i.e. ker B = {~0}. Then C = BT ·A ·B ∈ Rm×m is also symmetric and positive definite.
If the condition on B is not satisfied or A is only positive semidefinite then C is positive semidefinite. 3

Proof : If ~x 6= ~0 then ~y = B ~x 6= ~0 and thus

〈~x , C ~x〉 = 〈~x , BT ·A ·B ~x〉 = 〈B ~x , A ·B ~x〉 = 〈 ~y , A ~y〉 > 0

This implies all of the claimed results. 2

The following two results are verified by elementary computations.

11–15 Result : The sum of positive semidefinite matrices is positive semidefinite. 3

11–16 Result : If for a symmetric, positive semidefinite matrix A the equation A ~x = ~0 has only the trivial
solution, i.e. 0 is not an eigenvalue, then A is positive definite. 3

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 262

11.2 The Cholesky decomposition

11–17 Result : If a symmetric matrix A is strictly positive definite, then there exists a diagonal
matrix D with positive entries only and a upper triangular unity matrix R (numbers 1 on the diagonal)
such that

A = RT ·D ·R

This is called the Cholesky decomposition2 of the matrix A. If an above decomposition exists for a
symmetric matrix A and the diagonal matrix D has only positive entries, then A is positive definite. 3

=

@
@
@
@
@
@
@

·

@
@
@
@
@
@
@

·

@
@
@
@
@
@
@

Figure 11.1: The Cholesky decomposition of a symmetric matrix

The factorization of the full matrix A is visualized in Figure 11.1. If we provide an algorithm to find
this factorization then we have a method to decide whether A is positive definite or not. In section 11.2.3 it
is shown that if A is positive definite, then the algorithm is stable and no pivoting is necessary. If A is not
positive definite then the algorithm shown below might not be stable and some pivoting scheme should be
used. Possible methods can be found in [GoluVanLoan96, §4.4].

Since A and D have the same number of positive, zero and negative eigenvalues ([Axel94, Theorem
3.20]) we know the number of positive eigenvalues of A, once D is known.

Instead of solving the system A ~x = ~b one can then solve three much simpler problems.

A ~x = ~b ⇐⇒
(1) RT ~y = ~b from top to bottom

(2) D~z = ~y divisions

(3) R ~x = ~z from bottom to top

11.2.1 The algorithm of Cholesky for a 3× 3 matrix

This Cholesky decomposition can be generated by applying row and column operations to the matrix A to
transform it into diagonal form. To examine this we consider a simple example, observing that the ideas and
operations also apply to the general case.

2The standard notation for the Cholesky decomposition is A = RT
1 ·R1 where R1 is an upper triangular matrix and does not

need to have numbers 1 on the diagonal. Letting R1 =
√

D · R one may generate the standard presentation using the result given
here. The chosen algorithm has the advantage that also some non positive definite problems can be solved, as long as not pivoting
is necessary. In [GoluVanLoan96] the presented result is called a LDLT factorization.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 263

11–18 Example : For the simple 3× 3 matrix A

A =


1 3 −4

3 11 0

−4 0 10

 = A1

we apply two sets of row and column operations to transform A into diagonal form.

• First generate zeros in the first column, below the diagonal. Then treat the first row accordingly.

– Subtract 3 times the first row from the second row.

– Add 4 times the first row to the third row.

– Subtract 3 times the new first column from the second column.

– Add 4 times the new first column to the third column.

All the above operations can be written as matrix multiplications with elementary matrices. We obtain.

CT
1 ·A1 ·C1 =


1 0 0

−3 1 0

+4 0 1

·


1 3 −4

3 11 0

−4 0 10

·


1 −3 +4

0 1 0

0 0 1

 =


1 0 0

0 2 12

0 12 −6

 = A2

• Now subtract 6 times the second row from the third row and do the corresponding operation on the
columns. You find a matrix A3 = D with nonzero entries in the diagonal only.

CT
2 ·A2 ·C2 =


1 0 0

0 1 0

0 −6 1

 ·


1 0 0

0 2 12

0 12 −6

 ·


1 0 0

0 1 −6

0 0 1

 =


1 0 0

0 2 0

0 0 −78


= A3 = D

• The above two sets of row and column operations can thus be written as

A3 = CT
2 ·A2 ·C2 = CT

2 ·CT
1 ·A1 ·C1 ·C2 = (C1 ·C2)T ·A1 · (C1 ·C2)

or equivalently as

A1 =
(

(C1 ·C2)T
)−1
·A3 · (C1 ·C2)−1 = RT ·A3 ·R = RT ·D ·R

It remains to verify that R is in fact an upper triangular matrix. For this we have to realize that R can
be produced by a sequence of column operations applied to the identity matrix

R = (C1 ·C2)−1 = C−1
2 ·C

−1
1

=


1 0 0

0 1 −6

0 0 1


−1

·


1 −3 4

0 1 0

0 0 1


−1

=


1 0 0

0 1 +6

0 0 1

 ·


1 3 −4

0 1 0

0 0 1

 ·


1 0 0

0 1 0

0 0 1

 =


1 +3 −4

0 1 +6

0 0 1


SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 264

• Observe that the entries in the matrix R are the numbers used while transforming A into diagonal
form D. Thus we can store the numbers in R while performing the row/column operations on A.

As a final result we obtain the factorization

A =


1 3 −4

3 11 0

−4 0 10

 =


1 0 0

+3 1 0

−4 +6 1

 ·


1 0 0

0 2 0

0 0 −78

 ·


1 +3 −4

0 1 +6

0 0 1

 = RT ·D ·R

♦

11–19 Example : Instead of solving the system of three linear equations
1 3 −4

3 11 0

−4 0 10

 ·


x1

x2

x3

 =


1

2

3


we can use the Cholesky decomposition and solve three simple systems of equations.

1. Solve the equation RT ~y = ~b from top to bottom, i.e. first solve the first equation for y1, then the
second for y2 and finally the third for y3.

1 0 0

+3 1 0

−4 +6 1

 ·


y1

y2

y3

 =


1

2

3

 =⇒ y1 = 1 , y2 = −1 , y3 = 13

2. The system D~z = ~y can be solved very easily, divide the values of yi by the corresponding number
in D.

1 0 0

0 2 0

0 0 −78

 ·


z1

z2

z3

 =


1

−1

13

 =⇒ z1 = 1 , z2 =
−1

2
, z3 =

13

−78
=
−1

6

3. Solve the equation R ~x = ~z from bottom to top, i.e. first solve the third equation for x3, then the
second for x2 and finally the first for x1.

1 +3 −4

0 1 +6

0 0 1

 ·


x1

x2

x3

 =


1
−1
2
−1
6

 =⇒ x3 =
−1

6
, x2 =

1

2
, x1 =

−7

6

Observe that each of the three systems is easily solvable. ♦

11–20 Example : As the entry −78 in the diagonal matrix D is negative we know that the original matrix
A is not positive definite. To find a vector ~x such that 〈~x , A ~x〉 < 0 we may solve the system

R ~x =


1 +3 −4

0 1 +6

0 0 1

 ·


x1

x2

x3

 =


0

0

1


SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 265

This leads to

〈~x , A ~x〉 = 〈~x , RT ·D ·R ~x〉 = 〈R ~x , A ·R ~x〉 = 〈


0

0

1

 ,


1 0 0

0 2 0

0 0 −78




0

0

1

〉 = −78

and thus A is not positive definite. ♦

11.2.2 The algorithm and an implementation in Octave

The example above leads to the Cholesky algorithm for the factorization of a positive matrix A, as shown in
Table 11.1. This algorithm can be implemented in any programming language. The code below shows the
straightforward code in Octave (a MATLAB clone).

for each row: for k=1:n
for each row below the current row for j=k+1:n

find the factor for the row operation R(k,j) = A(j,k)/A(k,k);
do the row operation A(j,:) = A(j,:) - R(k,j)*A(k,:);
do the column operation A(:,j) = A(:,j) - R(k,j)*A(:,k);

Table 11.1: Algorithm of Cholesky

Octave
function [R,D] = choleskyDiag(A)
% [R,D] = choleskyDiag(A) if A is a symmetric positive definite matrix
% returns a upper triangular matrix R and a diagonal matrix D
% such that A = R’*D*R

% this code can only be used for didactical purposes
% it has some major flaws!

[n,m] = size(A);
D=zeros(n);
R=zeros(n);

for k=1:n-1
R(k,k)=1;
for j=k+1:n

R(k,j) = A(j,k)/A(k,k);
% row operations
A(j,:) = A(j,:) - R(k,j)*A(k,:);
% column operations
A(:,j) = A(:,j) - R(k,j)*A(:,k);

endfor
R(n,n)=1;
endfor
D=diag(diag(A));

The above code has some serious flaws

• It does not check for correct size of the input.

• It does not check for a possible division by 0.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 266

• As we go through the algorithm the coefficients in R can replace the coefficients in A which will not
be used any more. This cuts the memory requirement in half.

• If we do all computations in the upper right part of A, we already know that the result in the lower left
part has to be the same. Thus we can do only half of the calculations.

• As we already know that the numbers in the diagonal of R have to be 1, we do not need to return
them. One can use the diagonal of R to return the coefficients of the diagonal matrix D.

If we implement most3 of the above points we obtain an improved algorithm, shown below.

Octave
function R = cholesky(A)
% R = cholesky(A) if A is a symmetric positive definite matrix
% returns a upper triangular matrix R and a diagonal matrix D
% such that A = R1’*D*R1
% R1 has all diagonal entries equals 1
% the values of D are returned on the diagonal of R

TOL=1e-10; %% there certainly are better tests than this!!

[n,m] = size(A);
if (n!=m) error ("cholesky: matrix has to be square ") endif

for k=1:n-1
if (abs(A(k,k)) <= TOL) error ("cholesky:might be a singular matrix")
endif

for j=k+1:n
A(j,k) = A(k,j)/A(k,k);
% row operations only
A(j,j:n) = A(j,j:n) - A(j,k)*A(k,j:n);

endfor
endfor
if (abs(A(n,n)) <= TOL) error ("cholesky:might be a singular matrix")
endif

% return the lower triangular part of A.
% Transpose it to obtain an upper triangular matrix
R=tril(A)’;

This code can be used for an operation count, i.e. how many operations does a computer have to perform
to complete the algorithm. We are only interested in cases where n is rather large, where n < 100 is certainly
considered small. We consider one flop (floating point operation) as a unit of

• one addition/subtraction and one multiplication of floating point numbers.

• two memory fetches.

The inner most loop (index (j:n) in MATLAB notation) performs n− j + 1 such operations. The second
loop (variable k) is performed n− k times. Thus the two inner loops consume a total of4

n∑
j=k+1

(n− j + 1) =

n−k∑
i=1

i ≈ 1

2
(n− k)2 flops

3The memory requirements can be made considerably smaller
4We used the simple approximation idea

n∑
j=0

jm ≈
∫ n

0

xm dx =
1

m+ 1
nm+1

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 267

The outer most loop has n− 1 cycles. This leads to a total flop count of

n−1∑
k=1

1

2
(n− k)2 =

1

2

n−1∑
i=1

i2 ≈ 1

6
n3

leads to a total computational effort of

FlopChol =
1

6
n3

This information is useful to estimate the computation time of the algorithm on a given computer, it should
be proportional to n3.

The above code finds the Cholesky factorization of the matrix, but does not solve a system of linear
equations. It has to be supplemented with the corresponding back-substitution algorithm.

Octave
function x = choleskySolver(R,b)
% x = choleskySolver(R,b) solves A x = b
% R has te be generated by R=cholesky(A)

[n,m] = size(R);
if (n!=length(b))
error ("choleskySover: matrix and vector do not have same dimension ") endif

% forward substitution of R’ y = b
y=zeros(size(b));
y(1)=b(1);
for k=2:n
y(k) = b(k);
for j=1:k-1 y(k) = y(k) - R(j,k)*y(j);endfor

endfor

% solve diagonal system
for k=1:n y(k) = y(k)/R(k,k);endfor

% forward substitution of R’ y = b
x=zeros(size(b));
x(n)=y(n);
for k=1:n-1
x(n-k) = y(n-k);
for j=n-k+1:n x(n-k) = x(n-k) - R(n-k,j)*x(j);endfor

endfor

Now we can solve the numerical example on the previous pages by

Octave
A=[1 3 -4; 3 11 0; -4 0 10];
R = cholesky(A)
b=[1; 2; 3];
x=choleskySolver(R,b)’
.

R =

An exact inequality is given by

(n− 1)m+1

m+ 1
=

∫ n−1

0

xm dx <

n∑
j=1

jm <

∫ n

1

xm dx =
nm+1 − 1

m+ 1

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 268

1 3 -4
0 2 6
0 0 -78

x = -1.16667 0.50000 -0.16667

The operation count of this algorithm is given by

FlopSolve = n2

For large n this is small compared to the n3/6 operations for the factorization.

11.2.3 Stability of the Cholesky algorithm

When running the algorithm of Cholesky on a computer we will certainly encounter numerical rounding
errors. The effect of these have be extensively studied, e.g. [Wilk63], [High96]. The good news is that
for positive definite, symmetric matrices the effect of rounding errors can be controlled ([GoluVanLoan96,
Theorem 4.2.4 and §4.7.2]). For given A and~b we will find a Cholesky factorization, to be used for forward
and backward substitution to determine an approximate solution ~̂x of the system A ~x = ~b. This approximate
solution is an exact solution of an approximate equation

(A + E) ~̂x = ~b

where the size of the entries in the matrix E can be controlled, i.e. we have backward stability of the
algorithm. The concept of backward stability is explained in [Wilk63]. The above does not imply that the
effect of the roundoff errors is always small. If the condition number κ is large we may in fact find large
roundoff errors. But combined with the error estimate (11.1) (page 258) this is the best result we can hope
for.

To show that the Cholesky algorithm is stable for positive definite system two essential ingredients are
used

• Show that the entries in the factorization R and D are bounded by the entries in A. This is only correct
for positive definite matrices.

• Keep track of rounding errors for the algebraic operations to be executed during the algorithm of
Cholesky.

The entries of R and D are bounded

For a symmetric, positive definite matrix we have the factorization

A = RT ·D ·R

By multiplying out the diagonal elements we obtain

ai,i = di +
i−1∑
k=1

rk,i dk rk,i = di +
i−1∑
k=1

dk r
2
k,i

Thus we find bounds on the coefficients in R and D in terms of A.

di ≤ ai,i and
i−1∑
k=1

dk r
2
k,i ≤ ai,i

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 269

Using this and the Cauchy–Schwartz inequality we now obtain an estimate for the result of the matrix
multiplication below, where the entries in |R| are given by the absolute values of the entries in R. Estimates
of this type are needed to keep track of the ‘worst case’ situation for rounding errors and the algorithm.(

|R|T ·D · |R|
)
i,j

=

n∑
k=1

|rk,i| dk |rk,j |

≤

√√√√ n∑
k=1

dk r
2
k,i ·

√√√√ n∑
k=1

dk r
2
k,j

≤ √
ai,i ·

√
aj,j ≤ max

1≤j≤n
aj,j (11.2)

Example 11–23 shows that the above is false if A is not positive definite.

Rounding errors while solving

When finite precision arithmetic is used to perform matrix operation round off errors will invariably occur.
We use the unit round off error ε. When a number of size comparable to 1 has to be rounded of an error of
the size εwill occur. As an example we consider the computation of a scalar product, see [GoluVanLoan96].
For ~x, ~y ∈ Rn we perform the operations to compute 〈~x , ~y〉 in a programming language.

Octave
function s=scalarproduct(x,y)
s=0
for i=1:size(x) s = s + x(i)*y(i)

endfunction

and call the result s = fl(〈~x , ~y〉). One can verify that

|fl(〈~x , ~y〉)− 〈~x , ~y〉| ≤ n ε 〈~|x| , ~|y|〉+O(ε2)

Based on this results on the effect or round of errors during Cholesky factorizations can be controlled,
leading to the following two results.

11–21 Result : (Modification of [GoluVanLoan96, Theorem 3.3.1])
Assume that for a positive definite, symmetric n × n matrix A the algorithm of Cholesky leads to an ap-
proximate factorization

R̂T · D̂ · R̂ = A + H

Then the error matrix H satisfies

|H| ≤ 3 (n− 1) ε
(
|A|+ |R|T · |D| · |R|

)
+O(ε2)

3

The estimate (11.2) for a positive definite A now implies

|H| ≤ 6 (n− 1) ε max
i
ai,i

11–22 Result : (Modification of [GoluVanLoan96, Theorem 3.3.2])
Let R̂ and D̂ be the computed factors of the Cholesky factorization of the n × n matrix A. Then forward
and back substitution are used to solve D̂ · R̂T ~y = ~b with computed solution ~̂y and solve R̂ ~x = ~̂y with
computed solution ~̂x. Then

(A + E) ~̂x = ~b with |E| ≤ n ε
(
3 |A|+ 5 |R|T · |D| · |R|

)
+O(ε2)

3

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 270

The estimate (11.2) for a positive definite A now implies

|E| ≤ 8 n ε max
i
ai,i

i.e. the result of the numerical computations is the exact solution of a slightly modified equations. The
modification is small compared to the maximal coefficient in the original problem.

11–23 Example : If the matrix is not positive definite the effect of roundoff errors may be large, even if the
matrix has a condition number close to 1. Consider the matrix[

0.0001 1

1 0.0001

](
x1

x2

)
=

(
1

1

)

Exact arithmetic leads to the factorization[
0.0001 1

1 0.0001

]
=

[
1 0

10000 1

]
·

[
0.0001 0

0 −9999.9999

]
·

[
1 10000

0 1

]

The condition number is κ = 1.0002 and thus we expect almost no loss of precision. The exact solution is
~x = (0.99990001 , 0.99990001)T . Since all numbers in A and ~b are smaller than 1 one might hope for an
error of the order of machine precision. The bounds on the entries in R and D in (11.2) are clearly violated,
e.g. (

|R|T ·D · |R|
)

2,2
= |r1,2| d1 |r1,2|+ |r2,2| d2 |r2,2| = 108 · 10−4 + 9999.9999 ≈ 20000

Using floating point arithmetic with ε ≈ 10−8 we obtain a factorization[
1 0

10000 1

]
·

[
0.0001 0

0 −10000

]
·

[
1 10000

0 1

]
=

[
0.0001 1

1 0

]

and the solution is ~̂x = (1.0 , 0.9999)T . Thus the relative error of the solution is 10−4. This is by magnitudes
larger than the machine precision ε ≈ 10−8. The effect is generated by the large numbers in the factorization.
This can not occur if the matrix A is positive definite since we have the bound (11.2). To overcome this
type of problem a good pivoting scheme has to be used when the matrix is not positive definite, see e.g.
[GoluVanLoan96, §4.4]. ♦

11.3 Banded matrices

For systems of linear equations generated by a finite element approximation the corresponding matrix has
most entries equals 0. Matrices of this type are called sparse. As a typical example consider section 7.3
where all nonzero entries in matrix A are along the main diagonal, 2 upper and 2 lower diagonals. Iterative
methods take advantage of this property, e.g. [Axel94]. We present the most elementary direct method using
the band structure of the matrix A. This approach is practical if the degrees of freedom in a finite element
problem are numbered to minimize the bandwidth of the matrix.

11.3.1 The algorithm of Cholesky for banded matrices

If a symmetric matrix A has all nonzero numbers close to diagonal, then it is called a banded matrix. If
aij = 0 for |i − j| >= b then the integer B is called the semibandwidth of A. For a tridiagonal matrix
we find b = 2, the main diagonal and one off-diagonal. As the algorithm of Cholesky is based on row and
column operation we can apply it to a banded matrix and as long as no pivoting is done the band structure of

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 271

the matrix is maintained. Thus we can factor a positive definite symmetric matrix A with semibandwidth b
as

A = RT ·D ·R
where R is an upper triangular unity matrix with semibandwidth b and D is a diagonal matrix with positive
entries. This situation is visualized in Figure 11.2.

@
@
@
@
@
@

@
@
@
@
@
@

=

@
@
@
@
@
@
@

@
@
@
@
@
@

·

@
@
@
@
@
@
@

·

@
@
@
@
@
@
@

@
@
@
@
@
@

Figure 11.2: The Cholesky decomposition for a banded matrix

For a n× n matrix A we are interested in the situation

1 < b� n

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@

. . .

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@

. . .

Figure 11.3: Cholesky steps for a banded matrix. The active area is marked

When implementing the algorithm of Cholesky (see Table 11.1 on page 265) one works along the diag-
onal, top to bottom. For each step only a block of size b× b of numbers is worked on, i.e. has to be quickly
accessible. Three of these situations are shown in Figure 11.3. Each of those steps needs approximately
b2/2 flops and there are about n of those, thus we find an approximate5 operational count of

FlopCholBand ≈
1

2
b2 n

The additional cost to solve a system by back substitution is approximately

FlopSolveBand ≈ 2 b n

We need n · b numbers to store the complete matrix A. As the algorithm proceeds along the diagonal in
A (or its reduction R) in each step only the next b rows will be worked on. As we go to the next row the
previous top row will not be used any more but a new row bottom will will be needed, see also Figure 11.3.
Thus we have only b · b active entries at any time. If these numbers can be placed in fast memory then
the implementation will run faster than in regular memory. Thus for good performance we like to store b2

numbers in fast memory. This have to be taken in consideration when setting up the data structure for a
banded matrix together with the memory and cache architecture of the computer to be used. Table 11.2
shows the types of fast and regular memory relevant for most problems and some typical sizes of matrices.
If not enough fast memory is available the algorithm will still generate the result but not as fast. This fact
will be examined in the next sections, using a C++ implementation.

5We ignored the effect that the first row in each diagonal steps is left unchanged and we also do not take into account that in the
lower right corner fewer computations are needed. Both effects are of lower order.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 272

size band fast memory (MB) memory (MB)

regular problem cache RAM

huge problem RAM hard disk

100 10 0.0008 0.008

200 20 0.0032 0.032

1’000 100 0.08 0.8

10’000 100 0.08 8

100’000 100 0.08 80

100’000 200 0.32 160

100’000 500 2 400

100’000 1’000 8 800

Table 11.2: Memory requirements for the Cholesky algorithm for banded matrices

11.3.2 An implementation in C++

The ideas of the previous sections can be implemented in any good programming language. Here parts
of a C++ implementation are shown and the performance of a few slightly different implementations is
examined. The goal is to have reasonably optimized code.

Data structure

For a symmetric n× n matrix A with semibandwidth b a n× b matrix will be able to store all numbers, as
only the upper right half has to be considered. Due to the observations in the previous section we store the
matrix row by row, but only the b numbers on and to the right of the main diagonal. The example below
illustrates this fact where n = 5 and b = 3.

A =



11 2 3 0 0

2 17 0 4 0

3 0 12 4 4

0 1 1 10 3

0 0 1 3 19


−→



11 2 3

17 0 1

12 1 1

10 3

19


To access this memory we use two different methods. A block of memory to store n × b double precision
numbers is dynamically allocated. The pointer R indicates the position of the first number and we can access
all entries in A by R[i].

R -> [11, 2, 3, 17, 0, 1, 12, 1, 1, 10, 3, 0, 19, 0, 0]

As an example6 R[6] will return 12. The same block of memory can also be accessed by an array of
pointers Rp to get to each row in the matrix A.

Rp[0] -> [11, 2, 3]
Rp[1] -> [17, 0, 1]
Rp[2] -> [12, 1, 1]

6Observe that the array numbering starts with 0 and not with 1. Thus to access the seventh number we have to use R[6]. This
is a common source of programming problems.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 273

Rp[3] -> [10, 3, 0]
Rp[4] -> [19, 0, 0]

Here the number 12 is returned by Rp[2][0] .

A first implementation

Using the above memory structure we can now implement the basic Cholesky algorithm. The C++ class
uses the variables length and band to indicate size and semibandwidth of the matrix. On calling the
routine the memory block R contains the values of the matrix A. On return these values are replaced by the
values of the factorization RT · D · R. The first column of Rp contains the diagonal elements of D and
the values of the upper triangular unit matrix R are stored in the other columns. The values of the original
matrix A will be overwritten.

10 int jMax; double tmp; double* tmprow;
20 tmprow = new double[band];
30 for(int k= 0; k < length-1; k++) {
40 if (fabs(Rp[k][0]) <= TOL) { return message }
50 jMax = min(band,length-k);
60 for (int j=0;j < jMax; j++){tmprow[j]=Rp[k][j];}
70 for (int j=1;j < jMax; j++){
80 tmp = Rp[k][j] =tmprow[j]/tmprow[0];
90 for(int i=0;i<(jMax-j);i++) Rp[k+j][i] -= tmp*tmprow[j+i];
100 }; //for j flops: bandˆ2/2
110 }; //for k length iterations
120 delete[] tmprow;

Table 11.3: First implementation of the Cholesky algorithm

The code in Table 11.3 is explained below line by line.

10: define temporary variables

20: allocate the memory for temporary storage of one row of the matrix.

30: The counter k indicates the current row/column. With the help of this row all rows with a higher index
will be modified. But only jMax row will actually change, due to the band structure of the matrix.

40: If the diagonal element is to close to 0 the matrix may be singular, if the element is negative the matrix
is not positive definite.

50: The variable jMax indicates how many elements are present in the current row. The result is typically
band, unless we are in the lower right corner.

60: the current row is copied into the temporary row tmprow .

70: Row operations have to be applied to jMax rows below the current row. The index j indicates that
we are working on row k+j .

80: Determine the factor tmp and store it in Rp[k][j]. This is part of the result to be returned.

90: Subtract the multiple of the temporary row. This is the inner most loop and will consume most of the
computational time. One loop typically requires band-j flops.

100: End of the j-loop. As j runs from 1 to band we use about band2/2 flops in each loop.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 274

110: End of the k-loop. As k runs from 1 to lengthwe use about length·band2/2 flops in the algorithm.

120: Deallocate the temporary memory of tmprow .

A second implementation

The above code does solve the problem, but we might try to make some modifications to obtain faster code,
i.e. tune the code. Ideas on how to proceed can be found in [DowdSeve98]. The numbering of the code
lines is taken from 11.3 to show similarities.

10 int jMax; double tmp; double* tmprow; int kj;
20 tmprow = new double[band];
30 for(int k= 0; k < length-1; k++) {
40 if (fabs(Rp[k][0]) <= TOL) { return message }
50 jMax = min(band,length-k);
60 for (int j=jMax-1;j >= 0; j--){tmprow[j]=Rp[k][j];}
65 kj=(k+jMax)*band; // initialise Rp[k+jMax][0] = R[(k+jMax)*band]
70 for (int j=jMax-1; j>0; j--){
80 tmp = Rp[k][j] = tmprow[j]/tmprow[0];
85 kj -= band;
90 for(int i= jMax-j-1 ; i>=0; i--) R[kj+i] -= tmp*tmprow[j+i];
100 }; //for j flops: bandˆ2/2
110 }; //for k length iterations
120 delete[] tmprow;

Table 11.4: Second implementation of the Cholesky algorithm

Some of the changes in Table 11.4 might lead to faster code.

60: Instead of increasing to counter j++ we decrease j--. Thus the test j>=0 in the loop is against 0
and does not need an additional variable jMax on each test.

70: This loop is also used with decreasing counter.

90: Again the counter i is decreased.
The reference Rp[k+j][i] is replaced by R[kj+i]. Thus the compiler does not have to work
with a two dimensional array, but with a simple array. This simplifies the address computation for the
compiler. As a tradeoff we have to explicitly initialize the row counter in line 65 and decrement it on
line 85 .

11.3.3 Performance tests on different computers

As a test problem we consider the finite element (or finite difference) problem from section 7.3. We vary
the number of interior grid points in x and y direction, i.e. nx and ny. The corresponding symmetric,
positive definite matrix has size nx · ny and semi-bandwidth nx+ 1. All computations are performed with
double precision and as each number requires 8 byte of storage we can compute the total memory needed
(≈ nx2 · ny · 8 Byte) and the need for fast memory (≈ nx2 · 8 Byte). A set of 10 different values for nx
and ny was used, chosen such that the time needed to complete the computations did not stretch the authors
patience too much. The numbers are shown in Table 11.5.

The tests were run with three different implementations of the algorithm of Cholesky.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 275

nx ny size memory fast memory

(MB) (MB)

64 1000 64000 32.8 0.03

96 296 28416 21.8 0.07

144 87 12528 14.4 0.17

216 25 5400 9.3 0.37

324 7 2268 5.9 0.84

486 4 1944 7.6 1.89

729 4 2916 17.0 4.25

1093 4 4372 38.2 9.56

1639 4 6556 86.0 21.50

1693 4 6772 91.7 22.93

Table 11.5: Data for the test problems for the Cholesky algorithm

A The code was copied from a public source and run without major modifications. This implementation
does not require temporary storage for one row but needs more floating point operations. An improved
version is discussed in exercise 11–6.

B The code in Table 11.3.

C The code in Table 11.4.

The timing was done using standard Unix system calls and indicate the time the system spent to compute
the Cholesky factorization. As a result we show the number of flops per second as function of nx.

The results below illustrate that one not only has to choose a good algorithm for a given problem but
a careful implementation is important too to achieve good performance on a given platform. Some aspects
of basic code tuning are discussed in [Bent00], Appendix 4 gives some basic rules for tuning. Readers
interested in this topic might consider reading High Performance Computing [DowdSeve98]. This book
presents many important aspect of computing on personal computers, it explains many aspects of modern
CPU and memory architectures. For professionals interested in scientific computing or numerical analysis
this book is a ‘must read’ (and understand).

Results for a Pentium III based computer

This7 is dual Pentium III 600MHz PC with 512KB cash per CPU and 512M RAM. The operating system is
Linux 2.2.12-20smp and the compiler gcc 2.95.2 with the switches -O3 -ffast-math. The system was
only very lightly loaded by other processes. The results are shown in Figure 11.4.

• The cache is 512KB and thus if nx = 250 a block of nx ·nx numbers will fill the cache memory com-
pletely. The drop-of in performance as nx crosses this limit is clearly visible for all implementations
used.

• Implementation C gives the best performance, followed by B.

• Implementation B was run again (B2) with doubled values for ny. The results are identical to B. This
indicates that the performance depends mainly on the fast memory requirements.

7provided by the Department of Mathematics, University of Utah

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 276

These results point towards implementation C as being the most efficient.

50 100 200 500 1000 2000

nx

0

10

20

30

40

50

M
fl

o
p

/s
e

c

 A

 B

 B2

 C

Figure 11.4: Performance of Cholesky algorithm on a Intel Pentium III Linux system

Results for an Alpha 21164 based computer

This8 is a DEC Alpha 4100-4/466 , 4 CPU 21164/466, 8K instruction cache, 8K data cache, 96KB secondary
cache per CPU, 4MB on board cache per CPU, 4GB RAM, Tru64 UNIX and the compiler gcc 2.95.2 with
the switches -O3 -ffast-math. The system was only very lightly loaded by other processes. The
results are shown in Figure 11.5.

• The cache is 4MB and thus if nx = 707 a block of nx · nx numbers will fill the cache memory
completely. The drop of in performance as nx crosses this limit is visible for all implementations
used.

• Implementation B gives the best performance, followed by C.

• Implementation C was modified slightly, leading to (C2). The inner most loop was using references
Rp[kj][i] (as in implementation B) instead of R[kj+i]. The results are identical to B. This
indicates that on this computer the array referencing for two dimensional arrays is best left to the
compiler.

These results point towards implementation B or C2 as being the most efficient.

Results for an Alpha 21264 based computer

This9 is a DEC Alpha ES40 server. It has 4 Alpha 21264 EV67 CPUs clocked at 667MHz with 8MB L2
cache. As operation system Linux RedHat 6.2 is used. Here we used two compilers: a Compaq compiler
(cxx -lm -arch ev67 -O3) and the GNU complier (g++ -O3 -Wall -ffast-math). Imple-
mentation C was tested, but B leads to almost identical results, shown in Figure 11.6. It has to be noted that
this system was heavily loaded during the test by other processes, thus the results on a lightly loaded system
might improve, since more cache is available for one process.

• The cache is 8MB and thus if nx = 1000 a block of nx · nx numbers will fill the cache memory
completely. The drop of in performance as nx crosses this limit is visible for all compilers used.

8provided by the Department of Mathematics, University of Utah
9provided by Compaq at http://www.testdrive.compaq.com

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 277

50 100 200 500 1000 2000

nx

0

10

20

30

40

M
fl

o
p

/s
e
c

 A

 B

 C

 Cb

Figure 11.5: Performance of Cholesky algorithm on a DEC Alpha 21164 OFS1 Unix system

• The Compaq compiler leads to the best performance and illustrates that a good optimizing compiler
is clearly desirable.

The performance of this hardware with the optimizing compiler is outstanding.

50 100 200 500 1000 2000

nx

0

20

40

60

80

100

120

140

M
fl

o
p

/s
e
c

 gcc −O

 cxx

 cxx −O

Figure 11.6: Performance of Cholesky algorithm on a Alpha 21264 Linux system

11.4 The algorithm of Cuthill and McKee to reduce bandwidth

The numbering of the nodes of a mesh created on a given domain will determine the bandwidth of the
resulting matrix A for the given differential equation to be solved by the FEM. For linear elements on
triangles each node leads to one degree of freedom, the value of the function at this node. We find ai,j 6= 0
if the nodes with number i and j share a common triangle. In view of the result in section 11.3 we should
aim for a numbering leading to a small bandwidth. One possible (and rather efficient) algorithm is known
as the Cuthill–McKee algorithm.

There are different criterions on how to choose an optimal first node. Tests show that nodes with few
neighbors are often good stating nodes. Thus one may choose nodes with the minimal number of neighbors.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 278

choose a starting node and give it the number 1
while there are unnumbered nodes
pick the next node
find all its neighbors not yet numbered
sort them, using the number of connections to

unnumbered nodes as sorting criterion
give them the next free numbers

endwhile

Table 11.6: Algorithm of Cuthill–McKee

Also good candidates are nodes at extremal points of the discretized domain. A more detailed description
of the Cuthill-McKee algorithm and how to choose starting points is given in [LascTheo87].

3

11

7

2

1

4

5

6

8

9

10

1 2 3 4 5 6 7 8 9 10 11

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗
10 ∗ ∗ ∗ ∗ ∗
11 ∗ ∗ ∗

Figure 11.7: Numbering of a simple mesh by Cuthill–McKee

The algorithm is illustrated by numbering the simple mesh in Figure 11.7. On the right the structure of
the nonzero elements in the resulting stiffness matrix is shown. The band structure is clearly recognizable.

• The first node is chosen, since it has only two neighbors and is at one end of the domain.

• Node 1 has two neighbors, number 2 is given to the node above, since it has only one free neighbor.
The node on the right (two free neighbors) of 1 will be number 3 .

• Node 2 has only one free node with number 4 .

• Node 3 now has also only one free node left, number 5 .

• Of the two free neighbors of node 4, the one above has fewer free nodes and thus will receive num-
ber 6. The node on the right will be number 7 .

• The only free neighbor of node 5 will now receive number 8 .

• The only free neighbor of node 6 will now receive number 9 .

• The only free neighbor of node 7 will now receive number 10 .

• The last node will be number 11 .

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 279

On the authors web site [www:sha] a possible implementation of the above algorithm is done in C++.
The code will read output of the mesh generating code triangle [www:triangle] and renumber the nodes
to aim for a small bandwidth of the resulting matrix. As an example consider the domain in Figure 11.8,
whose mesh was generated by triangle. The mesh has 518 nodes and the original numbering leads to
a semi–bandwidth of 515, i.e. no band structure. Nonetheless we have a sparse matrix, since only 3368
entries are nonzero (i.e. 1.25%). The nonzero elements in the matrix A are shown in Figure 11.9, before and
after applying the Cuthill–McKee algorithm. The new semibandwidth is 28. If finer meshes (more nodes)
are used then the improvements due to a good renumbering of the nodes will be even larger.

Within the band only 21% of the entries are not zero, i.e. we still have a certain sparsity within the
band. The algorithm of Cholesky can not take advantage of this stucture, but iterative methods can, see
section 11.7.

Figure 11.8: Mesh generated by triangle

0

100

200

300

400

500

0 100 200 300 400 500

0

100

200

300

400

500

0 100 200 300 400 500

Figure 11.9: Original numbering and after renumbering by Cuthill–McKee

11.5 Eigenvalues and eigenvectors

Eigenvalues and vectors of symmetric, real matrices have a few very useful properties that serve as a foun-
dation for computational methods. For sake of completeness we list some of the results. The main goal
of this section is to develop an algorithm to determine a few of the smallest or largest eigenvalues. These
contain often useful information about the problem to be examined. As an example take the vibrating beam
problem in section 4.8 where the eigenvalues are closely related to the resonance frequencies of the beam.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 280

11.5.1 Basic facts on eigenvalues of symmetric matrices

11–24 Result : Let A be a symmetric, real n× n matrix.

• The eigenvalues λi are real.

• if λi 6= λj then 〈~ei , ~ej〉 = 0, i.e. the eigenvectors of different eigenvalues are orthogonal.

3

Proof :

• The eigenvalues are zeros of the characteristic polynomial det(A − λ I). Thus if λ is a zero of this
real polynomial then λ̄ is also a zero. Since A = Ā we know that A~e = λ~e implies A ~̄e = λ̄ ~̄e. Now
the calculation

λ 〈~e , ~e〉 = 〈~e , λ~e〉 = 〈~e , A~e〉 = 〈A~e , ~e〉 = 〈λ~e , ~e〉 = λ̄ 〈~e , ~e〉

shows that λ = λ̄, i.e. the eigenvalues are real.

• Since λi − λj 6= 0 the computation

(λi − λj) 〈~ei , ~ej〉 = λi 〈~ei , ~ej〉 − λj 〈~ei , ~ej〉 = 〈λi ~ei , ~ej〉 − 〈~ei , λj ~ej〉
= 〈A~ei , ~ej〉 − 〈~ei , A~ej〉 = 〈A~ei , ~ej〉 − 〈A~ei , ~ej〉 = 0

implies 〈~ei , ~ej〉 = 0.

2

Using the result in section A.1.3 the above result can be sharpened. For multiple eigenvalues we find
the same number of orthonormal eigenvectors. This leads to the factorization result

QT ·A ·Q = Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


or

A = Q ·Λ ·QT

The elements λi on the diagonal of Λ are eigenvalues of the symmetric matrix A and the column vectors
of Q are normalized eigenvectors of A. The eigenvectors are pairwise orthogonal, leading to the orthogonal
matrix Q, satisfying Q−1 = QT .

Another characterization of the eigenvalues can be based on the Rayleigh quotient

ρ(~x) =
〈~x , A ~x〉
〈~x , ~x〉

(11.3)

Assume that the eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn are sorted. When looking for an extremum of the
function 〈~x , A ~x〉, subject to the constraint ‖~x‖ = 1 use the Lagrange multiplier theorem and

~∇〈~x , A ~x〉 = 2 A ~x and ~∇〈~x , ~x〉 = 2 ~x

to conclude that A ~x = λ~x for some factor λ. Using 〈~x , A ~x〉 = 〈~x , λ ~x〉 = λ ‖~x‖2 we conclude

λ1 = min
‖~x‖=1

〈~x , A ~x〉 and λn = max
‖~x‖=1

〈~x , A ~x〉

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 281

If we are looking for other eigenvalues we need a slight modification of this result. If ~e1 is an eigenvector
to the first eigenvalue we know that the eigenvector to strictly larger eigenvalues are orthogonal to ~e1. This
leads to a method to determine λ2 by

λ2 = min{〈~x , A ~x〉 : ‖~x ‖ = 1 and ~x ⊥ ~e1}

This result can be extended in the obvious way. The other eigenvalues can also be characterized by looking at
subspaces by the Courant-Fischer Minimax Theorem, see [GoluVanLoan96, Theorem 8.1.2] or [Axel94,
Lemma 3.13].

λk = max
dimS=n−k

min
~x∈S\{~0}

〈~x , A ~x〉
〈~x , ~x〉

11.5.2 Power iteration

For general matrices there is no closed formula to find the eigenvalues. Otherwise we would have a formula
to determine zeros of a polynomial of high degree and it can be shown that there exists no such formula.
Thus we must search for an iterative method to determine good approximations of the eigenvalues.

The goal is to find the largest eigenvalue of a symmetric, positive definite matrix A. The method is based
on a simple observation: if an eigenvector ~ei is multiplied by the matrix A it is stretched by the factor λi.
Thus the eigenvector ~en will be stretched by the largest factor. Now we repeatedly multiply an initial vector
~x0 by A, hoping for the component in the direction of the largest eigenpair finally to dominate all other
contributions. The basic algorithm is thus very simple

choose arbitrary ~x0 ∈ Rn then ~xk = A ~xk−1 for k = 1, 2, 3, . . .

To analyze the behavior of the algorithm we use the eigenvector ~ei as basis and write the initial vector as a
linear combination of the eigenvectors.

~x0 =
n∑
i=1

ci ~ei = c1 ~e1 + c2 ~e2 + c3 ~e3 + . . .+ cn−1 ~en−1 + cn ~en

Then the effect of the iteration is easily traced

~x1 = A ~x0 =

n∑
i=1

ci A~ei =

n∑
i=1

ci λi ~ei

~x2 = A ~x1 =

n∑
i=1

ci λ
2
i ~ei

~xk = A ~xk−1 =

n∑
i=1

ci λ
k
i ~ei = λkn

n∑
i=1

ci

(
λi
λn

)k
~ei

= λkn

(
cn ~en + cn−1

(
λn−1

λn

)k
~en−1 + cn−2

(
λn−2

λn

)k
~en−2 + . . .+ c1

(
λ1

λn

)k
~e1

)

If λn−1 < λn then
(
λn−1

λn

)k
converges to zero as k →∞ and thus

~xn = An ~x0 → λkn cn ~en as k →∞

And the relative error is of the order
(
λn−1

λn

)k
. Thus he have a (hopefully good) approximation of the eigen-

vector ~en by normalizing ~xk. A good approximation of the eigenvalue can then be given by ‖A ~xk‖ / ‖~xk‖
or by

λ(k) = 〈~xk , A ~xk〉

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 282

Since the factor λkn can become very large it is a good idea to normalize the vector ~xk during each itera-
tion (or at least every few iterations). This leads to the power iteration method to determine the largest
eigenvalue.

choose initial vector x
for k=1,2,3,...

x = A x
lambda = norm(x)
x = x/norm(x)

endfor
lambda = < x, A x >

The algorithm fails if cn = 0 and it converges slowly if λn−1 is very close to λn. If θk denotes the angle
between ~xk and ~en the one can verify that ([GoluVanLoan96, Theorem 8.2.1])

| sin θk| ≤ tan θ0

∣∣∣∣λn−1

λn

∣∣∣∣k
|λ(k) − λn| ≤ |λn − λ1| tan2 θ0

∣∣∣∣λn−1

λn

∣∣∣∣2k
These are à priori estimates, i.e. we have an estimate for the error before actually performing the calcula-
tions. The estimate do not lead to a reliable bound on the error, since we can not determine the values of the
coefficients ci and thus can not control θ0. To compute θ0 we need cn, which can be computed if we knew
~en. But this is the vector to be determined by the algorithm.

When deriving the above algorithm and its error estimates we built on eigenvalues and eigenvectors, but
to run the algorithm we do not need the eigenvalues and eigenvectors. As a result we obtain approximations
for the largest eigenvalue and its eigenvector.

11.5.3 The Rayleigh quotient and an à posteriori estimate

If β and ~x (with ‖~x‖ = 1) are an approximate eigenpair of the matrix A then the residual vector

~r = A ~x− β ~x

should be small. Using the diagonalization A = Q D QT with an orthogonal matrix Q and D = diag(λi) =
diag(λ1, λ2, . . . , λn) one finds

~r = Q D QT ~x− βQ QT~x

and thus
QT ~r = D QT ~x− βQT~x = diag(λi − β) QT~x

Now two cases may occur

• β = λi for some eigenvalues λi. In this case we found an exact eigenvalue.

• β 6= λi for all eigenvalues λi. Multiply the above equation with (diag(λi − β))−1

QT ~x = (diag(λi − β))−1 QT~r

‖QT ~x‖ ≤ ‖ (diag(λi − β))−1 ‖ ‖QT~r‖
1 ≤ max

i
(|λi − β|−1) ‖~r‖

min
i
|λi − β| ≤ ‖~r‖

Thus the distance between the approximate eigenvalue β and the closest eigenvalue is at most ‖~r‖ .

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 283

This is an à posteriori estimate, i.e. we estimate the error of an already known result10. This bound can be
used to assure accuracy of a computed solution.

The theorem below ([Demm97, Theorem 5.5]) shows that the error bound on the approximate eigenvalue
β with approximate eigenvector ~x can be improved, using the Rayleigh quotient (11.3).

11–25 Theorem : Let A be a symmetric matrix and ~x a normalized vector and β be a scalar. Then A has
an eigenpair A~v = α~v satisfying |α − β| ≤ ‖A ~x − β ~x‖. Given ~x ∈ Rn the choice β = ρ(~x) minimizes
‖A ~x− β ~x‖. Thus

min
i
|λi − β| ≤ ‖~r‖ = ‖A ~x− β ~x‖

where λi are the exact eigenvalues of A.
If we have more information on the eigenvalues then the estimate can be sharpened. Let ~r = A ~x −

ρ(~x) ~x and let λi be the eigenvalue of A closest to ρ(~x). The expression

gap = min
j 6=i
|λj − ρ(~x)|

measures the distance of ρ(~x) to the other eigenvalues of A. Let θ be the acute angle between ~x and ~v. Then

sin θ ≤ ‖~r‖
gap

and |λi − ρ(~x)| ≤ ‖~r‖
2

gap
3

This theorem shows that if we have an approximate eigenvalue β with normalized eigenvector ~x we
can get a better approximation of the true eigenvalue λi by the Rayleigh quotient ρ(~x). The difference can
be significant since the error of a Rayleigh approximation is proportional to the square of the norm of the
residual vector, while the error of β is proportional to the norm. The result can be extended to systems of
eigenpairs, see [Demm97, Theorem 7.1].

11.5.4 Inverse power iteration

With the power iteration method we could compute the largest eigenvalue λn of a symmetric, positive
definite matrix. Observing that the smallest eigenvalue λ1 of A becomes the largest eigenvalue 1/λ1 of the
inverse matrix we can now give an algorithm to determine λ1 and ~e1.

choose an arbitrary ~x0 ∈ Rn , then solve A ~xk = ~xk−1 for k = 1, 2, 3, . . .

This algorithm is called inverse power iteration.
Then the effect of the iteration is very similar to a regular power iteration.

~x1 = A−1 ~x0 =

n∑
i=1

ci A
−1 ~ei =

n∑
i=1

ci
1

λi
~ei

~xk = A−1 ~xk−1 =
n∑
i=1

ci
1

λki
~ei =

1

λk1

n∑
i=1

ci

(
λ1

λi

)k
~ei

=
1

λk1

(
c1 ~e1 + c2

(
λ1

λ2

)k
~e2 + c3

(
λ1

λ3

)k
~e3 + . . .+ cn

(
λ1

λn

)k
~en

)
The rate of convergence is determined by the factor λ1/λ2 and the iteration converges if λ1 < λ2 (and
c1 6= 0). There are à priori bounds similar to the power iteration method. If we use the Rayleigh quotient
the we find the following basic algorithm

10In [GoluVanLoan96, p. 64] a remark by J. H. Wilkinson is quoted. It states different merits and goals of à priori and à posteriori
estimates. A very brief summary is: à priori estimates help to understand the algorithm and à posteriori bounds help to control the
errors of concrete problems.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 284

choose initial vector x
for k=1,2,3,...

solve A y = x
x = y/norm(y)

endfor
lambda = < x, A x >

For the power iteration we have to compute A ~x repeatedly, for the inverse power iteration we compute
A−1 ~x, i.e. we have to solve a system of linear equations. This seems to be computationally more expensive.
But observe that we are working with one matrix only. Thus we compute the Cholesky factorization A =
RT ·D ·R once and then work with forward and backward substitutions. The computational effort for one
iteration is now comparable to a matrix multiplication.

There are modifications of this basic algorithm to improve its performance. In particular one might work
with A − λI for well chosen values of λ to accelerate convergence. One possible result is the Rayleigh
quotient iteration method, e.g. [GoluVanLoan96, §8.2.3].

11.5.5 Inverse power iteration for subspaces

In the previous sections we found algorithms to determine the smallest and largest eigenvalue of a symmet-
ric, positive definite matrix. In many applications a few of the smallest or largest eigenvalues are of interest.
As an example consider the vibrating beam problem in section4.8. We present the a possible algorithm for
the few smallest eigenvalues, using the basic idea of inverse power iteration.

Consider m different random initial vectors ~v1,0, ~v2,0, . . .~vm,0. The goal is to make them convege
towards the eigenvectors belonging to the first m eigenvalues. If m = 1 we have the situation of inverse
power iteration in section 11.5.4. Thus we know that under most circumstances the algorithm

Solve the system ~v1,k = A−1 ~v1,k−1

Normalize ~v1,k = ~v1,k/‖~v1,k‖

leads to a sequence of vectors with ~v1,k −→ ~e1. Since the eigenvector belonging to λ2 has to be orthogonal
to ~e1 we only search in this subspace. To achieve this we make sure that ~v2,k ⊥ ~v1,k by the following
algorithm

Solve the system ~v2,k = A−1 ~v2,k−1

Subtract the component of ~v2,k in direction of ~v1,k from ~v2,k. To do so set ~v2,k = ~v2,k−〈~v2,k , ~v1,k〉 ~v1,k

to assure11 ~v2,k ⊥ ~v1,k.

Normalize ~v2,k = ~v2,k/‖~v2,k‖

This leads to a sequence of normalized vectors ~v2,k, orthogonal to ~v1,k and the component in the direction
of ~e2 is multiplied by the largest factor by the inverse power iteration. Thus we expect ~v2,k −→ ~e2. Now we
have approximations for two eigenvalues and eigenvectors. For more eigenvectors we proceed similarly:

Solve the system ~vj,k = A−1 ~vj,k−1

Subtract the components of ~vj,k in directions of ~v1,k, ~v1,k, . . . ~vj−1,k, from ~vj,k.

Normalize ~vj,k = ~vj,k/‖~vj,k‖
11Use 〈~v1,k , ~v2,k − 〈~v2,k , ~v1,k〉 ~v1,k〉 = 〈~v1,k , ~v2,k〉 − 〈~v2,k , ~v1,k〉 〈~v1,k , ~v1,k〉 = 0

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 285

One can show that the vectors ~vj,k (1 ≤ j ≤ m) converge in fact towards ~ej , unless one has poorly chosen
initial vectors, e.g. exercise 11–8. The rate of convergence is (λm/λm+1)k. With these approximation we
can then use

λj = 〈~ej , A~ej〉 ≈ 〈~vj,k , A~vj,k〉

to determine the eigenvalues.
A concrete implementation of the above idea should use the modified Gram-Schmidt algorithm to

ortho-normalize the vectors. Consider an n ×m matrix V with m ≤ n. The goal is to ortho-normalize the
columns V (:, j) of this matrix.

for j=1:m
factor = norm(V(:,j))
V(:,j) = V(:,j) /factor %% normalize column j
for k=j+1:m

factor = < V(:,j) , V(:,k) >
V(:,k) = V(:,k) - factor* V(:,j) %% subtract multiples of columns

endfor
endfor

A precise description of this algorithm can be found in [GoluVanLoan96, §5.2.8] or [Axel94, p. 71–72].
Now we can formulate an algorithm to determine the m smallest eigenvalues of a symmetric, positive

definite matrix A

• Create an n×m matrix V0 with the initial vectors ~vj,0 as its columns.

• repeat until desired precision is reached

– solve the matrix equation A ·Vk = Vk−1 or Vk = A−1 ·Vk−1

– ortho-normalize the columns of Vk, using Gram-Schmidt

• for j = 1, 2 . . .m compute βj = 〈V(:, j) , A ·V(:, j)〉

The resulting values βj should be close to the eigenvalues λj . There is an à priori error estimate of the form
(λm/λm+1)2k, unless the corresponding component of the initial vector happens to vanish exactly. The à
posteriori estimates of the above sections can be used to control the errors.

The above algorithm is a variation of the QR iteration . It should only be used if the system of linear
equations can be solved efficiently. This is certainly the case if A is a matrix with a narrow band and
its Cholesky factorization is already known. If one needs all (or many) of the eigenvalues then there are
considerably better algorithms to be used.

11.6 The generalized eigenvalue problem

For many applications it is easier to consider a generalized eigenvalue problem

A~e = λB~e

instead of the corresponding standard problem B−1 ·A ~x = λ~x. This allows to keep more of the structures
of the matrices A and B12. Even if both matrices are symmetric, their product generally is not. Even if B
has a band structure its inverse might be a full matrix. In many applications B is a diagonal matrix, e.g. the
problem in section 4.8.7 where frequencies of a vibrating beam are to be determined.

12Another approach would be to use the Cholesky factorization B = RT ·R of B. The symmetric matrix C = (RT)−1 ·A·R−1

has the same eigenvalues as A and the multiplication by R−1 may be implemented using backsubstitution

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 286

We consider the case of a symmetric, positive definite n×nmatrix B and a symmetric, positive semidef-
inite n× n matrix A. This implies that the equation A~e = λB~e has exactly n real solutions λi. Since B is
invertible we have n solutions of B−1 A~e = λ~e and based on the calculation

λ 〈~e , B~e〉 = 〈~e , λB~e〉 = 〈~e , A~e〉 = 〈A~e , ~e〉 = 〈λB~e , ~e〉 = λ̄ 〈~e , B~e〉
we conclude that the eigenvalues are real.

The smallest (or largest) generalized eigenvalue can be characterized by an extremal problem. Using
Lagrange multipliers on verifies that λ1 is given as the solution of

minimzie 〈~x , A ~x〉 subject to the constraint 〈~x , B ~x〉 = 1

As in the case of the standard eigenvalue problem we find the eigenvectors to be pairwise orthogonal,
but with respect to the generalized scalar product

〈~x , ~x〉B = 〈~x , B ~x〉
To verify this use

(λi − λj) 〈~ei , ~ej〉B = λi 〈~ei , ~ej〉B − λj 〈~ei , ~ej〉B = 〈λi B~ei , ~ej〉 − 〈~ei , λj B~ej〉
= 〈A~ei , ~ej〉 − 〈~ei , A~ej〉 = 〈A~ei , ~ej〉 − 〈A~ei , ~ej〉 = 0

to conclude that 〈~ei , ~ej〉B = 0. The result show that there exists a complete set of eigenpairs with orthonor-
mal eigenvectors in the above sense.

11–26 Result : A and B can be diagonalised simultaneously, i.e. there exists a nonsingular matrix X =
[~x1 ~x2, . . . , ~xn] such that

XT ·A ·X = diag(λ1, λ2, . . . , λn) and XT ·B ·X = In
Moreover A ~xi = λi B ~xi. 3

Proof : [GoluVanLoan96, Theorem 8.7.1]
Since B is positive definite we obtain an eigenvalue factorization

QT ·B ·Q = diag(bi)

with bi > 0. Thus we can compute square roots and set

X1 = Q · diag(1/
√
bi) and A1 = XT

1 ·A ·X1

This matrix A1 is symmetric and thus there exists a factorization

Q1
T ·A1 ·Q1 = diag(λ1)

Now the choice
X = X1 ·Q1 = Q · diag(1/

√
bi) ·Q1

leads to

XT ·B ·X = QT
1 ·XT

1 ·B ·X1 ·Q1

= QT
1 · diag(1/

√
bi) ·QT ·B ·Q · diag(1/

√
bi) ·Q1

= QT
1 · diag(1/

√
bi) · diag(bi) · diag(1/

√
bi) ·Q1 = In

and
XT ·A ·X = QT

1 ·XT
1 ·A ·X1 ·Q1 = QT

1 ·A1 ·Q1 = diag(λi)

Juggling with the above equations we obtain

B ·X · diag(λi) = B · (X1 ·Q1) · (Q1
T ·A1 ·Q1) = B ·X1 ·A1 ·Q1

= B ·X1 ·XT
1 ·A ·X1 ·Q1

= B · (Q · diag(1/
√
bi)) · (diag(1/

√
bi) ·QT) ·A ·X = A ·X

and thus conclude A ~xi = λi B ~xi. 2

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 287

Inverse power iteration applies again but now ortho-normalized with respect to the generalized scalar
product and the equation to be solved is modified. The à priori estimates are comparable to the standard
inverse power iteration. The algorithm below generates the m smallest eigenvalues.

• Create an n×m matrix V0 with the initial vectors ~vj,0 as its columns.

• repeat until desired precision is reached

– solve the matrix equation A ·Vk = B ·Vk−1 or Vk = A−1 ·B ·Vk−1

– ortho-normalize the columns of Vk, using the generalized Gram-Schmidt algorithm shown be-
low.

• for j = 1, 2 . . .m compute βj = 〈V(:, j) , A ·V(:, j)〉. Then βj should be good approximations to
the eigenvalues.

Since the generalized eigenvalues are orthogonal with respect to the modified scalar product we have to
modify the Gram-Schmidt algorithm to assure 〈~ei , B~ej〉 = δi,j .

for j=1:m
factor = sqrt(< V(:,j), B*V(:,j)>)
V(:,j) = V(:,j) /factor %% normalize column j
for k=j+1:m

factor = < V(:,j) , B*V(:,k) >
V(:,k) = V(:,k) - factor* V(:,j) %% subtract multiples of columns

endfor
endfor

It remains to find an à posteriori estimate and to verify that the Rayleigh quotient βj = 〈V(:, j) , A ·V(:
, j)〉 leads to the best possible solution. To achieve this we use steps similar to section 11.5.3 and we use the
notation of the proof of result 11–26 with

Y = X−1 = QT
1 · diag(

√
bi) ·QT

Now we compute

~r = A · ~x− βB ~x = YT · diag(λi) ·Y ~x− βYT ·Y ~x

= YT · diag(λi − β) ·Y ~x

XT · ~r = diag(λi − β) ·Y ~x

Y ~x = diag(λi − β)−1 ·XT ~r

QT
1 · diag(

√
bi) ·QT ~x = diag(λi − β)−1 ·QT

1 · diag(1/
√
bi) ·QT ~r

‖QT
1 · diag(

√
bi) ·QT ~x‖ ≤ max(|λi − β|−1) ‖QT

1 · diag(1/
√
bi) ·QT ~r‖

min(|λi − β|) ≤ ‖ diag(1/
√
bi) ·QT ~r‖/‖diag(

√
bi) ·QT ~x‖

For the denominator we find

‖ diag(
√
bi) ·QT ~x‖2 = 〈diag(

√
bi) ·QT ~r , diag(

√
bi) ·QT ~r〉

= 〈~r , Q · diag(bi) ·QT ~r〉 = 〈~x , B ~x〉

For a given ~x we want to find β such that the numerator ‖ diag(1/
√
bi) ·QT ~r‖ is minimal, i.e. minimize

the expression

‖ diag(1/
√
bi) ·QT ~r‖2 = 〈diag(1/

√
bi) ·QT ~r , diag(1/

√
bi) ·QT ~r〉

= 〈~r , Q · diag(1/bi) ·QT ~r〉 = 〈~r , B−1 ~r〉

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 288

To minimize the error of the eigenvalue we find the necessary condition

0 =
d

dβ
〈~r , B−1 ~r〉 =

d

dβ
〈A ~x− βB ~x , B−1 (A ~x− βB) ~x〉

= −〈B ~x , B−1 ·A ~x− β ~x〉 − 〈A ~x− βB ~x , ~x〉
= −〈~x , A ~x− βB ~x〉 − 〈A ~x− βB ~x , ~x〉
= −2 〈~x , A ~x〉+ 2 β 〈~x , B ~x〉

This equation can be solved for the optimal value of β .

β =
〈~x , A ~x〉
〈~x , B ~x〉

Since the generalized Gram-Schmidt step assures 〈~x , B ~x〉 = 1 we find the optimal solution with β =
〈~x , A ~x〉 and we have the à posteriori error bound

min(|λi − β|) ≤
‖diag(1/

√
bi) ·QT ~r‖

‖ diag(
√
bi) ·QT ~x‖

=
√
〈~r , B−1 ~r〉

This is a generalization of the first estimate in result 11–25. An alternative proof is given in exercise 11–11.

11.7 Iterative methods

The finite element method leads to linear systems of the form A ~x + ~b = ~0, where only very few entries
of the large matrix A are different from zero, i.e. we have a sparse matrix. The Cholesky algorithm for
banded matrices is using only some of this sparsity. Due to the sparsity the computational effort to compute
a matrix product A ~x is minimal, compared to the number of operations to solve the above system with a
direct method. One is lead to search for an algorithm to solve the linear system, using matrix multiplications
only. This leads to iterative methods. The previously considered algorithms of Gauss and Cholesky are
both direct methods, since both methods will lead to the solution of the linear system using a known, finite
number of operations.

11.7.1 Basic definitions

For an invertible N × N–matrix A and a vector ~b we have the exact solution ~x of A ~x + ~b = ~0. For a
mapping Φ : RN → RN we choose an initial vector ~x0 and then compute ~x1 = Φ(~x0), ~x2 = Φ(~x1) or

~xk = Φk(~x0)

Φ is called an iterative method with linear convergence factor q < 1 if the error after k steps is bounded
by

‖~xk − ~x‖ ≤ c qk

If we wish to improve the accuraccy of the inital guess ~x0 by D digits we need qk ≤ 10−D. This is satisfied
if

k log q ≤ −D

k ≥ −D
log q

=
−D ln 10

ln q
> 0

For most applications the factor q < 1 will be very close to 1. Thus we write q = 1− q1 and use the Taylor
approximation ln q = ln(1− q1) ≈ −q1. Then the above computations leads to an estimate for the number
of iterations necessary to decrease the error by D digits.

k ≥ D ln 10

q1
(11.4)

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 289

This implies that the numbers of desired correct digits is proportional to the number of required iterations
and inversely proportional to the deviation q1 of the factor q = 1− q1 from 1.

11.7.2 A model problem

As a model problem we use the example in section 7.3 (page 154)

uxx + uyy = f(x, y) for (x, y) ∈ Ω = (0, 1)× (0, 1)

u(x, y) = 0 for (x, y) on boundary ∂Ω

and a regular grid with n + 2 points on each edge. Thus we will have n2 interior nodes and the resulting
matrix A will be of size N = n2 × n2 with a semi-bandwidth of n + 1 ≈ n. In each row/column of the
matrix only 5 entries are nonzero. The size of the triangles is given by h = 1

n+1 ≈
1
n . The eigenvalues of

this matrix are

λi,j =
2

h2
(2− cos(i π h)− cos(j π h)) =

4

h2

(
sin2(i π h/2) + sin2(j π h/2)

)
for 1 ≤ i, j ≤ n

This implies λmin = λ1,1 ≈ 2π2 and λmax = λn,n ≈ 8
h2 ≈ 8n2 and thus we find the condition number

κ =
λmax
λmin

≈ 4

π2
n2

When using a banded Cholesky algorithm to solve A ~x+~b = ~0 we need

• storage for n · n2 = n3 numbers

• approximately 1
2 n

2 n2 = 1
2 n

4 floating point instructions

An iterative method will have to do better than this to be considered useful. To multiply the matrix A with
a vector we need about 5n2 multiplications.

For the similar three dimensional problem we find a matrix A of size N = n3 and each row has
approximately nz = 7 nonzero entries. The semi-bandwidth of the matrix is n2. Thus the banded Cholesky
solver requires approximately 1

2 n
3 · n4 floating point operations. The condition number is identical to the

2-D situation.

11.7.3 Steepest descent iteration

For a symmetric, positive definite matrix A the solution of the linear system A ~x +~b = ~0 is given by the
location of the minimum of the function

f(~x) =
1

2
〈~x , A ~x〉+ 〈~x , ~b〉

A possible graph of such a function and its levels curves are shown in Figure 11.10. The gradient of this
function is given by

∇f(~x) = A ~x+~b

A given point ~xk is assumed to be a good approximation of the exact solution ~x. The error is given by
the residual vector

~rk = A ~xk +~b

It is well known that the direction of steepest descent is given by

~dk = −∇f(~xk) = −A ~xk −~b = −~rk

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 290

Figure 11.10: Graph of a function to be minimized and its level curves

This is the reason for the name stepest descent or gradient method. Thus we search for a better solution
in the direction ~dk, i.e. we have to determine the coefficient α ∈ R such that the value of the function

h(α) = f(~xk + α ~dk)

is minimal. This leads to the condition

~xk

~xk+1

~dk

~dk+1

Figure 11.11: One step of a gradient iteration

0 =
d

dα
h(α) = 〈∇f(~xk + α ~dk) , ~dk〉 = 〈A (~xk + α ~dk) +~b , ~dk〉

= 〈~rk + αA ~dk , ~dk〉

α = − 〈~rk ,
~dk〉

〈A ~dk , ~dk〉

and thus the next approximation point

~xk+1 = ~xk + α ~dk = ~xk −
〈~rk , ~dk〉
〈A ~dk , ~dk〉

~dk

One step of this iteration is shown in Figure 11.11 and a pseudo code for the algorithm is shown in Ta-
ble 11.7.

The computational effort for one step in the algorithm seems to be: 2 matrix/vector multiplications,
2 scalar products and 2 vector additions. But the resudial vector ~rk and the direction vector ~dk differ only in
their sign. Since

~rk+1 = A ~xk+1 +~b = A (~xk + αk ~dk) +~b = A ~xk +~b+ αk A ~dk = ~rk + αk A ~dk

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 291

choose initial point ~x0

k = 0

while ‖~rk‖ = ‖A ~xk +~b‖ too large
~dk = −~rk

α = − 〈~rk ,
~dk〉

〈A ~dk , ~dk〉
~xk+1 = ~xk + α ~dk

k = k + 1

endwhile

Table 11.7: A first gradient algorithm to solve A ~x+~b = ~0

choose initial point ~x

~r = A ~x0 +~b

while ρ = ‖~r‖2 too large
~d = A~r

α = − ρ

〈~d , ~r〉
~x = ~x+ α~r

~r = ~r + α ~d

endwhile

Table 11.8: The gradient algorithm to solve A ~x+~b = ~0

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 292

the necessary computations for one step of the iteration can be reduced. The improved algorithm in Ta-
ble 11.8 requires

• one matrix–vector product and two scalar products

• two vector additions of the type ~x = ~x+ α~r

• storage for the sparse matrix and 3 vectors

If each row of the matrix A has on average nz nonzero entries the we determine that each iteration requires
approximately (4 + nz)N flops (multiplication/addition pairs).

Since the matrix A is positive definite we have

d2

dα2
h(α) = 〈A ~dk , ~dk〉 > 0

unless−~dk = A ~xk +~b = ~0 . Thus we found a minimum of the function h(α) and consequently f(~xk+1) <
f(~xk), unless ~xk equals the exact solution of A ~x +~b = ~0 . Since ~dk = −~rk we conclude that α ≥ 0, i.e.
we actually made a step of positive length in the direction of the negative gradient.

The algorithm does not perform well if we search the minimal value in a narrow valley, as illustrated in
Figure 11.12. Instead of going down the valley, the algorithm jumps across and it requires many steps to
get close to the lowest point. This is reflected by the error estimation for this algorithm. One can show that
(e.g. [LascTheo87, p. 496], [KnabAnge00, p. 212], [AxelBark84, Theorem 1.8])

‖~xk − ~x‖A ≤
(
κ− 1

κ+ 1

)k
‖~x0 − ~x‖A ≈

(
1− 2

κ

)k
‖~x0 − ~x‖A

where we use the norm.
‖~y‖2A = 〈~y , A ~y〉

For most matrices based on finite element problems we know that ‖~y‖ ≤ α ‖~y‖A and thus

‖~xk − ~x‖ ≤ c
(
κ− 1

κ+ 1

)k
≈ c

(
1− 2

κ

)k
where

κ =
λmax
λmin

= condition number of A

Thus if the ratio of the largest and smallest eigenvalue of the matrix A is large then the algorithm converges
slowly. Unfortunately this is most often the case, thus Figure 11.12 shows rather the typical situation than
the exception.

Figure 11.12: The gradient algorithm for a large condition number

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 293

Performance on the model problem

For the problem in section 11.7.2 we find κ ≈ 4
π2 n

2 and thus

q = 1− q1 = 1− 2

κ
≈ 1− π2

2n2

Then equation (11.4) implies that we need

k ≥ D ln 10

q1
=

2D ln 10

π2
n2

iterations to increase the precision by D digits. Based on the estimate for the operations necessary to
multiply the matrix with a vector we estimate the total number of flops as

9n2 k ≈ 18D ln 10

π2
n4

This is not substantially better than a banded Cholesky algorithm.

11.7.4 Conjugate gradient iteration

The conjugate gradient method will improve the above mentioned problem of the original gradient method.
Instead of searching for the minimum of the function f(~x) in the direction of steepest descent we combine
this direction with the previous search direction and aim to reach the minimal value of the function f(~x) in
this plane with one step only.

Conjugate directions

The left section in Figure 11.13 shows elliptical level curves of the function g(~x) = 〈~x , A ~x〉. A first vector
~a is tangential to a given level curve at a point. A second vector~b is connecting this point to the origin. The
two vectors represent two subsequent search directions. When applying the transformation

~u =

(
u

v

)
= A1/2

(
x

y

)
= A1/2 ~x

we obtain
g(~x) = 〈~x , A ~x〉 = 〈A1/2 ~x , A1/2 ~x〉 = 〈~u , ~u〉 = h(~u)

and the level curves of the function h in a (u, v) system will be circles, shown on the right in Figure 11.13.
The two vectors ~a and~b shown on in the left part will transform according to the same transformation rule.
The resulting images will be orthogonal and thus

0 = 〈A1/2~a , A1/2~b〉 = 〈A~a , ~b〉

The vectors ~a and~b are said to be conjugate.

The basic conjugate gradient algorithm

The direction vectors ~dk−1 and ~dk of two subsequent steps of the conjugate gradient algorithm should behave
like the two vectors in the left part of Figure 11.13. The new direction vector ~dk is assumed to be a linear
combination of the gradient∇f(~xk) = A ~xk +~b = ~rk and the old direction ~dk−1, i.e.

~dk = −~rk + β ~dk−1 where ~rk = A ~xk +~b

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 294

y

~b A1/2~b

~a

x u

v

A1/2~a

Figure 11.13: Ellipse and circle to illustrate conjugate directions

Since the two directions ~dk and ~dk−1 have to be conjugate we conclude

0 = 〈~dk , A ~dk−1〉 = 〈−~rk + β ~dk−1 , A ~dk−1〉

β =
〈~rk , A ~dk−1〉
〈~dk−1 , A ~dk−1〉

Then the optimal value of αk to minimize h(α) = f(~xk + αk ~dk) can be determined with a calculation
identical to the standard gradient method, i.e.

αk = − 〈~rk ,
~dk〉

〈A ~dk , ~dk〉

and we obtain a better approximation of the solution of the linear system as ~xk+1 = ~xk + αk ~dk. This
algorithm spelled out on the left in Table 11.9 and its result is illustrated in Figure 11.14. Just as in the
standard gradient algorithm we find d2

dα2 h(α) = 〈A ~dk , ~dk〉 and we find that

• either the algorithm terminates, i.e. we found the optimal solution at this point

• or αk > 0.

This allows for division by αk in the analysis of the algorithm.

~xk

~dk−1−~rk
~dk

Figure 11.14: One step of a conjugate gradient iteration

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 295

choose initial point ~x0

~r0 = A ~x0 +~b

~d0 = −~r0

α0 = − 〈~r0 , ~d0〉
〈A ~d0 , ~d0〉

~x1 = ~x0 + α0
~d0

k = 1

while ‖~rk‖ = ‖A ~xk +~b‖ too large

βk =
〈~rk , A ~dk−1〉
〈~dk−1 , A ~dk−1〉

~dk = −~rk + βk ~dk−1

αk = − 〈~rk ,
~dk〉

〈A ~dk , ~dk〉
~xk+1 = ~xk + αk ~dk

k = k + 1

endwhile

choose initial point ~x

~r = A ~x+~b

ρ0 = ‖~r‖2

~d = −~r
~p = A ~d

α =
ρ0

〈~p , ~d〉
~x = ~x+ α ~d

~r = ~r + α ~p

k = 1

while ρk = ‖~r‖2 too large

β =
ρk
ρk−1

~d = −~r + β ~d

~p = A ~d

α =
ρk

〈~p , ~d〉
~x = ~x+ α ~d

~r = ~r + α ~p

k = k + 1

endwhile

Table 11.9: The conjugate gradient algorithm to solve A ~x+~b = ~0 and an efficient implementation

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 296

Orthogonality properties

We define the subspace

K(k, ~d0) = span{~d0 , A ~d0 , A2 ~d0 , . . . ,A
k−1 ~d0 , Ak ~d0}

Since ~rk+1 = ~rk + αk A ~dk and ~dk = −~rk + βk ~dk−1 we conclude

~ri ∈ K(k, ~d0) , ~di ∈ K(k, ~d0) and ~xi ∈ ~x0 +K(k, ~d0) for 0 ≤ i ≤ k

The above is correct for any choice of the parameters βk. Now we examine the algorithm in Table 11.9
with the optimal choice for αk, but the values of βk in ~dk = −~rk + βk ~dk−1 are to be determined by a new
criterion.

The theorem below shows that we minimized the function f(~x) on the k+1 dimensional affine subspace
K(k, ~d0), and not only on the two dimensional plane spanned by the last two search directions.

11–27 Theorem : Consider given values of k ∈ N, ~x0 and ~r0 = A ~x0 + ~b. Choose the vector ~x ∈
~x0 +K(k, ~d0) such that the function g(~x) is minimized on the affine subspace ~x0 +K(k, ~d0). The subspace
K(k, ~d0) has dimension k + 1. The following orthogonality properties are correct

〈~rj , ~ri〉 = 0 for all 0 ≤ i 6= j < k

〈~dj , A ~di〉 = 0 for all 0 ≤ i 6= j ≤ k
〈~rk , ~y〉 = 〈~xk − ~x , A ~y〉 = 0 for all ~y ∈ K(k, ~d0)

The values

βk =
〈~rk , A ~dk−1〉
〈~dk−1 , A ~dk−1〉

will generate the optimal solution with the algorithm on the left in Table 11.9. 3

Proof : If we choose the vector ~x ∈ ~x0 +K(k, ~d0) such that the function f(~x) is minimized on the affine
subspace ~x0 +K(k, ~d0) then its gradient has to be orthogonal on the subspace K(k, ~d0), i.e.

〈A ~x+~b , ~h〉 = 〈~r , ~h〉 = 0 for all ~h ∈ K(k, ~d0)

Since ~rk+1 = A ~x+~b this leads to

〈~rk+1 , ~ri〉 = 〈~r , ~ri〉 = 0 for all 0 ≤ i ≤ k

and K(k, ~d0) is a strict subspace of K(k + 1, ~d0). This implies dim(K(k, ~d0)) = k + 1.
Using ~rk+1 = ~rk + αk A ~dk and ~di = −~rk + βi ~di−1 we conclude by recursion

〈~di , A ~dk〉 =
1

αk
〈−~ri + βi~di−1 , ~rk+1 − ~rk〉

=
βi
αk
〈~di−1 , ~rk+1 − ~rk〉 =

1

αk

 i∏
j=1

βj

 〈~d0 , ~rk+1 − ~rk〉

=
−1

αk

 i∏
j=1

βj

 〈~r0 , ~rk+1 − ~rk〉 = 0

The above is correct for all possible choices of βj and also implies

0 = 〈~dk , A ~dk−1〉 = 〈−~rk + βk ~dk−1 , A ~dk−1〉 = −〈~rk , A ~dk−1〉+ βk 〈~dk−1 , A ~dk−1〉

Thus the optimal values for βk are as shown in the theorem. 2

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 297

11–28 Corollary :

• Since dim(K(k, ~d0)) = k + 1 the conjugate gradient algorithm with exact arithmetic will terminate
after at most N steps. Due to rounding errors this will not be of relevance for large matrices. In
addition the number of steps might be prohibitively large. We use the conjugate gradient algorithm as
an iterative method.

• Using the orthogonalities in the above theorem we conclude

〈~rk , ~dk〉 = 〈~rk , −~rk + βk ~dk−1〉 = −‖~rk‖2

〈~rk , A ~dk−1〉 = βk 〈~dk−1 , A ~dk−1〉
~rk+1 = ~rk + αk A ~dk

〈~rk+1 , A ~dk〉 =
1

αk
〈~rk+1 , ~rk+1 − ~rk〉 =

1

αk
‖~rk+1‖2

〈~dk , A ~dk〉 =
1

αk
〈~dk , ~rk+1 − ~rk〉 =

1

αk
‖~rk‖2

βk =
〈~rk , A ~dk−1〉
〈~dk−1 , A ~dk−1〉

=
αk−1 ‖~rk‖2

αk−1 ‖~rk−1‖2
=
‖~rk‖2

‖~rk−1‖2

3

The above properties allow a more efficient implementation of the conjugate gradient algorithm. The
algorithm on the right in Table 11.9 is taken from [GoluVanLoan96]. This improved implementation of the
algorithm requires for each iteration

• one matrix–vector product and two scalar products

• three vector additions of the type ~x = ~x+ α~r

• storage for the sparse matrix and 4 vectors

If each row of the matrix A has on average nz nonzero entries then we determine that each iteration requires
approximately (5 + nz)N flops (multiplication/addition pairs).

Convergence estimate

Assume that the exact solution is given by ~x, i.e. A~z + ~b = ~0. Use the notation ~r = A ~y + ~b, resp.
~y = A−1(~r −~b) to conclude that ~y − ~x = A−1 ~r. Then consider the following function

g(~y) = ‖~y − ~x‖2A = 〈~y − ~x , A(~y − ~x)〉 = 〈~r , A−1~r〉

and verify that

1

2
‖~x− ~z‖2A =

1

2
〈~x− ~z , A(~x− ~z)〉 =

1

2
〈~x+ A−1~b , A ~x+~b〉

=
1

2
〈~x, A ~x+~b〉+ 〈~x , ~b〉+

1

2
〈A−1~b , ~b〉

= f(~x) +
1

2
〈A−1~b , ~b〉

Thus the conjugate gradient algorithm minimized this norm on the subspaces. It should be no surprise
that the error estimate can be expresses in this norm. Find the result and proofs e.g in [LascTheo87],
[KnabAnge00, p. 218] or [AxelBark84].

‖~xk − ~x‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖~x0 − ~x‖A ≈ 2

(
1− 2√

κ

)k
‖~x0 − ~x‖A

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 298

and this leads to

‖~xk − ~x‖ ≤ c
(√

κ− 1√
κ+ 1

)k
≈ c

(
1− 2√

κ

)k
This is considerably better than the estimate for the steepest descent method, since κ is replaced by

√
κ� κ .

Performance on the model problem

For the problem in section 11.7.2 we find
√
κ ≈ 2

π n and thus

q = 1− q1 = 1− 2√
κ
≈ 1− π

n

Then equation (11.4) implies that we need

k ≥ D ln 10

q1
=
D ln 10

π
n

iterations to increase the precision by D digits. Based on the estimate for the operations necessary to
multiply the matrix with a vector we estimate the total number of flops as

(5 + 5)n2 k ≈ 10
D ln 10

π
n3

This is considerably better than a banded Cholesky algorithm, since the number of operations is proportional
to n3 instead of n4. For large values of n the conjugate gradient method is clearly preferable.

Table 11.10 shows the required storage and the number of necessary flops to solve the 2–D and 3–
D model problem with n free grid points in each direction. The results are illustrated13 in Figure 11.15.
Observe that one operation for the gradient algorithms requires more time than one operation of the Cholesky
algorithm, due to the multiplication of the sparse matrix with a vector.

We may draw the following conclusions from Table 11.10 and the corresponding Figure 11.15. Ta-
ble 11.11 lists approximate computation times for a computer capable of performing 108 flops per second.

• The iterative methods require less memory than the direct solver. For 3–D problem this difference is
accentuated.

• For 2–D problems with small resolution the banded Cholesky algorithm is more efficient than the
conjugate gradient method. For larger 2–D problems conjugate gradient will perform better.

• For 3–D problems one should always use conjugate gradient, even for small problems.

• For small 3–D problems banded Cholesky might be able to give results within a reasonable time
frame.

• The method of steepest descent is never competitive.

11.7.5 Preconditioned conjugate gradient iteration

to be written
13We required the accuracy to be improved by 6 digits.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 299

10
1

10
2

10
3

10
04

10
06

10
08

10
10

10
12

10
14

number of grid points in each direction

nu
m

be
r

of
 fl

op
s

1 sec

1 min

1 h

1 day
Cholesky 2D
Steepest Descent 2D
Conjugate Gradient 2D

10
1

10
2

10
3

10
06

10
08

10
10

10
12

10
14

10
16

10
18

number of grid points in each direction

nu
m

be
r

of
 fl

op
s

1 sec

1 min

1 h

1 day

1 month

1 year

Cholesky 3D
Steepest Descent 3D
Conjugate Gradient 3D

Figure 11.15: Number of operations of banded Cholesky, steepest descent and conjugate gradient on the
model problem

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 300

2–D 3–D

storage flops storage flops

Cholesky, banded 1
2 n

3 1
2 n

4 1
2 n

5 1
2 n

7

Steepest Descent 8 n2 9 2 D ln 10
π2 n4 10 n3 11 2 D ln 10

π2 n5

Conjugate Gradient 9 n2 10 D ln 10
π n3 11 n3 12 D ln 10

π n4

Table 11.10: Comaprison of algorithms for the model problem

flops 108 109 1010 1011 1012 1014 1016 1018

Time required 1 sec 10 sec 1.7 min 17 min 2.8 h 11.6 days 3.2 years 320 years

Table 11.11: Time required to complete a given number of flops

11.8 Exercises

•Exercise 11–1:
Examine a diagonal matrix D = diag(d1, d2, d3, . . . dn). Verify

‖D‖ = max
i
|di| and κ =

maxi |di|
mini |di|

•Exercise 11–2:
The condition number can also be defined depending on the matrix A and the vector ~x by

κ(~x) = ‖A−1‖‖A ~x‖
‖~x‖

(a) Verify that the definition number in definition 11–1 is related to the above definition by

κ(~x) ≤ κ

(b) Verify the modification of result 11–4, i.e.

‖ ~∆x‖
‖~x‖

≤ κ(~x)
‖ ~∆b‖
‖~b‖

(c) Consider a symmetric matrix A with eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn and a vector~b which is
a linear combination of eigenvectors with eigenvalues smaller then Λ, i.e.

~b ∈ span{~ei : λi ≤ Λ}

If A ~x = ~b then
κ(~x) ≤ Λ

λ1

This has to be compared with result 11–3. The situation occurs for FEM problems if the RHS ~b is
dominated by small eigenvalue components.

•Exercise 11–3:
Verify that for an orthogonal matrix Q (i.e. Q−1 = QT) we find ‖Q ~x‖ = ‖~x‖ and the condition number
of Q is κ = 1.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 301

•Exercise 11–4:
Find the Cholesky factorization of

A =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


The answer can be found with brain-power, paper and pencil or with brain-power and some software.

•Exercise 11–5:
In linear elasticity problems the matrix 

1− ν ν ν

ν 1− ν ν

ν ν 1− ν


is used to formulate Hooke’s law (equation (9.3) on page 215). Use the algorithm of Cholesky to verify that
this matrix is strictly positive definite if 0 ≤ ν ≤ 1

2 .
Hint: use one step of the Cholesky factorization to reduce the problem to a 2× 2 matrix. Then multiply the
matrix by an appropriate positive factor to simplify the further calculations.

•Exercise 11–6:
Consider the code segment below

int jMax; double tmp;
int kj,k0,k0j;

k0=kj=k0j=0; // initialize Rp[0][0] = R[0*band]
for(int k= 0; k < length-1; k++) {

if (fabs(Rp[k][0]) <= TOL) { return message ;}
};
jMax = min(band,length-k);
for (int j=1;j<jMax; j++){
kj += band;
k0j++;
tmp = R[k0j]/R[k0];
for(int i= jMax-j-1 ; i>=0; i--) R[kj+i] -= tmp*R[k0j+i];
R[k0j] = tmp;

}; //for j flops: bandˆ2/2
kj=k0j=(k0+=band); // initialise Rp[k][0] = R[k*band]

}; //for k length iterations

Verify that this code returns the same result as the codes in tables 11.3 and 11.4. This version does not
require a temporary storage for one row of the banded matrix. On the Pentium III computer the performance
was not as good as the code in 11.4. On the Alpha 21264 with the Compaq compiler the results of the three
implementations were rather close together. With the gcc compiler we found 11.4 to be faster than this code
and 11.3 slower than this code. This illustrates that hardware architecture and compiler are important when
choosing the best implementation.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 302

•Exercise 11–7:
Consider the 5 × 5 matrix A with 2 on the diagonal and −1 on the first upper and lower diagonal. As an
initial vector ~x choose all components equal to 1/

√
5, thus this vector is normalized.

(a) Compute 5 steps of the power iteration to approximate the largest eigenvalue λ5.

(b) Find the maximal error of the above result by the estimate ‖A ~x− β ~x‖ in theorem 11–25.

(c) Compute the Rayleigh quotient and verify that its value is closer to the exact eigenvalue λ5 =
2 cos(5π

6) ≈ 3.7321.

The exact eigenvalues of this type of n× n matrix are λi = 2 (1− cos(i π
n+1)) for i = 1, 2, . . . n.

Use appropriate software to solve this problem.

•Exercise 11–8:
Reconsider the previous exercise with a 10× 10 matrix.

(a) Can you explain why the result after 10 iterations (3.6519) is not close to the largest eigenvalue
λ10 ≈ 3.9190. The error is larger than permitted by the à posteriori error bound (0.13149).

(b) Rerun the above computations again, but set the first component of the initial vector to 0 and do 20
iterations. Why is the result correct for this run?

•Exercise 11–9:
Consider the same type of matrix as in the two previous problems. For an n × n matrix the exact eigen-
values are λi = 2 (1 − cos(i π

n+1)) = 4 sin2
(

i π
2 (n+1)

)
for i = 1, 2, . . . n. If i � n we find λi =

4 sin2
(

i π
2 (n+1)

)
≈ i2

(
π
n+1

)2
and thus λi ≈ i2 λ1. Use the inverse power iteration method to determine

the first m eigenvalues, where m� n.

(a) How many iterations are necessary (approximately) to determine the first eigenvalue with 4 signifi-
cant digits?

(b) How many iterations are necessary (approximately) to determine the first five eigenvalues with 4
significant digits?

(c) Explain why the above result is an rough estimate at best and by no means a guarantee for 4 correct
digits. Describe a simple stopping criterion for the algorithm.

•Exercise 11–10:
Describe an algorithm to determine the m largest eigenvalues of a positive definite, symmetric matrix.

•Exercise 11–11:
Let A be a symmetric matrix and B a symmetric, strictly positive definite matrix with classical Cholesky
factorization R, i.e. B = RT ·R. Examine the generalized eigenvalue problem

A~v = λB~v

(a) Verify that the generalized eigenvalues above are classical eigenvalues of the matrix Ã, where

RT · Ã ·R = A

If ~v is a generalized eigenvector, then ~y = R~v is an eigenvector of Ã for the same eigenvalue.

SHA 22-4-21

CHAPTER 11. SOME MATRIX COMPUTATIONS 303

(b) Let ~r and ~s be the residuals for approximations of the eigenvalues λ and eigenvectors ~v, resp. ~y. We
have

~r = A~v − λB~v and ~s = Ã ~y − λ~y

Verify the identity
〈~r , B−1 ~r〉 = 〈~s , ~s〉

(c) Use the above and result 11–25 to verify à posteriori estimates for the generalized eigenvalue prob-
lem. Let β be a scalar and ~v an approximate eigenvector with 〈~v , B~v〉 = 1. With the residual
~r = A~v − βB~v verify the estimates

min(|λi − β|) ≤
√
〈~r , B−1 ~r〉 and min(|λi − β|) ≤

〈~r , B−1 ~r〉
gap

SHA 22-4-21

Appendix A

Some mathematical results and formulas

A.1 Vectors and matrices

A.1.1 Products of matrices and vectors

A.1.2 Scalar product of vectors

The scaler product of two vector in Rn is given by

〈~x , ~y〉 = ~xT · ~y = (x1, x2, . . . , xn) ·


y1

y2

...

yn

 =

n∑
k=1

xk yk

If A is a n× n matrix we have

〈~x , A · ~y〉 = ~xT · (A · ~y) =
(
~xT · A

)
· ~y = (A · ~x)T · ~y = 〈AT · ~x , ~y〉

Thus for symmetric, real matrices A = AT we have the handy property

〈~x , A · ~y〉 = 〈A · ~x , ~y〉

A.1.3 Diagonalisation of a symmetric matrix, orthogonal matrices

A n× n matrix Q with Q−1 = QT is called an orthogonal matrix. Thus the important property is

Q ·QT = QT ·Q = In

If we consider the columns of Q as vectors, i.e.

Q = [~r1, ~r2, . . . , ~rn]

then the vectors ~rk are of length 1 and are pairwise orthogonal.
For a symmetric, real n× n matrix A

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 =


a11 a12 . . . a1n

a12 a22 . . . a2n

...
...

. . .
...

a1n a2n . . . ann


304

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 305

there is an orthogonal matrix Q and a diagonal matrix D, such that

QTA Q = D =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


or

A = Q D QT

The elements λi on the diagonal of D are eigenvalues of the symmetric matrix A and the column vectors of
Q are normalized eigenvectors of A. Since finding all eigenvectors and eigenvalues of a symmetric matrix
can be a computationally expensive task one should try to avoid numerical methods requiring all those
values. The decomposition is a very valuable tool for theoretical considerations.

A.2 Gradient, divergence and the Laplace operator

A.2.1 Vectors in different coordinate systems

Most often a vector in space R3 is represented by cartesian coordinates, a triple of numbers

~v =


v1

v2

v3

 = v1 ~ex + v2 ~ey + v3 ~ez

where ~ei are the three orthonormal basis vectors.
If cylindrical coordinates are used then another set of basis vectors can be useful, namely

~eρ =
1√

x2 + y2


x

y

0

 =


cosφ

sinφ

0

 , ~eφ =


− sinφ

cosφ

0

 and ~ez =


0

0

1


All the vectors have lenght 1. If the radius ρ is increased then the vector ”grows“ in the direction of ~eρ. If
the angle φ is increased then the vector ”grows“ in the direction of ~eφ. An arbitrary vector can be written as
linear combination of these basis vectors

~v = vρ ~eρ + vφ ~eφ + vz ~ez

For spherical coordinates

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ

we have similarly

~er =


cosφ sin θ

sinφ sin θ

r cos θ

 , ~eφ =


− sinφ

cosφ

0

 and ~eθ =


cosφ cos θ

cosφ cos θ

− cos θ


and an arbitrary vector can be written as

~v = vr ~er + vφ ~eφ + vθ ~eθ

SHA 22-4-21

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 306

A.2.2 Gradient

The gradient of a scalar function f(x, y, z) is a vector given by

grad f = ∇ f =

(
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂x

)
=
∂ f

∂x
~ex +

∂ f

∂y
~ey +

∂ f

∂z
~ez

If the function is easier to describe in cylindrical coordinates, then we can use

grad f = ∇ f =
∂ f

∂ρ
~eρ +

1

ρ

∂ f

∂φ
~eφ +

∂ f

∂z
~ez

or in spherical coordinates

grad f = ∇ f =
∂ f

∂ρ
~er +

1

r sin θ

∂ f

∂φ
~eφ +

1

r

∂ f

∂θ
~eθ

A.2.3 Divergence

For a vector valued function
~v = v1 ~ex + v2 ~ey + v3 ~ez

the divergence is a scalar given by

div v = ∇ · ~v =
∂ vx
∂x

+
∂ vy
∂y

+
∂ vz
∂z

If the vector function v(ρ, φ, z) is given in cylindrical coordinates

~v = vρ ~eρ + vφ ~eφ + vz ~ez

then

div v = ∇ · ~v =
1

ρ

∂ (ρ vρ)

∂ρ
+

1

ρ

∂ vφ
∂φ

+
∂ vz
∂z

If the vector function v(r, φ, θ) is given in spherical coordinates

~v = vr ~er + vφ ~eφ + vθ ~eθ

then

div v = ∇ · ~v =
1

r2

∂ (r2 vr)

∂r
+

1

r sin θ

∂ vφ
∂φ

+
1

r sin θ

∂ (sin θ vθ)

∂θ

A.2.4 The Laplace operator

The differential operator ∆ = div grad is called Laplace operator. It can be applied to functions of two or
three variables. It is defined by

∆u = div gradu = ∇ · (∇u) = ∇2u

The exact form depends on the coordinate system to be used. For cartesian coordinates we find

∆u(x, y, z) = uxx + uyy + uzz

=
∂2 u

∂x2
+
∂2 u

∂y2
+
∂2 u

∂z2

SHA 22-4-21

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 307

In cylindrical coordinates this leads to

∆u(ρ, φ, z) =
1

ρ
(ρ uρ)ρ +

1

ρ2
uφφ + uzz

=
1

ρ

∂

∂ρ
(ρ
∂ u

∂ρ
) +

1

ρ2

∂2 u

∂φ2
+
∂2 u

∂z2

and for spherical coordinates

∆u(r, φ, θ) =
1

r2
(r2ur)r +

1

r2 sin2 θ
uφφ +

1

r2 sin θ
(sin θ uθ)θ

=
1

r2

∂

∂r
(r2∂ u

∂r
) +

1

r2 sin2 θ

∂2 u

∂φ2
+

1

r2 sin θ

∂

∂θ
(sin θ

∂u

∂θ
)

A.3 Divergence theorems

The well know fundamental theorem of calculus for functions of one variable∫ b

a
f ′(x) dx = −f(a) + f(b)

can be extended to functions of multiple variables. If G ⊂ Rn is a ”nice“ domain with boundary ∂G and
outer unit normal vector ~n the we have the divergence theorem. For domains G ⊂ R2 we have∫∫

G

div~v dA =

∮
∂G
~v · ~n ds

and if G ⊂ R3 then the notation is ∫∫
G

div~v dV =

∮
∂G
~v · ~n dA

where dV is the standard volume element and dA a surface element. The usual rule to differentiate products
of two functions leads to

∇ · (f ~v) = (∇f) · ~v + f (∇ · ~v)

div(f ~v) = (grad f) · ~v + f (div~v)

Using this and the divergence theorem we find∫∫
G

f (div~v) dA =

∫∫
G

div(f ~v)− (grad f) · ~v dA

=

∮
∂G
f ~v · ~n ds−

∫∫
G

(grad f) · ~v dA

This formula is referred to as Green–Gauss theorem and is similar to integration by parts for function of
one variable ∫ b

a
f · g′ dx = −f(a) · g(a) + f(b) · g(b)−

∫ b

a
f ′ · g dx

For finite elements and calculus of variation the divergence theorem is most often used in the form below.∫∫
G

f (div grad g) dA =

∮
∂G
f (grad g) · ~n ds−

∫∫
G

(grad f) · (grad g) dA

∫∫
G

f ∆g dA =

∫∫
G

f ∇2g dA =

∮
∂G
f ∇g · ~n ds−

∫∫
G

∇f · ∇g dA

SHA 22-4-21

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 308

A.4 Scalar product on function spaces

Let f and g be piecewise continuous, real valued functions on the interval [a, b] and ~u,~v ∈ Rn. Then we
can compare the scalar product for functions and vectors. For vectors we have

〈~u,~v〉 =
n∑
i=1

uivi

and for functions f g

〈f, g〉 =

∫ b

a
f (x) g (x) dx

The symbol f ∈ L2 denotes all functions f defined on [a, b] for which the integral∫ b

a
|f (x)|2 dx

is finite. Now compare the behaviour of vectors and functions.

Rn L2

Objects vectors ~u,~v, ~w functions f, g, h

Scalar product 〈~u,~v〉 =
∑n

i=1 ui vi 〈f, g〉 =
∫ b
a f (x) g (x) dx

Norm ‖~u‖2 =
∑n

i=1 |ui|2 ‖f‖22 =
∫ b
a |f (x)|2 dx

Orthogonality 〈~u,~v〉 = 0 〈f, g〉 = 0

Linearity 〈~u+ ~w,~v〉 = 〈~u,~v〉+ 〈~w,~v〉 〈f + h, g〉 = 〈f, g〉+ 〈h, g〉
〈λ~u,~v〉 = λ〈~u,~v〉 〈λf, g〉 = λ〈f, g〉

For vectors we have the basic inequality of Cauchy–Schwarz1

| 〈~u , ~v〉 | ≤ ‖~u‖ ‖~v‖

The same result is correct for functions and reads as∣∣∣∣∫ b

a
f (x) g (x) dx

∣∣∣∣ ≤ (∫ b

a
|f (x)|2 dx

)1/2

·
(∫ b

a
|g (x)|2 dx

)1/2

The above similarities of vectors and functions can be used to motivate and construct the Fourier series
of a function.

A.5 Fundamental lemma of calculus of variations

• One variable

• multiple variables

A–1 Lemma : Fundamental Lemma of the calculus of variations in one variable
If u(x) is a continuous function for a ≤ x ≤ b and∫ b

a
u(x) · φ(x) dx = 0

for all infinitely often differentiable functions φ(x) with φ(a) = φ(b) = 0 then

u(x) = 0 for all a ≤ x ≤ b

3

1To verify this inequality use |〈~u,~v〉| = ‖~u‖ ‖~v‖ | cosα| ≤ ‖~u‖ ‖~v‖

SHA 22-4-21

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 309

A–2 Lemma : Fundamental Lemma of the calculus of variations for multiple variables
If u(~x) is a continuous function of ~x ∈ Ω ⊂ Rn for a subset Ω of Rn with piecewise smooth boundary and∫

Ω
u(~x) · φ(~x) dV = 0

for all infinitely often differentiable functions φ with φ(~x) = 0 for alle ~x ∈ ∂Ω then

u(~x) = 0 for all ~x ∈ Ω

3

A.6 Maxwell’s equation

To describe electric and magnetic fields the following physical quantities are relevant.

Symbol Description Units
~E electric field V

m

~D electric flux density C
m2

~H magnetic field A
m

~B magnetic flux density V s
m2

~J electric current density A
m2

ρ electric charge density C
m3

Use the equation of continuity (conservation of charge)

div ~J +
d

dt
ρ = 0

and the constitutive relation

~D = ε ε0
~E , ~B = ν ν0

~H , ~J = σ ~E (A.1)

where

ε0 permittivity of vacuum 8.854 · 10−12 C
V m

ν0 permeability of vacuum 4π · 10−7 V s
Am

σ conductivity 1
Ωm = A

V m

The values of ε, ν and σ depend on the material. In vacuum we have ε = ν = 1.

A.6.1 Dynamic equations of Maxwell

The dynamic version of the fundamental Maxwell’s equations is given by

div ~D = ρ Gauss’s law

div ~B = 0 Gauss’s magnetic law

rot ~E = − ∂
∂t
~B Farraday’s law

rot ~H = ∂
∂t
~D Ampère’s law

(A.2)

SHA 22-4-21

APPENDIX A. SOME MATHEMATICAL RESULTS AND FORMULAS 310

A.6.2 Static equations

If all expressions to be examined are independent on time, then the equations (A.2) simplify and in particular
the electric and magnetic fields are decoupled.

Electrostatic equations

Since rot ~E = ~0 we know that the electric field has a scalar potential function U , such that

~E = −∇U

This can be combined with (A.1) and we find the basic electrostatic equation

−div (ε ε0∇U) = ρ (A.3)

This is a second order differential equation for the electric potential U

Magnetostatic equations

Similarly we use rot ~H = ~0 we know that the magnetic field has a scalar potential function Um, such that

~H = −∇Um

This can be combined with (A.1) and we find the basic electrostatic equation

−div (ν ν0∇Um) = 0 (A.4)

This is a second order differential equation for the magnetic potential Um

A.6.3 Time-harmonic fields

Assume that all fields depend on time with a factor eiωt, using complex notation.

div ε ε0
~E = i ω ρ

div ν ν0
~H = 0

rot ~E = −i ω ν ν0
~H

rot ~H = i ω ~ε ε0
~E

(A.5)

SHA 22-4-21

Appendix B

Solutions to some exercises

Solution to Exercise 1–1 :
(a)

f (x1, x2) =
1

2
〈

(
x1

x2

)
,

[
2 4

4 −4

]
·

(
x1

x2

)
〉+ 〈

(
x1

x2

)
,

(
3

6

)
〉

(b) Solve the equation [
2 4

4 −4

] (
x1

x2

)
= −

(
3

6

)
with the unique solution x1 = −3

2 and x2 = 0.

(c) The eigenvalues and eigenvectors are given by

~e1 =

(
−1

2

)
, λ1 = −6 and ~e2 =

(
2

1

)
, λ1 = 4

Use eigensystem[] in Mathematica . Since one of the eigenvalues is positive and the other is
negative we have a saddle point.

(d) With Mathematica one may use the following code.
Mathematica

a={{2,4},{4,-4}};
f[x_] := x.a.x /2 + x.{3,6}
f[{x1,x2}]//Expand
Plot3D[f[{x1,x2}],{x1,-4,1},{x2,-2,2}];

Solution to Exercise 1–2 : The location (xm, ym) of the minimum is given by the solution of[
8 −2

−2 6

]
·

(
x

y

)
= −

(
b

−2 b

)
= b

(
−1

2

)

and thus (
xm

ym

)
= b

(
−1
2
7
22

)

Solution to Exercise 2–1 :

311

APPENDIX B. SOLUTIONS TO SOME EXERCISES 312

(a) F = A(x)σ(x) and thus σ(x) = F/A(x).

(b) Hooke’s law implies

ε(x) =
σ(x)

E
=

F

E A(x)

An integration of the energy density e(x) yields

U =

∫ L

0
e(x)A(x) dx =

∫ L

0

1

2
σ(x) · ε(x) A(x) dx

=
1

2

∫ L

0

ε(x)2

E
A(x) dx =

1

2

∫ L

0

F 2

E A(x)2
A(x) dx

=
F 2

2E

∫ L

0

1

A(x)
dx

Another solution could be based on

U =

∫ L

0
ε(x)A(x) dx =

∫ L

0

1

2
σ(x) · ε(x) A(x) dx =

E

2

∫ L

0
ε(x)2 A(x) dx

The final result will not change.

(c) For the displacement u(x) we know that ε(x) = d
dx u(x) and thus

u(x) = u(0) +

∫ x

0
u′(s) ds = 0 +

∫ x

0
ε(s) ds

This leads to

∆L = u(L) =

∫ L

0
ε(s) ds =

∫ L

0

F

E A(s)
ds

(d)

1

k
=

∆L

F
=

∫ L

0

1

E A(s)
ds

Solution to Exercise 3–1 :

(a) This is a standard calculus problem.

(b) As the integrand does not depend explicitly on x we have a first integral. This is simpler than starting
with the Euler Lagrange equation.

u′ fu′ − f = u′
uu′√

1 + (u′)2
− u

√
1 + (u′)2 = C

(c) Now we can solve for u′ and then do a separation of variables.

u (u′)2 − u (1 + (u′)2) = C
√

1 + (u′)2

−u = C
√

1 + (u′)2

u′ =

√
u2 − C2

C2

dx =
C√

u2 − C2
du∫

1 dx =

∫
C√

u2 − C2
du = C cosh−1 u

C
+ k

Thus we have
y = u(x) = C cosh

x− k
C

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 313

Solution to Exercise 3–2 :
(a)

E(u) =

∫ b

a
e(x)A(x) dx =

E

2

∫ b

a
A(x)u′(x)2 dx

As we have
f(x, u, u′) =

E

2
A(x) (u′)2

the Euler Lagrange equation simplifies to

d

dx
fu′ = E

d

dx

(
A(x)u′(x)

)
= 0

Thus the expression A(x)u′(x) is a first integral. The second order differential equation is

A(x)u′′ +A′(x)u′(x) = 0

(b) In this example we have a = 0, b = 100 and A(x) = 10− 0.09x. We use the first integral

A(x)u′(x) = (10− 0.09x) u′(x) = C1

u′(x) =
C1

10− 0.09x

u(x) = u(0) +

∫ x

0

C1

10− 0.09 z
dz =

C1

0.09
(ln 10− ln(10− 0.09x))

=
C1

0.09
ln

10

10− 0.09x

With the help of the condition u(100) = B we determine the constant C1.

B =
C1

0.09
ln 10 =⇒ C1 =

0.09B

ln 10

Now we have the solution

u(x) =
B

ln 10
ln

10

10− 0.09x
=
−B
ln 10

ln
10− 0.09x

10

(c) To find the physical interpretation of the first integral use Hooke’ss law

σ = E ε = E u′

and thus the first integral

C1 = A(x) · u′(x) =⇒ E C1 = E A(x) · ε(x) = A(x) · σ(x) = F (x)

implies that the total force applied to each cross section has to be independent on x.

(d) We have

ε(100) =
d u(x)

dx x=100
=

B

ln 10

0.09

10− 0.09x x=100
=

0.09

ln 10
B

Thus the stress is given by

σ(100) = E ε(100) = E
0.09

ln 10
B

and
F = A(100) · σ(100) = 3 · 106 0.09

ln 10
B = 2 · 104

This leads to B ≈ 0.17056 and to the exact solution shown in section 2.2.2.

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 314

Solution to Exercise 3–3 : The functional to be considered is

L(y, z) =

∫ b

a

√
1 + (y′)2 + (z′)2 dz

The Euler Lagrange equation for the dependent variables y(x) and z(x) are

d

dx
fy = fy

d

dx

y′√
1 + (y′)2 + (z′)2

= 0

d

dx

z′√
1 + (y′)2 + (z′)2

= 0

If y′ and z′ are constant, then those two equations are certainly solved. We have to verify that there are no
other solutions. The equations implies

y′ = C1

√
1 + (y′)2 + (z′)2 and z′ = C2

√
1 + (y′)2 + (z′)2

Thus z′ can be written as a multiple of y′ (z′ = λy′) and we conclude

y′ = C1

√
1 + (1 + λ2) (y′)2

The only way to solve this equation is by a y′ being constant.

Solution to Exercise 3–4 : This is an extremal problem with constraint, thus we consider the functional

F (u) = A+ λL =

∫ b

0
u(x) + λ

√
1 + (u′(x))2 dx

with the unknown Lagrange multiplier λ ∈ R. The Euler Lagrange equation is given by

d

dx
fu′ = fu

d

dx

λu′(x)√
1 + (u′(x))2

= 1

u′′(x)√
1 + (u′(x))2

− (u′(x))2 u′′(x)√
1 + (u′(x))23 =

1

λ

u′′(x)√
1 + (u′(x))23 =

1

λ

Thus the curvature κ is constant along the optimal solution. The natural boundary condition at x = b is

fu′ =
λu′(x)√

1 + (u′(x))2

∣∣∣∣∣
x=b

= 0

Thus we conclude that u′(b) = 0, i.e. we have a horizontal tangent line.
Solutions of the above form will only exist if b < L < b π

2 .

Solution to Exercise 3–5 :

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 315

(a) Let ρ be the specific mass of water. Use cylindrical coordinates for the integrations.

V (u) =

∫ R

0
2π r u(r) dr

U(u) =

∫ R

0
ρ g 2π r u(r)

u(r)

2
dr

T (u) =

∫ R

0
ρ 2π r u(r)

ω2 r2

2
dr

L(u) = T (u)− U(u) = ρ π

∫ R

0
r3 ω2 u(r)− g r u2(r) dr

(b) Consider the functional

L(u)− λV (u) = π

∫ R

0
ρ (r3 ω2 u(r)− g r u2(r)) + λ 2u(r) dr

If u(r) is a critical point then

d

dr
fu′ = fu

0 = ρ π(r3 ω2 − g r u(r))− λ 2π r

−r2 ω2 + g u(r) =
2λ

ρ

u(r) =
2λ

ρ g
+

1

ω2 g
r2 = c+

1

ω2 g
r2

Thus the surface will have the shape of a rotated parabola. The unknown constant c can be determined
using the known volume V0 of water.

Solution to Exercise 3–6 :

F (u+ φ)− F (u) ≈
∫ b

a
a(x)u′(x) · φ′(x) + b(x)u(x) · φ(x) + g(x) · φ(x) dx

+r(a)φ(a)− r(b)φ(b)

=

∫ b

a
− d

dx

(
a(x)u′(x)

)
· φ(x) + b(x)u(x) · φ(x) + g(x) · φ(x) dx

+ a(x)u′(x) · φ(x)
∣∣b
x=a

+ r(a)φ(a)− r(b)φ(b)

=

∫ b

a

(
− d

dx

(
a(x)u′(x)

)
+ b(x)u(x) + g(x)

)
· φ(x) dx

+
(
a(x)u′(x)− r(x)

)
· φ(x)

∣∣b
x=a

If the function u(x) is a minimiser then the above expression has to vanish for ”arbitrary“ function φ(x).
This implies the claimed result.

Solution to Exercise 3–7 : Consider the perturbed function u(x) + ε η(x) and compute the functional. As
a necessary condition the derivative with respect to ε has to vanish for ε = 0. Two subsequent integration
by parts lead to the following.

F (u+ ε η) =
1

2

∫ b

a
A(x)

(
u′′(x) + ε η′′(x)

)2
dx

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 316

d

dε
F (u+ ε η) =

1

2

∫ b

a
A(x) 2

(
u′′(x) + ε η′′(x)

)
η′′(x) dx

d

dε
F (u+ ε η)

ε=0
=

∫ b

a
η′′(x) A(x)u′′(x) dx

= η′(x) A(x)u′′(x)
b

x=a
−
∫ b

a
η′(x)

d

dx

(
A(x)u′′(x)

)
dx

=

(
η′(x) A(x)u′′(x)− η(x)

d

dx

(
A(x)u′′(x)

)) b

x=a
+

+

∫ b

a
η(x)

d2

dx2

(
A(x)u′′(x)

)
dx

The fundamental lemma implies now

d2

dx2

(
A(x)u′′(x)

)
= 0 for a < x < b

and since the values of η and η′ at the endpoints are independent we also have the four boundary conditions

η′(a) A(a)u′′(a) = 0

η(a)
d

dx

(
A(x)u′′(x)

)
x = a = 0

η′(b) A(b)u′′(b) = 0

η(b)
d

dx

(
A(x)u′′(x)

)
x = b = 0

Depending on the constraints imposed on the variable we find boundary conditions on the solution u(x).

• If the bar is fixed and clamped at both ends then the test function η at is derivative have to vanish at
the endpoints, η(a) = η′(a) = η(b) = η′(b) = 0. The known values of u and u′ serve as boundary
conditions.

• If the bar is fixed and clamped at the left end and free at the right end then η(a) = η′(a) = 0. Since
the values of η are free at x = b the conditions above imply

A(b)u′′(b) = 0 and
d

dx

(
A(b)u′′(b)

)
= 0

In both situations four boundary conditions for the ordinary differential equation of order four are given.

Solution to Exercise 4–1 :
Mathematica

<<BVP.m
Clear[a,b,c,f,x,n,yn,y,t]
a=Function[x,x];
b=Function[x,-7];
f=Function[x,-Sin[x]];
n=10;
x=Table[t,{t,0,3,3/n}];
data=BVP[a,b,f,x,{"D","N"},{3,0}];
g1=ListPlot[data,PlotStyle -> PointSize[0.02],

DisplayFunction ->Identity] ;
yn[t_]=y[t]/.NDSolve[{D[a[t]*y’[t],t]-b[t]*y[t]==f[t],

y[data[[2,1]]]==data[[2,2]],y’[3]==0},
y[t],{t,0.01,3}];

g2=Plot[yn[t],{t,data[[2,1]],3},DisplayFunction -> Identity];
Show[{g1,g2}, PlotRange -> All,

DisplayFunction ->$DisplayFunction];

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 317

Solution to Exercise 7–1 : The first two points are answered by the explicit computations

A∆ =
1

4A2


(y3 − y2) (x2 − x3)

(y1 − y3) (x3 − x1)

(y2 − y1) (x1 − x2)

 ·
[

(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]

=
1

4A2


(y3 − y2) (x2 − x3)

−y3 x3

y2 −x2

 ·
[

(y3 − y2) −y3 y2

(x2 − x3) x3 −x2

]

=
1

4A2


(y3 − y2)2 + (x2 − x3)2 (x2 − x3)x3 − (y3 − y2) y3 (y3 − y2) y2 − (x2 − x3)x2

(x2 − x3)x3 − (y3 − y2) y3 y2
3 + x2

3 −y3 y2 − x3 x2

(y3 − y2) y2 − (x2 − x3)x2 −y2 y3 − x2 x3 y2
2 + x2

2


(a) The matrix is symmetric and all diagonal entries are positive as sum of squares.

(b) The matrix A∆ is positive semidefinite since

〈~u , A∆ · ~u〉 =
1

4 A2
〈~u , MT ·M · ~u〉 =

1

4 A2
〈M · ~u , M · ~u〉 =

1

4 A2
‖M · ~u‖2 ≥ 0

(c) The above expression equals zero if and only if M · ~u = ~0. This is equivalent to the system

(y3 − y2)u1 −y3 u2 +y2 u3 = 0

(x2 − x3)u1 +x3 u2 −x2 u3 = 0
or

−y3 u2 +y2 u3 = −(y3 − y2)u1

+x3 u2 −x2 u3 = −(x2 − x3)u1

Multiply the first equation by x2, the second by y2, then add the two equations to arrive at

u2 (−y3 x2 + x3 y2) = −x2 (y3 − y2)u1 − y2 (x2 − x3)u1 = (−x2 y3 + y2 x3)u1

Since the triangle with the corners (0, 0), (x1, y1)t and (x2, y2)T has nonzero area we conclude that
−x2 y3 + y2 x3 6= 0 and thus u1 = u2. Similarly we find that u3 = u1.

There is an geometric interpretation for this result. Equation (7.2) implies

∇u =

(
∂ u
∂x
∂ u
∂y

)
=
−1

2A
M ·


u1

u2

u3


The gradient for a linear (resp. affine) function vanishes if and only if the function is constant, i.e. u1 =
u2 = u3.

Solution to Exercise 11–2 :

(a) The result is implied by

max
~x6=~0

κ(~x) = max
~x6=~0
‖A−1‖ ‖A ~x‖

‖~x‖
= ‖A−1‖ max

~x6=~0

‖A ~x‖
‖~x‖

= ‖A−1‖ ‖A‖ = κ

(b) The proof is similar to the proof of 11–4 or by the calculation below

‖∆~x‖
‖~x‖

=
‖A−1 ∆~b‖
‖~x‖

=
‖A−1 ∆~b‖
‖∆~b‖

‖∆~b‖
‖A ~x‖

‖A ~x‖
‖~x‖

≤ ‖A−1‖ ‖A ~x‖
‖~x‖

‖∆~b‖
‖~b‖

= κ(~x)
‖∆~b‖
‖~b‖

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 318

(c) Let ~ek be the ortho-normalized eigenvectors to the eigenvalues λk. If~b =
∑

k ck ~ek and A ~x = ~b then
~x =

∑
k

1
λk
ck ~ek. For the norms we find

‖A ~x‖2 = ‖~b‖2 =
∑
k

|ck|2

‖~x‖2 =
∑
k

1

λ2
k

|ck|2 ≥
∑
k

1

Λ2
|ck|2 =

1

Λ2
‖~b‖2 =

1

Λ2
‖A~b‖2

and thus ‖A~b‖ ≤ Λ ‖~x‖. Since ‖A−1‖ = 1/λ1 this implies

κ(~x) = ‖A−1‖‖A ~x‖
‖~x‖

≤ 1

λ1
Λ

Solution to Exercise 11–3 : Since Q−1 = QT we know that Q ·QT = QT ·Q = I and thus

‖Q ~x‖2 = 〈Q ~x , Q ~x〉 = 〈~x , QT ·Q ~x〉 = 〈~x , ~x〉 = ‖~x‖2

This implies ‖Q‖ = 1 and by similar calculations we obtain ‖Q−1‖ = ‖QT ‖ = 1. Now κ = 1 follows
from the definition of the condition number.

Solution to Exercise 11–4 : The factorization is given by

A =


1 0 0 0
−1
2 1 0 0

0 −2
3 1 0

0 0 −3
4 1

 ·


2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4

 ·


1 −1
2 0 0

0 1 −2
3 0

0 0 1 −3
4

0 0 0 1


Solution to Exercise 11–5 : We only have to verify that the diagonal entries remain positive as we reduce
the matrix to diagonal form. The first step of the Cholesky algorithm leads to

1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 −→


1− ν 0 0

0 1− ν − ν2

1−ν ν − ν2

1−ν

0 ν − ν2

1−ν 1− ν − ν
1−ν

 =


1− ν 0 0

0 1−2 ν
1−ν

ν−2 ν2

1−ν

0 ν−2 ν2

1−ν
1−2 ν
1−ν


Since the next step modifies the lower right block only we restrict our attention to that block. If ν > 1

2
then the diagonal numbers are negative and the matrix is not positive definite. Multiplying the matrix by
the positive factor 1−ν

1−2 ν (use 0 ≤ ν ≤ 1
2) does not influence positive definiteness. Thus we now have to

consider only the smaller matrix and apply another step of the Cholesky algorithm.[
1 ν

ν 1

]
−→

[
1 0

0 1− ν2

]

This matrix is positive definite if ν2 ≤ 1
4 .

Solution to Exercise 11–7 :

(a) The first five steps of the power iteration lead to the values

0.63246 , 2.2361 , 2.9326 , 3.3860 and 3.6151

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 319

(b) First make sure the vector ~x is normalized. Then the error has to be smaller that ‖A ~x − β ~x‖ ≈
0.28707. Since λ5 = 3.7321 this is the case.

(c) The Rayleigh quotient is given by

ρ(~x) = 〈~x , A ~x〉 = ~xT ·A · ~x ≈ 3.6862

and is in fact closer to the exact eigenvalue.

The result can be generated by code similar to the one below.

Octave
n = 5;
A = diag(2*ones(1,n))-diag(ones(1,n-1),1)-diag(ones(1,n-1),-1);
x = ones(n,1);
for k=1:5
x = x/norm(x);
x = A*x;
eigval = norm(x)

endfor

error = norm(A*x-eigval*x)/norm(x)

rayleigh = x’*A*x/norm(x)**2

eigvalexact= 2*(1-cos(5*pi/6))

Solution to Exercise 11–8 :

(a) The ratio λ10
λ9
≈ 1.06 of the two largest eigenvalues is rather close to 1 and thus the convergence is

slow. In addition is the constant initial vector orthogonal to the eigenvector belonging to the largest
eigenvalue and thus the iteration will converge to the second largest eigenvalue. The à posteriori bound
estimates the distance to one of the eigenvalues, not necessarily the largest. In this case it is the second
largest eigenvalue.

(b) Both critical points of the first attempt are eliminated by the modification.

Solution to Exercise 11–9 : The basis for the estimates is the à priori bound

|β − λ| ≤ c
(

λm
λm+1

)2k

for the error of the first m eigenvalues eigenvalues.

(a) The convergence is determined by λ1
λ2
≈ 1

4 . Assuming that we start the iteration with zero correct digits

we find the relative error to be
(

1
4

)2k. This leads to the condition 42k ≥ 104 and thus k ≥ ln 104

2 ln 4 ≈ 3.3.
We need at least 4 iterations.

(b) The convergence is determined by λ5
λ6
≈ 25

36 . Assuming that we start the iteration with zero correct

digits we find the relative error to be
(

25
36

)2k. This leads to k ≥ ln 104

2 (ln 36−ln 25) ≈ 12.6. We need at least
13 iterations.

(c) The error bound contains a constant c which we do not know. The above computations assumed c = 1.
It is more reliable to run a few iterations and then keep track of which digits of the approximated λi
keep changing. If 4 digits remain unchanged for a few iterations one may stop. One could also use the
à posteriori bounds of theorem 11–25, but the computational effort is considerably larger. It is a good
idea though to verify the final results using theorem 11–25.

SHA 22-4-21

APPENDIX B. SOLUTIONS TO SOME EXERCISES 320

Solution to Exercise 11–11 :

(a) Since B is strictly positive definite its Cholesky factorization B = RT ·R = L ·R is invertible and
we find Ã = L−1 ·A ·R−1. Thus we conclude

A~v = λ B ~v ⇐⇒ L−1 ·A~v = λ L−1 · L ·R ~v

⇐⇒ L−1 ·A ·R−1 ~y = λ R ·R−1 ~y where ~y = R ~v

⇐⇒ Ã ~y = λ ~y

(b) Since B = L R we use B−1 = R−1 L−1 to conclude

〈~r , B−1 ~r〉 = 〈~r , R−1 · L−1 ~r〉 = 〈L−1~r , L−1 ~r〉

Using the definitions of the residual vectors ~r and ~s we find

L−1~r = L−1 (A~v − λB~v)

= L−1 ·A~v − λL−1 ·B~v

= L−1 ·A ·R−1 ~y − λL−1 · L ·R ·R−1 ~y

= Ã ~y − λ~y = ~s

Thus we have the desired identity
〈~r , B−1 ~r〉 = 〈~s , ~s〉

(c) Let ~y = R~v. Since ~v is normalized, we find

1 = 〈~v , B~v〉 = 〈R−1~y , RT R R−1~y〉 = 〈~y , ~y〉

Now use the first estimate in result 11–25 for the standard eigenvalue problem with matrix Ã to conlude

min(|λi − β|) ≤ ‖~s‖ =
√
〈~s , ~s〉 =

√
〈~r , B−1 ~r〉

The second estimate follows similarly.

SHA 22-4-21

Bibliography

[Axel94] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

[AxelBark84] O. Axelsson and V. A. Barker. Finite Element Solution of Boundaru Values Problems. Aca-
demic Press, 1984.

[Bent00] J. Bentley. Programming Pearls. Addison Wesley, second edition, 2000.

[Ciar02] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, 2002.

[Davi80] A. J. Davies. The Finite Element Method: a First Approach. Oxford University Press, 1980.

[Demm97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[Demm75] G. Demmig. Matrizen und Determinanten. Demmig Verlag, 1975.

[Hart52] J. P. den Hartog. Advanced Strength of Materials. McGraw–Hill, 1952. republished by Dover
1987.

[DowdSeve98] K. Dowd and C. Severance. High Performance Computing. O’Reilly, 2nd edition, 1998.

[Gawe93] W. Gawehn. Vektor– und Matrizenalgebra für Maschinenbauer. Bibliographisches Institut,
Wissenschaftsverlag, 1993.

[GoluVanLoan96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third
edition, 1996.

[Gree77] D. T. Greenwood. Classical Dynamics. Prentice Hall, 1977. Dover edition 1997.

[GuenLee96] R. B. Guenther and J. W. Lee. Partial Differntial Equations of Mathematical Physics and
Integral Equations. Dover, 1996.

[High96] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia,
1996.

[HildTrom86] S. Hildebrand and A. Tromba. Panoptimum, Mathematische Grundmuster des Vollkomme-
nen. Spektrum der Wissenschaften, 1986.

[IsaaKell66] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley & Sons, 1966.
republished by Dover in 1994.

[Isen78] C. Isenberg. The Science of Soap Films and Soap Bubbles. Tieto Ldt., 1978. republished by Dover
in 1992.

[John87] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method.
Cambridge University Press, 1987.

321

BIBLIOGRAPHY 322

[Kell75] H. B. Keller. Approximation methods for nonlinear problems with applications to two–point
boundary value problems. In Mathematics of Computations [Kell92], pages 464–474.

[Kell92] H. B. Keller. Numerical Methods for Two–Point Boundary Value Problems. Dover, 1992.

[KnabAnge00] P. Knabner and L. Angermann. Numerik partieller Differentialgleichungen. Springer Ver-
lag, Berlin, 2000.

[LandLifs75] L. D. Landau and E. M. Lifshitz. Lehrbuch der Theoretischen Physik, Band VII, Elas-
tizitätsthreorie. Akademie Verlag, Berlin, 1975.

[LascTheo87] P. Lascaux and R. Théodor. Analyse numérique matricielle appliquée a l’art de l’ingénieur,
Tome 2. Masson, Paris, 1987.

[CRC95] D. R. Linde. CRC Handbook of Chemistry and Physics. CRC Press, 1995.

[PDEToolbox95] Mathworks Staff. Partial Differential Equation Toolbox. The Mathworks, 1995.

[MullGrot97] G. Müller and C. Groth. FEM für Praktiker. expert verlag, 1997.

[OttoPete92] N. S. Ottosen and H. Petersson. Introduction to the Finite Element Method. Prentice Hall,
1992.

[Prze68] J. Przemieniecki. Theory of Matrix Structural Analysis. McGraw–Hill, 1968.

[Redd84] J. N. Reddy. An Introduction to the Finite Element Analysis. McGraw–Hill, 1984.

[www:triangle] J. R. Shewchuk. http://www-2.cs.cmu.edu/˜quake/triangle.html.

[Smit84] G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods.
Oxford Univerity Press, Oxford, third edition, 1986.

[Sout73] R. W. Soutas-Little. Elasticity. Prentice–Hall, 1973.

[www:sha] A. Stahel. Web page. www.hta-bi.bfh.ch/˜sha.

[StraFix73] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice–Hall, 1973.

[Wein74] R. Weinstock. Calculus of Variations. Dover, New York, 1974.

[Wilk63] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, 1963. republished by
Dover in 1994.

[Wlok82] J. Wloka. Partielle Differentialgleichungen. Teubner, Stuttgart, 1982.

SHA 22-4-21

List of Figures

1.1 The surface of a quadratic function and its level curves 2

2.1 Simple system of trusses . 8
2.2 An isolated element e of the structure with the forces applied to it 9
2.3 An elementary horizontal truss . 20
2.4 truss with variable cross section . 21
2.5 Truss divided in three elements, each with constant cross section 22
2.6 Displacement and strain in a truss with three elements . 25
2.7 Displacement and strain in a truss with 10 elements . 25

3.1 Shortest connection between two points . 29
3.2 The brachistochrone by Johann Bernoulli . 38
3.3 Graph of a cycloid . 39
3.4 Pendulum with moving support . 46
3.5 Numerical solution for a pendulum with moving support 47
3.6 Laser beam in a medium with variable refraction index 50

4.1 Heat source on a ring and the resulting temperature distribution 66
4.2 Approximation of a function by linear elements . 71
4.3 Exact and approximate solution to an elementary boundary value problem 75
4.4 Second order element . 78
4.5 Gauss integration and trapezoidal rule . 80
4.6 BVP.m, Mathematica code to solve a boundary value problem 87
4.7 Interpol2.m, Mathematica code to compute piecewise quadratic interpolation 88
4.8 Test problem for second order element . 88
4.9 Displacement and strain in a truss with 5 elements of order 2 89
4.10 Relative error of the displacement function . 89
4.11 Solution of radial heat equation . 90
4.12 Bending of a beam . 91
4.13 Eigenmodes for a beam with constant cross section . 104
4.14 Setup for a force sensor . 105
4.15 Displacment and first 4 eigenmodes of a force sensor . 107

5.1 Logarithmic plot of the approximation error . 119
5.2 Exact and approximate solution to an ODE . 120
5.3 Exact and approximate solution to a boundary value problem 123
5.4 A general approximation scheme for boundary value problems 123
5.5 A finite difference grid for a heat equation . 127
5.6 Explicit finite difference approximation . 128
5.7 Solution of 1-d heat equation with explicit scheme with r = 0.48 and r = 0.52 130

323

LIST OF FIGURES 324

5.8 Implicit finite difference approximation . 131
5.9 Solution of 1-d heat equation with implicit scheme with r = 0.5 and r = 2.0 131
5.10 Crank–Nicolson finite difference approximation . 133
5.11 Explicit finite difference approximation for the wave equation 135
5.12 Implicit finite difference approximation for the wave equation 137

7.1 A simple rectangular mesh . 154
7.2 The two types of triangles in a rectangular mesh . 154
7.3 FEM stencil and neighboring triangles of a mesh point 156
7.4 Finite difference stencil for −uxx − uyy if hx = hy . 157
7.5 Solution on a small rectangular grid . 158
7.6 Solution on a larger rectangular grid . 159
7.7 Solution of the test problem with few and many triangles 160
7.8 Input information for EasyMesh and the resulting mesh 161
7.9 Visualization of the mesh and the solution of the test problem 169

8.1 The capacitance and the section used for the modeling 170
8.2 A mesh on the domain . 172
8.3 The voltage within the capacitance . 173
8.4 Level curves for the voltage in the capacitance . 174
8.5 Normal component of the gradient along midplane . 174
8.6 A circuit board . 175
8.7 The static temperature and level curves for the circuit board 177
8.8 The temperatures for the dynamic solution on a circuit board 179
8.9 The level curves for the temperatures on a circuit board 181
8.10 The warp function and its level curves for a square . 183
8.11 The stress function and its level curves for a square . 184
8.12 The warp function and its level curves for a rectangle . 185
8.13 The stress function and its level curves for a rectangle . 185
8.14 The warp function and its level curves for a square with hole 186
8.15 The stress function and its level curves for a square with hole 186
8.16 The first, second and fourth eigenfunction of a vibrating membrane 189
8.17 An open organ pipe . 194
8.18 The graph of the fourth eigenfunction and its level-curves for the organ pipe problem . . . 195
8.19 A can with hole and the resulting eigenvalues and frequencies 196
8.20 The first six eigenfunctions of a can with a hole . 197
8.21 A can with a neck and the resulting eigenvalues and frequencies 198
8.22 The first four eigenfunction of a can with a neck . 199
8.23 Comparison of frequencies without and with the air gap 200
8.24 The third eigenfunction of a can with a neck and air gap 200

9.1 Deformation of an elastic solid . 202
9.2 Definition of strain . 203
9.3 Rotation of the coordinate system . 207
9.4 Definition of stress in a plane . 210
9.5 Normal and tangential stress in an arbitrary direction . 210
9.6 Components of stress in space . 212
9.7 Block to be deformed to determine the elastic energy . 215
9.8 Situation for the most elementary versions of Hooke’s law 217
9.9 Torsion of a shaft . 220
9.10 A square cross section and its description in EasyMesh 225

SHA 22-4-21

LIST OF FIGURES 325

9.11 Warping functions and its level curves for a square cross section 225
9.12 The stress distribution in a square shaft, subject to torsion 226
9.13 A cross section with holes . 227
9.14 Plane strain and plane stress . 229
9.15 Heat stress in plain strain problem, free boundary . 234
9.16 Heat stress in plain strain problem, clamped . 235
9.17 Heat stress in plain strain problem with variable temperature 236
9.18 Heat stress in plain stress problem, free boundary . 242
9.19 Heat stress in plain stress problem with variable temperature 243
9.20 Linear constraint on a node . 247

10.1 Solution of a heat problem with MATLAB . 250
10.2 Fluid flow between two plates, the setup . 254
10.3 Fluid flow between two plates, the result . 255
10.4 Fluid flow between two plates, a speed profile . 255

11.1 The Cholesky decomposition of a symmetric matrix . 262
11.2 The Cholesky decomposition for a banded matrix . 271
11.3 Cholesky steps for a banded matrix. The active area is marked 271
11.4 Performance of Cholesky algorithm on a Intel Pentium III Linux system 276
11.5 Performance of Cholesky algorithm on a DEC Alpha 21164 OFS1 Unix system 277
11.6 Performance of Cholesky algorithm on a Alpha 21264 Linux system 277
11.7 Numbering of a simple mesh by Cuthill–McKee . 278
11.8 Mesh generated by triangle . 279
11.9 Original numbering and after renumbering by Cuthill–McKee 279
11.10Graph of a function to be minimized and its level curves 290
11.11One step of a gradient iteration . 290
11.12The gradient algorithm for a large condition number . 292
11.13Ellipse and circle to illustrate conjugate directions . 294
11.14One step of a conjugate gradient iteration . 294
11.15Number of operations of banded Cholesky, steepest descent and conjugate gradient on the

model problem . 299

SHA 22-4-21

List of Tables

3.1 Examples of second order differential equations . 35

4.1 Some values of heat related constants . 63
4.2 Symbols and variables for heat conduction . 63
4.3 Comparison of linear and quadratic interpolation . 79
4.4 Comparison of interpolation errors of first and second order elements 85
4.5 Description of the physical quantities . 91
4.6 Eigen frequencies of a vibrating beam . 104

5.1 Minimisation of original and approximate problem . 113
5.2 Finite difference approximations . 120
5.3 Exact and approximate boundary value problem . 125
5.4 Comparison of finite difference schemes for the heat equation 133

6.1 Some examples of Poisson’s equation −∇ (a∇u) = f 144

7.1 Mathematica code for ReadMesh[] . 163

8.1 Comparison of torsional rigidity and maximal stress . 187

9.1 Normal and shear strains in space . 209
9.2 Description of normal and tangential stress in space . 212

11.1 Algorithm of Cholesky . 265
11.2 Memory requirements for the Cholesky algorithm for banded matrices 272
11.3 First implementation of the Cholesky algorithm . 273
11.4 Second implementation of the Cholesky algorithm . 274
11.5 Data for the test problems for the Cholesky algorithm . 275
11.6 Algorithm of Cuthill–McKee . 278
11.7 A first gradient algorithm to solve A ~x+~b = ~0 . 291
11.8 The gradient algorithm to solve A ~x+~b = ~0 . 291
11.9 The conjugate gradient algorithm to solve A ~x+~b = ~0 and an efficient implementation . 295
11.10Comaprison of algorithms for the model problem . 300
11.11Time required to complete a given number of flops . 300

326

Index

à posteriori estimate, 283, 287
à priori estimate, 282, 287

backward stability, 268
bandwidth, 270
Bessel function, 188, 194
boundary value problem, 110
brachistochrone, 38

Céa lemma, 114
catenary, 60
Cauchy–Schwarz, 308
Cholesky decomposition, 262
compatibility condition, 70
condition number, 256, 257, 300
conjugate direction, 293
conjugate gradient method, 293
connected, strongly, 260
consistency, 121, 122, 124
constraint, 48
convergence, 121, 122, 124
Courant-Fischer Minimax Theorem, 281
Crank–Nicolson, 132
Cuthill–McKee, 172, 277
cycloid, 39

diagonally dominant, 259
diagonally dominant, strictly, 259
direct method, 288
Dirichlet boundary condition, 34, 70, 110
divergence, 306
divergence theorem, 307

EasyMesh, 160
eigenfrequency, 93
eigenfunction, 153
eigenvalue, 93, 102, 153, 262, 280, 305
eigenvalue problem, 187, 190
eigenvalue, generalized, 93, 102, 134, 153, 193, 285
eigenvector, 280, 305
energy density, 215
energy norm, 112
error, relative, 257

Euler Lagrange equation, 27, 33, 142

Fermat’s principle, 50
finite difference, 77, 157
flop, 266
flux of thermal energy, 62
Fourier’s law, 62
function space, 111, 146
functional, 30

Gauss integration, 79, 245
gradient, 306
gradient method, 290
Gram-Schmidt, 285, 287
graph, 260
Green–Gauss theorem, 307

Hamilton’s principle, 37, 42
heat capacity, 62
Hessian matrix, 4
Hilbert space method, 68
Hooke’s law, 10, 20, 214, 216

integral, first, 36
interpolation, piecewise cubic, 95
interpolation, piecewise linear, 115, 146
interpolation, piecewise quadratic, 115
inverse power iteration, 283
irreducible, 259
irreducibly diagonally dominant, 259
iterative method, 288
iterative methods, 270

Lagrange function, 43
Lagrange multiplier, 48, 280, 286
Laplace equation, 140
Laplace operator, 53, 65, 306
Lax equivalence theorem, 124
Least energy, 220
least energy, 16
lemma, fundamental, 28, 308

mathematical modeling, 107
Matlab, 249

327

INDEX 328

matrix, banded, 270
matrix, positive definite, 6, 258
matrix, positive semidefinite, 258
matrix, total stiffness, 72
Maxwell’s equations, 309
modulus of elasticity, 217

natural boundary condition, 33, 34
Neumann boundary condition, 34, 70, 110
Newton’s law, 92
Nitsche trick, 117
norm of a matrix, 256
normal strain, 204

orthogonal matrix, 304

PDE toolbox, 249
plane stress, 237
plate, 53
point, critical, 1
Poisson’s ratio, 53, 217
power iteration, 282
Prandtl stress function, 226
pressure, 217
principle of least action, 42
principle of least energy, 16, 24
product, scalar, 304, 308
projection operator, 115

QR iteration, 285

Rayleigh quotient, 280, 283
Rayleigh quotient iteration, 284
reducible, 259
residual vector, 282, 289

Saint–Venants’s principle, 229
semibandwidth, 270
separation of variables, 92
shear modulus, 218
shear strain, 204
ShowMesh, 160
soap bubble, 143
Sobolev space, 146
sparse, 270
sparse matrix, 288
stability, 121, 122, 124, 136
stability, conditional, 121, 129
Steepest descent, 289
stencil, 156, 157
stiffness matrix, element, 149, 150, 245, 247
stiffness matrix, global, 150

strain, 20, 202
stress, 20, 209
string, transverse deflection, 40
surface of revolution, 60

thermal conductivity, 62
thermal expansion, 219
thermoelesticity, 219
torsional rigidity, 182, 221, 228
triangle, 171, 175, 279

vector, outer unit normal, 143
von Mises stress, 214

Young’s modulus, 20, 53

SHA 22-4-21

	Extrema of functions of one or multiple variables
	Necessary condition for an extremum
	Sufficient conditions for minima
	Exercises

	Two introductionary problems
	Finite element solution for a system of trusses
	Description of the situation
	Element stiffness matrix
	Derivation of the element stiffness matrix
	Explicit calculations for all five element stiffness matrices
	The global stiffness matrix
	Using the constraints and solving the system of equations
	Interpretation of the results
	Octave–code for problems of this type

	Finite element method for a horizontal truss with variable cross section
	Hooke's law and the energy of a stretched truss
	A truss with variable cross section, a finite element approach
	Formulation of the special problem
	Division in three elements
	Elastic energy in the elements
	Combining the elastic energy of the elements and the external energy
	How to improve the accuracy of the solution
	An afterthought
	Exercises

	Calculus of variations, one variable
	The Euler Lagrange equation
	The fundamental lemma of the calculus of variations
	Shortest connection between two given points
	Critical values of functionals of the form f(x,u(x))dx
	Critical values of functionals of the form f(x,u(x),u(x))dx
	Quadratics functionals and second order linear boundary value problems
	First integrals
	Functionals depending on several functions

	Examples
	Brachistochrone problem
	Transverse deflection of a string
	Geodesics on a sphere

	Hamilton's principle of least action
	A simple pendulum
	A double pendulum
	A pendulum with moving support

	An isoperimetric problem
	Laser beam deflected by a heat source
	Dependence of the speed of light on the temperature
	Find the time of travel
	Solution using a first integral
	Solution using an approximation

	Bending of a circular plate
	Energy of bending
	Using polar coordinates
	Energy due to external pressure and the Euler Lagrange equation
	Clamped edge at r=R
	Simply supported edge at r=R
	Introduce new variable
	Eigenfrequencies of a clamped plate

	Exercises

	Finite Element problems in one variable
	The heat equation
	Basic physics
	One dimensional heat equation
	Two dimensional heat equation, strong formulation
	Steady state problem with radial symmetry

	Weak solutions
	Two dimensional heat equation, weak formulation
	Advantages of weak solutions
	Weak solution of heat equation on a circular plate

	The general one dimensional problem
	First order elements
	Description of one element with a linear function
	Add up the contributions from the elements
	Solve the system of linear equations and use boundary conditions
	Examples
	General situation

	Second order element with Gauss integration
	Linear and quadratic interpolation
	Gauss integration
	Construction of an improved element
	Comparison of interpolation and integration methods

	Code in Mathematica for second order boundary value problems
	Examples
	The FEM solution to the standard truss problem
	Radial heat problem

	Vibrations of a beam
	Description of the static situation
	Dynamic situation, separation of variables
	From eigenvalues to frequencies
	A beam with constant cross section
	FEM description of the static situation
	Assembling the system of equations, Octave code and a few tests
	Finding eigenvalues
	Design of a force sensor

	Exercises

	Convergence and finite difference schemes
	Convergence of the approximate solutions for boundary value problems
	Basic assumptions and regularity results
	Function spaces, norms and continuous functionals
	Convergence of the finite dimensional approximation

	A finite difference approximation to an ordinary differential equation
	Finite difference approximations
	Forward difference
	Backward difference
	Centered difference

	General difference approximations, consistency, stability and convergence
	Parabolic problems, heat equation
	A special matrix
	Explicit finite difference approximation to the heat equation
	Implicit finite difference approximation to the heat equation
	Crank–Nicolson approximation to the heat equation
	General parabolic problems

	Hyperbolic problems, wave equation
	Explicit approximation
	Implicit approximation
	General wave type problems

	Comments and bibliography

	Calculus of variations, multiple variables
	An electrostatic example
	Minimization of a functional of two variables
	The general quadratic functional
	A minimal surface problem

	Finite element problems in two variables
	Description of the general procedure
	Approximation of the domain , triangularization
	Integration over one triangle
	Integration the contribution on the boundary
	Assembling the system of equations
	Taking the Dirichlet boundary condition into account
	Applying periodic boundary conditions
	Solving the set of linear equations, visualization and interpretation

	The eigenvalue problem
	From the finite element method to a finite difference method
	Element contributions
	The linear equation associated with an interior node
	Assembling the system of linear equations

	FEM code in Mathematica
	Description of the sample problem
	Mesh generation by EasyMesh
	Reading the mesh information
	Element and edge contributions
	Assembling the equations
	Solving the equations
	Visualization

	Exercises

	Some Applications
	Computing a capacitance
	State the problem
	Create the mesh
	Creating the functions for Octave
	Solve the system and show the solution
	Compute the capacitance

	Heat conduction on a circuit board
	The static situation
	The dynamic situation

	Torsion of a shaft
	Torsional rigidity of a square
	Torsional rigidity of a circle and a circle with hole
	Torsional rigidity of a rectangle
	Torsional rigidity of a square with hole
	Comparison of different sections

	Vibrations of a membrane
	Sound in a bottle
	The question
	Finding the correct equation, based on conservation laws
	Separation of variables
	The open organ pipe
	A can with a circular hole
	A can with a circular neck
	A can with a circular neck, with air gap
	Conclusion

	Ultrasonic distance measurements
	Asparagus
	Heating a disk

	Linear Elasticity
	Description of stress and strain
	Description of strain
	Description of stress
	Von Mises stress

	Hooke's law and elastic energy
	Hooke's law
	Some exemplary situations

	Volume and surface forces, thermoelasticity
	Volume forces
	Surface forces
	Thermoelasticity

	Torsion of a shaft
	Basic description
	Deriving the differential equation, using calculus of variations
	Uniqueness and existence of the solution
	Torsion of a shaft with circular cross section
	Torsion of a shaft with square cross section
	Using the Prandtl stress function

	Plane strain
	From the minimization formulation to a system of PDE's
	Boundary conditions
	Thermoelasticity

	Plane stress
	Boundary conditions
	Thermoelasticity

	FEM solution for plane strain problems
	A single element contribution
	Edge segment contribution
	Boundary constraints

	Matlab PDE–Toolbox
	Starting the toolbox and demos
	A heat conduction problem
	Setting up the domain
	Specifying boundary conditions
	Specifying the differential equation
	Setting up the mesh
	Solving the differential equation and plotting the solution

	A partial differential equation in polar coordinates
	The equation to be solved
	Using cylindrical coordinates
	Setting up the domain
	Specifying boundary conditions
	Specifying the differential equation
	Setting up the mesh
	Solving the differential equation and plotting the solution

	A two dimensional fluid flow problem

	Some matrix computations
	A few basic definitions for matrices
	The Cholesky decomposition
	The algorithm of Cholesky for a 33 matrix
	The algorithm and an implementation in Octave
	Stability of the Cholesky algorithm

	Banded matrices
	The algorithm of Cholesky for banded matrices
	An implementation in C++
	Performance tests on different computers

	The algorithm of Cuthill and McKee to reduce bandwidth
	Eigenvalues and eigenvectors
	Basic facts on eigenvalues of symmetric matrices
	Power iteration
	The Rayleigh quotient and an à posteriori estimate
	Inverse power iteration
	Inverse power iteration for subspaces

	The generalized eigenvalue problem
	Iterative methods
	Basic definitions
	A model problem
	Steepest descent iteration
	Conjugate gradient iteration
	Preconditioned conjugate gradient iteration

	Exercises

	Some mathematical results and formulas
	Vectors and matrices
	Products of matrices and vectors
	Scalar product of vectors
	Diagonalisation of a symmetric matrix, orthogonal matrices

	Gradient, divergence and the Laplace operator
	Vectors in different coordinate systems
	Gradient
	Divergence
	The Laplace operator

	Divergence theorems
	Scalar product on function spaces
	Fundamental lemma of calculus of variations
	Maxwell's equation
	Dynamic equations of Maxwell
	Static equations
	Time-harmonic fields

	Solutions to some exercises
	Bibliography
	List of Figures
	List of Tables
	Index

