Dr. A. Stahel 13.12.1996

Aufgabe / Problème 1:

- (a) Examiner la fonction f (x) = cos (x) pour π ≤ x ≤ 2π. Dessiner le graph de la fonction inverse f⁻¹ et calculer f⁻¹ (-1/2).
 Untersuchen Sie die Funktion f (x) = cos (x) für π ≤ x ≤ 2π. Zu zeichnen ist der Graph der inversen Funktion f⁻¹ und berechenen Sie f⁻¹ (-1/2).
- (b) Trouver toutes les solutions (exactes) de $\cos x = \cos(2x)$ pour $0 \le x \le 2\pi$. Finden Sie die exakten Lösungen von $\cos x = \cos(2x)$ für $0 \le x \le 2\pi$.

Aufgabe / Problème 2:

- (a) Trouver les solutions **exactes** de $\sqrt{x-3} = 5 x$. Finden Sie die **exakten** Lösungen von $\sqrt{x-3} = 5 - x$.
- (b) Pour quels valeurs de α il y a des solutions de l'équation $\sqrt{x-3} = \alpha x$? Für welche Werte von α hat die Gleichung $\sqrt{x-3} = \alpha - x$ Lösungen?

Aufgabe / Problème 3: Trouver une fonction y = f(x) avec les proprietés suivantes Finden Sie eine Funktion y = f(x) mit folgenden Eigenschaften

• pour des valeurs large de |x| on a $f(x) \approx -x$ für grosse Werte von |x| gilt $f(x) \approx -x$

tritt eine Division durch 0 ein.

- pour x proche de -1 les valeurs de y sont très grand (positiv) et pour x=-1 il y a une division par zéro. für Werte von x nahe bei -1 sind die Werte von y sehr gross (positiv) und bei x=-1
- f(0) = 1/2

Aufgabe / Problème 4: Für die hyperbolischen Funktionen gilt Pour les fonctions hyperboliques on sait que

$$\sinh (x + y) = \sinh x \cosh y + \cosh x \sinh y$$

 $\cosh (x + y) = \cosh x \cosh y + \sinh x \sinh y$

Verwenden Sie diese Beziehungen und den "Satz von Pythagoras für hyperbolische Funktionen" um

Utiliser ces identités et le "théorème de Pythagore pour les fonctions hyperboliques" pour

- (a) $\cosh(2x)$ als Ausdruck mit $\cosh x$ umzuschreiben. reécrire $\cosh(2x)$ comme fonction de $\cosh x$.
- (b) $\cosh(\frac{x}{2})$ als Ausdruck mit cosh x umzuschreiben. reécrire $\cosh(\frac{x}{2})$ comme fonction de cosh x.

Aufgabe / Problème 5:

Für Kinder im Alter von 5 bis 13 Jahren wurde die *Ehrenberg Relation* experimentell bestätigt. Sie besagt, dass zwischen dem Gewicht G (in kg) und der Grösse h (in cm) die folgende Beziehung gilt

$$G = c e^{\alpha h}$$

für Konstanten c und α . Eine kleine Testmessung an fünf Kindern hat die folgenden Daten ergeben

h in cm	G in kg
100	15.1
110	18.2
125	23.9
130	26.4
150	38.0

Zeichnen Sie diese Daten in einer geigneten Graphik auf und lesen Sie anschliessend die Werte von c und α ab.

Pour des enfants de l'age 5 à 13 il y a la relation de *Ehrenberg* entre le poids G (en kg) et la hauteur h (en cm). La formule est donnée ci-dessus avec des constantes c et α . Un petit test a rendu les datas ci-dessus. Dessiner ces datas dans une graphique appropriée et puis lire les valeurs de c et α dans la graphique.

Aufgabe / Problème 6: Zeichnen Sie den Graphen des Polynoms $f(x) = x^4 - x^3 + x - x^2$ für $-2 \le x \le 2$ indem Sie die Werte der Funktion und die Steigung der Kurve berechnen für x = -2, -1, 0, 1, 2 mit Hilfe des Horner-Schemas. Anschliessend ist der Graph zu zeichnen. Dessiner le graphe du polynôme $f(x) = x^4 - x^3 + x - x^2$ pour $-2 \le x \le 2$. Utiliser le schéma de Horner pour trouver les valeurs et les pentes de la courbe pour x = -2, -1, 0, 1, 2 et puis dessiner.