F2 a&r Mathematik 1 Schlussprüfung

Dr. Andreas Stahel, BFH-TI Biel 5. Februar 2016, 13.30 - 16:30

Aufgabe 1: Finden Sie für die folgenden Ausdrücke die Laplacetransformation Y(s) (resp. die ursprüngliche Funktion y(t)). Die Rechnungen sind zu zeigen.

(a)
$$y(t) = e^{3t} \sin(4t)$$

(d)
$$Y(s) = \frac{s+1}{s(s^2+7s+12)}$$

(b)
$$y(t) = e^{-4t}U(t-3)$$

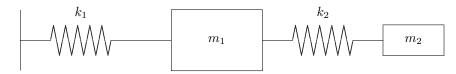
(e)
$$Y(s) = \frac{s}{(s-1)^2 + 4}$$

(c)
$$y(t) = (t+2)^3$$

Aufgabe 2: Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen. Zwischenschritte sind zu zeigen.

(a)
$$\frac{d}{dt}y(t) = e^{-3t}y(t)$$
(b)
$$y''(x) - 7y'(x) + 12y(x) = x \text{ mit } y(0) = y'(0) = 0$$

Aufgabe 3: Betrachten Sie das untenstehende System von zwei schwingenden Massen, gekoppelt durch zwei Federn.



Seien die Variablen (horizontale Koordinaten) so gewählt, dass $x_1=0$ der Ruhelage der ersten Masse und $x_2=0$ der Ruhelage der zweiten Masse entspricht. Auf die erste Masse wirke eine horizontale Kraft f der Form $f(t)=A\,\cos(\omega t)$.

- (a) Stellen Sie das System von Differentialgleichungen für die Grössen $x_1(t)$ und $x_2(t)$ auf.
- (b) Finden Sie die Gleichungen für die Laplacetransformierten $X_1(s)$ und $X_2(s)$ dieses Systems, wobei Sie die Anfangsbedingungen beliebig wählen dürfen.
- (c) Finden Sie die Transferfunktion des Systems, wobei die Kraft f(t) als Eingang und die Auslenkung $x_1(t)$ als Ausgang betrachtet wird.
- (d) Seien m_1, k_1, k_2 und ω fest gegeben. Dann gibt es eine Wahl von m_2 , welche die Auslenkung (Amplitude) von $x_1(t)$ so klein wie möglich macht. Finden Sie diesen Wert von m_2 .

Aufgabe 4: Untersuchen Sie die Gleichung

$$\frac{d}{dx}y(x) = -xy^2(x) + x \quad \text{mit} \quad y(0) = 2$$

- (a) Verwenden Sie zwei Schritte des Verfahrens von Euler um y(1) approximativ zu bestimmen. Zwischenschritte sind zu zeigen.
- (b) Verwenden Sie einen Schritt des Verfahrens von Runge-Kutta um y(1) approximativ zu bestimmen. Zwischenschritte sind zu zeigen.

Aufgabe 5: Untersuchen Sie das Differentialgleichungssystem

$$\begin{array}{cccc} \dot{x} & -2 \, x & -4 \, y & = & f \left(t \right) \\ \dot{y} & -24 \, x & +2 \, y & = & 0 \end{array}$$

als System mit Eingang f(t) und Ausgang y(t).

- (a) Zu bestimmen ist die Transferfunktion G(s) des Systems.
- (b) Setzen Sie f(t) = 0 und skizzieren Sie das Vektorfeld des Systems quantitativ korrekt mit Hilfe von Eigenvektoren.
- (c) Skizzieren Sie einige Lösungen.
- (d) Bestimmen Sie den Grenzwert $L=\lim_{t\to\infty}\frac{x(t)}{y(t)}$ für eine "typische" Lösung.