
Regularization by Tikhonov Functionals

Andreas Stahel

Version of 16th December 2021

©Andreas Stahel, 2020
“Regularization by Tikhonov Functionals” by Andreas Stahel, BFH, Biel, Switzerland is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

You are free: to copy, distribute, transmit the work, to adapt the work and to make commercial use of the

work. Under the following conditions: You must attribute the work to the original author (but not in any

way that suggests that the author endorses you or your use of the work). Attribute this work as follows:

Andreas Stahel: Regularization by Tikhonov Functionals

If you alter, transform, or build upon this work, you may distribute the resulting work only under the same

or similar license to this one.

1

http://creativecommons.org/licenses/by-sa/3.0/

CONTENTS 2

Contents

Contents 2

1 Introduction 3

2 Introduction to Regularization in One Dimension 3
2.1 Examples . 5

2.1.1 A first example . 5
2.1.2 A second example . 5
2.1.3 A third example . 6
2.1.4 Regularization to a circle . 7

2.2 Regularization and splines . 8
2.2.1 Smoothing splines . 9
2.2.2 A 2D spline and variations by using regularization() 9

3 The Algorithm and the Code 11
3.1 The computational grid . 11
3.2 The data functional and its interpolation matrix . 11
3.3 Integration of first derivatives . 11

3.3.1 The continuous formulation . 11
3.3.2 The discrete implementation . 11
3.3.3 Boundary contributions . 12

3.4 Integration of second derivatives . 12
3.4.1 The continuous formulation . 12
3.4.2 The discrete implementation . 13

3.5 The Euler–Lagrange equation, natural boundary and jump conditions 13
3.5.1 The continuous formulation . 13
3.5.2 A numerical example to illustrate the jumps 15
3.5.3 The explicit solution if g1(x) = g2(x) = 0 . 16
3.5.4 The discrete implementation . 16

3.6 The code for the function regularization() . 17

4 Regularization with Two Independent Variables 18
4.1 Documentation for the usage of the code . 18
4.2 Examples . 19

4.2.1 A first example, approximating a surface with random noise 19
4.2.2 A second example, determined by a few points 19
4.2.3 A third example, to illustrate that λ2 > 0 is necessary 20
4.2.4 A fourth example, approximating a given function 21
4.2.5 A fifth example, comparing regularization2d() and tpaps() 22

4.3 The algorithm and the code for the function regularization2D() 23
4.4 The mathematics for the result in two dimensions . 26

4.4.1 Analytical results and the proof of unique existence 26
4.4.2 Simple Proof of ∇u = ~0 implies u is Constant 34
4.4.3 Numerical differentiation and integration on rectangles 34
4.4.4 Bilinear interpolation on rectangular grids . 35

List of Figures 37

Bibliography 37

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 3

1 Introduction

This note is a documentation for the Octave codes regularization.m and regularization2D.m.
With these commands a Tikhonov regularization is used to approximate given data points by
smooth curves or surfaces.

� With the command regularization(), for given data points (xi, yi) ∈ R2, given functions
g1(x) and g2(x) on the interval a ≤ x ≤ b, using the regularization parameters λ1, λ2 ≥ 0, the
functional

F (u) =

M∑
i=1

(yi − u(xi))
2 + λ1

∫ b

a
(u′(x)− g1(x))2 dx+ λ2

∫ b

a
(u′′(x)− g2(x))2 dx

is minimized.

� With the command regularization2D(), for given data points (xi, yi, zi) ∈ R3 and then
regularization parameters λ1 ≥ 0, λ2 > 0, minimize the functional

F (u) := FD(u) + λ1 F1(u) + λ2 F2(u)

=

M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA+ λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA

on a bounded domain Ω ⊂ R2.

The organization of the notes is as follows:

� In section 2 the setup and documentation for the regularization with functions of one inde-
pendent variable is explained. A few examples are given and connections to splines shown.

� In section 3 the algorithm and the resulting code is explained. The corresponding Euler–
Lagrange equations are derived and the jump conditions determined.

� In section 4 the setup and documentation for the regularization with functions of two inde-
pendent variables is explained.

– The code and its documentation is shown.

– A few examples are given, illustration essential effects.

– An elementary proof of existence of a unique solution is given and a few remarks to
similar results in the literature given. The Euler–Lagrange equations and the natural
boundary conditions are derived.

2 Introduction to Regularization in One Dimension

For the data points (xi, yi) for 1 ≤ i ≤ M , positive regularization parameters 0 ≤ λ1 and 0 ≤ λ2

and the target functions g1(x) and g2(x) find a function u : [a, b] → R such that the Tikhonov
functional

F (u) = FD(u) + λ1 F1(u) + λ2 F2(u)

=

M∑
i=1

(yi − u(xi))
2 + λ1

∫ b

a
(u′(x)− g1(x))2 dx+ λ2

∫ b

a
(u′′(x)− g2(x))2 dx (1)

is minimized.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 4

� The functional FD pushes the optimal solution towards a function going through the given
data points (xi, yi).

� The functional λ1 F1 pushes the optimal solution towards a function with derivative g1(x).
For large values of λ1 the result satisfies u′(x) ≈ g1(x). For small values of λ1 > 0 and λ2 = 0,
the data will be approximated by straight line segments between the data points.

� The functional λ2 F2 pushes the optimal solution towards a function with second deriva-
tive g2(x). With g2 = 0 the solution is pushed towards straight line segments.

The above optimization is realized in Octave by using finite difference approximations for the
derivatives and elementary numerical integration. A linear system of equations is used to determine
discrete approximations ~u ∈ RN+1 to the exact minimizer u(x).

The built–in help is shown below and the next section provides a few examples on how to use
the function regularization().

help regularization

-->

-- Function File: [GRID,U] = regularization (DATA, INTERVAL, N, F1, F2)

Apply a Tikhonov regularization, the functional to be minimized is

F = FD + LAMBDA1*F1 + LAMBDA2*F2

= sum_(i=1)^M (y_i-u(x_i))^2 + LAMBDA1*int_a^b (u’(x) - G1(x))^2 dx

+ LAMBDA2*int_a^b (u"(x) - G2(x))^2 dx

With LAMBDA1 = 0 and G2(x) = 0 this leads to a smoothing spline.

Parameters:

* DATA is a M*2 matrix with the x values in the first column and

the y values in the second column.

* INTERVAL = [a,b] is the interval on which the regularization

is applied.

* N is the number of subintervals of equal length. GRID will

consist of N+1 grid points.

* F1 is a structure containing the information on the first

regularization term, integrating the square of the first

derivative.

* F1.LAMBDA is the value of the regularization parameter

LAMBDA1>=0.

* F1.G is the function handle for the function G1(X). If

not provided G1=0 is used.

* F2 is a structure containing the information on the second

regularization term, integrating the square of the second

derivative. If F2 is not provided LAMBDA2=0 is assumed.

* F2.LAMBDA is the value of the regularization parameter

LAMBDA2>=0.

* F2.G is the function handle for the function G2(X). If

not provided G2=0 is used.

Return values:

* GRID is the grid on which U is evaluated. It consists of N+1

equidistant points on the INTERVAL.

* U are the values of the regularized approximation to the DATA

evaluated at GRID.

See also: csaps, regularization2D, demo regularization.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 5

2.1 Examples

2.1.1 A first example

As a first example consider the data points x = y = (3.2, 4, 5, 5.2, 5.6) on the interval [0, 10] with
101 grid points. Then two regularizations are perfomed, leading to the results in Figure 1.

1. Use λ1 = 10−2 and aim for a slope of 0.1 by setting g1(x) = 0.1. For λ2 = 0 this leads to
the piecewise straight lines in Figure 1 with slope 0.1, as soon as outside of the domain with
specified values.

2. For the second attempt change λ2 = 0 to λ2 = 10−2 = 0.01 leading to the smoother curve in
Figure 1. Again the slope on the outside approaches 0.1 .

Observe that the values of regularized curves do not coincide with the given data points, just zoom
into the figure.

0 2 4 6 8 10
2

3

4

5

6

7

x

so
lu

tio
n

regular1
regular2
data

Figure 1: Results of the first example for regularization

Example1.m
N = 100;

interval = [0,10];

x = [3.2,4,5,5.2,5.6]’; y = x;

F1.lambda = 1e-2;

F1.g = @(x)0.1*ones(size(x));

%% regularize towards slope 0.1, no smoothing

F2.lambda = 0;

[grid,u1] = regularization([x,y],interval,N,F1);

%% regularize towards slope 0.1, with some smoothing

F2.lambda = 1e-2;

[grid,u2] = regularization([x,y],interval,N,F1,F2);

figure(1); plot(grid,u1,’b’,grid,u2,’g’,x,y,’*r’)

xlabel(’x’); ylabel(’solution’);

legend(’regular1’,’regular2’,’data’,’location’,’northwest’)

2.1.2 A second example

As a second example consider the data points y = sin(x) for 15 points π
4 ≤ x ≤ 3π

4 , with some
random noise added. Then two regularizations on the interval [0, π] with 1000 subintervals are
performed, leading to the results in Figure 2.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 6

1. Use λ2 = 10−3 and λ1 = 0, leading to the blue curve in Figure 1. Observe that the curvature
outside of π

4 ≤ x ≤
3π
4 vanishes, i.e. find straight line segments with the slope determined by

the closest data points.

2. For the second attempt change to λ1 = 10−2, this causes the slope of the green curve to tend
towards 0 on the outside.

Both calls use g1 = g2 = 0. Observe that the situation is asymmetric, caused by the randomness
of the data points.

0 0.5 1 1.5 2 2.5 3 3.5
0.2

0.4

0.6

0.8

1

1.2

1.4

so
lu

tio
n

x

regular1
regular2
data

Figure 2: Results of the second example for regularization

Example2.m
N = 1000;

interval = [0,pi];

x = linspace(pi/4,3*pi/4,15)’;

y = sin(x)+ 0.03*randn(size(x));

clear F1 F2

F1.lambda = 0;

%% regularize by smoothing only

F2.lambda = 1e-3;

[grid,u1] = regularization([x,y],interval,N,F1,F2);

%% regularize by smoothing and aim for slope 0

F1.lambda = 1*1e-2;

[grid,u2] = regularization([x,y],interval,N,F1,F2);

figure(1); plot(grid,u1,’b’,grid,u2,’g’,x,y,’*r’)

xlabel(’x’); ylabel(’solution’);

legend(’regular1’,’regular2’,’data’,’location’,’northwest’)

2.1.3 A third example

As third example consider 200 data points, located on four straight line segments with slope −2,
and some random noise added. Then three regularizations are performed, using F1 only with
λ1 = 0.001, 0.1 and 3, leading to the results in Figure 3. Thus the functional to be minimized is

F (u) =
200∑
i=1

(yi − u(xi))
2 + λ1

∫ 1

0
(u′(x)− g1(x))2 dx

for different values of the regularization parameter λ1 > 0 and either g1 = 0 or g1 = −2.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 7

1. The blue curve in Figure 3(a) with λ1 = 0.001 is not very regular and has many spikes. The
curve is rather close to the data points. Thus λ1 = 0.001 is on the small side.

2. The green curve in Figure 3(a) with λ1 = 0.1 is rather smooth and not very far away from
the data points. Thus λ1 = 0.1 might be a good choice.

3. The magenta curve in Figure 3(a) with λ2 = 3 is very smooth, but far away from the data
points. The zero slopes at the end points are visible. Thus λ1 = 3 is on the large side.

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

x

so
lu

tio
n

λ
1
=0.001

λ
1
=0.1

λ
1
=3

data

(a) g1(x) = 0

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

so
lu

tio
n

x

λ
1
=0.001

λ
1
=0.1

λ
1
=3

data

(b) g1(x) = −2

Figure 3: Results of the third example for regularization

Since it is “known” that the slope of the curve should be −2, rerun the above regularization
using g1(x) = −2, i.e. minimize

F (u) =
200∑
i=1

(yi − u(xi))
2 + λ1

∫ 1

0
(u′(x) + 2)2 dx .

This leads to Figure 3(b), where the slopes at the endpoints are closer to the desired value of −2 .

Example3.m
interval = [0,1]; N = 400;

x = rand(200,1);

y = 2 - 2*x + (x>0.25) - 2*(x>0.5).*(x<0.65)+ 0.1*randn(length(x),1);

clear F1

%% F1.g = @(x)-2*ones(size(x)); %% use this when aiming for a slope -2

F1.lambda = 1e-3; [grid,u1] = regularization([x,y],interval,N,F1);

F1.lambda = 1e-1; [grid,u2] = regularization([x,y],interval,N,F1);

F1.lambda = 5e+0; [grid,u3] = regularization([x,y],interval,N,F1);

figure(1); plot(grid,u1,’b’,grid,u2,’g’,grid,u3,’m’,x,y,’+r’)

xlabel(’x’); ylabel(’u and f’)

legend(’\lambda_1=0.001’,’\lambda_1=0.1’,’\lambda_1=3’,’data’)

2.1.4 Regularization to a circle

If we assume that the data points should sit on a given circle, we can feed this information to the
regularization algorithm by providing the function g2(x). The regularization is used twice, with
the results in Figure 4.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 8

1. First with λ1 = 0, λ2 = 10−1 and g1(x) = g2(x) = 0.

2. Then we provide the exact second derivative of the circle function as g2(x).

Observe that outside of the domain with data points, the second result deviates considerably less
from the circle.

-2 -1 0 1 2

1

2

3

4

so
lu

tio
n

x

regular1
regular2
data
circle

(a) the solutions

-3 -2 -1 0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

di
ffe

re
nc

e
of

 s
ol

ut
io

n

x

regular1
regular2

(b) difference to the circle

Figure 4: Regularization towards a given circle

CircleRegularization.m
R = 3;

x = R*[0.4, 0.44, 0.6, 0.66, 0.5];

x = [-fliplr(x),x]’;

N = 200;

interval = 0.9*[-R,R];

y = sqrt(R^2-x.^2) + 0.03*randn(size(x));

clear F1 F2

F1 = 0;

F2.lambda = 1e-1;

[grid,u1] = regularization([x,y],interval,N,F1,F2);

F2.g = @(x)-R^2./(R^2-x.^2).^(3/2);

[grid,u2] = regularization([x,y],interval,N,F1,F2);

circle = sqrt(R^2-grid.^2);

figure(1); plot(grid,u1,’b’,grid,u2,’g’,x,y,’*r’,grid,circle,’k’)

xlabel(’x’); ylabel(’solution’)

axis equal

legend(’regular1’,’regular2’,’data’,’circle’)

figure(2); plot(grid,u1-circle,’b’,grid,u2-circle,’g’)

xlabel(’x’); ylabel(’difference of solution’)

legend(’regular1’,’regular2’)

2.2 Regularization and splines

In this subsection it is pointed out that smoothing splines are a special case of the presented
regularization algorithm.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 9

2.2.1 Smoothing splines

Using regularization() with λ1 = g1 = g2 = 0 leads to results coinciding with a smoothing spline,
computed by the command csaps() from the splines package of Octave. As an example Figure 5
shows the result of a smoothing spline (with parameter p = 0.99) and the regularization result
with λ2 = 10−2. For csaps() use the parameter p = 1

1+λ2
= 1

1.01 ≈ 0.99 .

-2 0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

x

y

spline
regular
data

Figure 5: Comparison of regularization and a smoothing spline

SmoothingSpline.m
pkg load splines

N = 1000; interval = [-1,11];

x = [0 3 4 6 10]’; y = [0 1 0 1 0]’;

clear F1 F2

F1 = 0; F2.lambda = 1e-2; p = 1/(1+F2.lambda)

[grid,u] = regularization([x,y],interval,N,F1,F2);

yspline = csaps(x,y,p,grid); % smoothing spline

figure(1); plot(grid,yspline,’g’,grid,u,’b’,x,y,’*r’)

legend(’spline’,’regular’,’data’,’location’,’south’)

2.2.2 A 2D spline and variations by using regularization()

The command regularization() can be used to generate 2D splines, connecting points in the
plane R2. The example below uses the points(

0

0

)
,

(
1

1

)
,

(
2

1

)
,

(
3

4

)
and

(
2.5

5

)
.

To obtain a uniform parametrization the distance between these points is used to construct the
splines. The code uses three sets of parameters and the results are shown in Figure 6.

1. With λ1 = 0 and λ2 = 10−2 a smoothing spline is generated, i.e. only the integral based on
the second derivatives is controlled.

2. With λ1 = λ2 = 10−2 the first and second derivatives are used in the Tikhonov functional.

3. With λ1 = 10−2 and λ2 = 10−3 the integral of the second derivatives is allowed to grow,
which leads to sharper corners in Figure 6.

SHA 16-12-21

2 INTRODUCTION TO REGULARIZATION IN ONE DIMENSION 10

-1 0 1 2 3 4
0

1

2

3

4

5

6

x

y

three splines and data

spline
reg2
reg3
data

(a) splines in 2D

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6
two variables

x
an

d
y

parameter

x
y

(b) x and y components

Figure 6: 2D splines generated by regularization()

Spline2D.m
Points = [0 0; 1 1; 2 1; 3 4; 2.5 5]; %% the given data points

%% determine distance between points

dPoints = diff(Points);

Dist = sqrt(dPoints(:,1).^2+dPoints(:,2).^2);

Positions = [0;cumsum(Dist)];

N = length(Points)*10+1; %% number of points on curve to be created

F1.lambda = 0e-2; F2.lambda = 1e-2; %% smoothing spline

[tx,x] = regularization([Positions,Points(:,1)],[0,max(Positions)],N,F1,F2);

[ty,y] = regularization([Positions,Points(:,2)],[0,max(Positions)],N,F1,F2);

figure(2);

plot(tx,x,ty,y,Positions,Points(:,1),’+r’,Positions,Points(:,2),’+r’)

xlabel(’parameter’); ylabel(’x and y’);

legend(’x’,’y’); title(’the two variables’)

F1.lambda = 1e-2; F2.lambda = 1e-2; %% keep first derivative small

[tx,x2] = regularization([Positions,Points(:,1)],[0,max(Positions)],N,F1,F2);

[ty,y2] = regularization([Positions,Points(:,2)],[0,max(Positions)],N,F1,F2);

F1.lambda = 1e-2; F2.lambda = 1e-3; %% allow large second derivative

[tx,x3] = regularization([Positions,Points(:,1)],[0,max(Positions)],N,F1,F2);

[ty,y3] = regularization([Positions,Points(:,2)],[0,max(Positions)],N,F1,F2);

figure(1); plot(x,y,x2,y2,x3,y3,Points(:,1),Points(:,2),’*r’)

xlabel(’x’); ylabel(’y’);

legend(’spline’,’reg2’,’reg3’,’data’)

title(’three splines and data’)

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 11

3 The Algorithm and the Code

3.1 The computational grid

The interval [a, b] is divided in N segments of equal length ∆x = b−a
N and x̄j = a+ (j − 1) ∆x for

j = 1, 2, 3, . . . , N + 1. This leads to a vector ~u ∈ RN+1 with uj = u(x̄j).

3.2 The data functional and its interpolation matrix

For x̄j ≤ x < x̄j+1 use a piecewise linear interpolation of the function u(x) to determine an
approximate value at x.

u(x) ≈ (1− θ)u(x̄j) + θ u(x̄j+1) where θ =
x− x̄j

∆x
.

This leads to an interpolation matrix I ∈ MM×(N+1) with the nonzero entries Ii,j = 1 − θ and
Ii,j+1 = θ. For the algorithm the matrix IT I ∈ M(N+1)×(N+1) will be used. The above leads to a
contribution of [

(1− θ)2 θ (1− θ)
θ (1− θ) θ2

]
in rows/columns j and j + 1 of IT I . This leads to

FD(u) =

M∑
i=1

(yi − u(xi))
2 ≈ 〈~y − I ~u , ~y − I ~u〉

∂ FD
∂~u

≈ 2 IT (I~u− ~y)

If a data point satisfies xi = x̄j , then θ = 0 and the j-th component of the above gradient
equals 2 (uj − yi). This is the only nonzero component.

3.3 Integration of first derivatives

3.3.1 The continuous formulation

The contribution

F1(u) =

∫ b

a
(u′(x)− g1(x))2 dx

to the Euler–Lagrange equation is given by d
dx (u′(x) − g1(x)) = 0 and the natural boundary

conditions are u′(a)− g1(a) = u′(b)− g1(b) = 0.

3.3.2 The discrete implementation

To evaluate
∫ b
a (u′(x)− g(x))2 dx use the finite difference approximation

u′(
x̄j + x̄j+1

2
) ≈ u(x̄j+1)− u(x̄j)

∆x
=
uj+1 − uj

∆x

Thus multiplying the vector ~u by the matrix

A1 =
1

∆x



−1 1

−1 1

−1 1
. . .

. . .

−1 1

−1 1


∈MN×(N+1)

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 12

will evaluate the first derivatives at the midpoints of the grid. In the algorithm the matrix

AT
1 A1 =

1

(∆x)2



1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1


∈M(N+1)×(N+1)

is used. This is the matrix generated by a finite difference method to solve u′′(x) = f(x) with the
boundary conditions u′(a) = u′(b) = 0. The vector ~g1 ∈ RN contains the values of the function
g1(x) at the midpoints of the grid. Then use

F1 =

∫ b

a
(u′(x)− g1(x))2 dx ≈ ∆x

N∑
j=1

(
uj+1 − uj

∆x
− gj

)2

= ∆x 〈A1~u− ~g1 , A1~u− ~g1〉

∂ F1

∂~u
≈ 2 ∆x AT

1 (A1~u− ~g1) ∈ RN+1 .

3.3.3 Boundary contributions

If the boundary conditions should be u′(a)− g1(a) = ma and u′(b)− g1(b) = mb, then modify the
functional F1 by1

F1(u) =

∫ b

a
(u′(x)− g1(x))2 dx+ u(a) 2ma − u(b) 2mb .

Thus the first and last component of the gradient ∂ F1
∂~u obtain an additional contribution of +2ma,

resp. −2mb.

3.4 Integration of second derivatives

3.4.1 The continuous formulation

The contribution

F2(u) =

∫ b

a
(u′′(x)− g2(x))2 dx

to the Euler–Lagrange equation2 is given by d2

dx2
(u′′(x) − g2(x)) = 0 and the natural boundary

conditions are u′′ − g2 = u′′′ − g′2 = 0 at x = a and x = b.

1Minimize F1(u+ εφ) with respect to ε for all test functions φ.

F1(u+ εφ) =

∫ b

a

(u′ + εφ′ − g1)2 dx+ (u(a) + εφ(a)) 2ma − (u(b) + εφ(b)) 2mb

= F1(u) + 2 ε

∫ b

a

(u′ − g1)φ′ dx+ 2 εφ(a)ma − 2 εφ(b)mb +O(ε2)

= F1(u) + 2 ε

(
(u′ − g1)φ

b

x=a
−
∫ b

a

(u′ − g1)′ φ dx+ φ(a)ma − φ(b)mb

)
+O(ε2)

This leads to the Euler–Lagrange equation (u′ − g1)′ = 0 and the boundary conditions u′(a) − g1(a) −ma = 0 and
u′(b) − g1(b) −mb = 0 .

2Two integrations by part lead to

F2(u+ εφ) =

∫ b

a

(u′′ + εφ′′ − g2)2 dx = F2(u) + 2 ε

∫ b

a

(u′′ − g2)φ′′ dx+O(ε2)

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 13

3.4.2 The discrete implementation

To evaluate
∫ b
a (u′′(x)− g2(x))2 dx use the finite difference approximation

u′′(x̄j) ≈
u(x̄j−1)− 2u(x̄j) + u(x̄j+1)

(∆x)2
=
uj−1 − 2uj + uj+1

(∆x)2

Thus multiplying the vector ~u by the matrix

A2 =
1

∆x2



−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −1


∈M(N−1)×(N+1)

leads to approximations of the second derivatives at the interior grid points. In the algorithm use
the matrix

AT
2 A2 =

1

∆x4



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


∈M(N+1)×(N+1)

This is the matrix generated by a finite difference method to solve u(4)(x) = f(x) with the natural
boundary conditions u′′(a) = u′′′(a) = u′′(b) = u′′′(b) = 0. The vector ~g2 ∈ RN−1 contains the
values of the function g2(x) at the interior grid points. Then use

F2 =

∫ b

a
(u′′(x)− g2(x))2 dx ≈ ∆x

N∑
j=2

(
uj−1 − 2uj + uj+1

∆x
− gj

)2

= ∆x 〈A2~u− ~g2 , A2~u− ~g2〉
∂ F2

∂~u
≈ 2 ∆x AT

2 (A2~u− ~g2) ∈ RN+1 .

3.5 The Euler–Lagrange equation, natural boundary and jump conditions

3.5.1 The continuous formulation

Since the functional to be minimized is

F (u) = FD(u) + λ1 F1(u) + λ2 F2(u) ,

= F2(u) + 2 ε

(
(u′′ − g2)φ′

b

x=a
−
∫ b

a

(u′′ − g2)′ φ′ dx

)
+O(ε2)

= F2(u) + 2 ε

(
(u′′ − g2)φ′ − (u′′ − g2)′ φ

b

x=a
+

∫ b

a

(u′′ − g2)′′ φ dx

)
+O(ε2) .

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 14

the Euler–Lagrange equation, based on the Lagrangian λ1 F1 + λ2 F2, is given by

λ2 (u′′(x)− g2(x))′′ − λ1 (u′(x)− g1(x))′ = 0 . (2)

The natural boundary conditions are

0 = λ2 (u′′ − g2)′ − λ1 (u′ − g1 −ma) and 0 = −λ2 (u′′ − g2) .

The discrete data (xi, yi) has to be taken into account too. Use the functional from equation (1)
and pay special attention to the points x = xi. Let x0 = a and xM+1 = b. Then use integration by
parts on the sub-intervals [xi, xi+1].

F (u+ φ) = FD(u+ φ) + λ1 F1(u+ φ) + λ2 F2(u+ φ)

=

M∑
i=1

(u(xi) + φ(xi)− yi)2 +

+λ1

∫ b

a
(u′(x) + φ′(x)− g1(x))2 dx+ λ2

∫ b

a
(u′′(x) + φ′′(x)− g2(x))2 dx

≈ F (u) + 2
M∑
i=1

(u(xi)− yi)φ(xi) +

+2
M∑
i=0

∫ xi+1

xi

λ1 (u′(x)− g1(x))φ′(x) + λ2 (u′′(x)− g2(x))φ′′(x) dx

= F (u) + 2

M∑
i=1

(u(xi)− yi)φ(xi) +

+2λ1

M∑
i=0

(u′(xi+1−)− g1(xi+1−))φ(xi+1−)− (u′(xi+)− g1(xi+))φ(xi+)

+2λ2

M∑
i=0

(u′′(xi+1−)− g1(xi+1−))φ′(xi+1−)− (u′′(xi+)− g1(xi+))φ′(xi+)

+2

M∑
i=0

∫ xi+1

xi

−λ1 (u′(x)− g1(x))′ φ(x)− λ2 (u′′(x)− g2(x))′ φ′(x) dx

= F (u) + 2
M∑
i=1

(u(xi)− yi)φ(xi) +

+2λ1

M∑
i=0

(u′(xi+1−)− g1(xi+1−))φ(xi+1−)− (u′(xi+)− g1(xi+))φ(xi+)

+2λ2

M∑
i=0

(u′′(xi+1−)− g2(xi+1−))φ′(xi+1−)− (u′′(xi+)− g2(xi+))φ′(xi+)

−2λ2

M∑
i=0

(u′′(xi+1−)− g2(xi+1−))′ φ(xi+1−)− (u′′(xi+)− g2(xi+))′ φ(xi)

+2
M∑
i=0

∫ xi+1

xi

−λ1 (u′(x)− g1(x))′ φ(x) + λ2 (u′′(x)− g2(x))′′ φ(x) dx

To start out use test functions φ(x) vanishing at the data points x = xi, i.e. φi(xi) = φ′(xi) = 0
for i = 1, 2, 3, . . . ,M . For x 6= xi this leads to the Euler–Lagrange equation (2). Since we are free
to choose the values of φ(xi) and φ′(xi) there are boundary and jump conditions.

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 15

� At x = x0 = a find the natural boundary conditions

−λ1 (u′(a)− g1(a)) + λ2 (u′′(a)− g2(a))′ = 0 and − λ2 (u′′(a)− g2(a)) = 0 .

� At x = xM+1 = b find the natural boundary conditions

+λ1 (u′(b)− g1(b))− λ2 (u′′(b)− g2(b))′ = 0 and + λ2 (u′′(b)− g2(b)) = 0 .

� At a data point x = xi use φ(xi) = 0 and φ′(xi) 6= 0 to find

u′′(xi+)− g2(xi+) = u′′(xi−)− g2(xi−) .

Assuming that g2 is smooth this implies that the second derivative u′′(x) is continuous at
x = xi

� At a data point x = xi use φ(xi) 6= 0 and φ′(xi) = 0 to find

u(xi)− yi = −λ1 (u′(xi−)− g1(xi−)) + λ2 (u′′(xi−)− g2(xi−))′

+λ1 (u′(xi+)− g1(xi+))− λ2 (u′′(xi+)− g2(xi+))′ .

Assuming that g1 and g2 are smooth and u′ and u′′ are continuous this implies

u(xi)− yi = −λ2 (u′′′(xi+)− u′′′(xi−)) .

This is a jump condition for the third derivative, i.e.

u′′′(xi+)− u′′′(xi−) =
1

λ2
(yi − u(xi)) .

Thus the exact minimizer u(·) of the functional (1) solves the Euler–Lagrange equation (2) piecewise
on all sub–intervals xi < x < xi+1 and it satisfies the above natural boundary conditions and the
jump conditions for the third derivative u′′′(x) at x = xi .

3.5.2 A numerical example to illustrate the jumps

The above jump condition on the third derivative is illustrated by a simple example with the
resulting graphs in Figure 7. Observe that the values of 1

λ2
(yi−u(xi)) equal the jumps of the third

derivative.

Example4.m
N = 1000; interval = [0,10];

x = [2,4,5,9]’; y = [0 0 1 0]’;

F1.lambda = 1e-2; F2.lambda = 1e-2;

[grid,u] = regularization([x,y],interval,N,F1,F2);

figure(1); plot(grid,u,’g’,x,y,’or’)

xlabel(’x’); ylabel(’solution’);

legend(’regular’,’data’,’location’,’northwest’)

u_points = (y-interp1(grid,u,x))/F2.lambda; h = diff(interval)/N;

diff3 = fliplr([-1 2 0 -2 1]/(2*h^3)); dddu = conv(u,diff3);

figure(2); plot(grid(3:end-2),dddu(5:end-4),’-’,x,u_points,’or’)

xlabel(’x’); ylabel(’u"’)

legend(’third deriavtive’,’(y-u)/\lambda_2’)

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 16

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

so
lu

tio
n

x

regular
data

0 2 4 6 8 10
-6

-4

-2

0

2

4

6

u"

x

third deriavtive
(y-u)/λ2

Figure 7: A regularization with the solution, the third derivative and the jumps

3.5.3 The explicit solution if g1(x) = g2(x) = 0

If g1(x) = g2(x) = 0 the Euler–Lagrange equation (2) simplifies to

λ2 u
(4)(x)− λ1 u

′′(x) = 0

on each subinterval xi < x < xi+1. To find the explicit solutions of the ODE use the characteristic
equation

λ2 α
4 − λ1 α

2 = α2 (λ2 α
2 − λ1) = 0

with the four solutions α1,2 = 0 and α3,4 = ±
√
λ1/λ2. Thus the four linearly independent solution

can be determined, depending on λ1.

� If λ1 = 0 find αi = 0 and the solution is a polynomial of degree 3. This is obvious, since the
ODE simplfies to u(4)(x) = 4.

� If λ1 > 0 use the solutions of the form

u(x) = c1 + c2 x+ c3 exp(+

√
λ1

λ2
x) + c4 exp(−

√
λ1

λ2
x)

or

u(x) = c1 + c2 x+ c3 cosh(

√
λ1

λ2
x) + c4 sinh(

√
λ1

λ2
x) .

On each of the M + 1 subintervals four coefficient have to be determined. The continuity of u, u′,
u′′ and the jump condition for u′′′ lead to 4M equations and the natural boundary conditions at
the end points add 4 more equations. Thus a system of 4 (M + 1) linear equations could be set up
to determine the solution of the regularization problem.

3.5.4 The discrete implementation

For the functional F (u) find the discretization

F (u) = FD(u) + λ1 F1(u) + λ2 F2(u)

=

M∑
i=1

(yi − u(xi))
2 + λ1

∫ b

a
(u′(x)− g1(x))2 dx+ λ2

∫ b

a
(u′′(x)− g2(x))2 dx

≈ 〈~y − I~u , ~y − I~u〉+ λ1 ∆x 〈A1~u− ~g1 , A1~u− ~g1〉+ λ2 ∆x 〈A2~u− ~g2 , A2~u− ~g2〉
1

2

∂ F

∂~u
≈ IT (I~u− ~y) + λ1 ∆x AT

1 (A1~u− ~g1) + λ2 ∆x AT
2 (A2~u− ~g2) ∈ RN+1 .

SHA 16-12-21

3 THE ALGORITHM AND THE CODE 17

This leads to a system of linear equations for ~u ∈ RN+1.(
IT I + ∆x

(
λ1 AT

1 A1 + λ2 AT
2 A2

))
~u = IT~y + ∆x

(
λ1 AT

1 ~g1 + λ2 AT
2 ~g2

)
∈ RN+1

3.6 The code for the function regularization()

The above algorithm is implemented in an Octave function regularization.m. Not shown below
are the copyright, the documentation and the demos, just the implementation of the algorithm.

regularization.m
Copyright (C) 2019 Andreas Stahel

function [grid,u] = regularization (data, interval, N, F1, F2)

a = interval (1); b = interval (2);

grid = linspace (a, b, N + 1)’;

dx = grid (2) - grid (1);

x = data (:, 1);

select points in interval only

ind = find ((x >= a) .* (x <= b));

x = x (ind);

y = data (:, 2); y = y (ind);

M = length (x);

Interp = sparse (M, N + 1); ## interpolation matrix

pos = floor ((x - a) / dx) + 1;

theta = mod ((x - a) / dx, 1);

for ii = 1:M

if theta (ii) > 10*eps

Interp (ii, pos (ii)) = 1 - theta (ii);

Interp (ii, pos (ii) + 1) = theta (ii);

else

Interp (ii, pos (ii)) = 1;

endif

endfor

mat = Interp’ * Interp;

rhs = (Interp’ * y);

if isfield (F1, ’lambda’)

A1 = spdiags ([-ones(N, 1), +ones(N, 1)], [0, 1], N, N + 1) / dx;

mat = mat + F1.lambda * dx * A1’ * A1;

if isfield (F1, ’g’)

g1 = F1.g (grid (1:end - 1) + dx / 2);

rhs = rhs + F1.lambda * dx * A1’ * g1;

endif

endif

if exist (’F2’)

A2 = spdiags (ones (N, 1) * [1, -2, 1], [0, 1, 2], N - 1, N + 1) / dx^2;

mat = mat + F2.lambda * dx * A2’ * A2;

if isfield (F2, ’g’)

g2 = F2.g (grid (2:end - 1));

rhs = rhs + F2.lambda * dx * A2’ * g2;

endif

endif

u = mat \ rhs;

endfunction

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 18

4 Regularization with Two Independent Variables

For a problem with two independent variables (x, y) ∈ Ω ⊂ R2 and parameters λ1 ≥ 0, λ2 > 0 and
data points (xi, yi, zi) ∈ Ω× R the functional to be minimized is

F (u) := FD(u) + λ1 F1(u) + λ2 F2(u)

=

M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA+ λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA .

� The functional FD pushes the optimal solution towards a function going through the given
data points (si, yi, zi).

� The functional λ1 F1 pushes the optimal solutions towards a horizontal plane.

� The expression F2 corresponds to the bending energy in a thin plate. Thus λ2 F2 pushes the
optimal solutions towards surfaces with minimal curvature.

The above optimization is realized in Octave by using finite difference approximations for the
derivatives and elementary numerical integration. A linear system of equations is used to determine
discrete approximations ~u ∈ RN to the exact minimizer u(x, y).

4.1 Documentation for the usage of the code

The built–in help is shown below and the next section provides a few examples on how to use the
function regularization2D().

help regularization2D

-->

-- Function File:

[GRID, U, DATA_VALID] = regularization2D(DATA, BOX, N, LAMBDA1, LAMBDA2)

Apply a Tikhonov regularization, the functional to be minimized is

F = FD + LAMBDA1 * F1 + LAMBDA2 * F2

= sum_(i=1)^M (y_i-u(x_i))^2+

+ LAMBDA1 * dintegral (du/dx)^2+(du/dy)^2 dA +

+ LAMBDA2 * dintegral (d^2u/dx^2)^2+(d^2u/dy^2)^2 +2*(d^2u/dxdy) dA

With LAMBDA1 = 0 and LAMBDA2>0 this leads to a thin plate smoothing spline.

Parameters:

* DATA is a M*3 matrix with the (x,y) values in the first two

columns and the z values in the third column.

Only data points strictly inside the BOX are used

* BOX = [x0,x1;y0,y1] is the rectangle x0<x<x1 and y0<y<y1 on

which the regularization is applied.

* N = [N1,N2] determines the number of subintervals of equal length.

GRID will consist of (N1+1)x(N2+1) grid points.

* LAMBDA1 >= 0 is the value of the first regularization parameter

* LAMBDA2 > 0 is the value of the second regularization parameter

Return values:

* GRID is the grid on which U is evaluated. It consists of

(N1+1)x(N2+1) equidistant points on the rectangle BOX.

* U are the values of the regularized approximation to the DATA

evaluated on the GRID.

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 19

* DATA_VALID returns the values data points used and the values

of the regularized function at these points

See also: tpaps, regularization, demo regularization2D.

4.2 Examples

4.2.1 A first example, approximating a surface with random noise

On the square −1 < x, y < 1 examine points given by zi = xi · yi with some random noise added.
Then a smoothing surface is fit through those points.

Octave
lambda1 = 0; lambda2 = 0.05

M = 100; x = 2*rand(M,1)-1; y = 2*rand(M,1)-1; z = x.*y + 0.1*randn(M,1);

data = [x,y,z];

[grid,u] = regularization2D(data,[-1 1;-1 1],[50 50],lambda1,lambda2);

figure(1); mesh(grid.x, grid.y,u)

xlabel(’x’); ylabel(’y’);

hold on

plot3(data(:,1),data(:,2),data(:,3),’*b’,’Markersize’,2)

view([30,30]); hold off

y
x

1
0.5-1

-0.5

0

0.5

-1 -0.5 -0.50
0

0.5 -1

1

1

(a) the surface

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

y

x

-0
.2

-0.2
-0

.2

-0.2

-0
.1

-0.1

-0
.1

-0.1

0

0

0

0

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7
0.8

0.9

(b) the contour lines

Figure 8: A regularized surface, determined by random data

4.2.2 A second example, determined by a few points

As a second example examine five data points, four on the x and y axis at x, y = ±1 at height 0 and
at the origin at height 1. Then a regulatization on the square −1.5 ≤ x, y ≤ +1.5 with parameters
λ1 = 0 and λ2 = 0.05 is applied.

Octave
lambda1 = 0; lambda2 = 0.05

M = 4; angles = [1:M]/M*2*pi; data = zeros(M+1,3);

data(1:M,1) = cos(angles); data(1:M,2) = sin(angles); data(M+1,3) = 1;

[grid,u] = regularization2D(data,[-1.5 1.5;-1.5 1.5],[40 40],lambda1,lambda2);

Use the usual Octave commands to generate the surface plot and contour lines in Figure 9.

Octave

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 20

figure(1)l mesh(grid.x, grid.y,u)

xlabel(’x’); ylabel(’y’);

hold on

plot3(data(:,1),data(:,2),data(:,3),’*b’)

hold off

figure(2); [c,h] = contour(grid.x, grid.y,u,[-0.2:0.1:1]); clabel(c,h);

xlabel(’x’); ylabel(’y’); axis equal

1.5 10.5 0
y -0.5 -1-1.5 -1.5

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1 1.5
0.5

1

0
x-0.5-1

(a) the surface

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

y

x

-0.2

-0.2

-0.2

-0.2

-0.1

-0
.1

-0.1

-0.1-0.1

-0
.1

-0.1
0

0

0
0

0

0
0.1

0.
1

0.1
0.1

0.1

0.2

0.20.2

0.2 0.3

0.3

0.
3

0.
40.

4 0.5

(b) contour lines

Figure 9: A surface determined by 5 data points, with regularization parameter λ2 = 0.05

The above can be recomputed with

� a smaller parameter λ2 = 0.005, leading to a surface with larger curvature, but closer to the
data points.

� a large parameter λ2 = 0.5, leading to a surface with smaller curvature, but further away
from the data points.

Find the resulting graphs in Figure 10.

4.2.3 A third example, to illustrate that λ2 > 0 is necessary

Remark 4–4 states that the parameter λ2 > 0 has to be positive, otherwise the problem is not well
defined and the discrete solution generated depends on the grid size used. The code below uses
the same data as the previous example, but with parameters λ1 = 0.1 and λ2 = 0. The code is
used twice, once with a 50× 50 grid, and once with a 100× 100 grid. Figure 11 shows the results.
Observe that the contour lines for the finer grid are closer together. This is consistent with the
observation in Remark 4–4 and illustrates that λ2 > 0 is necessary to obtain well defined results.

Octave
lambda1 = 0.1; lambda2 = 0;

M = 4; angles = [1:M]/M*2*pi; data = zeros(M+1,3);

data(1:M,1)= cos(angles); data(1:M,2)= sin(angles); data(M+1,3)=1;

[grid,u] = regularization2D(data,[-1.5 1.5;-1.5 1.5],[50 50],lambda1,lambda2}

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 21

1.5 10.5 0
y -0.5 -1-1.5 -1.5

-1

-0.5

0

0.5

1

x

1 1.5
0.50-0.5-1

(a) λ2 = 0.005

y x

0
0.2
0.4
0.6
0.8

1.5 1 1.50.5 10 0.5

1

0-0.5 -0.5-1 -1-1.5 -1.5

(b) λ2 = 0.5

Figure 10: A surface determined by 5 data points with different regularization parameters λ2

4.2.4 A fourth example, approximating a given function

Generate data on a 21 × 21 grid on the unit square −1 ≤ x, y ≤ +1 of the function f(x, y) =
exp(−(x2 + y2)). Then a regularization with λ1 = 0 and λ2 = 0.05 is applied on the larger
rectangle (x, y) ∈ [−1,+1] × [−1,+2]. Find the resulting surface and the difference between the
regularized function and the original function f(x, y) = exp(−(x2 +y2)) in Figure 12. Observe that
the difference on the unit square is rather small and for y > 1 the regularized surface shows very
little curvature, but a clear slope.

Octave
lambda1 = 0; lambda2 = 0.05;

N = 21; [xx,yy] = meshgrid(linspace(-1,1,N));

function z = ff(x,y)

z = exp(-(x.^2+y.^2));

endfunction

zz = ff(xx,yy);

data = [xx(:),yy(:),zz(:)];

Nreg = 100;

[grid,u] = regularization2D(data,[-1,1;-1 2],[Nreg,Nreg],lambda1,lambda2);

The above is repeated with the function f(x, y) = exp(−9 (x2 + y2)), leading to Figure 13. The
graph of this function is almost horizontal on the boundary of the unit square, thus the extension
of the regularized surface for y > 1 is almost horizontal. The curvature of f(x, y) close to the origin
(0, 0) is large and as a consequence the regularized surface deviates from f(x, y).

The same setup can be examined using the function tpaps() from the package splines, leading
to Figure 14. Observe the that shape of the regularization is similar and the construction by
tpaps() leads to a smaller difference to the original function exp(−9 (x2 + y2)).

pkg load splines

p = 1/(1+lambda2);

[u2,p] = tpaps(data(:,1:2),data(:,3),p,[grid.x(:),grid.y(:)]);

u2 = reshape(u2,Nreg+1,Nreg+1);

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 22

1.5 1 0.5 0
y

-0.5 -1-1.5 -1.5

0

0.2

0.4

0.6

0.8

x

1.510.50

1

-0.5-1

(a) Graph with a 50 × 50 grid

xy

0

0.2

0.4

0.6

1.510.501.5

0.8

1

1 -0.50.5 0 -1-0.5 -1 -1.5-1.5

(b) Graph with a 100 × 100 grid

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

x

y

0.
3

0.
3 0.4

0.
5

(c) Contour with a 50 × 50 grid

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

x

y

0.
3

0.
3 0.40.50.6

(d) Contour with a 100 × 100 grid

Figure 11: Regularization with λ1 = 0.1 and λ2 = 0 on different grids

4.2.5 A fifth example, comparing regularization2d() and tpaps()

The function tpaps() is using smoothing splines, minimizing the bending energy of the thin plate
over all of R2, and not the rectangle used by regularization2D(). Thus the functional

F (u) = FD(u) + λ2 F2(u) =
M∑
i=1

(u(xi, yi)− zi)2 + λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA

is minimized

� with the rectangle Ω = [x0, x1]× [y0, y1] for regularization2D().

� with Ω = R2 for tpaps().

In Figure 15 find the bending plate energy F2(u) (integration over the rectangle) and the data differ-
ence FD(u) displayed as function of the parameter λ2. Figure 16 shows that regularization2D()
leads to smaller thin plate energies on the rectangle, compared to tpaps(), as is to be expected
since regularization2D() minimizes over the rectangle.

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 23

0.5
y

0 -0.5 -1
11.52

-1

-0.2

0

1

0.2

0.4

0.5

0
x

-0.5

0.6

0.8

(a) the surface u(x, y)

0 -0.5 -10.5
y

11.52-1

-0.4

-0.3

-0.2

di
ffe

re
nc

e -0.1

0

0.1

1
0.5

0
x -0.5

(b) the difference u(x, y) − f(x, y)

Figure 12: A regularized surface determined by exp(−(x2 + y2)) on the unit square

0 -0.5 -10.5
y

11.52
-1

-0.2

0

0.2

0.4

0.6

0.8

x

1
0.5

0
-0.5

(a) the surface u(x, y)

x
y

-0.4

-0.3

-0.2

di
ffe

re
nc

e

-0.1

0

0.1

10.50-0.5-1 -1-0.500.511.52

(b) the difference u(x, y) − f(x, y)

Figure 13: A regularized surface determined by exp(−9 (x2 + y2)) on the unit square

4.3 The algorithm and the code for the function regularization2D()

The functional to be minimized is

F (u) := FD(u) + λ1 F1(u) + λ2 F2(u)

=

M∑
i=1

(u(xi, yi)− zi)2 + λ1 〈u, u〉1 + λ2 〈u, u〉2

=
M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA+ λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA

≈ 〈Interp ~u− ~z, Interp ~u− ~z〉+ λ1 (〈Dx~u,WxDx~u〉+ 〈Dy~u,WyDy~u〉) +

+λ2 (〈Dxx~u,WxDxx~u〉+ 〈Dyy~u,WyDyy~u〉+ 2 〈Dxy~u,WxyDxy~u〉) =: F (~u)

Then the necessary analytical condition ∇F (~u) = ~0 leads to the discrete condition

InterpT ~z = InterpT Interp ~u+ λ1

(
DT
xWxDx + DT

y WyDy

)
~u

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 24

0.5
y

0 -0.5 -1
11.52

-1

-0.2

0

1

0.5

0
x

-0.5

0.2

0.4

0.6

0.8

1

(a) the surface u(x, y)

-0.05

-0.04

-0.03

-0.02

di
ffe

re
nc

e

-0.01

0

0.01

1
0.5

0
x -0.5

-1 -1-0.500.5
y

11.52

(b) the difference u(x, y) − f(x, y)

Figure 14: A regularized surface determined by exp(−9 (x2+y2)) on the unit square, using tpaps()

+λ2

(
DT
xxWxDxx + DT

yyWyDyy + 2 DT
xyWxyDxy

)
~u .

The above algorithm is implemented in the Octave function regularization2D.m. Not shown be-
low are the copyright, the documentation and the demos, just the implementation of the algorithm.

regularization2D.m
Copyright (C) 2021 Andreas Stahel

function [grid,u,data_valid] = regularization2D (data,box,N,lambda1,lambda2)

%% generate the grid

N = N+1; %%% now N is the number of grid points in either direction

x = linspace(box(1,1),box(1,2),N(1));

y = linspace(box(2,1),box(2,2),N(2));

[xx,yy] = meshgrid(x,y);

dx = diff(box(1,:))/(N(1)-1); dy = diff(box(2,:))/(N(2)-1);

grid.x = xx; grid.y = yy;

x = data (:,1); y = data(:,2); z = data(:,3);

select points in box only

ind = find((x>box(1,1)).*(x<box(1,2)).*(y>box(2,1)).*(y<box(2,2)));

x = x (ind); y = y (ind); z = z (ind);

%% generate the sparse interpolation matrix

M = length (x);

x_ind = floor((x-box(1,1))/dx);

xi = mod(x,dx)/dx;

y_ind = floor((y-box(2,1))/dy);

nu = mod(y,dy)/dy;

row = ones(4,1)*[1:M];

index_base = N(2)*x_ind+y_ind+1;

index = index_base + [0,N(2),1,N(2)+1]; index = index’;

coeff = [(1-xi).*(1-nu),xi.*(1-nu),(1-xi).*nu,xi.*nu]; coeff = coeff’;

Interp = sparse(row(:),index(:),coeff(:),M,N(1)*N(2));

mat = Interp’ * Interp;

rhs = (Interp’ * z);

%%% derivative with respect to x

Dx = kron(spdiags(ones(N(1),1)*[-1 1],[0 1],N(1)-1,N(1))/dx,speye(N(2)));

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 25

10-4 10-3 10-2 10-1 100 101
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

λ2

plate energy
data difference

(a) using regularizion2D()

10-4 10-3 10-2 10-1 100 101
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

λ2

plate energy
data difference

(b) using tpaps()

Figure 15: Comparing the contributions by the data differences FD and the bending energy F2, for
different values of λ2 > 0

0 5 10 15 20 25
10-6

10-5

10-4

10-3

10-2

10-1

100

plate energy F2

da
ta

 d
iff

er
en

ce
 F

D

regularization2D()
tpaps()

Figure 16: Comparing the energy contributions by regularization2D() and tpaps(), for different
values of λ2 > 0

Wx = ones(N(2),1); Wx(1) = 1/2; Wx(N(2)) = 1/2;

Wx = kron(speye(N(1)-1),diag(Wx))*dx*dy;

%%% derivative with respect to y

Dy = kron(speye(N(1)),spdiags(ones(N(2),1)*[-1 1],[0 1],N(2)-1,N(2))/dy);

Wy = ones(N(1),1); Wy(1) = 1/2; Wy(N(1)) = 1/2;

Wy = kron(diag(Wy),speye(N(2)-1))*dx*dy;

mat += lambda1*(Dx’*Wx*Dx + Dy’*Wy*Dy);

%%% second derivative with respect to x

Dxx = spdiags(ones(N(1),1)*[1 -1 -1 1],[-1 0 1 2],N(1)-1,N(1));

Dxx(1,1:4) = [3 -7 5 -1]; Dxx(N(1)-1,N(1)-3:N(1)) = [-1 5 -7 3];

Dxx = Dxx/(2*dx^2);

Dxx = kron(Dxx,speye(N(2)));

%%% second derivative with respect to y

Dyy = spdiags(ones(N(2),1)*[1 -1 -1 1],[-1 0 1 2],N(2)-1,N(2));

Dyy(1,1:4) = [3 -7 5 -1]; Dyy(N(2)-1,N(2)-3:N(2)) = [-1 5 -7 3];

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 26

Dyy = Dyy/(2*dy^2);

Dyy = kron(speye(N(1)),Dyy);

%%% mixed second derivative

Dy2 = kron(speye(N(1)-1),spdiags(ones(N(2),1)*[-1 1],[0 1],N(2)-1,N(2))/dy);

Dxy = Dy2*Dx*sqrt(dx*dy);

mat += lambda2*(Dxx’*Wx*Dxx + Dyy’*Wy*Dyy + 2*Dxy’*Dxy);

%%% solve

u = reshape(mat \ rhs,N(2),N(1));

if nargout>2

data_valid =[x,y,Interp*u(:)];

endif

endfunction

4.4 The mathematics for the result in two dimensions

4.4.1 Analytical results and the proof of unique existence

Let Ω ⊂ R2 be a bounded domain with piecewise smooth boundary, satisfying the cone condition.
Thus the usual Sobolev imbedding result apply ([Adam03]). Let (xi, yi) ∈ Ω and zi for i =
1, 2, . . . ,M be a set of data points. Let u and v be real valued functions defined on Ω and use the
notations

~u := (u1, u2, . . . , uM)T

〈~u,~v〉 =

M∑
i=1

ui vi

〈u, v〉 =

∫ ∫
Ω

u(x, y) v(x, y) dA

〈u, v〉1 = 〈ux, vx〉+ 〈uy, vy〉 =

∫ ∫
Ω

∂ u(x, y)

∂x

∂ v(x, y)

∂x
+
∂ u(x, y)

∂y

∂ v(x, y)

∂y
dA

〈u, v〉2 = 〈uxx, vxx〉+ 〈uyy, vyy〉+ 2 〈uxy, vxy〉

This leads to the usual L2 and Sobolev norms.

‖u‖2L2(Ω) = 〈u, u〉

‖u‖2H1(Ω) = 〈u, u〉+ 〈u, u〉1
‖u‖2H2(Ω) = 〈u, u〉+ 〈u, u〉1 + 〈u, u〉2

To prove the main result use a Poincaré type inequality, based on the value of the function u at
one point x0 ∈ Ω, instead of the usual zero values on the boundary ∂Ω or the average value of u .

4–1 Lemma : For a convex, bounded domain Ω ⊂ R2 with piecewise smooth boundary examine
functions u ∈W 1,p(Ω) with p > 4. For any x0 ∈ Ω with u0 := u(x0) there exists a constant c such
that

‖u− u0‖L2(Ω) ≤ c ‖∇u‖Lp(Ω) , (3)

where the constant c depends on p and Ω.

Instead of working with a convex domain Ω ⊂ R2 one may require that the domain is star-shaped
with respect to the point x0 ∈ Ω.

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 27

Proof : The standard Sobolev imbedding implies u ∈ C0(Ω) and the evaluation at one point
x0 ∈ Ω is well defined. For the convex domain Ω ⊂ R2 and a parameter 0 < t ≤ 1 use a rescaled,
contracted domain

Ωt := {w = x0 + t y | for some y ∈ Ω} ⊂ Ω ⊂ R2 .

Integrating the inequality

|u(x)− u(x0)| = |
∫ 1

0
〈∇u(x0 + t (x− x0)), (x− x0)〉 dt| ≤

∫ 1

0
‖x− x0‖ ‖∇u(x0 + t (x− x0))‖ dt

|u(x)− u(x0)|2 ≤ max
x∈Ω
‖x− x0‖2

∫ 1

0
‖∇u(x0 + t (x− x0))‖2 dt

over the domain Ω leads to∫ ∫
Ω

|u(x)− u0|2 dAx ≤ max
x∈Ω
‖x− x0‖2

∫∫
Ω

∫ 1

0
‖∇u(x0 + t (x− x0))‖2 dt dAx


= C(Ω)

∫ 1

0

∫∫
Ω

‖∇u(x0 + t (x− x0))‖2 dAx

 dt

substitution w = x0 + t (x− x0), dAw = t2 dA, vol(Ωt) = t2 vol(Ω)

= C(Ω)

∫ 1

0

∫∫
Ωt

1

t2
‖∇u(w)‖2 dAw

 dt

Hölder’s inequality on Ωt with r =
p

2
,

1

r
+

1

r′
= 1 , 1 < r′ < 2

use

∫∫
Ωt

t−2 r′ dAw

1/r′

= t−2 vol(Ωt)
1/r′ = vol(Ω)1/r′ t2/r

′−2

≤ C(Ω)

∫ 1

0
c(p,Ω) t

2
r′−2

∫∫
Ωt

‖∇u(w)‖2 r dAw

1/r

dt

≤ C(Ω) c(p,Ω)

(∫ 1

0
t

2
r′−2 dt

)
‖∇u‖2Lp(Ω)

= C(Ω) c(p,Ω) (
2

r′
− 1) ‖∇u‖2Lp(Ω) , use

2

r′
− 2 > −1

≤ C1(p,Ω) ‖∇u‖2Lp(Ω)

Thus inequality (3) is verified. 2

Examine a convex, bounded domain Ω ⊂ R2 and data points (xi, yi) ∈ Ω for i = 1, 2, 3, . . . ,M .
At those points the values of a function u should be close to given values zi. For a function
u ∈ H2(Ω) the evaluation at the points (xi, yi) is well defined and the values u(xi, yi) lead to a
vector ~u ∈ RM . For positive regularization parameters 0 < λ1 and 0 < λ2 search for a minimizer
of the functional

F (u) := FD(u) + λ1 F1(u) + λ2 F2(u)

= 〈~u− ~z, ~u− ~z〉+ λ1 〈u, u〉1 + λ2 〈u, u〉2 (4)

=
M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA+ λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA .

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 28

4–2 Theorem : If at least one data point is given, then the functional F (u) in (4) has exactly one
minimizer u∗ ∈ H2(Ω).

Proof : Proceed in three steps: first establish an a-priori estimate, then verify existence, followed
by the proof of uniqueness.

A-priori estimate:
Let z̄ = 1

M

∑M
i=1 zi be the average value and then use the variance σ2 of the z values

M σ2 =

M∑
i=1

(zi − z̄)2 .

The constant function u(x, y) = z̄ satisfies F (u) = M σ2. Any function u ∈ H2(Ω) with F (u) ≤
M σ2 satisfies

〈u, u〉1 ≤
1

λ1
M σ2 and 〈u, u〉2 ≤

1

λ2
M σ2 .

Define a subset A ⊂ H2(Ω), based on m = maxi |zi|.

A := {u ∈ H2(Ω) | min
x∈Ω

u(x) ≤ +m, max
x∈Ω

u(x) ≥ −m, 〈u, u〉1 ≤
1

λ1
M σ2 , 〈u, u〉2 ≤

1

λ2
M σ2}

This set A ⊂ H2(Ω) is not empty, since the constant function u(x, y) = z̄ ∈ A. The Sobolev
imbedding for the gradient ∇u leads to

‖∇u‖Lp(Ω) ≤ c ‖∇u‖H1(Ω) = c
√
〈u, u〉1 + 〈u, u〉2 for some 4 ≤ p <∞ .

For the set A to be bounded in H2(Ω) an a-priori bound on ‖u‖L2(Ω) is needed. Since u ∈ A use
an x0 ∈ Ω with |u(x0)| = |u0| ≤ m. Inequality (3) in the above Lemma implies

‖u‖L2(Ω) ≤ ‖u0‖L2(Ω) + ‖u− u0‖L2(Ω) ≤ m
√

vol(Ω) +
√
c ‖∇u‖Lp(Ω) .

Thus the set A ⊂ H2(Ω) is uniformly bounded in the L2 norm, and consequently in the H2 norm.

Existence:
Use a minimizing sequence un ∈ A of the functional F (u) in (4). Based on the above a-priori
estimate the sequence is bounded in H2(Ω). Since H2(Ω) is compactly imbedded in W 1,p(Ω) for
some p > 4, there exists a convergent subsequence (again denoted by un) in W 1,p(Ω) and un −→ u∗.
Since H2(Ω) is a Hilbert space there exists a weakly convergent subsequence un and u∗ ∈ H2(Ω).
The weak convergence implies

〈~un−~z, ~u∗−~z〉+λ1 〈un, u∗〉1 +λ2 〈un, u∗〉2
n→∞−→ 〈~u∗−~z, ~u∗−~z〉+λ1 〈u∗, u∗〉1 +λ2 〈u∗, u∗〉2 = F (u∗)

and u∗ ∈ H2(Ω) is a minimizer of the functional F .

Uniqueness:
Assume u1 ∈ H2(Ω) is a second minimizer. Let v = u1 − u∗ and examine

g(t) := F (u∗ + t v)

= 〈~u∗ + t~v − ~z, ~u∗ + t~v − ~z〉+ λ1 〈u∗ + t v, u∗ + t v〉1 + λ2 〈u∗ + t v, u∗ + t v〉2 .

Thus g is a polynomial of degree 2 with g(0) = g(1) = F (u∗). Since u∗ is a minimizer, conclude
d2 g
dt2

= 0, i.e. 0 = 〈~v,~v〉+ λ1 〈v, v〉1 + λ2 〈v, v〉2. Thus 〈v, v〉1 =
∫∫
Ω

‖∇u‖2 dA = 0 and the function

v has to be a constant. Then 〈~v,~v〉 = 0 implies that v = 0 and thus the minimizer u∗ is unique. 2

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 29

4–3 Remark : The Euler–Lagrange Equation and Natural Boundary Conditions
To find the corresponding PDE and the natural boundary conditions use standard calculus of
variations arguments. For smooth perturbations φ examine

F (u+ φ) = 〈~u+ ~φ− ~z, ~u+ ~φ− ~z〉+ λ1

∫ ∫
Ω

‖∇u+∇φ‖2 dA+

+λ2

∫ ∫
Ω

(uxx + φxx)2 + (uyy + φyy)
2 + 2 (uxy + φxy)

2 dA

≈ F (u) + 2 〈~u− ~z, ~φ〉+ 2λ1

∫ ∫
Ω

〈∇u,∇φ〉 dA+

+2λ2

∫ ∫
Ω

uxxφxx + uyyφyy + 2uxyφxy dA

= F (u) + 2 〈~u− ~z, ~φ〉+ 2λ1

∫ ∫
Ω

〈∇u,∇φ〉 dA+

+2λ2

∫ ∫
Ω

+〈

(
uxx

uxy

)
,∇φx〉+ 〈

(
uxy

uyy

)
,∇φy〉 dA

= F (u) + 2 〈~u− ~z, ~φ〉+ 2λ1

∮
∂Ω
φ · 〈∇u, ~n〉 ds− 2λ1

∫ ∫
Ω

∆u · φ dA

+2λ2

∮
∂Ω
〈

(
uxx

uxy

)
, ~n〉φx + 〈

(
uxy

uyy

)
, ~n〉φy ds−

−2λ2

∫ ∫
Ω

〈

(
uxxx + uxyy

uxxy + uyyy

)
,∇φ〉 dA

= F (u) + 2 〈~u− ~z, ~φ〉+ 2λ1

∮
∂Ω
φ · 〈∇u, ~n〉 ds− 2λ1

∫ ∫
Ω

∆u · φ dA

+2λ2

∮
∂Ω
〈

(
uxx

uxy

)
, ~n〉φx + 〈

(
uxy

uyy

)
, ~n〉φy − 〈

(
uxxx + uxyy

uxxy + uyyy

)
, ~n〉φ ds+

+2λ2

∫ ∫
Ω

(uxxxx + 2uxxyy + uyyyy)φ dA

The resulting Euler–Lagrange equation is

−λ1 ∆u+ λ2 ∆2u = ∆ (−λ1 u+ λ2 ∆u) = 0 . (5)

The effect of the data at (xi, yi) is not taken into account with the above Euler–Lagrange equation
and the equation is valid away from (xi, yi).

To derive the natural boundary conditions use [LandLifs75, §12, p.50ff]. Examine directional
derivatives on the boundary ∂Ω in normal direction ~n and tangential direction ~t.

~n =

(
n1

n2

)
=

(
cos θ

sin θ

)
,

∂

∂n
:= n1

∂

∂x
+ n2

∂

∂y

~t =

(
−n2

n1

)
=

(
− sin θ

cos θ

)
,

∂

∂t
:= −n2

∂

∂x
+ n1

∂

∂y

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 30

∂

∂x
= n1

∂

∂n
− n2

∂

∂t
,

∂

∂y
= n2

∂

∂n
+ n1

∂

∂t

One of the above boundary contributions can be written in the form

BC =

∮
∂Ω
〈

(
uxx

uxy

)
, ~n〉φx + 〈

(
uxy

uyy

)
, ~n〉φy ds

=

∮
∂Ω
uxx n1 φx + uxy n2 φx + uxy n1 φy + uyy n2 φy ds

=

∮
∂Ω

(uxx + uyy)n1 φx − uyy n1 φx + uxy n2 φx + uxy n1 φy + (uxx + uyy)n2 φy − uxx n2 φy ds

=

∮
∂Ω

∆u
∂ φ

∂n
+ (uxy φy − uyy φx)n1 − (uxx φy − uxy φx)n2 ds

=

∮
∂Ω

∆u
∂ φ

∂n
+ (uxy (n2

∂ φ

∂n
+ n1

∂ φ

∂t
)− uyy (n1

∂ φ

∂n
− n2

∂ φ

∂t
))n1 −

−(uxx (n2
∂ φ

∂n
+ n1

∂ φ

∂t
) + uxy (n1

∂ φ

∂n
− n2

∂ φ

∂t
))n2 ds

=

∮
∂Ω

∆u
∂ φ

∂n
+
(
uxy n1 n2 − uyy n2

1 − uxx n2
2 + uxy n1 n2

) ∂ φ
∂n

+

+
(
uxy n

2
1 + uyy n1 n2 − uxx n1 n2 − uxy n2

2

) ∂ φ
∂t

ds

=

∮
∂Ω

∆u
∂ φ

∂n
−
(
n2

1 uyy + n2
2 uxx − 2n1 n2 uxy

) ∂ φ
∂n

+

+
(
(n2

1 − n2
2)uxy + n1 n2 (uyy − uxx)

) ∂ φ
∂t

ds

The second contribution can be integrated by parts over the closed curve ∂Ω, leading to∮
∂Ω

(
(n2

1 − n2
2)uxy + n1 n2 (uyy − uxx)

) ∂ φ
∂t

ds = −
∮
∂Ω

∂

∂ t

(
(n2

1 − n2
2)uxy + n1 n2 (uyy − uxx)

)
φ ds .

For the second boundary contribution use∮
∂Ω
〈

(
uxxx + uxyy

uxxy + uyyy

)
, ~n〉φ ds =

∮
∂Ω

∂ (uxx + uyy)

∂n
φ ds .

The sum of all boundary integrals has to vanish for all φ, i.e.

0 =

∮
∂Ω

(
λ1
∂ u

∂n
− λ2

∂∆u

∂n
− λ2

∂

∂ t

(
(n2

1 − n2
2)uxy + n1 n2 (uyy − uxx)

))
φ ds+

+λ2

∮
∂Ω

(
∆u−

(
n2

1 uyy + n2
2 uxx − 2n1 n2 uxy

)) ∂ φ
∂n

ds .

As consequence find the two natural boundary conditions

λ2

(
∂∆u

∂n
+

∂

∂ t

(
(n2

1 − n2
2)uxy + n1 n2 (uyy − uxx)

))
= λ1

∂ u

∂n
(6)

∆u−
(
n2

1 uyy + n2
2 uxx − 2n1 n2 uxy

)
= 0 . (7)

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 31

4–4 Remark : Second Order Derivatives are Necessary
One might be attempted to use first order derivatives only in the regularizing functional, i.e.

F (u) =
M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA .

But this does not work at all, caused by H1(Ω) not being imbedded in C0(Ω). To illustrate this
use radial functions depending on r =

√
x2 + y2 and examine for p > 0

vε(x, y) =

{
1− rp

εp for r < ε

0 for r ≥ ε
.

Then vε(0, 0) = 1 for all ε > 0 and limε→0+ vε(x, y) = 0 for (x, y) 6= (0, 0). Use ∇r = 1
r (x, y) to

calculate ‖∇vε‖ = p
εp r

p−1 for r ≤ ε and an integration in polar coordinates to conclude

‖vε‖2L2(R2) ≤ π ε2

‖∇vε‖2L2(R2) =
2π p2

ε2p

∫ ε

0
r2p−2 r dr =

2π p2

ε2p 2 p
ε2p = p π .

For separated data points (xi, yi) the function

uε(x, y) :=
M∑
i=1

zi vε(x− xi, y − yi)

satisfies (for ε > 0 small enough) uε(xi, yi) = zi and limε→0+ uε(x, y) = 0 for all (x, y) 6= (xi, yi).
All functions satisfy uε ∈ H1(Ω) since

∫∫
Ω

‖∇uε‖2 dA = M pπ . Using ε = p find

lim
ε→0+

F (uε) = lim
ε→0+

λ1 〈uε, uε〉1 = 0 and lim
ε→0+

〈uε, uε〉 = 0 .

The above functions uε (with p = ε) converge to zero, but a similar construction can lead to
convergence towards any constant h by using

uε(x, y) := h+
M∑
i=1

(zi − h) vε(x− xi, y − yi) .

Thus a regularization with λ2 = 0 is not well defined and consequently a numerical implementation
can not be stable. This is illustrated by an example in Section 4.2.3 on page 20.

4–5 Remark : First Order Derivatives are not Necessary, λ1 ≥ 0 is allowed
One might be attempted to set λ1 = 0 and use second order derivatives only in the regularizing
functional, i.e.

F (u) =

M∑
i=1

(u(xi, yi)− zi)2 + λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA

� In most real world cases this will work just fine and the result in [Arca04] states just that.
A proof is shown in Theorem 4–7 below. The essential step is a result by Necas in [Neca12]
and is shown in Theorem 4–6 below.

� Use a slight modification of the proof and work with λ := max{λ1, λ2} to establish the a-priori
estimate. In the proof of uniqueness use λ2 > 0 to conclude 〈v, v〉2 =

∫∫
Ω

u2
xx+u2

yy+2u2
xy dA =

0. This implies (see Necas?) that the function v has to be linear. If the data points are not
colinear then 〈~v,~v〉 = 0 implies v = 0, i.e. uniqueness.

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 32

� With the keyword smoothing D splines in [Arca04, Theorem 3.1, p.66] a proof is given, using
H2(Ω) ellipticity and the Lax–Milgram Theorem with the norm

‖u‖2A,2,Ω :=

M∑
i=1

|u(xi, yi)|2 + 〈u, u〉2 .

Proposition 1.1 verifies that this is an equivalent norm to the usual Sobolev norm on H2(Ω).
The key argument is that 〈u, u〉2 = 0 implies that u is a polynomial of degree 1 and [Neca12,
Theorem 2.7.1] to show the equivalence of the norms. This replaces the a-priori estimate
in Lemma 4–1 and is the key point of the proof. Below find the proof of the key result
in [Neca12]. Observe that the proof is very elegant, but not constructive.

� The proof of the above Lemma with inequality (3) requires an estimate for ‖∇u‖L2(Ω) and
without additional assumptions on the data points (xi, yi) and zi this is not available. Ex-
amine the situation when all points (xi, yi) are on a straight line. Then one can add a linear
function with arbitrary slope without changing the value of the functional F (u). Thus there
is no unique solution and no bound on ‖∇u‖L2(Ω).

� In [GreeSilv94, Lemma 7.1, p.149] a proof is given with domain R2 that for non colinear data
a unique solution exists.

4–6 Theorem : [Neca12, Theorem 2.7.1] Assuming that the data points (xi, yi) are not colinear
there exists a constant c such that

‖u‖2H1(Ω) ≤ c

(
〈u, u〉2 +

M∑
i=1

u2(xi, yi)

)
for all u ∈ H2(Ω) . (8)

This leads easily to

‖u‖2H2(Ω) ≤ c1

(
〈u, u〉2 +

M∑
i=1

u2(xi, yi)

)
for all u ∈ H2(Ω) . (9)

Proof : Proof by contradiction. If no such constant exists then there exists a sequence un ∈
H2(Ω) with ‖un‖H1(Ω) = 1 and

〈un, un〉2 +
M∑
i=1

u2
n(xi, yi) ≤

1

n
.

This implies ‖un‖2H2(Ω) = ‖un‖2H1(Ω) + 〈un, un〉2 ≤ 1 + 1
n . Since the imbedding H2(Ω) in H1(Ω) is

compact use a subsequence (again denoted by un), such that for all |α| = 2

Dαun → 0 in L2(Ω)

un → u in H1(Ω)

Thus un → u in H2(Ω) and Dαu = 0. This implies (use [Neca12, Theorem 1.1.6, p.10]) that u is a
polynomial of degree 1. Since the data points are not colinear

∑M
i=1 u

2
n(xi, yi) ≤ 1

n implies u = 0.
This is in contradition to ‖u‖H1(Ω) = 1. 2

For sake of completeness the statement and proof of the results with λ1 ≥ 0 is given, using a
presentation very close to Theorem 4–2. Observe that this result is applicable to more situations,
the domain Ω ⊂ R2 is not required to be convex and λ1 = 0 is permissible.

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 33

4–7 Theorem : On a bounded, connected domain Ω ⊂ R2 with lipschitzian boundary examine
the functional

F (u) := FD(u) + λ1 F1(u) + λ2 F2(u)

= 〈~u− ~z, ~u− ~z〉+ λ1 〈u, u〉1 + λ2 〈u, u〉2

=

M∑
i=1

(u(xi, yi)− zi)2 + λ1

∫ ∫
Ω

u2
x + u2

y dA+ λ2

∫ ∫
Ω

u2
xx + u2

yy + 2u2
xy dA .

The data points (xi, yi) ∈ Ω are not colinear, i.e. for u ∈ H2(Ω) the equality
∑M

i=1 u
2(xi, yi) +

〈u, u〉2 = 0 implies u = 0. For regularization parameters λ1 ≥ 0 and λ2 > 0 the functional has
exactely one minimizer u∗ ∈ H2(Ω).

Proof : Proceed in three steps: first establish an a-priori estimate, then verify existence, followed
by the proof of uniqueness.

A-priori estimate:
Let u0(x, y) = c0 + c1 x + c2 y be the unique solution of the least square problem min

∑M
i=1(zi −

u0(xi, yi))
2. Then F (u0) <∞ implies that the set

A := {u ∈ H2(Ω) |F (u) ≤ F (u0)}

is not empty and the above Theorem implies that it is uniformly bounded in H2(Ω).

Existence:
Use a minimizing sequence un ∈ A of the functional F (u). Since H2(Ω) is compactly imbedded
in H1(Ω) there exists a convergent subsequence (again denoted by un) in H1(Ω) and un −→ u∗.
Since H2(Ω) is a Hilbert space there exists a weakly convergent subsequence un and u∗ ∈ H2(Ω).
The weak convergence implies

〈~un−~z, ~u∗−~z〉+λ1 〈un, u∗〉1 +λ2 〈un, u∗〉2
n→∞−→ 〈~u∗−~z, ~u∗−~z〉+λ1 〈u∗, u∗〉1 +λ2 〈u∗, u∗〉2 = F (u∗)

and u∗ ∈ H2(Ω) is a minimizer of the functional F .

Uniqueness:
Assume u1 ∈ H2(Ω) is a second minimizer. Let v = u1 − u∗ and examine

g(t) := F (u∗ + t v)

= 〈~u∗ + t~v − ~z, ~u∗ + t~v − ~z〉+ λ1 〈u∗ + t v, u∗ + t v〉1 + λ2 〈u∗ + t v, u∗ + t v〉2 .

Thus g is a polynomial of degree 2 with g(0) = g(1) = F (u∗). Since u∗ is a minimizer, conclude
d2 g
dt2

= 0, i.e. 0 = 〈~v,~v〉 + λ1 〈v, v〉1 + λ2 〈v, v〉2. Thus 〈v, v〉2 = 0 and all second order derivatives
vanish and the function v has to be linear, use Result 4–10. Then 〈~v,~v〉 = 0 and the non-colinear
data points implies that v = 0 and thus the minimizer u∗ is unique. 2

4–8 Remark : Find a solution of the problem with λ1 = 0 in a document by David Eberly [Eber96],
i.e. ThinPlateSplines.pdf, Geometric Tools, Redmond WA 98052,
https://www.geometrictools.com/ or more precise
https://www.geometrictools.com/Documentation/Documentation.html.

The expression to be minimized is

F (u) =

M∑
i=1

(u(xi, yi)− zi)2 + λ2

∫ ∫
R2

u2
xx + u2

yy + 2u2
xy dA ,

SHA 16-12-21

https://www.geometrictools.com/
https://www.geometrictools.com/Documentation/Documentation.html

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 34

i.e. integration over the plane R2 and not a bounded domain Ω ⊂ R2. The main source seems to
be [Wahb90], see also [Duch77],[GreeSilv94] (on my HD).

As Green’s function use G(r) = 1
6π r

2 ln(r), where r =
√
x2 + y2. Then the ansatz for the

optimizer is

u(x, y) = c0 + c1 x+ c2 y +
M∑
i=1

αiG(‖(x− xi, y − yi)‖) .

This approach is very specific to the domain Ω = R2.

4.4.2 Simple Proof of ∇u = ~0 implies u is Constant

Let Ω ⊂ RN be a bounded, open domain, consisting of a finite number of connected components.
The results are to be verified on each of the components.

4–9 Result : For u ∈ W 1,p(Ω) use
∫

Ω ‖∇u‖
p dA = 0 to conclude u = const on each of the

components.

Proof : This is s consequence of the Poincaré–Wirtinger inequality (e.g. [Evan98, §5.8.1])

‖u− uΩ‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω)

where the average value uΩ is given by

uΩ =
1

|Ω|

∫
Ω
u dA .

2

4–10 Result : For u ∈ W 2,p(Ω) use
∑
|α|=2

∫
Ω |D

αu|p dA = 0 to conclude that u is a linear
function on each connected component of Ω.

Proof : Use the above result on the gradient ∇u. 2

4.4.3 Numerical differentiation and integration on rectangles

Examine the partial derivatives of functions defined on rectangles [a, b]× [c, d] ⊂ R2, using uniform
grids. Use

xi = a+ i∆x for i = 0, 1, 2, 3, . . . , Nx with ∆x = b−a
Nx

yj = c+ j∆y for j = 0, 1, 2, 3, . . . , Ny with ∆y = d−c
Ny

and the usual matrices to determine partial derivatives with finite difference approximations. With
these the centered difference approximation is used determine the values of the derivatives at the
mid points between the grid points, e.g. at (x, y) = (xi + ∆x

2 , yj) for ∂ u
∂x or at (x, y) = (xi, yj + ∆y

2)

for ∂ u
∂y .

Dx =
1

∆x



−1 1

−1 1

−1 1
. . .

. . .

−1 1


∈MNx×(Nx+1)

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 35

Dy =
1

∆y



−1 1

−1 1

−1 1
. . .

. . .

−1 1


∈MNy×(Ny+1)

With these matrices and a Kronecker product with an identity matrix the first partial derivatives
can be estimated. To perform the integration use a midpoint rule in x direction and a trapezoidal
rule in y direction.

〈∂ u
∂x

,
∂ u

∂x
〉 =

∫ d

c

(∫ b

a

(
∂ u(x, y)

∂x

)2

dx

)
dy ≈

∫ d

c

(
Nx−1∑
i=0

(
∂ u(xi + ∆x/2, y)

∂x

)2

∆x

)
dy

≈ ∆y

2

(
Nx−1∑
i=0

(
∂ u(xi + ∆x/2, y0)

∂x

)2

∆x

)
+

+∆y

Ny−1∑
j=1

(
Nx−1∑
i=0

(
∂ u(xi + ∆x/2, yj)

∂x

)2

∆x

)
+

+
∆y

2

(
Nx−1∑
i=0

(
∂ u(xi + ∆x/2, yNy)

∂x

)2

∆x

)
For the seond order derivatives at the midpoints between the grid points use the matrix

Dxx =
1

2 (∆x)2



+3 −7 +5 −1

+1 −1 −1 +1

+1 −1 −1 +1
. . .

. . .
. . .

. . .

+1 −1 −1 +1

+1 −1 −1 +1

−1 +5 −7 +3


∈MNx×(Nx+1)

and a similar matrix Dyy for ∂2 u
∂y2

. A Kronecker product is used to generate the matrix approximat-
ing the second order derivatives on the grid. These finite difference approximations are consistent
of order 2. The integration over the rectangle is very similar to the first order derivatives. Similar
algorithms are used to integrate ∂2 u

∂y2
and ∂2 u

∂x ∂y , resp. their squares.

4.4.4 Bilinear interpolation on rectangular grids

To construct the interpolation operator the values at the four corners of a rectangle are used to
interpolate at a point in the rectangle. For this bilinear functions are used.

If a function u is defined on the unit square [0, 1] × [0, 1] ⊂ R2 the bilinear interpolation
based on the four corners is given by

u(ξ, η) = (1− ξ) (1− η)ui,j + ξ (1− η)ui+1,j + (1− ξ) η ui,j+1 + ξ η ui+1,j+1

= 〈


(1− ξ) (1− η)

ξ (1− η)

(1− ξ) η
ξ η

 ,


ui,j

ui+1,j

ui,j+1

ui+1,j+1

〉 .

SHA 16-12-21

4 REGULARIZATION WITH TWO INDEPENDENT VARIABLES 36

This can be used to define the (sparse) interpolation matrix Interp ∈M(Nx·Ny)×M to determine the
interpolated values at the data points (xi, yi). It is best constructed with the command sparse()

in Octave.

SHA 16-12-21

BIBLIOGRAPHY 37

List of Figures

1 Results of the first example for regularization . 5
2 Results of the second example for regularization . 6
3 Results of the third example for regularization . 7
4 Regularization towards a given circle . 8
5 Comparison of regularization and a smoothing spline 9
6 2D splines generated by regularization() . 10
7 A regularization with the solution, the third derivative and the jumps 16
8 A regularized surface, determined by random data 19
9 A surface determined by 5 data points, with regularization parameter λ2 = 0.05 . . . 20
10 A surface determined by 5 data points with different regularization parameters λ2 . 21
11 Regularization with λ1 = 0.1 and λ2 = 0 on different grids 22
12 A regularized surface determined by exp(−(x2 + y2)) on the unit square 23
13 A regularized surface determined by exp(−9 (x2 + y2)) on the unit square 23
14 A regularized surface determined by exp(−9 (x2 + y2)) on the unit square, using

tpaps() . 24
15 Comparing the contributions by the data differences FD and the bending energy F2,

for different values of λ2 > 0 . 25
16 Comparing the contributions in regularization2D() and tpaps() 25

Bibliography

[Adam03] R. Adams and J. Fournier. Sobolev Spaces. ISSN. Elsevier Science, 2003.

[Arca04] R. Arcangéli, M. C. L. de Silanes, and J. J. Torrens. Mulitimensional Minimizing Splines,
Theory and Applications. Kluwer Academic Publishers, 2004.

[Duch77] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Con-
structive Theory of Functions of Several Variables, volume 571 of Lecture Notes in Mathematics,
pages 85–100. Math. Res. Inst., Oberwolfach, Springer, Berlin, 1977.

[Eber96] D. Eberly. Thin–Plate Splines. Technical report, Geometric Tools, Redmond WA 98052,
1996. www.geometrictools.com/Documentation/ThinPlateSplines.pdf.

[Evan98] L. C. Evans. Partial Differential Equations. AMS, 1998.

[GreeSilv94] P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear
Models: A roughness penalty approach. Chapman and Hall, United Kingdom, 1994.

[LandLifs75] L. D. Landau and E. M. Lifshitz. Lehrbuch der Theoretischen Physik, Band VII,
Elastizitätstheorie. Akademie Verlag, Berlin, 1975.

[Neca12] J. Necas, C. Simader, Š. Necasová, G. Tronel, and A. Kufner. Direct Methods in the
Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer Berlin Heidelberg,
2012.

[Wahb90] G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, 1990.

SHA 16-12-21

	Contents
	Introduction
	Introduction to Regularization in One Dimension
	Examples
	A first example
	A second example
	A third example
	Regularization to a circle

	Regularization and splines
	Smoothing splines
	A 2D spline and variations by using regularization()

	The Algorithm and the Code
	The computational grid
	The data functional and its interpolation matrix
	Integration of first derivatives
	The continuous formulation
	The discrete implementation
	Boundary contributions

	Integration of second derivatives
	The continuous formulation
	The discrete implementation

	The Euler–Lagrange equation, natural boundary and jump conditions
	The continuous formulation
	A numerical example to illustrate the jumps
	The explicit solution if g1(x)=g2(x)=0
	The discrete implementation

	The code for the function regularization()

	Regularization with Two Independent Variables
	Documentation for the usage of the code
	Examples
	A first example, approximating a surface with random noise
	A second example, determined by a few points
	A third example, to illustrate that 2>0 is necessary
	A fourth example, approximating a given function
	A fifth example, comparing regularization2d() and tpaps()

	The algorithm and the code for the function regularization2D()
	The mathematics for the result in two dimensions
	Analytical results and the proof of unique existence
	Simple Proof of u = "017E0 implies u is Constant
	Numerical differentiation and integration on rectangles
	Bilinear interpolation on rectangular grids

	List of Figures
	Bibliography

