
16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

16bit Simulation with GNU Octave

Andreas Stahel
Bern University of Applied Sciences

OctConf 2017, March 20–22, 2017, CERN, Geneva

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Personal I

Andreas Stahel
Mathematics

Teaching:

Math at Bachelor level to mechanical and electrical engineers
Numerical Methods for the Master Program of Biomedical
Engineering
A class on how to use Octave to solve engineering problems

As member of the Institute for Human Centered Engineering
(HuCE): many industry projects in mathematical modeling

Web: https://web.ti.bfh.ch/sha1/

E-mail: Andreas.Stahel@bfh.ch

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Personal II

Concerning Octave:

Octave is used regularly for teaching, project work and research.

I teach a class on how to use Octave for engineering problems.

I started using Octave in 1993/94 and am addicted to it since.

Octave replaces MATLAB for many reasons: open source, great
community support, platform independent, (legally) free.

My professional life would be different without Octave!

Thank you guys

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Why computing on a µC?

Some µC are very affordable and thus used in many devices, not
visible by the user.

Functions can useful to calibrate sensors, or one might do a first
step of the data treatment on the µC based sensor.

Developing on a true µC can be tedious. Using a desktop and
the power of Octave is convenient.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Facts for Computing on µC I

On most affordable µC only integer arithmetic is implemented in
hardware, i.e. no FPU.

Floating point libraries are large, slow and the results are often
overly accurate.

If you use a 12bit AD converter, there is no need for a 32bit
accuracy of the subsequent calculations.

Since +, − and ∗ are available one can aim to implement
polynomial functions.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Facts for Computing on µC II

Different approaches are possible to implement the evaluation of a
given function. It is often a compromise between the amount or
required storage and the computations needed.

more storage ←→ less storage
fewer computations ←→ more computations

look up table
piecewise interpolation
linear quadratic

one global
polynomial

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Facts for Computing on µC III

On a typical 16bit µC the arithmetic operations for integers are
implemented in harware.

16bit ± 16bit → 16bit
16bit ∗ 16bit → 32bit

Division by 216 is free (high double byte), division by 2k is cheap
(shift).

Use full the ranges available for the data types int16 or int32 to
obtain optimal accuracy.

For multiplications we aim to use the full range of 32bit results,
but will only use the high double byte for further computations.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Approximation by Polynomials

To approximate a given function on a bounded interval by a
polynomial, different mathematical tools might be useful:

Linear regression, i.e. least square approximation

Chebyshev approximation

Optimization by using fminsearch(), based on maximum
norm, or L2-norm, or . . .

A combination of the above.

For the problem at hand I worked with Chebyshev approximations.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Chebyshev Approximation I

The Chebyshev polynomials on the interval [−1 , +1] are given by

Tn(x) = cos(n arccos(x))

T0(x) = cos(0) = 1

T1(x) = cos(arccos(x)) = x

T2(x) = 2 x2 − 1

T3(x) = 4 x2 − 3 x

T4(x) = 8 x4 − 8 x2 + 1

...

A recursive identity allows to determine the polynomials efficiently.

Tn+1(x) = 2 x · Tn(x)− Tn−1(x)

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Chebyshev Approximation II

A function defined on [−1 ,+1] is approximated by a polynomial
pN(x) of degree N.

cn =
2

π

∫ 1

−1

f (x) Tn(x)
1√

1− x2
dx

f (x) ≈ pN(x) =
c0
2

+
N∑

n=1

cn Tn(x)

This is easily implemented in Octave.

If a function g(z) is defined on [a , b] then move it to the standard
interval [−1 ,+1] by f (x) = g(a + (x + 1) · b−a

2)

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Approximate arctan(x) by a Parabola

The above Chebyshev approximation can be used to approximate
the function f (x) = arctan((1 + x)/2) by a parabola.

f (x) ≈ p2(x) = −0.0709107 · x2 + 0.394737 · x + 0.4625339

= (−0.0709107 · x + 0.394737) · x + 0.4625339

The relative error of this approximation p2(x) can be determined
in bits, use log2(), leading to 7.97 ≈ 8 correct bits.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

x

y

Function and Chebyshev approximation

-1 -0.5 0 0.5 1
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

x

y

Error of Chebyshev approximation

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Setup for the 16bit Computation

To determine the 16bit values of

p2(x) = (−0.0709107 · x + 0.394737) · x + 0.4625339

aim for vector y16 and a factor yscale such that

yscale · y16 ≈ p2(x)

The goal is to implement this evaluation with a 16bit arithmetic,
while keeping the result as accurate as possible and avoiding
overflow, i.e. results exceeding ±215 .

Start with a fine grid of x-values, e.g. x=linspace(-1,1,100000);

Since −1 ≤ x ≤ 1 we multiply x by xscale and convert to int16

with x16 ≈ xscale · x , such that

−MaxVal ≤ x16 ≤ +MaxVal = 215 − 1 = 32767

With this we use the full accuracy available on a 16bit arithmetic.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Step 1: res1 = −0.070910677 · x + 0.3947365 I

To perform the first Horner step proceed as follows:

y = −0.070910677 · x + 0.3947365
y16 = -32767 (use full scale) yscale = 32767

0.070910677

prod16 = y16 * x16/216 yscale = yscale·xscale
216

if |prod16 + yscale · 0.395| > 32767 rescale, divide by 2k

add16 = int16(yscale * 0.3947365) integer to be added
y16 = prod16 + add16

With the above numbers rescaling by 1/4 is required and leads to
add16 = 22800 .

The result y16 satisfies

yscale · y16 ≈ −0.070910677 ∗ x + 0.3947365

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Step 1: res1 = −0.070910677 · x + 0.3947365 II

The result can be visualized, using exact (double precision) and
approximate (16bit) computations.

-1 -0.5 0 0.5 1
-40000

-20000

0

20000

40000

x

y
sc

al
ed

Result of step 1

true
16bit

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Step 2: res2 = res1 · x + 0.4625339 I

To perform the second Horner step proceed as follows:

y = res1 · x + 0.4625339

prod16 = y16 * x16/216 yscale = yscale·xscale
216

if |prod16 + yscale · 0.4625| > 32767 rescale, divide by 2k

add16 = int16(yscale * 0.4625339) integer to be added
y16 = prod16 + add16

With the above numbers no rescaling is required, thus add16 = 13357
The result y16 satisfies

yscale · y16 ≈ p2(x)

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

Step 2: res2 = res1 · x + 0.4625339 II

The result can be visualized, exact (double precision) and
approximate (16bit) computations.

-1 -0.5 0 0.5 1
-40000

-20000

0

20000

40000

x

y
sc

al
ed

Result of step 2

true
16bit

This is an approximation of the function arctan(1+x
2).

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

The Result

To examine the quality graph the difference of true function and its
16bit approximation. The accuracy is given by

7.96 bit for difference to the arctan-function
13.6 bit for the difference to the polynomial p2(x)

The error is dominated by the Chebyshev approximation.

-1 -0.5 0 0.5 1
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

x

di
ffe

re
nc

e

Difference to 16bit approximation

0.05 0.1 0.15 0.2 0.25

-0.0018

-0.0016

-0.0014

-0.0012

x

di
ffe

re
nc

e

Difference to 16bit approximation

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

The Resulting C++ Code

#include <octave/oct . h>
DEFUN DLD (atan32 , args , nargout , . . .

”atan with int16 ar i thmet ic ”)
// fo r x = z∗32767 and −1 <= z <= 1 the value of
// y = 28878.761∗ arctan ((z+1)/2) w i l l be computed
{

s tat i c int i 0 = −32767;
s tat i c int i 1 = +22800;
s tat i c int i 2 = +13357;
int x = args (0) . i n t va l u e () ; int r ;
r = i1+((i0∗x)>>18);
r = i2+((x∗ r)>>16);
return o c t a v e v a l u e l i s t (octave va lue (r)) ;

}

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

In General I

The above Horner steps can be implemented in an Octave
function. Examine the code HornerStep.m.

The Chebyshev approximation can be of higher order, leading to
more accuracy and more computational effort.

There is no need for manual intervention. One can pack all of
the above in an Octave script. Examine the code atan16.m.

Using the code in atan16.m for a Chebyshev approximation of
order 4 leads to smaller errors.

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

In General II

For the approximation by p4(x) of degree 4 we obtain an accuracy of

12.3 bit for difference to the arctan-function
14.1 bit for the difference to the polynomial p4(x)

The error contributions by the Chebyshev approximation and the
16bit arithmetic are of the same magnitude.

-1 -0.5 0 0.5 1
-0.0002

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

x

di
ffe

re
nc

e

Difference to 16bit approximation

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

A Fast Division in Hardware

The above technique was used to develop a fast hardware algorithm
to divide numbers.

Title: An Efficient Hardware Implementation for a Reciprocal
Unit

Authors: A. Habegger, A. Stahel, J Götte, M. Jacomet all Bern
University of applied Sciences

DELTA 2010: 5th IEEE Symposium on Electronics Design, Test
& Applications

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

What can I give to the community?

All of the above would not be possible without the help of the great
Octave community.

Thank you guys

It is only fair that I try to contribute too.

Find the lecture notes, codes and data on my web page
web.ti.bfh.ch/˜sha1 in the frame Octave, search for the file
OctaveAtBFH.pdf. Or use the direct link
web.ti.bfh.ch/˜sha1/Labs/PWF/Documentation/OctaveAtBFH.pdf

For a class on statistics I put together a collection of commands
in web.ti.bfh.ch/˜sha1/StatisticsWithMatlabOctave.pdf .

On a few occasions I reported bugs or contributed some code to
Octave and its packages1.

1The help and support you get from the community is amazing and beats any
tech support from commercial companies I deal with!

https://web.ti.bfh.ch/~sha1/
https://web.ti.bfh.ch/~sha1/Labs/PWF/Documentation/OctaveAtBFH.pdf
https://web.ti.bfh.ch/~sha1/StatisticsWithMatlabOctave.pdf

16bit Simulation
with GNU
Octave

Andeas Stahel

Personal

Context

Compute on µC

Approximation

An Example

Approximation

16bit Arithmetic

The Result

In General

Closing

16bit Simulation with GNU Octave

That’s all folks

Thank you for your attention

Slides and codes are available at
web.ti.bfh.ch/˜sha1/Octave/OctConf2017/

https://web.ti.bfh.ch/~sha1/Octave/OctaConf2017

	Personal
	Context
	Compute on C

	Approximation
	An Example
	Approximation
	16bit Arithmetic
	The Result

	In General
	Closing

