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Abstract
The Novikov–Veselov (NV) equation is a (2 + 1)-dimensional nonlinear
evolution equation generalizing the (1 + 1)-dimensional Korteweg–deVries
equation. The inverse scattering method (ISM) is applied for numerical solution
of the NV equation. It is the first time the ISM is used as a computational
tool for computing evolutions of a (2 + 1)-dimensional integrable system. In
addition, a semi-implicit method is given for the numerical solution of the
NV equation using finite differences in the spatial variables, Crank–Nicolson
in time, and fast Fourier transforms for the auxiliary equation. Evolutions of
initial data satisfying the hypotheses of part I of this paper are computed by the
two methods and are observed to coincide with significant accuracy.
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1. Introduction

We present two new numerical solution methods for the nonlinear Novikov–Veselov (NV)
equation

∂qτ

∂τ
= −∂3

z qτ − ∂
3
zqτ +

3

4
∂z(qτ vτ ) +

3

4
∂z(qτ vτ ), (1.1)

vτ (z) = ∂
−1
z ∂zqτ (z), (1.2)

where τ � 0 and ∂z = 1
2 ( ∂

∂x
+i ∂

∂y
). Here qτ (z) = qτ (x, y) is a real-valued function of variables

z = (x, y) ∈ R
2. The initial value q0(z) needs to be of a specific form described below, but
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does not have to be small. Equation (1.1), introduced in [18, 26], is a (2+1)-dimensional
generalization of the Kvd equation. One of our methods solves (1.1) directly using finite
differences, and the other method is based on an inverse scattering transform.

The inverse scattering method (ISM) for the NV equation takes the following form:

�t0(k) tτ (k)
exp(iτ(k3 + k

3
))·

�

�

QT

q0(z)

T
�

�

Q

q IS
τ (z)

�nonlinear evolution (1.1)
qNV

τ (z). (1.3)

Here T and Q stand for the direct and inverse nonlinear Fourier transform, discussed in more
detail in sections 2.2 and 2.4, respectively. The function tτ : C → C is called the scattering
transform. We denote by qNV

τ (z) the solution of equation (1.1) with initial data q0(z) and set

q IS
τ (z) = Q

(
exp(iτ (k3 + k

3
)) T (q0( · ))

)
. (1.4)

Now for certain initial data q0 it holds that q IS
τ ≡ qNV

τ , see [19]. The diagram (1.3) is analogous
to the celebrated ISM for the solution of the KdV equation introduced in [9].

The definition of the inverse nonlinear Fourier transform Q is based on solving a D-
bar equation. The D-bar methodology was developed by Beals and Coifman [4] within
the framework of integrable nonlinear evolution equations in dimension (1+1) and was first
applied to equations in dimension (2+1) in [1, 7]. By now it has been applied to many (2+1)-
dimensional equations, see the reviews [5, 8], and thus the computational techniques introduced
here have wide applicability.

It is shown in [14, 15] that the inverse scattering evolution q IS
τ in (1.3) is well-defined, real-

valued, and preserves conductivity type if the (possibly large) initial data q0 are rotationally
symmetric and of conductivity type. The term conductivity type is defined as follows.

Definition 1.1. A potential q ∈ Lp(R2) with 1 < p < 2 is of conductivity type if
q = γ −1/2�γ 1/2 for some real-valued γ ∈ L∞(R2) satisfying γ (z) � c > 0 for almost
every z ∈ R

2 and ∇(γ 1/2) ∈ Lp(R2).

The term ‘conductivity’ and the seemingly superficial square roots in definition 1.1 come
from the related studies of Calderón’s inverse conductivity problem, see [17]. Furthermore,
according to a recent result by Peter Perry [19], the equality q IS

τ = qNV
τ holds in (1.3) for the

choice of q0 considered in part I of this paper [15].
This paper presents the first use of the ISM as a computational tool for computing

evolutions of an integrable system in dimension (2 + 1). For the numerical use of the ISM
for (1 + 1)-dimensional equations, see [20, 23]. Solving the NV equation by the ISM has
certain advantages over the use of traditional approaches such as finite differences. First,
one can compute the evolution at any desired time in a single computational step. Second,
based on previous work we have proofs of convergence for the method used to solve the D-bar
equation [12, 13] and estimates on the computational accuracy of the scattering transform [12].
The direct and inverse scattering algorithms used here were first developed in our research
projects related to electrical impedance tomography.
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We introduce also another algorithm, designed for direct computation of qNV
τ (z). It is

based on the numerical solution of the nonlinear partial differential equation (1.1) with auxiliary
equation (1.2), performed using an implicit finite-difference method in the spatial variables,
Crank–Nicolson in time, and fast Fourier transforms for the auxiliary equation.

Using the above two methods, we compute both q IS
τ and qNV

τ numerically for several initial
potentials satisfying the assumptions of part I and find that the results agree with remarkable
precision.

This paper is organized as follows. In section 2 we give some necessary background
and describe the numerical implementation of the ISM. The direct numerical solution of
equations (1.1) and (1.2) is described in section 3. A proof of the three-fold rotational invariance
of solutions to the NV equation is given in section 4. Some conserved quantities in the NV
evolution are derived in section 5. Numerical examples are provided in section 6.

2. Numerical solution by the ISM

2.1. Complex geometrical optics solutions

Assume that q0(z) is of conductivity type in the sense of definition 1.1. Consider the
Schrödinger equation

(−� + q0)ψ( · , k) = 0 (2.1)

where k ∈ C \ 0 is a parameter. Define the complex geometrical optics (CGO) solution ψ of
equation (2.1) as the solution characterized by

e−ikzψ(z, k) − 1 ∈ Lp̃ ∩ L∞(R2) for fixed k ∈ C \ 0, (2.2)

where 1 < p < 2 and 1/p̃ = 1/p − 1/2. Here and throughout the paper a point z = (x, y) in
R

2 (with a slight abuse of notation) will be identified with the complex number z = x +iy ∈ C,
so exp(ikz) = exp(i(k1 + ik2)(x + iy)).

As is shown in [17], ψ satisfies the Lippmann–Schwinger equation

ψ(z, k) = eikz −
∫

R2
Gk(z − ζ )q0(ζ ) dζ (2.3)

where the function Gk is Faddeev’s Green’s function

Gk(z) := eikzgk(z), −�Gk = δ, (2.4)

where gk is given by

gk(z) := 1

(2π)2

∫
R2

eiz·ξ

|ξ |2 + 2k(ξ1 + iξ2)
dξ, (−� − 4ik∂z)gk = δ. (2.5)

Note that the integral in (2.5) is not convergent and has to be interpreted in the sense of tempered
distributions. An accurate numerical algorithm for gk(z) is described in [10, 21, 22].

Theoretical construction of the functions ψ is done via the functions µ(z, k) :=
e−ikzψ(z, k) by noting that µ satisfies for each fixed k ∈ C \ 0

µ = 1 − gk ∗ (q0µ). (2.6)

Further, it is shown in [17] that µ( · , k) − 1 ∈ W 1,p̃(R2) and that µ can be written as

µ( · , k) = 1 − [I + gk ∗ (q0· )]−1(gk ∗ q0), (2.7)

where the operator I + gk ∗ (q0· ) : W 1,p̃(R2) → W 1,p̃(R2) is invertible for any k ∈ C \ 0.
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2.1.1. The periodic formulation While formula (2.7) is constructive in the theoretical sense,
numerical treatment calls for truncation of the computational domain.

We proceed by introducing a related periodic problem. Namely, assume that the initial
potential q0(z) is supported in the unit disc. Take ε > 0 and set s = 2 + 3ε. Define a square
S := [−s, s)2 and choose a cutoff function

η ∈ C∞
0 (R2), η(x) =

{
1 for |x| < 2 + ε,

0 for |x| > 2 + 2ε.
(2.8)

Define a 2s-periodic approximate Green’s function g̃k almost everywhere by g̃k(z) :=
η(z)gk(z) for all nonzero z ∈ S and extending periodically:

g̃k(z + j2s + i�2s) = η(z)gk(z) for x ∈ S \ 0, j, � ∈ Z. (2.9)

Also, extend q0 periodically and call the result q̃0.
Now instead of the non-periodic equation (2.6) we consider the periodic equation

µ̃ = 1 − g̃k∗̃(q̃0µ̃), (2.10)

where ∗̃ denotes convolution on the torus. Analogously to (2.7) we can write

µ̃( · , k) = [I + g̃k∗̃(q̃0· )]−11, (2.11)

where the existence of the inverse operator can be derived from the uniqueness of solution to
(2.6).

Why would solving equation (2.10) be useful for the solution of (2.6)? It was shown in [3]
that for any k ∈ C \ 0 we have

µ̃(z, k) = µ(z, k) for |z| < 1. (2.12)

Combining (2.12), (2.6) and the fact that supp(q0) ⊂ D(0, 1) yields

µ(z, k) = 1 −
∫

|ζ |<1
gk(z − ζ )q0(ζ )µ̃(ζ, k) dζ.

Thus the periodic solution of (2.10) gives the solution of (2.6) everywhere in the z-plane. The
proof is a simplification of the proof of [3, theorem 2].

2.1.2. Approximate solution of the periodic equation Assume we are given a nonzero complex
number k. Choose a positive integer m, denote M = 2m, and set h = 2s/M . Define a grid
Gm ⊂ Q by

Gm = {jh | j ∈ Z
2
m}, (2.13)

Z
2
m = {j = (j1, j2) ∈ Z

2 | − 2m−1 � j� < 2m−1, � = 1, 2}.
Note that the number of points in Gm is M2. Define the grid approximation ϕh : Z

2
m → C of a

function ϕ : Q → C by

ϕh(j) = ϕ(jh). (2.14)

Our aim is to compute the matrix µ̃h(j, k) approximately.
Recall the periodic Green’s function g̃ defined in (2.9), and set

g̃h(j) =
{
g̃k(jh), for j ∈ Z

2
m \ 0,

0, for j = 0; (2.15)

note that here the point jh ∈ R
2 is interpreted as the complex number hj1 + ihj2. Now g̃h is

simply a M × M matrix with complex entries. Given a periodic function ϕ, the convolution
(g̃k∗̃ϕ)h(j) is approximately given by

(g̃k∗̃ϕ)h = h2 f−1
(
f(g̃h) · f(ϕh)

)
, (2.16)
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where f stands for discrete Fourier transform (DFT) and · denotes element-wise matrix
multiplication. This approach is based on the fact that convolution ∗̃ on the torus becomes
multiplication under DFT. Note that the grid Gm is defined so that fast Fourier transform is
readily applicable to (2.16).

The final trick is to renumber the elements of any M × M matrix using just one index;
in other words, to express functions given on grid points as vectors in R

M·M . Then equation
(2.12) takes the form of a system of linear equations that can be solved using a iterative method,
such as GMRES.

The numerical solution method discussed here was introduced by Vainikko [25] (see
also [24]) for the Lippmann–Schwinger equation and later adapted to the present context
in [16].

2.2. The nonlinear Fourier transform T

The scattering transform t0 : C → C of q0 is defined by

t0(k) =
∫

R2
eikzq0(x)ψ(z, k) dz, (2.17)

where ψ is the CGO solutions to the Schrödinger equation (2.1) with asymptotics (2.2); here k

is a nonzero complex parameter. We denote T q0 = t0.
Why is T called the nonlinear Fourier transform? This is because asymptotically

ψ(z, k) ∼ eikz as |z| → ∞, and substituting eikz in place of ψ(z, k) into (2.17) results in∫
R2

ei(kz+kz)q0(z) dx dy =
∫

R2
e−i(−2k1,2k2)·(x,y)q0(z) dx dy

= q̂0(−2k1, 2k2).

However, in (2.17) the function ψ depends on q0 via the equation (2.1), and therefore the map
q0 
→ T q0 is nonlinear. The terminology dates back at least to 1974, as evidenced by the title
of [2].

Formula (2.17) is not always well-defined. Given a general initial potential q0( ·) :
R

2 → R, for some k ∈ C \ 0 there may not exist a unique CGO solution of equation
(−� + q0)ψ( · , k) = 0 with the asymptotic property ψ ∼ eikz when z tends to infinity.
Such k are called exceptional points of q. By [17] we know that potentials of conductivity
type in the sense of definition 1.1 do not have exceptional points.

2.3. The D-bar equation

Given the initial scattering data t0(k), one can compute the scattering data of the evolved
potential at time τ > 0 simply by pointwise multiplication with the appropriate exponential

function: tτ (k) = exp(iτ(k3 + k
3
))t0(k). Determining the potential qτ from the knowledge of

tτ is based on a so-called D-bar equation.
Denote e−k(z) = e−i(kz+kz). We look for functions µτ satisfying the D-bar equation

∂kµτ (z, k) = t0(k)

4πk
e−k(z)µτ (z, k), (2.18)

with the asymptotic condition

µτ (z, ·) − 1 ∈ L∞ ∩ Lr(C) for fixed z ∈ R
2, (2.19)

where 2 < r < ∞.
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Since q0(z) is of compactly supported and conductivity type, by [17, 14] the scattering
transform tτ (k) belongs to the Schwartz class, and the unique solution µτ to equation (2.18)
can be determined as the unique solution of the integral equation

µτ (z, k) = 1 +
1

4π2

∫
R2

tτ (k
′)

k̄′(k − k′)
e−k′(z)µτ (z, k′) dk. (2.20)

In the numerical solution of (2.20), the integral is truncated to a set {|k| � R} for some
R > 0 generally chosen by inspection of the scattering transform, and a periodic formulation
of (2.20) is utilized, defined in the same manner as section 2.1.1.

Note, however, that since the ∂ equation (2.18) is only real-linear and not complex-linear
due to the complex conjugate on the right-hand side of (2.18) and hence (2.20), one must write
the real and imaginary parts of the unknown function µτ separately in the vector of function
values at the grid points. (Another option would be to use a dedicated iterative method as
described in [6].) It is proven in [12] that the error decreases as R tends to infinity. The
truncated integral equation is solved numerically by the method described in [13] for each
point z at which the evolved potential is to be computed.

2.4. The inverse nonlinear Fourier transform Q

The inverse scattering map Q : tτ 
→ qτ is defined by

(Qtτ )(z) := i

π2
∂z

∫
C

tτ (k)

k
e−k(z)µτ (z, k) dk, (2.21)

where dk denotes Lebesgue measure on C. The functions µτ (z, k) in (2.21) are the unique
solutions of the ∂ equation (2.18) satisfying the asymptotics (2.19).

From [15, corollary 7.1], real-valued, smooth, rotationally symmetric initial data of
compactly supported conductivity type remain of conductivity type under evolution by the
ISM. Moreover, the evolved potential qτ has no exceptional points. Thus, the conductivity γτ

associated with the potential qτ is given by

γτ (z) = µτ (z, 0)2. (2.22)

Therefore, in the computations, qτ is computed by numerical differentiation of γτ by the
formula

qτ (z) = γ −1/2
τ (z)�γ 1/2

τ (z).

3. Numerical solution by the finite-difference method

To compare the ISM solution presented in section 2 we use a finite-difference approach,
combined with a convolution argument. We chose not to use a spectral method for the
problem, since the standard finite difference method allows for an easy implementation of
the non-periodic boundary conditions. For periodic boundary conditions spectral methods are
more efficient, see, for example, [11].

In this section we will suppress the subscript τ on qτ and vτ indicating the τ dependence
in order to simplify the notation. Using the following identities, we rewrite the differential
operator in (1.1) in a form more natural for finite-difference computations. We use

4 (∂3
z + ∂̄3

z ) = 1

2

(
∂

∂x
− i

∂

∂y

)3

+
1

2

(
∂

∂x
+ i

∂

∂y

)3

= ∂3

∂x3
− 3

∂

∂x

∂2

∂y2
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and the nonlinear contribution in (1.1) can be written as follows:

2 ∂z (q v) = 2 ∂z ((q1 + i q2) (v1 + i v2))

=
(

∂

∂x
(q1 v1 − q2 v2) +

∂

∂y
(q1 v2 + q2 v1)

)
+ i

(
∂

∂x
(q1 v2 + q2 v1) − ∂

∂y
(q1 v1 − q2 v2)

)
and similarly for 2 ∂̄z (q v̄). This leads to

2 ∂z (q v) + 2 ∂̄z (q v̄) = 2

(
∂

∂x
(q1 v1) +

∂

∂y
(q1 v2)

)
+ i 2

(
∂

∂x
(q2 v1) +

∂

∂y
(q2 v2)

)
where (v1, v2)

T is the solution of equation (1.2). Using q = q1 + i q2, v = v1 + i v2 and

2 ∂zq =
(

∂

∂x
q1 +

∂

∂y
q2

)
+ i

(
∂

∂x
q2 − ∂

∂y
q1

)
2 ∂̄zv =

(
∂

∂x
v1 − ∂

∂y
v2

)
+ i

(
∂

∂x
v2 +

∂

∂y
v1

)
the ∂ equation (1.2) can be rewritten as a system of real equations.

∂̄zv = ∂zq ⇐⇒


∂

∂x
v1 − ∂

∂y
v2 = ∂

∂x
q1 + ∂

∂y
q2

∂

∂x
v2 +

∂

∂y
v1 = ∂

∂x
q2 − ∂

∂y
q1.

If the initial value q0 = q1 + i q2 is real valued (q2 = 0) then all occurring expression remain
real valued and we have to examine the nonlinear evolution equation

∂

∂τ
q = −1

4

∂3

∂x3
q +

3

4

∂3

∂x ∂y2
q +

3

4
div

(
q

(
v1

v2

))
(3.1)

The three main challenges to consider for numerical solutions of the evolution equation by a
finite-difference method are

• the linear contribution to the evolution equation: use a Crank–Nicolson scheme to preserve
the L2 norm,

• the ∂ equation: use Green’s function and FFT to implement the convolution,
• the nonlinear contribution to the evolution equation: use an explicit scheme.

We consider each of these in turn in more detail.

3.1. The linear problem

The linear part of equation (3.1) is given by

∂

∂τ
qτ = −1

4

∂3

∂x3
qτ +

3

4

∂3

∂x ∂y2
qτ = −A qτ (3.2)

and we examine the domain � = [−L, L] × [−L, L], i.e. −L < x, y < L. We have a known
initial condition q0(x, y). Since we have an odd number of derivatives in the operator A we
find by multiple integrations by parts

〈u, A v〉 = −〈A u, v〉
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and as a consequence the norm of u remains constant

‖qτ (·, ·)‖L2 = const.

This feature should also hold true for the approximate solution.
For a space discretization we use a uniform grid with �x = �y = 2 L

N+1 . Time steps will
be denoted by ti with fixed increment �t . For 1 � k, j � N and i ∈ N0 we use

ti = i �t

xj = x0 + j �x = −L + (j + 1) �x

yk = y0 + k �x = −L + (k + 1) �x

Let

qi,j,k = qτ (ti , xj , yk)

and for a given value of i ∈ N0 we consider the vector �qi ∈ R
N ·N of all values at this time

slice.
First-order derivatives with respect to one variable are approximated by the usual centered

difference formula
d

dx
qτ (x) = 1

2 �x
(−qτ (x − �x) + qτ (x + �x)) + O(�x2)

with a resulting finite-difference matrix Dx , respectively Dy . The second-derivatives are
approximated by

d2

dx2
qτ (x) = 1

�x2
(qτ (x − �x) − 2 qτ (x) + qτ (x + �x)) + O(�x2)

with a matrix Dxx and similarly for third-order derivatives with the matrix

Dxxx = 1

2 (�x)3



0 −2 1
2 0 −2 1

−1 2 0 2 1
−1 2 0 −2 1

. . .
. . .

. . .
. . .

. . .

−1 2 0 −2 1
−1 2 0 −2

−1 2 0


.

All finite-difference approximations are consistent of order 2. Using the Kronecker product
⊗ we can now write down a simple formula for the RSH operator in (3.2).

A = 1

4
Dxxx ⊗ IN − 3

4
(Dx ⊗ IN) · (IN ⊗ Dyy).

Based on the above construction the real matrix A will be antisymmetric, i.e. AT = −A.
The PDE (3.2) is transformed to a system of linear ODEs

d

dτ
�q(τ) = −A �q(τ).

We use a Crank–Nicolson (CN) method to solve the linear system of ODE.
1

�t
(�qi+1 − �qi) = −1

2
A (�qi+1 + �qi)(

I +
�t

2
A

)
�qi+1 =

(
I − �t

2
A

)
�qi.

This finite-difference scheme is consistent of order �x2 = �y2 and �t2.
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Since the real N2 × N2 matrix A is antisymmetric we examine the discrete conservation
law using the midpoint �m between the points �qi and �qi+1 and the directional vector �w

�m = 1

2
(�qi+1 + �qi)

�w = 1

2
�t (�qi+1 − �qi) = −�t

4
A (�qi + �qi+1) = −�t

2
A �m

〈 �m , �w〉 = −�t

2
〈 �m , A �m〉 = +

�t

2
〈A �m , �m〉 = −〈 �m , �w〉

and thus �m and �w are orthogonal. One CN step may be writen as �qi = �m− �w and �qi+1 = �m+ �w.
Since

‖ �m ± �w‖2 = 〈 �m ± �w , �m ± �w〉 = ‖ �m‖2 + ‖ �w‖2 ± 〈 �w , �m〉 ± 〈 �m , �w〉
= ‖ �m‖2 + ‖ �w‖2

we conclude ‖�qi+1‖ = ‖ �m + �w‖ = ‖ �m − �w‖ = ‖�qi‖ and we have a discrete conservation
law. Based on the stability statement in the conservation law and the consistency of the finite-
difference scheme we have convergence for the linear contribution.

Computational aspects and results. All matrices for the CN step are be created as sparse
matrices. Since the same system of linear equations has to be solved for each step we perform
an LU factorization first and then apply one back-substitution for each time step. For a mesh
of the size N × N we work with

• matrices of the size N2 × N2 with a semibandwidth of 2 N ,
• LU factors L and U of the matrix I + �t

2 A of size N2 × N2 with full semibands of width
2 N , i.e. approximately 4 N3 numbers to be stored in sparse matrices. This is the main
memory need for this method,

• a computational effort for the LU factorization of N2 × N2,
• a computational effort for each back-substitution of 2 N3.

The above effects are confirmed by an implementation on a PC. Observe that storing one
floating number in a sparse matrix requires a little more than one integer and one double to be
stored, i.e. 12 byte. Thus we need approximately 770 MB of storage for a 256 × 256 grid.

3.2. Numerical solution of the ∂ equation

To examine the ∂ equation ∂̄z v = f on the full plane, with the boundary condition |v(z)| → ∞,
we use Green’s function. Thus we determine a numerical solution of the ∂ equation

∂̄z v = f or

(
∂

∂x
+ i

∂

∂y

)
v(x + i y) = 2 f (x + i y)

by

v(z) = 1

π

∫ ∫
R2

f (z′)
z − z′ dz′.

To compute this convolution integral we use a 2D-FFT. We have to restrict the computations
on the square to be examined.

To be consistent with the finite-difference approximation of the linear part in equation (3.1)
we examine a domain [−L, L] × [−L, L] with N interior nodes along each direction. We
have (at first) N2 nodes. Using FFT will quietly introduce a 2L periodicity and the convolution
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kernel will pick up sizable contributions from neighbouring domains. Thus we enlarge the
domain to twice the length in each direction and extend the function f by 0. We use the
enlarged domain for the convolution kernel h. Consequently we perform the following steps.

• Discretize the function

h(z) = h(x, y) = 1

π (x + i y)
.

To avoid the singularity we choose a grid where the origin is not a node.

• Enlarge the domain to a larger domain, we use twice the side length. Use zero padding
for the given function f (x, y), but use the enlarged domain for h.

• Compute the 2D-FFT H as a complex matrix.

• Compute the 2D-FFT F of the given function f (x, y).

• Compute V = F . ∗ H by pointwise multiplication and then v = v1 + i v2 as inverse
2D-FFT.

• Restrict the result on the smaller domain before returning the result.

3.3. A Semi-implicit method for the nonlinear problem

Denoting the nonlinear terms in equation (3.1) by M ,

M(q) = 3

4

(
∂

∂x
(q v1) +

∂

∂y
(q v2)

)
, (3.3)

we use the CN scheme for the linear part and an explicit method for the nonlinear part:

1

�t
(�qi+1 − �qi) = −1

2
A (�qi+1 + �qi) + M(�qi)(

I +
�t

2
A

)
�qi+1 =

(
I − �t

2
A

)
�qi + �t M(�qi)

�qi+1 =
(

I +
�t

2
A

)−1 ((
I − �t

2
A

)
�qi + �t M(�qi)

)
.

The computation of M(q) is done in a sequence of steps.

• For a given function q = qτ (x, y) compute

∂zq = 1

2

(
∂

∂x
q − i

∂

∂y
q

)
using a finite-difference operator.

• Use the solution operator from section 3.2 to determine v = v1 + i v2 as solution of
∂̄z v = ∂zq.

• Multiply the complex solution pointwise by q to obtain q v.

• Use a finite-difference operator to determine the desired expression M(q) in (3.3).

All of the above computations have to be included in each CN step. There is no convergence
proof yet for this scheme, but numerical experiments yield positive results.
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4. Three-fold rotational symmetry

The NV equation has the special property of three-fold invariance. That is, assume that q is a
solution of the evolution equation (1.1) and the initial condition q0(z) satisfies a three-fold
rotational symmetry. Then for arbitrary times τ the solution qτ (z) exhibits a three-fold
symmetry.

To prove this result we have to verify that if qτ (z) is invariant under rotations by φ = 120◦,
then ∂qτ

∂τ
is invariant. Let R(x, y) = (x cos φ−y sin φ , x sin φ +y cos φ) represent a rotation

by φ = 120◦. We have to show that

qτ (R(x, y)) = qτ (x, y) �⇒ ∂

∂τ
qτ (R(x, y)) = ∂

∂τ
qτ (x, y).

It is convenient to examine the evolution equation in the form of equation (3.1) in our
calculations. The three-fold invariance of q0 implies

d3

dx3
qτ (R(x, y)) = d3

dx3
qτ (x, y) = ∂3

∂x3
qτ (x, y).

Using, for example, a symbolic calculation program one can verify(
− d3

dx3
+ 3

d3

dx dy2

)
qτ (R(x, y)) =

(
− ∂3

∂x3
+ 3

∂3

∂x ∂y2

)
qτ (R(x, y)),

and thus if q0 is a three-fold invariant we find(
− d3

dx3
+ 3

d3

dx dy2

)
qτ (R(x, y)) =

(
− d3

dx3
+ 3

d3

dx dy2

)
qτ (x, y).

This only holds for φ = ±120◦ and is therefore the main reason for the three-fold symmetry.
Thus, we see that the linear terms preserve the three-fold invariance. We will now see that the
other contributions will not destroy this property. To consider the auxiliary equation in (1.1)
∂̄z vτ = ∂z qτ , let u(x, y) = v(x, y) + i w(x, y) and compute 2 ∂z u = ( ∂

∂x
− i ∂

∂y
) (v + i w) =

vx + wy + i (−vy + wx), or using a vector notation

2 ∂z

(
v

w

)
=

(
vx + wy

−vy + wx

)
and 2 ∂̄z

(
v

w

)
=

(
vx − wy

+vy + wx

)
.

By the chain rule

uR(x, y) := u(R(x, y)) = u(x cos φ − y sin φ , x sin φ + y cos φ)

uR,x = ∂

∂x
uR(x, y) = ux · cos φ + uy · sin φ

uR,y = ∂

∂y
uR(x, y) = −ux · sin φ + uy · cos φ

and similarly for vR,x , vR,y , wR,x and wR,y . Elementary algebra then leads to

2 ∂z

(
vR

wR

)
=

(
vR,x + wR,y

−vR,y + wR,x

)
=

[
+ cos φ − sin φ

+ sin φ + cos φ

]
· 2 ∂z

(
v

w

)
or, more concisely,

∂z uR = R ∂zu. (4.1)
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Similar calculations show ∂̄z uR = RT ∂̄zu . Now examine the ∂-equation

∂̄z v = ∂z q. (4.2)

If v(x, y) is a solution of (4.2) for a given q(x, y) satisfying q(R(x, y)) = q(x, y), then (4.1)
implies

∂zqR(x, y) = R ∂z q(R(x, y)) = R ∂z q(x, y).

Similarly,

∂̄zvR(x, y) = RT ∂̄ v(R(x, y)) = RT ∂z qR(x, y) = RTR ∂z q(x, y)

= ∂z q(x, y),

and consequently the rotated solution vR solves the original problem. This implies that
the solution v of (4.2) is rotationally invariant. It remains to verify that the expression
div(qτ �vτ ) in (3.1) is a three-fold invariant. The standard product rule and the assumptions
qτ (x, y) = qτ (R(x, y)) and �vτ (x, y) = �vτ (R(x, y) lead to the desired result.

5. Conserved quantities

To validate the numerical solution we use conserved quantities of the NV equations. The
evolution is closely related to the KdV evolution, but the L2 norm if the solution is not
conserved. We consider using the two conserved expressions.

I0 =
∫ ∫
R2

q(z) dz and I1 =
∫ ∫
R2

q(z)(∂−1
z̄ q)(z) dz.

To verify that I0 is constant, we use decaying conditions for all boundary contributions.
Then integration leads to

d

dτ
I0 =

∫ ∫
R2

d

dτ
qτ (z) dz

=
∫ ∫
R2

−1

4

∂3

∂x3
qτ +

3

4

∂3

∂x∂y2
qτ +

3

4
div

(
qτ

(
v1

v2

))
dx dy = 0.

For the numerical solution we cannot expect exact reproduction of I0, since there will be
boundary contributions. Starting with a compact support we expect deviations to be very
small at first and then get larger as time advances. We use an implicit scheme for the linear
contributions, and consequently we will observe small deviations.

To examine the conserved quantity I1, let w = ∂
−1
z q and thus

∂z w = q ⇐⇒


∂

∂x
w1 +

∂

∂y
w2 = 2 q1

∂

∂x
w2 − ∂

∂y
w1 = 2 q2.

This leads to

I1 =
∫ ∫
R2

q(z) (∂
−1
z q)(z) dz =

∫ ∫
R2

q(z) w(z) dz

=
∫ ∫
R2

(q1 + i q2) (w1 + i w2) dz
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Figure 1. A cross-sectional plot of the low and high-contrast radially symmetric initial
conductivities γ0 (left) and potentials q0 (right) in examples 1 and 2.

= 1

2

∫ ∫
R2

((
∂

∂x
w1 +

∂

∂y
w2

)
+ i

(
∂

∂x
w2 − ∂

∂y
w1

))
(w1 + i w2) dz

= 1

2

∫ ∫
R2

(
1

2

∂

∂x
(w2

1) +
∂

∂y
(w1 w2) − 1

2

∂

∂x
(w2

2)

)
dz

+
i

2

∫ ∫
R2

(
∂

∂x
(w1 w2) +

1

2

∂

∂y
(w2

2) − 1

2

∂

∂y
(w2

1)

)
dz = 0.

Thus I1 is independent of τ , without using the NV evolution. Based on this proof we do not
use I1 to validate the numerical solutions.

6. Numerical examples

The close agreement of the numerical solution of the evolution equation by the finite-difference
method and the ISM is demonstrated on several examples. The examples are chosen such that
q0(z) is radially symmetric to satisfy the assumptions of [15]. We also provide plots of the
evolution of the potential for these examples. Animations of the time evolution are available
at stacks.iop.org/Non/25/1799/mmedia.

6.1. Example conductivities

Examples 1 and 2. We consider a high and a low contrast initial potential that is a C∞

function of conductivity type. By increasing the contrast of the conductivity γ we increase the
contribution of the nonlinear terms in equation (3.1). Since the initial potentials are radially
symmetric, they can be easily viewed as cross-sectional plots (see figure 1 for such plots of γ

and q0.)
Fix 0 < ρ < 1 and let Fρ ∈ C∞

0 (R) for −ρ � x � ρ be given by

Fρ(x) := e
− 2(ρ2+x2)

(x+ρ)2(x−ρ)2 , (6.1)

http://stacks.iop.org/no/25/1799/mmedia
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Figure 2. A cross-sectional plot of the radially symmetric initial conductivity γ0 (left) and potential
q0 (right) for example 3.

and Fρ(x) = 0 for |x| > ρ. We define γ by

γ (z) := αFρ(|z|) + 1, (6.2)

with ρ = 0.95, which results in a support of B(0, ρ) for γ and q0. The Schrödinger potential
q0 is given outside the origin by

q0(z) := �γ 1/2(z)

γ 1/2(z)
= �Fρ(|z|)

Fρ(|z|) + 1/α
. (6.3)

Note that γ ≡ 1 and q ≡ 0 for |z| � ρ. Choosing α = 25 results in a maximum amplitude
of approximately 12 for q0, which we will refer to as example 1. Choosing α = 59 results in
a maximum amplitude of approximately 24 for q0, which we will refer to as example 2. The
nonlinear effects are only evident to the accuracy of our computations for the higher contrast
example of α = 59.

Example 3. The next example is a high amplitude C2 function of conductivity type. As in the
previous example, the contribution of the nonlinear terms increases as we increase the contrast
in γ , and the initial potential is radially symmetric.

Define Fρ ∈ C4
0(R) for −ρ � x � ρ by

Fρ(x) := (x2 − ρ2)4

(
1.5 − cos

3πx

2ρ

)
, (6.4)

and Fρ(x) = 0 for |x| > ρ. Define γ by formula (6.2) with α = 5 and ρ = 3/4 and q0 by
(6.3). Then max |q0| ≈ 26. Plots of γ and the corresponding potential q0 are found in figure 2.

6.2. Numerical evolutions

Contour plots of the real and imaginary parts of the evolution of the scattering transform
tτ (k) corresponding to example 1 are plotted for several τ in figure 3. Since the initial q0 is
radially symmetric and real, the initial scattering transform t0(k) is also radially symmetric
and real. As τ increases, the imaginary part of tτ grows. Also, the three-fold invariance in
tτ (k) is immediately visible in the plots. A movie of the evolving scattering transform both as
a contour and three-dimensional plots is available at stacks.iop.org/Non/25/1799/mmedia.

http://stacks.iop.org/no/25/1799/mmedia
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Figure 3. Contour plots of the real and imaginary parts of the evolving scattering transform tτ (k)

of example 1 for several values of τ . Since the initial q is radially symmetric and real, so is the
initial scattering transform t0(k). As time evolves the imaginary part grows. Note the three-fold
invariance in tτ (k). Movies are available at stacks.iop.org/Non/25/1799/mmedia.

http://stacks.iop.org/no/25/1799/mmedia
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Figure 4. Time evolution of the solution qτ at three times t = 0, 3 × 10−4, 6 × 10−4 for the
low contrast example 1. A movie of the time evolution is available at stacks.iop.org/Non/25/1799/
mmedia.

Figure 5. Time evolution of the solution qτ at τ = 0.001 for the low contrast example 1 (left) and
the high contrast example 2 (right). A movie of the time evolution of each example is available at
stacks.iop.org/Non/25/1799/mmedia.

Figure 4 shows the time evolution of example 1 at three times. Figure 5 shows the plots of
both examples 1 and 2 at time 0.001 computed on a 512×512 grid. To illustrate the three-fold
symmetry of the solution, we include a contour plot of example 2 in figure 6.

Concerning example 3, qτ at τ = 0.001 is shown in figure 7.
Time evolutions of all three solutions are given as movies available at stacks.iop.org/Non/

25/1799/mmedia.

6.3. Discussion of accuracy

Let us start by noting that the solutions computed by the ISM and the finite-difference methods
agree so closely that we only display in figures 4–7 the solution computed by the implicit
finite-difference method. However, we performed a couple of additional accuracy tests as well
and report the results below.

Denote the matrix representing the numerical approximation to qτ computed by the ISM by
q IS

τ and the matrix representing the numerical approximation to qτ computed by the implicit
finite-difference method by qFD

τ on the spatial grid defined above. The relative difference
between the solutions at time τ is defined as

RE = ‖q IS
τ − qFD

τ ‖∞
‖q IS

τ ‖∞
.

http://stacks.iop.org/Non/25/1799/mmedia
http://stacks.iop.org/Non/25/1799/mmedia
http://stacks.iop.org/no/25/1799/mmedia
http://stacks.iop.org/Non/25/1799/mmedia
http://stacks.iop.org/Non/25/1799/mmedia
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Figure 6. Contour plot of the solution qτ at time t = 0.001 for the high contrast example 2.

Figure 7. Time evolution of the solution qτ at τ = 0.001 for example 3. A movie of the time
evolution is available at stacks.iop.org/Non/25/1799/mmedia.

In all computations, the relative error increased with τ . For both examples 1 and 2, it was
only 10−3 at time τ = 0.001. Figure 8 contains plots of the difference between the solutions
computed by finite differences and the ISM for both the low amplitude example 1 and the high
amplitude example 2. Figure 9 shows the difference between the ISM solution and the finite-
difference solution for example 3. Very little structure is evident in the differences, indicating
that the difference is likely due to the computational method rather than the underlying
equation.

The agreement of the solution computed by the ISM and the implicit finite-difference
scheme improves as we refine the grid. For the high contrast example, the mean absolute
difference of the ISM solution and solution of the evolution equation drops from 0.12 to 0.04
as we move from a 256 × 256 grid to a 512 × 512 grid. For the low contrast example the
mean differences drop from 0.044 to 0.038 for the 256 × 256 grid and the 512 × 512 grid,
respectively.

http://stacks.iop.org/no/25/1799/mmedia
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Figure 8. A plot of the difference between the solutions computed by finite differences and the
ISM for the low contrast Example 1 (left) and the high contrast example 2. In each case, the relative
error between the solutions is O(10−3) in L∞ norm.

Figure 9. A plot of the difference between the solutions computed by finite differences and the
ISM for example 3. The relative error between the solutions is O(10−3) in L∞ norm.

The implicit finite-difference method is subject to errors due to reflections from the
boundary and errors caused by the discretization of the partial derivatives.

Errors in the computation from the ISM arise from two main sources. One is the inevitable
truncation of the scattering transform in the numerical solution of the D-bar equation (2.18),
resulting in some smoothing of the reconstructed solution. These errors have been studied in
the context of electrical impedance tomography in, for example, [12, 16]. The other source
of error is the approximation performed in the solution of the periodic D-bar equation with
truncated kernel. To study the latter error quantitatively, we computed the function Q(t̃0) using
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five different grids: 256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048 and 4096 × 4096. Here
t̃0(k) = t0(k) for |k| < 25 and t̃0(k) = 0 for |k| � 25. We measured the improvement of
accuracy by comparing the results on the coarser grids to the result on the finest grid at several
points z ∈ �. The average relative sup norm errors were

256 × 256 512 × 512 1024 × 1024 2048 × 2048
0.105 0.027 0.006 0.001

.

As discussed in section 5, the integral I0 of the potential qτ over the given square should be
constant in τ . For example 1 we observe the value I0 = 2.0545, with small variations between
2.0542 and 2.0551. For example 2 we find I0 = 5.295, with small variations between 5.293
and 5.298. For both examples the variations increase as time advances. This is consistent with
analytical reasoning.
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[3] Astala K, Mueller J L, Päivärinta L and Siltanen S 2010 Numerical computation of complex geometrical optics
solutions to the conductivity equation Appl. Comput. Harmonic Anal. 29 2–17

[4] Beals R and Coifman R R 1981 Scattering, transformations spectrales et équations d’évolution non linéaires
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[5] Beals R and Coifman R R 1986 The D-bar approach to inverse scattering and nonlinear evolution equations
Physica D 18 242–9

[6] Eirola T, Huhtanen M and von Pfaler J 2003 Solution methods for R-linear problems in C
n SIAM J. Matrix Anal.

Appl. 25 804–28
[7] Fokas A S and Ablowitz M J 1983 Method of solution for a class of multidimensional nonlinear evolution

equations Phys. Rev. Lett. 51 7–10
[8] Fokas A S and Sung L-Y 1992 On the solvability of the N-wave, Davey–Stewartson and Kadomtsev–Petviashvili

equations Inverse Problems 8 673–708
[9] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Method for solving the Korteweg–deVries equation

Phys. Rev. Lett. 19 1095–7
[10] Ikehata M and Siltanen S 2004 Numerical solution of the Cauchy problem for the stationary Schrödinger equation

using Faddeev’s Green function SIAM J. Appl. Math. 64 1907–32
[11] Klein C and Roidot K 2011 Fourth order time-stepping for Kadomtsev–Petviashvili and Davey–Stewartson

equations arXiv:1108.3345v2 6
[12] Knudsen K, Lassas M, Mueller J L and Siltanen S 2009 Regularized D-bar method for the inverse conductivity

problem Inverse Problems Imag. 3 599–624
[13] Knudsen K, Mueller J L and Siltanen S 2004 Numerical solution method for the Dbar-equation in the plane

J. Comput. Phys. 198 500–17
[14] Lassas M, Mueller J L and Siltanen S 2007 Mapping properties of the nonlinear Fourier transform in dimension

two Commun. PDEs 32 591–610
[15] Lassas M, Mueller J L, Siltanen S and Stahel A 2011 The Novikov–Veselov equation and the inverse scattering

method: I. Analysis Physica D at press (arXiv:1105.3903v1)
[16] Mueller J L and Siltanen S 2003 Direct reconstructions of conductivities from boundary measurements SIAM J.

Sci. Comput. 24 1232–66
[17] Nachman A I 1996 Global uniqueness for a two-dimensional inverse boundary value problem Ann. Math.

143 71–96
[18] Novikov S P and Veselov A P 1986 Two-dimensional Schrödinger operator: inverse scattering transform and

evolutional equations Physica D 18 267–73
[19] Perry P 2012 Miura maps and inverse scattering for the Novikov–Veselov equation arXiv:1201.2385v1
[20] Sacks Paul and Shin Jaemin 2009 Computational methods for some inverse scattering problems Appl. Math.

Comput. 207 111–23

http://dx.doi.org/10.1016/j.acha.2009.08.001
http://dx.doi.org/10.1016/0167-2789(86)90184-3
http://dx.doi.org/10.1137/S0895479802415946
http://dx.doi.org/10.1103/PhysRevLett.51.7
http://dx.doi.org/10.1088/0266-5611/8/5/002
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1137/S0036139903424916
http://arxiv.org/abs/1108.3345v2
http://dx.doi.org/10.3934/ipi.2009.3.599
http://dx.doi.org/10.1016/j.jcp.2004.01.028
http://dx.doi.org/10.1080/03605300500530412
http://arxiv.org/abs/1105.3903v1
http://dx.doi.org/10.1137/S1064827501394568
http://dx.doi.org/10.2307/2118653
http://dx.doi.org/10.1016/0167-2789(86)90187-9
http://arxiv.org/abs/1201.2385v1
http://dx.doi.org/10.1016/j.amc.2008.10.033


1818 M Lassas et al

[21] Siltanen S 1999 Electrical impedance tomography and Faddeev Green’s functions Ann. Acad. Sci. Fenn. Math.
Diss. 121 56

[22] Siltanen S, Mueller J and Isaacson D 2000 An implementation of the reconstruction algorithm of A. Nachman
for the 2-D inverse conductivity problem Inverse Problems 16 681–99

Siltanen S, Mueller J and Isaacson D 2000 Inverse Problems 17 1561–3 (erratum)
[23] Trogdon T, Olver S and Deconinck B 2011 Numerical inverse scattering for the Kortewegde Vries and modied

Kortewegde Vries equations Technical Report 1397 The Mathematical Institute, University of Oxford, Eprints
Archive

[24] Vainikko G 1993 Multidimensional Weakly Singular Integral Equations (Lecture notes in Mathematics vol 1549)
(Berlin: Springer) p 159

[25] Vainikko G 2000 Fast solvers of the Lippmann–Schwinger equation Direct and Inverse Problems of Mathematical
Physics (Int. Soc. Anal. Appl. Comput. vol 5) (Dordrecht: Kluwer Academic) p 423

[26] Veselov A P and Novikov S P 1984 Finite-gap, two-dimensional potential Schrödinger operators. Explicit
formulas and evolution equations Dokl. Akad. Nauk. SSSR 279 20–4

http://dx.doi.org/10.1088/0266-5611/16/3/310
http://dx.doi.org/10.1088/0266-5611/17/5/501

	1. Introduction
	2. Numerical solution by the ISM
	2.1. Complex geometrical optics solutions
	2.2. The nonlinear Fourier transform T
	2.3. The D-bar equation
	2.4. The inverse nonlinear Fourier transform Q

	3. Numerical solution by the finite-difference method
	3.1. The linear problem
	3.2. Numerical solution of the  equation
	3.3. A Semi-implicit method for the nonlinear problem

	4. Three-fold rotational symmetry
	5. Conserved quantities
	6. Numerical examples
	6.1. Example conductivities
	6.2. Numerical evolutions
	6.3. Discussion of accuracy

	 References

