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The Novikov-Veselov Equation:
Theory and Computation

R. Croke, J. L. Mueller, M. Music, P. Perry, S. Siltanen, and A. Stahel

Abstract. We review recent progress in theory and computation for the
Novikov-Veselov (NV) equation with potentials decaying at infinity, focusing
mainly on the zero-energy case. The inverse scattering method for the zero-
energy NV equation is presented in the context of Manakov triples, treating
initial data of conductivity type rigorously. Special closed-form solutions are
presented, including multisolitons, ring solitons, and breathers. The computa-
tional inverse scattering method is used to study zero-energy exceptional points
and the relationship between supercritical, critical, and subcritical potentials.
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1. Introduction

The Novikov-Veselov (NV) equation is the completely integrable, nonlinear dis-
persive equation

qt = 4 Re
(
4∂3q + ∂ (qw) − E∂w

)
(1.1)

∂w = −3∂q
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Here E is a real parameter, the unknown function q is a real-valued function of two
space variables and time, and the operators ∂ and ∂ are given by

∂ =
1

2
(∂x1

− i∂x2
)

∂ =
1

2
(∂x1

+ i∂x2
) .

At zero energy (E = 0) it can also be written (after trivial rescalings) as

(1.2) qt = −∂3
zq − ∂

3
q + 3∂z(qν) + 3∂z(qν̄), where ∂zν = ∂zq.

The NV equation (1.2) generalizes the celebrated Korteweg-de Vries (KdV) equa-
tion

qt = −6qqx − qxxx

in the sense that, if q(x1, t) solves KdV and νx1
(x1, t) = −3qx1

(x1, t), then q (x1, t)
solves NV.

The NV equation was introduced by Novikov and Veselov in [64,65] as one of
a hierarchy of completely integrable equations that generate isospectral flows for
the two-dimensional Schrödinger operator at fixed energy E. Indeed, the Novikov-
Veselov equation (1.1) admits the Manakov Triple Representation [48]

(1.3) L̇ = [A,L] −BL

where

L = −Δ + q − E,

A = 8
(
∂3 + ∂

3
)

+ 2
(
w∂ + w∂

)
,

B = −2
(
∂w + ∂w

)
.

Here B is the operator of multiplication by the function 2
(
∂w + ∂w

)
. That is, a

pair (q, w) solves the NV equation if and only if the operator equation (1.3) holds.
The Manakov triple representation implies that the NV equation is, formally at

least, a completely integrable equation. Thus one expects that, for a suitable notion
of “scattering data for L at fixed energy E,” the associated scattering transform
will linearize the flow.

For nonzero energy E and potentials q which vanish at infinity, the scattering
transform and inverse scattering method was developed by P. Grinevich, R. G.
Novikov, and S.-P. Novikov (see Kazeykina’s thesis [36] for an excellent survey
and see [23, 26–28] for the original papers). Roughly and informally, there is a
scattering transform T which maps the potential q to scattering data that obey a
linear equation if q obeys the NV equation, and an inverse scattering transform Q
which inverts T , so that the function

(1.4) q(x, τ ) = Q
[
ei(�

3+(�)3)τT (q0)
]
(x)
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solves the NV equation with initial data q0. The inverse scattering method may be
visualized by the following commutative diagram:

(1.5)

�t0(k) tτ (k)
exp(iτ(k3 + k

3
))( · )

�

T

q0(z)

�

Q

�Novikov-Veselov evolution
qNV
τ (z),

where T and Q stand for the direct and inverse nonlinear Fourier transform, re-
spectively, and the function tτ : C → C is called the scattering transform. In the
case E = 0, the inverse scattering method was studied by Boiti et. al. [9], Tsai
[89], Nachman [58], Lassas-Mueller-Siltanen [44], Lassas-Mueller-Siltanen-Stahel
[45,46], Music [54], Music-Perry [55], and Perry [68]. Recently, Angelopoulos [1]
proved that the Novikov-Veselov equation at E = 0 is locally well-posed in the
Sobolev spaces Hs(R2) for s > 1/2, placing the local existence theory for this equa-
tion on a sound footing. The potential utility of the inverse scattering method is
to elucidate global behavior of the solutions.

The case E = 0 is somewhat special and is intimately connected with the fol-
lowing trichotomy of behaviors for the two-dimensional Schrödinger operator L at
zero energy.

Definition 1.1. The operator L = −Δ + q is said to be:
(i) subcritical if the operator L has a positive Green’s function and the equation
Lψ = 0 has a strictly positive distributional solution,
(ii) critical if Lψ = 0 has a bounded strictly positive solution but no positive Green’s
function, and
(iii) supercritical otherwise.

This distinction first arose in the study of Schrödinger semigroups, i.e., the
operators e−tL where L = −Δ + q. Simon [79, 80] (see also [81]) studied Lp-
mapping properties of e−tL and asymptotics of

∥∥e−tL
∥∥
p,p

, where ‖ · ‖p,p denotes

the operator norm as maps from Lp to itself. Simon shows that

αp(q) = lim
t→∞

t−1 ln
∥∥e−tL

∥∥
p,p

is independent of p ∈ [1,∞]. In the language of Schrödinger semigroups, a potential
q is:

(i) subcritical if α∞ ((1 + ε) q) = 0 for some ε > 0,
(ii) critical if α∞ (q) = 0 but α∞ ((1 + ε) q) > 0 for all ε > 0, and
(iii) supercritical if α∞(q) > 0.

Clearly, a sufficient condition for q to be supercritical is that L have a negative
eigenvalue.

In [52], Murata showed that, for two-dimensional Schrödinger operators with
potentials q with q(x) uniformly Hölder continuous and q(x) = O

(
|x|−4−ε

)
for

some ε > 0, the trichotomy of behaviors for Schrödinger semigroups is equivalent
to Definition 1.1. Murata further studied the existence and properties of positive
solutions of the Schrödinger equation in [52], and showed that for his class of
potentials, the trichotomy could be characterized as follows: a potential is
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(i) subcritical if and only if Lψ = 0 has a strictly positive solution of the form
c log(|x|) + d + O

(
|x|−1

)
with c �= 0,

(ii) critical if Lψ = 0 if and only if Lψ = 0 has a strictly positive bounded
solution, and

(iii) supercritical if Lψ = 0 has no strictly positive solutions.
Extending Murata’s result, Gesztesy and Zhao [20] used Brownian motion tech-

niques to prove the following optimal result for critical potentials. Suppose that q
is a real-valued measurable function with

lim
α↓0

{
sup
x∈R2

∫
|x−y|≤α

ln
(
|x− y|)−1

)
|q(y)| dy

}
= 0

and ∫
|y|≥1

ln(|y|)|q(y)| dy < ∞.

Then q is critical if and only if there exists a positive, bounded distributional
solution ψ of Hψ = 0. These two conditions mean essentially that

q(x) = O
(
|x|−2 (ln(|x|))−2−ε

)
for some ε > 0. We refer the reader to [20] for further references and history.

As we will see, corresponding to the trichotomy in Definition 1.1, the scattering
transform of q is either mildly singular, nonsingular, or highly singular. This is
illustrated dramatically in the examples studied by Music, Perry, and Siltanen [56],
described in Section 5 below. One would expect the singularities of the scattering
transform to be mirrored in the behavior of solutions to the NV equation. We will
discuss the following conjecture, and some partial results toward its resolution, in
the last section of this paper:

Conjecture 1.2. The Novikov-Veselov equation ( 1.1) has a global solution for
critical and subcritical initial data, but its solution may blow up in finite time for
supercritical initial data.

To elucidate this conjecture, it is helpful to recall how the scattering trans-
form for Schrödinger’s equation is connected with Calderón’s inverse conductivity
problem [15]. Critical potentials are also known in the literature as “potentials of
conductivity type” because of their connection with the Calderón inverse conduc-
tivity problem: suppose one wishes to determine the conductivity σ of a bounded
plane region Ω by boundary measurements. The potential u of Ω with voltage f
on the boundary is determined by the equation

∇ · (σ∇u) = 0

u|∂Ω = f

Calderón’s problem is to reconstruct σ from knowledge of the Dirichlet-to-Neumann
map, defined as follows. If Ω has smooth boundary then the above boundary value
problem has a unique solution u for given f ∈ H1/2(∂Ω), so that

Λσf = σ
∂u

∂ν

∣∣∣∣
∂Ω

is uniquely determined. The map Λσ : H1/2(∂Ω) → H−1/2(∂Ω) is the Dirichlet-to-
Neumann map.
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This boundary value problem is equivalent, under the change of variables u =
σ−1/2ψ, to the Schrödinger problem

Δψ − qψ = 0

where q = σ−1/2Δ
(
σ1/2

)
. A potential of this form for strictly positive σ ∈ L∞ (and

some additional regularity) is called a potential of conductivity type. More precisely,
the class of potentials originally studied by Nachman [58] is as follows. We denote
by Lp

ρ(R
2) the space of measurable functions with norm ‖f‖Lp

ρ
= ‖〈x〉ρf‖p.

Definition 1.3. Let p ∈ (1, 2) and ρ > 1. A real-valued measurable function
q ∈ Lp

ρ(R
2) is a potential of conductivity type if there is a function σ ∈ L∞(R2)

with σ(x) ≥ c0 > 0 so that q = (Δ(σ1/2))/(σ1/2) in the sense of distribution
derivatives.

A real-valued potential in Lp
ρ(R

2) is of conductivity type if and only if it is

critical: the bounded, positive solution to Δψ − qψ = 0 is exactly ψ = σ1/2.
As shown by Murata [52,53], critical potentials are very unstable: if w ∈ C∞

0 (C)
is a nonnegative bump function and q0 is a critical potential, the potential qλ =
q0 +λw is supercritical for any λ < 0. This means that the set of critical potentials
is nowhere dense in any reasonable function space! Music, Siltanen, and Perry [56]
studied the behavior of the scattering transform for families of this type when q0
and w are both smooth, compactly supported, and radial. The corresponding scat-
tering transforms are mildly singular for subcritical potentials, regular for critical
potentials, and have circles of singularities for supercritical potentials.

The NV equation may be solved by inverse scattering for subcritical and critical
potentials, but it is not yet clear how to construct a solution by inverse scattering
for supercritical potentials.

In this article, we will focus primarily on the Novikov-Veselov equation at zero
energy. We will report on recent progress on both the theoretical and the numerical
analysis of this equation, and pose a number of open problems. In section 2 we
review the history of the inverse scattering method, the dispersion relation, symme-
tries and scaling properties, and conservation laws for the NV equation. In section
3, we give an exposition of the inverse scattering method for the NV equation at
zero energy from the point of view of the Manakov triple representation, treating
with full mathematical rigor the case of “smooth potentials of conductivity type”
(see Definition 3.2). We discuss the numerical implementation of the maps T and
Q in sections 3.2 and 3.3, respectively. In section 4, we discuss special closed-form
solutions of the NV equation including ring solitons and breathers. In section 5, the
computational inverse scattering method is used to study zero-energy exceptional
points and the relationship between supercritical, critical, and subcritical poten-
tials. Finally, in section 6, we discuss open problems. In an appendix, we collect
some useful tools for the mathematical analysis of the direct and inverse scattering
maps.

Notation. In what follows, we use the variable t to denote time except when
discussing the solution of NV via the inverse scattering method. In this case, τ
denotes time in order to distinguish t from t, the scattering transform.
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2. Background for the Zero-Energy NV Equation

First, we summarize the historical progress that led to the completion of the
diagram (1.5) for the NV equation at zero energy. In 1987, Boiti, Leon, Manna and
Pempinelli [9] studied the evolution under the assumption that q0 is such that the
solution qNV

τ to (1.1) exists and does not have exceptional points and established
that the scattering data evolves as

T (qNV
τ ) = eiτ(k

3+k
3
)T (q0).

In 1994, Tsai [89] considered a certain class of small and rapidly decaying initial
data (which excludes conductivity-type potentials) and assumed that q0 has no
exceptional points and that qτ is well-defined. Under such assumptions, he then
showed that qτ is a solution of the Novikov-Veselov equation (1.1). In 1996, Nach-
man [58] established that initial data of conductivity type does not have exceptional
points and the scattering data T (q0) is well-defined. Nachman’s work paved the
way for rigorous results: all studies about diagram (1.5) published before [58] were
formal as they had to assume the absence of exceptional points without specify-
ing acceptable initial data. In 2007, Lassas, Mueller and Siltanen [44] established
for smooth, compactly supported conductivity-type initial data with σ ≡ 1 out-
side supp(q0) that there is a well-defined continuous function qτ : R2 → C from
the inverse scattering method satisfying the estimate |qτ (z)| ≤ C(1 + |z|)−2 for all
τ > 0. In [45] it was shown that an initially radially-symmetric conductivity-type
potential evolved under the ISM does not have exceptional points and is itself of
conductivity-type. Note that in [56] the set of conductivity type potentials is shown
to be unstable under C∞

0 perturbations. In [46] evolutions computed from a nu-
merical implementation of the inverse scattering method of rotationally symmetric,
compactly supported conductivity type initial data are compared to evolutions of
the NV equation computed from a semi-implicit finite-difference discretization of
NV and are found to agree with high precision. This supported the integrability
conjecture that was then established in [67] for a larger class of initial data us-
ing the inverse scattering map for the Davey-Stewartson equation and Bogdanov’s
Miura transform.

In Section 4 of this paper, we present several closed-form solutions of the NV
equation. We briefly review earlier constructions of solutions for the NV equation
without presenting an exhaustive list. Grinevich, Manakov and R. G. Novikov con-
structed solition solutions using nonlocal Riemann problem techniques in [22–24,
24,27] for nonzero energy and with small initial data. Also, solitons are constructed
by Grinevich using rational potentials in [22], by Tagami using the Hirota method
in [82], by Athorne and Nimmo using Moutard transformation in [2], by Hu and
Willox using a nonlinear superposition formula in [32], by Xia, Li and Zhang us-
ing hyperbola function method and Wu-elimination method in [95], by Ruan and
Chen using separation of variables in [71–73,98], and by J.-L. Zhang, Wang, Wang
and Fang using the homogeoneous balance principle and Bäcklund transformation
in [32]. Lump solutions are constructed by Dubrovsky and Formusatik using the

∂-dressing method in [16]. Dromion solutions are constructed by Ohta and Ünal
using Pfaffians in [66,90]. The Darboux transformation is used by Hu, Lou, Liu,
Rogers, Konopelchenko, Stallybrass and Schief to construct solutions in [33, 70].
Taimanov and Tsarëv [84–88] use the Moutard transformation to construct exam-
ples of Schrödinger operators L with L2 eigenvalues at zero energy, and solutions of
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NV which blow up in finite time. In [96,97] Zheng, J.-F. Zhang and Sheng explore
chaotic and fractal properties of solutions to the NV equation.

2.1. Dispersion, group velocity and phase velocity. Solitons form when
there is a balance between nonlinearity and dispersion. The dispersion relation is
the relation that gives the frequency as a function of the wave vector (k1, k2). To
find the dispersion relation for the NV equation, consider the linear part of the
equation

(2.1) qt = −1

4
qxxx +

3

4
qxyy

The plane wave functions q(x, y, t) = ei(k1x+k2y−ωt) are solutions to (2.1) provided

(2.2) ω = −1

4
k31 +

3

4
k1k

2
2 .

Equation (2.2) defines the dispersion relation for the NV equation.
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Figure 1. Surface plot (left) and heat map (right) of the NV
dispersion relation ω(k) = k21/4 + 3k1k

2
2/4

The phase velocity, cp, which gives the velocity of the wavefronts, is defined by

cp = ω(k)
|k|2 (k1, k2)

T and for the NV equation is

(2.3) cp =
k31 − 3k1k

2
2

4(k21 + k22)
(k1, k2)

T .

The group velocity, which gives the velocity of the wave packet, is

cg ≡ ∇ω =
3

4

(
−k21 + k22 , 2k1k2

)T
.

2.2. Symmetries and Scaling. To understand how scaling of the depen-
dent and independent variables change the NV equation, let us first consider the
auxilliary ∂ equation in equation (1.2) in the form

∂ν = ∂q, ν = v + iw.

Note that under the transformation r(x, y, t) ≡ γν(αt, βx, βy) and s(x, y, t) ≡
γq(αt, βx, βy), the ∂ equation remains unchanged, i.e ∂ν = ∂q if and only if ∂r = ∂s.
Then rx(x, y, t) = βγνx(αt, βx, βy) and ry(x, y, t) = βγνy(αt, βx, βy).

Now, we examine the main equation as presented in equation (1.2). Note that
st(x, y, t) = αγqt(αt, βx, βy), sxxx(x, y, t) = β3γqxxx(αt, βx, βy), sxyy(x, y, t) =
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β3γqxyy(αt, βx, βy), and (qv)x + (qw)y = γ2β((s(r))x + (s�(r)y). Assuming q is
a solution to the NV equation (1.1), we find

4qt = −uxxx + 3qxyy + 3(qv)x + 3(qw)y

=⇒ 4

αγ
st = − 1

β3γ
sxxx +

3

β3γ
sxyy +

3

βγ2
(s(r))x +

3

βγ2
(s�(r))y.

Multiplying by αγ leads to

(2.4) 4st = − α

β3
sxxx +

3α

β3
sxyy +

3α

βγ
((sr1)x + (sr2)y).

The table below shows the possible sign conventions possible for each term of
the right hand side of equation (2.4).

α β γ Signs in (2.4)
+ + + - + +
- - + - + +
- + + + - -
+ - + + - -
+ + - - + -
- - - - + -
- + - + - +
+ - - + - +

Thus, there is a fixed ratio of -3 of the coefficients of the linear spatial terms, and
any other coefficient is possible by proper rescaling of independent and dependent
variables.

We also consider under what rotations the Novikov-Veselov equation is invariant.
Writing the NV equation as

qt = −∂3q − ∂3q + 3∂(qν) + 3∂(qν),(2.5)

∂ν = ∂q,(2.6)

it is easy to see by conjugating (2.5), that if q is real at time t0, then q stays real.
If the initial value q0(z) is invariant under rotations by ± 2π

3 , then the Novikov-
Veselov evolution preserves this symmetry, see [46]. In particular, all radially sym-
metric initial values will lead to solutions with this three-fold symmetry.

Under such rotations, equation (2.5) becomes

(2.7) qt = eiθ∂z′(ν′q) + eiθ∂z′(ν′q) − e3iθ∂
3

z′q − e−3iθ∂3
z′q

where ν′ = e−iθν. The auxiliary equation becomes

eiθ∂z′ν = e−iθ∂z′q

or

∂z′ν′ = e−3iθ∂z′q,

and so we have invariant solutions under rotations of 2π/3 and 4π/3. This shows
that if a solution to the NV equation has this symmetry, it must be preserved under
the evolution. It does not mean that all solutions will display this type of symmetry.
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2.3. Conservation Laws for the NV equation. In order to present the
conservation laws for (1.1), we need to recall some ideas from the inverse scattering
method. A rigorous derivation of the conservation laws for smooth potentials of
conductivity type is given below in section 3.

Suppose that q ∈ Lp(R2) for some p ∈ (1, 2). The scattering data, or scattering
transform t : C → C of q is defined via Faddeev’s [18] complex geometric optics
(CGO) solutions, which we now recall. Let z = x + iy and k = k1 + ik2. For
k ∈ C with k �= 0, the function ψ(z, k) is the exponentially growing solution of the
Schrödinger equation

(2.8) (−Δ + q)ψ(·, k) = 0

with asymptotic behavior ψ(z, k) ∼ eikz in the following sense: for p̃ defined by
1
p̃ = 1

p − 1
2 , we have

(2.9) e−ikzψ(z, k) − 1 ∈ Lp̃(R2) ∩ L∞(R2).

It is more convenient to work with the normalized complex geometric optics solu-
tions (NCGO) μ(z, k) defined by

(2.10) μ(z, k) = ψ(z, k)e−ikz.

A straightforward computation shows that μ obeys the equation

∂ (∂ + ik)μ =
1

4
qμ, μ(·, k) − 1 ∈ Lp̃ ∩ L∞.(2.11)

One can reduce the problem (2.11) to an integral equation of Fredholm type
(see the discussion in section 3). Faddeev’s Green’s function gk is the fundamental
solution for the equation

−4∂(∂ + ik)u = f

(the factor of −4 is chosen so that, if k = 0, the equation reduces to −Δu = f whose
fundamental solution is the logarithmic potential; see Appendix A.1 for details).
One has

(2.12) μ = 1 − gk ∗ (qμ)

(where ∗ denotes convolution) and it can be shown that the operator ϕ �→ gk ∗ (qϕ)
is compact on Lp̃. Thus, for given k, the solution μ(z, k) exists if and only if it is
unique.

It is known that such solutions exist for any q ∈ Lp provided that |k| is suf-
ficiently large. In general, however, the equation (2.11) need not have a unique
solution for every k.

Points for which uniqueness fails, i.e., points for which the homogeneous problem

∂ (∂ + ik)μ =
1

4
qμ,

μ(·, k) ∈ Lp̃ ∩ L∞.

has a nontrivial solution are called exceptional points. It is known that the ex-
ceptional points form a bounded closed set in C. Nachman [58] proved that the
exceptional set is empty for potentials of conductivity type; more recently, Music
[54] has shown that the same is true for subcritical potentials. We discuss this
further in section 5.

Let

(2.13) ek(z) = ei(kz+kz).
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Then, if q decays rapidly at infinity (say q ∈ S(Rn)), the function μ(z, k) obeys the
large-z asymptotic formula

(2.14) μ(z, k) ∼ 1 +
1

4πikz
s(k) − e−k(z)

4πikz
t (k) + O

(
|z|−2

)
where

t(k) =

∫
ek(z)q(z)μ(z, k) dz,(2.15)

s(k) =

∫
q(z)μ(z, k) dz.(2.16)

Note that s(k) and t(k) are always defined for large |k|, whether the potential q is
subcritical, critical, or supercritical.

The asymptotic formula (2.14) is a consequence of the following simple lemma.

Lemma 2.1. Suppose k ∈ C and k �= 0,that p > 2 and suppose that u ∈ C2 (C)∩
Lp (C) satisfies

−4∂ (∂ + ik) u = f

for f ∈ S (C). Then

(2.17) u(z) ∼
|z|→∞

∑
�≥0

a�
z�+1

+ e−k(z)
b�

z�+1

where

a0 =
1

4πik

∫
f(z) dz,

b0 =
1

4πik

∫
ek(z)f(z) dz.

Proof. The conditions on u imply that

u = gk ∗ f
so using the asymptotic expansion (A.3) for gk we obtain

u(z) = − 1

4π

N∑
j=0

∫ [
j!

(ik(z − z′))
j+1 + e−i(kz+kz) j!(

−ik
(
z − z′

))j+1

]
f(z′) dz′

(2.18)

+ O
(
|z|−N−2

)
It is not difficult to see that for f ∈ S (C) and any positive integer N , the expansion∫

1

(z − z′)
j
f(z′) dz′ =

N∑
�=0

c�,jz
−j−� + O

(
|z|−N−1−j

)

holds, with an analogous expansion for the terms involving z − z′. The existence
of the expansion (2.17) is immediate. The leading terms come from the j = 0 term
of (2.18). �

If q(z, τ ) solves the NV equation at zero energy, it can be shown that t(·, τ ), the
scattering transform of q(·, τ ), is then given by

(2.19) t(k, τ ) = m(k, τ )t(k, 0),
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where

m(k, τ ) = exp(iτ (k3 + k
3
)).

On the other hand,

(2.20) s(k, τ ) = s(k, 0).

Here t(k, τ ) and s(k, τ ) are computed from the solution μ(z, k, τ ) of

(2.21) ∂z (∂z + ik)μ(z, k, τ ) =
1

4
q(z, τ )μ(z, k, τ ).

A rigorous proof of (2.19) and (2.20) for smooth potentials of conductivity type is
given in section 3 below.

If q is smooth, rapidly decreasing, and either critical or subcritical, the Schrö-
dinger potential q can be recovered using the ∂-method of Beals and Coifman [5]
(see [44] for the critical case, and [54] for the subcritical case). Both of these
papers use techniques developed by Nachman [58] in the context of the inverse
conductivity problem.

We can now derive a set of conservation laws for the NV equation by using the
large-k asymptotic expansion of s(k). Since s(k, τ ) is conserved we set τ = 0 and
suppress τ -dependence henceforward. We will give a formal derivation of the con-
served quantities by using a large-k asymptotic expansion of μ(z, k) and inserting
this expansion into the formula (2.16). Since s(k) is conserved, the coefficients of
that large-k expansion are also conserved quantities. For the moment, we assume
that μ(z, k) admits a large-k expansion of the form

(2.22) μ(z, k) ∼ 1 +
∞∑
j=1

aj(z)

kj
.

We will derive such an expansion for smooth potentials of conductivity type in the
next section (see Lemma 3.7). It is expected to hold in general.

Substituting the series (2.22) into (2.21), we may solve the resulting system for
the coefficients aj

(2.23) −
∞∑
j=1

Δaj(z)

kj
−

∞∑
j=1

4i∂aj(z)

kj−1
+ q

∞∑
j=1

aj(z)

kj
= −q.

We find

a1 =
1

4i
∂
−1

q.

A recursion formula can then be derived,

(2.24) aj+1 =
1

4i
∂
−1

(−4∂∂aj + qaj) = i∂aj +
1

4i
∂
−1

(qaj).

From this, it is clear that

s(k) ∼
∞∑
j=0

sj
kj

, sj =

∫
R2

q(z)aj(z) dz.
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Thus, the first three conserved quantities are

s0 =

∫
R2

q(z)dz,

s1 =

∫
R2

1

4i
q(z)(∂

−1
q)(z)dz,

s2 =

∫
R2

(
1

4
q(z)v(z) − 1

16
q∂

−1
(q∂

−1
q)(z)

)
dz,

where with z = x + iy and ζ = ζ1 + iζ2,

(∂
−1

q)(z) =
1

π

∫
R2

q(ζ)dζ

z − ζ
.

3. Inverse Scattering via Manakov Triples

In this section we develop the inverse scattering method to solve the Cauchy
problem for the Novikov-Veselov (NV) equation at zero energy

qτ = 2 Re

(
∂3q − 3

4
∂(uq)

)
(3.1)

∂u = ∂q

q|τ=0 = q0

for smooth Cauchy data q0 of conductivity type (see Definition 3.2). Note that
our convention for the NV equation differs slightly from (1.1); the form used here
is more convenient for the zero-energy inverse scattering formalism. This section
should be regarded as expository and the material here is undoubtedly “well known
to the experts” (see the original paper of Manakov [48] and see e.g. Boiti, Leon,
Manna, and Pempenelli [9] for the NV equation), although we give an essentially
self-contained and mathematically rigorous presentation. An extension of these
ideas to broader classes of potentials will appear in [54], [55], and [69].

In this section, we draw on previous work of Lassas, Mueller, and Siltanen
[44], Lassas, Mueller, Siltanen, and Stahel [45], and Perry [67], particularly for
mapping properties of the scattering transform and its inverse on the space of
smooth functions of conductivity type as defined below. The main ingredient in
our analysis (as contrasted to [44, 45, 67]) is the systematic use of the Manakov
triple representation for the NV equation.

To describe the Manakov triple representation, suppose that q is a smooth func-
tion of z and tτ . Suppose that there is a smooth function u(z, τ ) with the property
that ∂u = ∂q (existence of such a function for suitable classes of q can be deduced
from properties of the Beurling transform; see the Appendix). Define1

L = ∂∂ − q/4,(3.2)

A = ∂3 + ∂
3 − 3

4

(
u∂ + u∂

)
,(3.3)

B =
3

4

(
∂u + ∂u

)
,(3.4)

1This Manakov triple differs from that of the introduction by numerical factors since we use,
for convenience, the version (3.1) of the NV equation.
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where B is a multiplication operator. The (L,A,B) representation means the
following:

Proposition 3.1. Let q ∈ C1 ([0, T ] ; C∞ (C)) and suppose that there is a smooth
function u with ∂u = ∂q. Then q is a classical solution to the Cauchy problem (3.1)
if and only if the operator identity

(3.5) L̇ = [A,L] −BL

holds.

The proof is a straightforward calculation. The significance of the Manakov
triple is that it defines a scattering problem at zero energy for the operator L, and
a law of evolution of scattering data through the operator A. We will fully describe
the inverse scattering method for smooth initial data of conductivity type, defined
as follows:

Definition 3.2. A function q0 ∈ C∞(C) is a smooth function of conductivity
type if

q0 = 2∂u0 + |u0|2

for some u0 ∈ S (C) with ∂u0 = ∂u0.

The regularity requirements can be considerably relaxed but we make them here
to ease the exposition. To compare this definition with Nachman’s definition (see
Definition 1.3 in the introduction), one should think of u0 as 2∂ log σ.

We develop in turn the direct scattering transform, the inverse scattering trans-
form, and the solution formula for NV. We also comment on numerical methods
for implementing the direct and inverse scattering transforms.

3.1. The Direct Scattering Map. To compute the scattering transform
of q0, one first constructs the complex geometric optics (CGO) solutions to (2.8).
Analytically, it is more convenient to study the normalized complex geometric optics
(NCGO) solutions μ defined by (2.10). As shown by Nachman [58], there exists
a unique solution of (2.11) for every nonzero k, so that t(k) is defined for every
nonzero k. Nachman also shows that t(k) is O(|k|ε) as k → 0 for conductivity-type
potentials.

Definition 3.3. The map T : q �→ t defined by the problem ( 2.11) and the
representation formula ( 2.15) is called the direct scattering map.

We will use without proof the following result of Lassas, Mueller, Siltanen, Stahel
[45] (see also [68] for a different proof)

Lemma 3.4. Suppose that q is a smooth function of conductivity type, and let t
be the scattering transform of q. Then t (k) /k ∈ S (C).

3.2. Computation of Scattering Transforms. We describe two approaches
for the computation of t = T q for a given compactly supported and continuous q.
The LS method is most accurate for k away from zero, and the DN method is more
effective for k near zero. Matlab codes for both approaches are available at the
webpage of the book [51].

Without loss of generality we can assume that supp(q) ⊂ Ω where Ω ⊂ R2 is
the open unit disc. The LS method is based on the definition

(3.6) t(k) =

∫
R2

eikzq(z)ψ(z, k) dz,
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and the DN method uses integration by parts to transform (3.6) into

(3.7) t(k) =

∫
∂Ω

eikz(Λq − Λ0)ψ( · , k) dS(z),

where Λq is the Dirichlet-to-Neumann map defined below. A rigorous derivation of
formulas (3.6) and (3.7) was given by Nachman in [58].

The LS method requires numerical evaluation of the complex geometrical op-
tics solutions ψ(z, k). Numerically, it is better to solve the Lippmann-Schwinger
equation for μ

(3.8) μ(z, k) = 1 −
∫
Ω

gk(z − w)q(w)μ(w, k) dw.

A rigorous solvability analysis for equation (3.8) can be found in [56–58]. Here
gk is the fundamental solution satisfying (−Δ − 4ikd̄)gk(z) = δ(z). The origin of
gk is Faddeev’s 1965 article [18]. Computationally, g1(z) can be evaluated using
the Matlab expression “exp(-1i*z).*real(expint(-1i*z))/(2*pi);” The sym-
metry relation gk(z) = g1(kz) extends this to all values k �= 0. Note that gk has a
log k singularity when k → 0, causing numerical difficulties for k near zero.

Equation (3.8) is defined in the whole plane z ∈ R2, so some kind of truncation
is needed for practical computation. The first numerical computation of complex
geometrical optics solutions was reported in [75] in the context of (3.8). That com-
putation was used as a part of the first numerical implementation [76] of the ∂
method for electrical impedance tomography. A more effective approach for com-
puting μ is based on the periodization technique introduced by Gennadi Vainikko in
[91]; see also [74, Section 10.5]. The adaptation of Vainikko’s method to equation
(3.8) was first introduced in [50]. For more details see [51, Section 14.3].

Now let us turn to the DN method. This method has practical use in the
∂ reconstruction method for electrical impedance tomography. (See [51] and the
relevant references therein.) We first define the Dirichlet-to-Neumann map Λq for
the Dirichlet problem

(−Δ + q)u = 0 in Ω(3.9)

u|∂Ω = f.

If zero is not a Dirichlet eigenvalue of −Δ + q in Ω, the problem (3.9) has a unique
solution u for given f ∈ H1/2(S1), and we set

(3.10) Λqf =
∂u

∂ν

∣∣∣∣
∂Ω

where ∂/∂ν denotes differentiation with respect to the outward normal on ∂Ω.
Formula (3.7) requires the trace ψ( · , k)|∂Ω. According to [58], the traces can

be solved from the boundary integral equation

(3.11) ψ(z, k)|∂Ω = eikz −
∫
∂Ω

Gk(z − w) (Λq − Λ0)ψ(w, k)|∂Ω dS(w),

if k is not an exceptional point of q. Here Gk(z) := eikzgk(z) is Faddeev’s Green
function for the Laplace operator. For details of the numerical solution of (3.11)
see [51, Section 15.3].
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3.3. The Inverse Scattering Map. It turns out the the NCGO solutions
μ(z, k) also solve a ∂-problem in the k variable determined by t(k). Letting

(3.12) t�(k) =
t(k)

4πk
,

we have, for any p > 2:

Lemma 3.5. Suppose that q is a smooth potential of conductivity type, and let
μ(z, k) be the corresponding NCGO solutions. Then:

∂kμ(z, k) = e−kt
�(k)μ(z, k)(3.13)

μ(z, · ) − 1 ∈ Lp (C) .

Moreover, q(z) is recovered from t and μ(z, k) by the formula

(3.14) q(z) =
4i

π
∂z

(∫
e−k(z)t

�(k)μ(z, k) dk

)

Remark 3.6. This equation has at most one solution for each z, provided only
that t� ∈ L2 by a standard uniqueness theorem for the ∂-problem (see Brown-
Uhlmann [11], Corollary 3.11).

The fact that μ(z, k) obeys a ∂-equation in the k-variable also implies a large-k
asymptotic expansion for μ(z, k).

Lemma 3.7. Suppose that q is a smooth potential of conductivity type, and let
μ(z, k) be the corresponding NCGO solution. Then

(3.15) μ(z, k) ∼ 1 +
∑
�≥0

c�(z)

k�+1

where

c0 = − i

4
∂
−1

q(3.16)

c1 = −1

4
∂∂

−1
q +

1

16
∂
−1
(
q∂

−1
q
)
.(3.17)

and the remaining cj are determined by the recurrence

(3.18) i∂cj+1 =
(q

4
− ∂∂

)
cj

Proof. The coefficients in the asymptotic expansion may be computed recur-
sively from the equation ∂ (∂ + ik)μ = (q/4)μ once the existence of the asymptotic
expansion is established. To do so, note that

μ(z, k) = 1 +
1

π

∫
C

1

k − κ
e−kt

�(κ)μ(z, κ) dm(κ).

Writing

(k − κ)
−1

= k−1
N∑
j=0

(κ
k

)j
+
(κ
k

)N+1 1

k − κ

we obtain an expansion of the desired form with

cj(z) =
1

π

∫
κje−kt

�(κ)μ(z, κ) dm(κ)
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and remainder

1

π
k−(N+1)

∫
1

k − κ
κN+1ekt

�(κ)μ(z, κ) dm(κ)

Finally to obtain explicit formulae for the cj , we substitute the expansion (3.15)
into (2.11) to obtain

i∂c0 =
1

4
q

and the recurrence (3.18) from which (3.17) follows. �

Motivated by these results, suppose given t� ∈ S (C) and let μ(z, k) be the
unique solution to (3.13). Define q by the reconstruction formula (3.14). Then the
solution μ of (3.13) obeys the partial differential equation

∂ (∂ + ik)μ =
q

4
μ, lim

|z|→∞
μ(z, · ) − 1 = 0.

Definition 3.8. The map Q : t → q defined by ( 3.13) and ( 3.14) is called the
inverse scattering map.

We conclude this subsection by obtaining a full asymptotic expansion for μ(z, k)
which encodes relations between s and t.

Lemma 3.9. Suppose that q is a smooth potential of conductivity type, and let
t� be given by ( 3.12). Then, the expansion

(3.19) μ(z, k) ∼
|z|→∞

1 +
∑
�≥0

(
a�
z�+1

+ e−k
b�

z�+1

)

holds, where:

a0 = −i∂
−1

k

(∣∣t�∣∣2) ,
b0 = it�

and the subsequent a�, b� are determined by the recurrence relations

∂ka� = t�b�,

b�+1 = ia�t
� − i∂kb�.

Proof. The existence of an expansion of the form (3.19) was already estab-
lished in Lemma 2.1. To compute the coefficients, we substitute the asymptotic
series into (3.13). �

Remark 3.10. Comparing Lemmas 2.1 and 3.9, we see that

s(k) = 4πk∂
−1

k

(∣∣t#∣∣2)
3.4. Computation of Inverse Scattering Transforms. The first step in

the computation of the inverse scattering map is to solve the ∂ equation

(3.20)
∂

∂k
μτ (z, k) =

tτ (k)

4πk
e−k(z)μτ (z, k)

with a fixed parameter z ∈ R
2 and requiring large |k| asymptotics μτ (z, ·) − 1 ∈

L∞ ∩ Lr(C) for some 2 < r < ∞. Since q0(z) is compactly supported and of
conductivity type, by [44] the scattering transform tτ (k) is in the Schwartz class,
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and the solution μτ to equation (3.20) can be computed by numerically solving the
integral equation

(3.21) μτ (z, k) = 1 +
1

4π2

∫
R2

tτ (k
′)

k̄′(k − k′)
e−k′(z)μτ (z, k′)dk

′.

Computational solution of the ∂ equation (3.20) is based on truncating the scat-
tering transform tτ (k) to a large disc of radius R, generally chosen by inspection
of the scattering transform. The truncated integral equation is solved numerically
by the method described in [41] for each point z at which the evolved potential is
to be computed. The method in [41] is based on Vainikko’s periodic method [91];
see also [74, Section 10.5]. Note that since the d̄ equation (3.20) is real-linear and
not complex-linear due to the complex conjugate on the right-hand side of (3.20),
one must write the real and imaginary parts of the unknown function μ separately
in the vector of function values at the grid points. It is proven in [40] that the
error decreases as R tends to infinity. The first computational solutions of equation
(3.20) can be found in [76], and the first computations based on [91] are found in
[41]; for more details see [51, Section 15.4].

The inverse scattering transform is defined by

(3.22) (Qtτ )(z) :=
i

π2
∂z

∫
C

tτ (k)

k
e−ikz ψτ (z, k)dk,

where ψτ (z, k) := eikzμτ (z, k). The inverse transform (3.22) first appeared in [9,
formula (4.10)]. See [44] and the references therein for an analysis of the solvability
of (3.20) and the domain of definition for (3.22). Under the assumption that real-
valued, smooth initial data of conductivity type remain of conductivity type under
evolution by the ISM, the conductivity γτ associated with the potential qτ is given
by

γ1/2
τ (z) = μτ (z, 0).

Then qτ is computed by numerical differentiation of γτ by the formula

qτ (z) = γ−1/2
τ Δγ1/2

τ .

The reader is referred to [46] for numerical examples of the computation of the
time evolution of conductivity-type potentials by the ISM.

3.5. Time Evolution of NCGO Solutions. In order to prove the solu-
tion formula (1.4), we first study the time evolution of NCGO solutions using the
Manakov triple representation. First we note the following important uniqueness
theorem which is actually a special case of results of Nachman.

Theorem 3.11. Let k ∈ C, k �= 0. Suppose that q is a smooth potential of
conductivity type and that ψ is a solution of Lψ = 0 with lim|z|→∞

(
e−ikzψ(z)

)
= 0.

Then ψ(z) = 0.

Now suppose that q(z, τ ) solves the NV equation and that t �→ q(z, τ ) is a C1

map from [0, T ] into S (C). Suppose that, for each τ , ϕ(τ )solves L(τ )ϕ(τ ) = 0.
Differentiating the equation L(τ )ϕ(τ ) = 0 and using the Manakov triple represen-
tation, we find

[A(τ ), L(τ )]ϕ(τ ) + L(τ )ϕ̇(τ ) = 0

or

L(τ ) [ϕ̇(τ ) −A(τ )ϕ(τ )] = 0
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From this simple computation and Theorem 3.11, we can derive an equation of
motion for the NCGO solutions, and recover (2.19) and (2.20) from a careful cal-
culation of asymptotics. Later, we will show by explicit construction that, if q0 is
a smooth function of conductivity type, then there is a solution q(z, τ ) of the NV
equation so that q(z, τ ) is smooth and of conductivity type for each τ .

Lemma 3.12. Suppose that q(z, τ ) is a solution of the NV equation where, for

each τ , q(z, τ ) is a smooth function of conductivity type. Let u = ∂
−1

∂q. Then

(3.23) μ̇ = ik3μ + (∂ + ik)3 μ + ∂
3
μ− 3

4
u (∂ + ik)μ− 3

4
u∂μ

Proof. Before giving the proof we make several remarks. Since ψ = eikzμ,
the evolution equation (3.23) is equivalent to

(3.24) ψτ = ik3ψ + ∂3ψ + ∂
3
ψ − 3

4

(
u∂ + u∂

)
ψ.

Next, let ϕ(z, k, τ ) = eiSμ(z, k, τ ) with S(z, k, τ ) = kz − k3t. From the argument
above we have

L(τ ) [ϕ̇(τ ) −A(τ )ϕ(τ )] = 0.

To conclude that ϕ̇(τ ) = A(τ )ϕ(τ ), we must show that

lim
|z|→∞

(
e−ikz [ϕ̇(τ ) −A(τ )ϕ(τ )]

)
= 0.

Write

f ∼k g

if

lim
|z|→∞

[
e−ikz (f − g)

]
= 0

Noting that μ − 1 and its derivatives in z and z vanish as |z| → ∞, a simple
calculation shows that

ϕ̇−Aϕ ∼k eiS
(
−ik3μ− (∂ + ik)

3
μ
)

∼k 0

Hence ϕ̇ = Aϕ from which (3.24) follows. �

Hence:

Lemma 3.13. Suppose that q(z, τ ) is a solution of the NV equation where, for
each τ , q(z, τ ) is a smooth function of conductivity type. Let μ(z, k, τ ) be the cor-
responding NCGO solution with

(3.25) μ(z, k, τ ) ∼ 1 +
1

4πikz
s(k, t) − e−k(z)

4πikz
t (k, t) + O

(
|z|−2

)
.

Then

ṡ(k, t) = 0,(3.26)

ṫ (k, t) = i
(
k3 + k

3
)
t (k, t) .(3.27)
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Proof. Substituting the asymptotic relation (3.25) into (3.23), we may com-
pute, modulo terms of order z−2,

− 1

πikz
ṫ +

e−k(z)

πikz
ṡ = −e−k (z)

πikz

(
ik3 + ik

3
)
t.

The computation uses the following facts. If

μ(z, k, τ ) = 1 +
a0
z

+ e−k
b0
z

+ O
(
|z|−2

)
then (“∼” means “is asymptotic as |z| → ∞ to”modulo O

(
|z|−2

)
)

∂3μ ∼ e−k (−ik)
3 b0
z
,

∂
3
μ ∼ e−k

(
−ik

)3 b0
z
,

3ik∂2μ− 3k2∂μ ∼ 0

together with the fact that u defined by ∂u = ∂q satisfies u = O
(
|z|−2

)
. The

identities (3.26) and (3.27) are immediate. �

3.6. Solution by Inverse Scattering. Motivated by the computations of
the preceding subsection, we now consider the problem

∂kμ = eiτSt�μ(3.28)

μ(z, · , t) − 1 ∈ Lp (C)

for a function μ(z, k, τ ) and the putative reconstruction

(3.29) q(z, τ ) =
4i

π
∂z

(∫
C

eiτSt�(k)μ(z, k, τ ) dk

)
.

Here

(3.30) S(z, k, τ ) = −1

τ

(
kz + kz

)
+
(
k3 + k

3
)

and t� is obtained from the Cauchy data q0. We will show that q(z, τ ) solves the NV
equation by deriving an equation of motion for μ(z, k, τ ) and using this equation
to compute qτ if q is given by (3.29) and μ is the unique solution of (3.28)

First, we establish an equation of motion for the solution μ of (3.28). Although
this equation is the same equation as (3.23) for the solution of the direct problem,
our starting point here is (3.28).

Lemma 3.14. Suppose that t� ∈ S (C) and μ solves ( 3.28). For each τ , define

q(z, τ ) by (3.29) and define u(z, τ ) by u = ∂
−1

∂q. Then

μ̇ = ik3μ + (∂ + ik)3 μ + ∂
3
μ− 3

4
u (∂ + ik)μ− 3

4
u∂μ

where ∂ and ∂ denote differentiation with respect to the z and z variables.

Proof. Let

w = μ̇−
(
ik3μ + (∂ + ik)3 μ + ∂

3
μ− 3

4
u (∂ + ik)μ− 3

4
u∂μ

)
.

We will show that w = 0 in two steps. First, we show that

∂kw = eiτSt�w.
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This is an easy consequence of the formulas

∂k (∂ + ik)μ = eitSt�∂μ,

∂k

(
∂μ
)

= eiτSt�(∂ + ik)μ

and holds for any smooth function u.
Next, we show that for any fixed values of the parameters τ and z,

lim
|k|→∞

w(z, k, τ ) = 0.

Here we must choose u = ∂
−1

∂q in order for the assertion to be correct. Owing to
Lemma 3.7 and the formula

w = μ̇−
(
∂3μ + ∂

3
μ + 3ik∂2μ− 3k2∂μ− 3

4
u (∂ + ik)μ− 3

4
u∂μ

)
,

we have

w = −3ik∂2μ + 3k2∂μ +
3

4
u (∂ + ik)μ + O

(
k−1

)
= A−1k + A0 + O

(
k−1

)
where

A−1 = 3

(
∂a0 +

i

4
u

)
and

A0 = 3

[
−i∂2a0 + ∂a1 +

i

4
ua0

]
.

The condition A−1 = 0 forces the choice u = ∂
−1

∂q. We may then compute

A0 =
3

16

[
∂∂

−1
(
q∂

−1
q
)
−
(
∂
−1

q
)
·
(
∂∂

−1
q
)]

.

One the one hand, A0 vanishes as |z| → ∞ for each fixed τ by the decay of q. On
the other hand, a straightforward computation shows that ∂A0 = 0. It now follows
from Liouville’s Theorem that A0 = 0, and hence w = O

(
k−1

)
. We now used the

generalized Liouville Theorem to conclude that w = 0. �

Finally, we prove:

Proposition 3.15. Suppose that t� ∈ S
(
R2
)
. Then, the formula

q(z, τ ) =
4i

π
∂z

(∫
eitS(z,k,τ)t�(k)μ(z, k, τ ) dm(k)

)
yields a classical solution of the NV equation.

Proof. In what follows, we will freely use the commutation relations

∂eiτS = eiτS (∂ − ik) ,(3.31)

∂eiτS = eiτS
(
∂ − ik

)
(3.32)

and the equation

(3.33) ∂ (∂ + ik)μ =
1

4
qμ.
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For notational brevity we’ll write c = 4i/π. We compute

q̇ = c∂

(∫
eiτSt�

{
ik3 + ik

3
}
μ

)

+ c∂

(∫
eiτSt�

{
−ik

3
+
(
∂ − ik

)3
+ ∂3 − 3

4
u
(
∂ − ik

)
− 3

4
u∂

}
μ

)
where in the second term we used Lemma 3.14. Using the commutation relations
above to move differential operators to the left of exp (itS), we conclude that

q̇ = ∂3q + ∂
3
q − 3

4
∂
(
u∂∂

−1
q
)
− 3

4
∂ (uq) + I

where

I = c∂

(∫ {
3ik∂2 − 3k2∂ − 3

4
iku

}
eiτSt�μ

)
.

We claim that

(3.34) I =
3

4

{
∂
(
u∂∂

−1
q
)
− ∂ (uq)

}
.

If so, then q solves the NV equation as claimed. To compute I, write I = I1 − I2
where

I1 = c∂

(∫ {
3ik∂2 − 3k2∂

}
eiτSt�μ

)
,

I2 = c∂

(∫
eiτSt�

{
3

4
iku

}
μ

)
.

Using (3.33) and (3.32) we may write

I1 =
3

4
c∂

(∫
eiτS (ik) t�qμ

)

=
3

4
c∂

(
q

∫ (
−∂eiτS

)
t�μ

)

= −3

4
c∂

(
q∂

(∫
eiτSt�μ

)
− q

∫
eiτSt�∂μ

)

= −3

4
∂
(
q∂∂

−1
q
)

+
3

4
c∂

(
q∂

−1
∂

(∫
eiτSt�∂μ

))
where in the third line we used u∂v = ∂ (uv) − v∂u. In the second term on the
fourth line, we may use

(3.35) ∂eiτS∂μ = eiτS∂
(
∂ − ik

)
μ

and (3.33) to conclude that

3

4
c∂

(
q∂

−1
∂

(∫
eiτSt�∂μ

))
=

3

16
c∂

(
q∂

−1
q

(∫
eiτSt�μ

))

=
3

16
∂
(
q∂

−1
(
q∂

−1
q
))

so that

I1 = −3

4
∂
(
q∂∂

−1
q
)

+
3

16
∂
(
q∂

−1
(
q∂

−1
q
))

= −3

4
∂ (qu) +

3

16
∂
(
q∂

−1
(
q∂

−1
q
))

.
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Similarly, we may compute

I2 =
3

4
c∂

(
u

∫
ik eitSt�μ

)

=
3

4
c∂

(
u

∫ (
−∂eiτS

)
t�μ

)

= −3

4
c∂

(
u∂

(∫
eiτSt�μ

)
− u

∫
eiτSt�∂μ

)

= −3

4
∂
(
u∂

−1
∂q
)

+
3

4
c∂

(
u∂

−1
(∫

t�∂
(
eiτS∂μ

)))
.

Using (3.35) again we find

I2 = −3

4
∂
(
u∂

−1
∂q
)

+
3

16
∂
(
u∂

−1
(
q∂

−1
q
))

= −3

4
∂
(
u2
)

+
3

16
∂
(
u∂

1
(
q∂

−1
q
))

where we used (3.33) in the first line, and in the second line we used u = ∂
−1

∂q.
Hence

I1 − I2 = −3

4
∂ (qu) +

3

4
∂
(
u2
)

+
3

16
∂
(
q∂

−1
(
q∂

−1
q
))

− 3

16
∂
(
u∂

1
(
q∂

−1
q
))

.

Since ∂q = ∂u and ∂
−1
(
q∂

−1
q
)

= 1
2

(
∂
−1

q
)2

we can conclude that the second line

is zero and (3.34) holds. The conclusion now follows. �

4. Special Solutions

There are various powerful methods to find solutions of nonlinear evolution equa-
tions, most notably the inverse scattering method. However, the inverse scattering
method is not readily useful for finding closed-form solutions to the NV equation,
and so techniques including Hirota’s method and the extended mapping approach
(EMA) are presented here to construct closed-form solutions of several types of soli-
tons. We begin by explaining the close connection between plane-wave solutions
to NV and solutions to the KdV equation and present evolutions of KdV ring-type
solutions. Although the KdV ring-type solition is not of conductivity type, the
scattering transform is computed in Section 4.3, and the numerical results provide
evidence of the presence of an exceptional circle.

4.1. KdV-type Solutions. Consider the NV equation (3.1) in the form

(4.1) q̇ = −1

4
qxxx +

3

4
qxyy +

3

4
div((q − E)u),

where u = u1 + iu2 and u = (u1, u2), and the auxiliary equation ∂u = ∂q as

(4.2)

{
(u1)x − (u2)y = +qx
(u2)x + (u1)y = −qy

As in [13] we use a FFT-based method to solve the equations on the square −L ≤
x, y ≤ +L with periodic boundary conditions.
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To examine the linear contributions we introduce a function

q(t, x, y) = exp(i (ξ x + η y)).

Then the ∂ equation (4.2) is solved by

u1(t, x, y) =
ξ2 − η2

ξ2 + η2
exp(i (ξ x + η y))

u2(t, x, y) =
−2 ξ η

ξ2 + η2
exp(i (ξ x + η y)),

and thus the linear part of the NV equation (4.1)

q̇ = −1

4

∂3

∂x3
q +

3

4

∂3

∂x∂y2
q + E

3

4
∇ · u

is transformed into a elementary linear ODE for the Fourier coefficient c(t)

4
d

dt
c(t) = i

(
ξ3 − 3 ξ η2

) (
1 − 3E

ξ2 + η2

)
c(t).

Assuming a Fourier approximation of the solutions

q(t, x, y) =

N−1∑
j,k=0

cj,k(t) exp(ipi (k x + j y)/L)

this leads to a coupled system of ODEs for the Fourier coefficients cj,k(t). We use
a Crank–Nicolson scheme for the linear part of NV and an explicit method for the
nonlinear contribution div(q u). For details see [13,14].

There is a close connection between plane wave solutions to NV and solutions
to KdV (see [13]):

Remark 4.1. Assume the solutions to NV are planar waves

q(t, s) = q(t, x, y) = q(t, n1s, n2s)

ui(t, s) = ui(t, x, y) = ui(t, n1s, n2s)

for some direction vector �n = (n1, n2) = (cos(α), sin(α)). Then the bounded solu-
tions to the ∂ equation (4.2) are given by

u1(t, s) = +(n2
1 − n2

2) q(t, s) + c1

u2(t, s) = −(2n1 n2) q(t, s) + c2

for arbitrary constants c1, c2, and the NV equation (4.1) reduces to an equation
similar to the KdV equation,

(4.3)
4

κ
qt = −q′′′ + 6 q q′ +

3β

κ
q′

with κ = cos(3α) and β = −κE + c1 n1 + c2 n2. If v(t, s) denotes a solution to the
standard KdV equation

(4.4) v̇(t, x) = −v′′′(t, x) + 6 v(t, x) v′(t, x),

we obtain explicit solutions to NV by

q(t, s) = v
(κ

4
t , s + k1 t

)
− k2 = v

(
κ

4
t , s +

3

4
(c1 n1 + c2 n2) t

)
+

E

2
.
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For the special case c1 = c2 = 0 we find

q(t, n1s, n2s) = q(t, s) = v
(κ

4
t , s

)
+

E

2
Thus we can relate all solutions to KdV as planar solutions to NV, with different
speeds of propagation depending on the direction of the plane wave.

Example 4.2. Based on the above remark we have an exact solution of the NV
equation at zero energy given by

q(t, x, y) = −2 c cosh−2(
√
c(x− c t)).

This solution is unstable with respect to perturbations periodic in y direction with
period 2π

k
√
c

for 0.363 < k < 1, see [13]. This is confirmed by numerical evolution

of the NV equation using the above spectral method.

Example 4.3. A KdV ring initial condition.

Using r =
√
x2 + y2 we choose a radially symmetric initial value

q0(x, y) = q(0, x, y) = f(r) = −1

2
cosh−2(

1

2
(r − 20)) < 0 .

This corresponds to a solution of equation (4.3) in the radial variable r, a KdV ring
with radius 20.

Using the argument in [56, Appendix B] (based on [53]) we may consider q0 as
a non-positive deviation from 0, which is a potential of conductivity type. Thus q0
is subcritical and consequently not of conductivity type. In [53] Murata classifies
general solutions of the Schrödinger equation Δu = q u, For our special case we have
an elementary proof for the required result. For q(0, x, y) to be of conductivity type
we would need a positive, radially symmetric function u such that Δu = q u or in
radial coordinates (r u′(r))′ = r f(r) u(r) . Since the function is radially symmetric
we use u′(0) = 0 and an integration leads to

r u′(r) = 0 +

∫ r

0

s f(s) u(s) ds < 0

Thus u′(r) is negative and r u′(r) is decreasing. Consequently we have a constant
C = −r0 u

′(r0) > 0 and for all r ≥ r0 we conclude u′(r) ≤ −C/r. This implies

u(r) = u(r0) +

∫ r

r0

u′(s) ds ≤ u(r0) −
∫ r

r0

C

s
ds = u(r0) − C (ln(r) − ln(r0))

and for r large enough this is in contradition to u(r) > 0 and thus q0(x, y) is not of
conductivity type.

We solve the NV equation at zero energy E = 0 with the above initial condition.
Based on the speed profile with the angularly dependent speed factor κ = cos(3α)
from Remark 4.1, one expects that the initially circular shape will be deformed and
its shape will be more triangular at later times. This is confirmed by Figure 2,
which shows graphs of −q(t, x, y) at different times t.

To examine the possible blowup of the solution at a finite time we ran the
algorithm based on the spectral method on a domain −50 ≤ x, y ≤ +50 with
Fourier grids of sizes 1024 × 1024, 2048 × 2048 and 4096 × 4096. With time steps
dt = 0.01 and dt = 0.001 we examined the solution and its L2 norm. In all cases
the solution either blew up at times just beyond t = 38 or displayed a sudden
occurrence of sizable noise. For a final decision of a blow up time the exact shape
and size of the spikes in Figure 2 have to be examined carefully.
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Letting the KdV ring initial condition evolve for negative times, we observed
the same solutions as for positive times, but rotated by in the spatial plane by 60◦.
We observed blowup at times smaller that t = −38 .

Figure 2. Evolution of a KdV ring by NV at zero energy

Example 4.4. With the initial value of the KdV ring in Example 4.3, we evolve
the solution by the NV equation (4.1) and (4.2) with a positive energy E = 1/8.
Time snapshots of the evolution are plotted in Figure 3. The initial dynamics
are comparable to the previous example at zero energy: three spikes appear and
grow rapidly in size, but as time progresses, these spikes decay in amplitude, and
separate from the previous KdV ring, and a new triple of spikes appears. The
process is repeated. Observe that the solution exists at least until time t = 100,
also confirmed by the graph of the L2 norm of the solution as function of time in
Figure 4.

4.2. Closed-form Solutions. Most, if not all, soliton equations admit trav-
eling waves solutions that involve the hyperbolic secant function, which can be
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Figure 3. Evolution of a KdV ring by NV at positive energy

Figure 4. L2 norm of the NV solution at positive energy
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written in terms of the hyperbolic tangent function. Moreover, the hyperbolic tan-
gent function is a solution to the Riccati equation, φ′ = l0 + φ2, for l0 < 0 for
certain initial conditions. The ubiquity of the hyperbolic functions as traveling
wave solutions naturally leads to the idea of expansion methods for solving soliton
equations.

Solutions in the literature to the NV equation include the solutions from the
inverse scattering transform [44–46,64], the classic hyperbolic secant and cnoidal
solutions [60], and rational solutions derived using Darboux transformations that
lead to finite time blow–up (see [88] and references therein). In this section we
present new solutions to the NV equation using Hirota’s bilinear method and the
Extended Mapping Approach (EMA). New multiple traveling wave solutions using
the Modified Extended Tanh-Function Method can be found in [14]. This approach
results in closed-form solutions, most of which contain singularities. We note that
the solutions found by Hirota’s method are plane-wave solutions, that is, KdV-type
solutions, while the EMA-derived solutions are not.

4.2.1. Hirota’s Method. Following the pioneering work of Hirota [31], multi-
soliton solutions can be derived using Hirota’s bilinear method. This method yields
soliton solutions as a sum of polynomials of exponentials and was used in [94] to
find multisoliton solutions to the Nizhnik-Novikov-Veselov equation

q̇ = −aqxxx + bqyyy − 3a(qu1)x − 3b(qu2)y

qx = (u1)y

qy = (u2)x

The main idea is to reduce the nonlinear equation to a bilinear form through a
transformation involving the logarithmic function. To express the wave velocity c in
terms of the dispersive coefficients, assume u is a plane wave solution with k1 = k2 =
k, u = ekx+ky−ct, and substitute u into (2.1). This results in c = −k3/2. Under
the transformations q = R(ln(f))xx, v = R(ln(f))xy, and w = R(ln(f))yy where

f(x, y, t) = 1 + Cekx+ky+ k3

2 t and C is an arbitrary constant, one can algebraically
solve for R to find a bilinear form (one finds R = 2). This method results in the
soliton solution

(4.5) q(x, y, t) = u1(x, y, t) = u2(x, y, t) =
2C k2ek (2 x+2 y+k2t)/2(
1 + ek(2 x+2 y+k2t)/2

)2 .
Choosing

f(x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 ,

where θi = kix + kiy + 1
2k

3
i t, i = 1, 2, in the logarithmic transformations above

results in the two-soliton solution with a12 given in terms of k1 and k2 by a12 =
(k1 − k2)

2/(k1 + k2)
2

q(x, y, t) =
2
(
k21e

θ1 + k22e
θ2 + (k1 − k2)

2eθ1+θ2
)

1 + eθ1 + eθ2 + (k1−k2)2

(k1+k2)2
eθ1+θ2

−
2
(
k1e

θ1 + k2e
θ2 + (k1−k2)

2

k1+k2
eθ1+θ2

)2
(
1 + eθ1 + eθ2 + (k1−k2)2

(k1+k2)2
eθ1+θ2

)2 .(4.6)

The evolution of the two-soliton solution is plotted in Figure 5. Further details and
a three-soliton solution are found in [14].
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Figure 5. Time snapshots of the evolution of a 2-soliton
solution derived Hirota’s bilinear method.

4.2.2. Extended Mapping Approach. The extended mapping approach (EMA)
was presented formally by Zheng [97] and extends results by Lou and Ni [47]. The
method is designed to find mappings between nonlinear PDE’s. In this approach,
q, v, w are expanded in terms of a function φi that satisfies the Riccati equation

dφ

dR
= �0 + φ2,

where R = R(x, y, t). Thus, q(x, y, t) =
∑n

i=0 aiφ
i, v(x, y, t) =

∑m
i=0 biφ

i, and

w(x, y, t) =
∑k

i=0 ciφ
i, where the values of n,m and k are determined by balancing

the highest order derivative terms with the nonlinear terms of the PDE. The method
is described nicely in [78]. The balancing method results in n = m = k = 2.
Substituting these expansions into the NV equation and equating coefficients of
the resulting polynomial in φ results in a system of thirteen PDE’s from which
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we need to solve for the coefficients ai(x, y, t), bi(x, y, t), and ci(x, y, t), i = 1, 2.
Using a separation technique for R, namely, R(x, y, t) = p(x, t) + q(y, t) results in
sech2 solutions, static (time-independent) solutions, and breather-type solutions of
the NV equation. Further details, including the choices of φ are found in [14]. A
time-independent solution is given by

q(x, y, t) =
−1728 y6 + (−96 + 1728C)y4 + (−40 + 288C) y2 − 36C + 5

432 y4 − 36 y2

− 4 tanh(x + y2) + (2 + 8 y) tanh2(x + y2)

v(x, y, t) =
144 y4 + (−12 + 432C)y2 − 36C + 5

36 y2

+ 4 tanh(x + y2) + (2 − 8 y) tanh2(x + y2)

w(x, y, t) = 8 y − 8 y tanh2(x + y2),

where C is an arbitrary constant. See Figure 6 for a plot of the solution q with
C = 1.

Figure 6. A static solution to the NV equation
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Breather solutions are solutions with a type of periodic back–and–forth motion
in time. One particular breather solution from [14] is

q(x, y, t) =
−1728 y6 + (−96 + 1728C) y4 + (−40 + 288C) y2 − 36C + 5

432 y4 − 36 y2

− 4 tanh(1 + x + y2 + 4 cos t)

+ (2 + 8 y2) tanh2(1 + x + y2 + 4 cos t)

v(x, y, t) =
−192 sin(t) y2 + 144 y4 + (−12 + 432C) y2 − 36C + 5

36 y2

+ 4 tanh(1 + x + y2 + 4 cos t)

+ (2 − 8 y2) tanh2(1 + x + y2 + 4 cos t)

w(x, y, t) = 8 y − 8 y tanh2(1 + x + y2 + 4 cos t).

Several time snapshots are shown in Figure (7). For multisoliton solutions the
reader is referred to [14].

For multisoliton solutions the reader is referred to [14]

4.3. Scattering transform of the ring soliton at time zero. In this sec-
tion we compute numerically the scattering transform of the KdV ring soliton dis-
cussed in example 4.3 and illustrated in Figure 2. Since the initial potential is
supercritical, we expect the scattering transform to have a singularity. Since the
intial potential is real-valued and rotationally symmetric in the z-plane, also the
scattering transform is real-valued and rotationally symmetric in the k-plane. See
[56, Appendix A] for a proof. Therefore it is enough to compute t(k) only for real
and positive k.

We use both the LS and the DN methods described in Section 3.2 and compare
the results to verify accuracy. The values in the range 0.1 ≤ |k| ≤ 4 are reliable
as the results of both NV and LS methods closely agree there. However, the DN
method does not give reliable results for |k| > 4.

To assure accuracy for |k| > 4, we compare the results of the LS method with
two different grids in the z-domain. The coarser grid has 4096 × 4096 points, and
the finer grid has 8192 × 8192 points. The coarser grid is not a subset of the finer
grid. We remark that both of these grids are significantly finer than those we
typically use for computing scattering transforms for conductivity-type potentials.
Due to high memory requirements, we used a liquid-cooled HP Z800 Workstation
with 192 GB of memory. Even with that powerful machine, the evaluation of one
point value using the finer grid takes more than 11 hours. The LS method gives
closely matching results in the regions 3 ≤ |k| ≤ 5 and |k| > 9.

Figure 8 shows the profile of the scattering transform. In the interval 5 <
|k| < 9 the numerical computation does not converge, resulting either in inaccurate
evaluation of the point values of the scattering transform or in complete failure
of the algorithm due to using up all the memory. We suspect that the observed
numerical divergence arises from the existence of at least one exceptional circle in
the interval 5 < |k| < 9.
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Figure 7. Time snapshots of a breather solution derived using the EMA.

5. Zero-energy exceptional points

The inverse scattering method for the solution of the Novikov-Veselov equation is
based on the complex geometrical optics (CGO) solutions ψ of the Schrödinger
equation (2.8). The function ψ(z, k) is asymptotically close to the exponential
function eikz in the sense of formula (2.9); the point is that ψ can be used to
define a nonlinear Fourier transform t(k) specially designed for linearizing the NV
equation. See diagram (1.5) above.

However, there is a possible difficulty in using ψ and t. Even in the case of
a smooth and compactly supported potential q ∈ C∞

0 , there may exist complex
numbers k �= 0 for which equation (2.8) does not have a unique solution satisfying
the asymptotic condition (2.9). Such k are called exceptional points of q. It is
shown in [56] that that exceptional points of rotationally symmetric potentials
come in circles centered at the origin and that the scattering transform has a strong
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Figure 8. Profile of the scattering transform t(k) of the KdV
ring soliton for k ranging in the positive real axis. The computation
was unstable in the region 5 < |k| < 9, suggesting the presence of
an exceptional circle.

singularity at the circles. The singularity prevents any currently understood use
of the inverse nonlinear Fourier transform in the diagram (1.5). It seems safe to
assume that the situation becomes only worse for more general potentials.

What is the connection between exceptional points and dynamics of solutions
of the Novikov-Veselov equation? For example, does the absence of exceptional
points in the initial data ensure smooth NV evolution? Do exceptional points
perhaps correspond to lumps or solitons or finite-time blow-ups? Such a conjecture
was presented already in [9, page 27], but the question is still open.

This section is devoted to a computational experiment illustrating exceptional
points of a parametric family of rotationally symmetric potentials. The example
clarifies the relationship between exceptional points and the trichotomy supercriti-
cal/critical/subcritical presented in Definition 1.1.

Take a radial C2
0 function w(z) = w(|z|) as shown in Figure 9. A detailed

definition of w is given in [55, Section 5.1]. Define a family of potentials by qλ = λw,
parameterized by λ ∈ R. Now the case λ = 0 gives q0 ≡ 0, which is a critical
potential since it arises as q0 = σ−1Δσ with the positive function σ ≡ 1. From
Murata [52] we see that λ < 0 gives a supercritical potential and λ > 0 gives a
subritical potential. See [56, Appendix B] for details.

We use the DN method described in Section 3.2 to compute the scattering
transforms of the potentials qλ for the parameter λ ranging in the interval [−25, 5].
Since each potential qλ(z) is real-valued and rotationally symmetric in the z-plane,
also the scattering transform is real-valued and rotationally symmetric in the k-
plane. See [56, Appendix A] for details. Therefore it is enough to compute t(k)
only for k ranging along the positive real axis. In Figure 11 we show the result of
the computation as a two-dimensional grayscale image.

It is known that critical potentials do not have nonzero exceptional points; see
[56, 58]. Thus there are no singularities in Figure 11 for λ = 0 (actually in this
simple example we have T q0 ≡ 0). Furthermore, a Neumann series argument shows
that for a fixed λ there exists such a positive constant K = K(λ) that there are no
exceptional points for qλ satisfying |k| > K. See the analysis in [58, above formula
(1.12)].
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Figure 9. Left: rotationally symmetric test function w(z). Right:
the profile w(|z|).

According to [54], subcritical potentials do not have nonzero exceptional points.
Thus there are no singularities in Figure 11 for parameter values λ ≥ 0. (We remark
that the seemingly exceptional curves in the upper right corner of Figures 3 and 9
in [56] are due to deteriorating numerical accuracy for large positive values of λ.
Those figures are trustworthy only for λ close to zero.)

For negative λ close to zero it is known from [56] that there is exactly one circle
of exceptional points. The asymptotic form of that radius as a function of λ is
calculated explicitely in [56].

For λ << 0 there is no precise understanding of exceptional points as of now;
numerical evidence such as Figure 11 suggests that there may be several exceptional
circles. Also, something curious seem to happen around λ ≈ −8 and λ ≈ −20.5; at
present there is no explanation available.

See [56] for more zero-energy examples and [77] for analogous evidence of ex-
ceptional points at positive energies.

6. Open Problems

6.1. Applications of the NV Equation. The stationary NV equation [19]
and the modified NV equation [83] have applications in differential geometry. Al-
though the NV equation (1.1) is not known to be a mathematical model for any
physical dynamical system, there has been some research in this direction for the
dispersionless Novikov-Veselov (dNV) equation

qξ = (uq)z + (uq)z̄(6.1)

uz̄ = −3qz.

Equation (6.1) was derived in [43] as the geometrical optics limit of Maxwell’s equa-
tions in an anisotropic medium. The model governs the propagation of monochro-
matic electromagnetic (EM) waves of high frequency ω. In particular, they consider
nonlinear media with Cole-Cole dependence [12] of the dielectric function and mag-
netic permeability on the frequency. Assuming slow variation of all quantities along
the z axis, it is shown that Maxwell’s equations reduce to (6.1) where q = n2, the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

58 R. CROKE, J. L. MUELLER, M. MUSIC, P. PERRY, S. SILTANEN, AND A. STAHEL

−10

−5

0

5

−20

−10

0

10

20

−10

−5

0

5

−20

−10

0

10

20

−10

−5

0

5

−20

−10

0

10

20

−10

−5

0

5

−20

−10

0

10

20

Profile of potential Profile of scattering transform

λ = 5

λ = 0

λ = −5

λ = −10

Figure 10. Left column: profiles of rotationally symmetric po-
tentials qλ(|z|) resulting from different values of λ. Right column:
profiles of corresponding scattering transforms tλ(|k|). Note that
negative values of λ lead to exceptional circles where the scattering
transform is singular. See also Figure 11 which shows scattering
transform profiles corresponding to more values of λ.
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λ

|k|

Figure 11. Profiles of rotationally symmetric scattering trans-
forms. Lighter shade indicates larger values and darker shade
smaller values. The horizontal axis is the parameter λ in the def-
inition qλ(z) = λw(z) of the potential. The vertical axis is |k|.
There are curves along which a singular jump “from −∞ to +∞”
appears, indicated by an abrupt change from black to white. The
k values at those curves are exceptional points. Note that the pro-
files corresponding to λ = −10,−5, 0, 5 are shown also in Figure
10.

refractive index, and ξ is a “slow” variable defined by z = ωνξ. The phase of the
electric field is governed by [43]

S2
x + S2

y = n2(x, y, ξ)(6.2)

Sξ = φ(x, y, ξ;Sx, Sy)

for a real-valued function φ, and the dNV heirarchy characterizes both the phase
and refractive index.

In [8] hydrodynamic-type reductions of the dNV equation are presented, but
the physical interpretation of these reductions are left for future work. Interesting
open problems are whether the inclusion of the dispersion terms in the NV equation
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models EM waves in a manner related to those derived for the dNV equation, and
whether either NV or dNV serves as a physical model for any kind of hydrodynamic
phenomenon.

6.2. Exceptional Sets and Large-Time Behavior for the NV Equa-
tion. Recall that the exceptional set of a potential q0 is the set of all those k ∈ C

for which there is not a unique NCGO solution μ(z, k). Here we discuss the re-
lationship between: (1) the “size” of the exceptional set,” (2) whether the poten-
tial q0 is subcritical, critical, or supercritical (recall this trichotomy, Definition 1.1
from the introduction) and (3) whether the NV equation with initial data q0 has
a global solution. In these remarks, we will usually restriction attention to real-
valued potentials q0 belonging to the space Lp

ρ(R
2) for ρ > 1 and p ∈ (1, 2) (see the

remarks preceding Definition 1.3); one may think of potentials of order O
(
|z|−2−ε

)
as |z| → ∞. Recall that, in the inverse scattering literature, critical potentials are
usually referred to as “potentials of conductivity type.”

To date, the only rigorous results on the size of exceptional sets for the zero-
energy NV equation are due to Nachman [58] and Music [54]. As explained above,
Nachman showed that a potential is of conductivity type (or, equivalently, a critical
potential as defined in the introduction, Definition 1.1) if and only if the exceptional
set is empty and the scattering transform t(k) is O(|k|ε) as |k| → 0 for some ε > 0.
Music, extending Nachman’s ideas and techniques, showed that a subcritical poten-
tial with sufficient decay at infinity has an empty exceptional set and characterized
the singularity of the potential as |k| → 0. Perry [67] showed that, if q0 is a
sufficiently smooth critical potential, the NV equation with initial data q0 has a
solution global in time. There is strong evidence to suggest that a similar result
can be proved for the NV equation with subcritical initial data, based on the work
of Music [54].

Thus, it remains to understand the singularities of the scattering transform for
supercritical potentials. Examples due to Grinevich and Novikov [30] and Music,
Perry and Siltanen [56] show that supercritical potentials may have circles of ex-
ceptional points. It is not known whether supercritical potentials must or may have
exceptional points, nor is it known how to extend the inverse scattering formalism
to potentials with nonempty exceptional sets. The following result due to Brown,
Music, and Perry [10] gives an initial constraint on the size of exceptional sets for
particularly nice potentials.

Theorem 6.1. [10] Suppose that q is a real-valued measurable valued function
with the property that |q(z)| ≤ C1 exp(−C2|z|) for some constants C1 and C2.
Then the exceptional set of q consists at most of isolated points together with at
most finitely many smooth curves with at most finitely many intersections.

To analyze the exceptional set, the authors define a renormalized determinant
whose zero set is exactly the exceptional set. To describe it, let Tk is the integral
operator

Tkψ =
1

4
gk ∗ (qψ).

The differential equation for μ(z, k), the NCGO solution, may be rewritten μ =
1 + Tkμ. Hence, uniqueness of solutions is equivalent to invertibility of (I − Tk),
and the exceptional set is exactly the set of points k for which (I − Tk) fails to be
invertible. It can be shown that Tk is a compact linear operator from Lp to itself
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for any p > 2, and that Tk belongs to the so-called Mikhlin-Itskovich algebra of
integral operators on Lp. For this reason we can apply the theory renormalized
determinants due to Gohberg, Goldberg, and Krupnik [21] and define

Δ(k) = det2(I − Tk)

where the determinant det2 is the renormalized determinant. Brown, Music, and
Perry show that this determinant is a real-analytic function of k for exponentially
decaying potentials. It now follows from the Weierstrass preparation theorem that
the zero set of Δ(k) is locally the zero set of a polynomial. Since the exceptional
set is known to be closed and bounded, one can completely analyze the behavior
of Δ(k) near the exceptional set using finitely many such local representations. It
can be shown that Δ(k) is also real-valued, from which it follows that the zero set
has the claimed form.

Theorem 6.1 opens up several areas for further investigation.
First, it would be of considerable interest to determine what additional data is

needed to reconstruct a potential from t(k) when t(k) has point or line singularities.
Second, it would be very interesting to know whether singularities are always

present for supercritical potentials, or whether, on the other hand, singularities are
generically absent.

Third, our understanding of the NV equation and its dynamics would be greatly
improved by connecting ‘spectral’ properties of the scattering transform (i.e., the
nature of its singularities) to long-term behavior of solutions. The form of the
time evolution for t(k) suggests that the ‘trichotomy’ of subcritical, critical, and
supercritical potentials is invariant under the NV flow. It is known that critical
initial data give rise to global solutions (see [68]), and there is strong evidence
that the same is true of subcritical initial data. On the other hand, numerical
experiments such as the ring soliton, Example 4.3, and analytical solutions such as
those produced by Taimanov and Tsarev [85–88] strongly suggest that supercritical
initial data lead to solutions of NV that blow up in finite time. It would be very
interesting to obtain a rigorous proof that this is the case, and to analyze the nature
of the blow-ups by inverse scattering methods.

Appendix A. Some Useful Analysis

In the direct scattering problem at zero energy, Faddeev’s Green’s function plays
a critical role in elucidating properties of the CGO solutions that define the scat-
tering transform. Recall that the normalized CGO solutions solve the equation

∂ (∂ + ik)μ = (1/4)qμ

and that Faddeev’s Green’s function is Green’s function for the operator ∂ (∂ + ik).
On the other hand, the solid Cauchy transform is an inverse for the ∂ operator
with range in Lp functions for p > 2, and hence is a fundamental tool for solving
the ∂ problem that defines the inverse scattering transform. Finally, the Beurling

transform is an integral operator which gives a meaning to the operator ∂
−1

∂ that
occurs in the definition of the nonlinearity in the NV equation. Here we collect
some useful properties of these transforms and some essential estimates.

A.1. Faddeev’s Green’s Function at Zero Energy. We recall some key
facts about Faddeev’s Green’s function gk. We refer the reader to Siltanen’s thesis
[75] for details and references to the literature.
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Recall that gk is defined by the formula

gk(z) =
1

(2π)2

∫
eiξ·x

1

ξ(ξ + k)
dm(ξ)

where z = x1 + ix2, ξ · x = ξ1x1 + ξ2x2, ξ = ξ1 + iξ2, and ξ = ξ1 − iξ2. By the
Hausdorff-Young inequality, gk ∈ Lp for any p > 2. In fact, the estimate

‖gk‖p ≤ Cp |k|−2/p

(see Siltanen [75], Theorem 3.10) holds for any k �= 0. It is important to note that

gk(z) = g1(kz).

The following large-x asymptotic expansion of g1 (x) is proved in [75], Theorem
3.11.

Lemma A.1. Let z = x1 + ix2 with z �= 0 and x1 > 0. For any integer N ≥ 0,

g1(z) = − 1

4π

N∑
j=0

[
j!

(iz)
j+1 − e−2ix1

j!

(−iz)
j+1

]
(A.1)

+ EN (z)

where

(A.2) |EN (z)| ≤ (N + 1)!2(N+1)/2

π |z|N+2
.

Since g(−x1 + ix2) = g1(x1 + ix2), similar formulas hold for x1 < 0.

Remark A.2. Since the error estimate (A.2) does not depend on the condition
x1 > 0, and since g1(z) is continuous, we can conclude that the expansion (A.1)
remains valid for z �= 0 and Re(z) = 0.

Now consider gk(z) = g1(kz). Since Re (kz) = 1
2

(
kz + kz

)
, we immediately

obtain:

Lemma A.3. Let z = x1 + ix2 and k ∈ C. For any integer N ≥ 0, the expansion

gk(z) = − 1

4π

N∑
j=0

[
j!

(ikz)j+1
− e−i(kz+kz) j!(

−ikz
)j+1

]
(A.3)

+ EN (kz)

holds, where

|EN (kz)| ≤ CN |kz|−(N+2)
.

.

A.2. The Cauchy Transform and the Beurling Operator. Following [3],
chapter 4, we study the Cauchy transform and the Beurling operator through the
logarithmic potential associated with Poisson’s equation in two dimensions. For
ϕ ∈ C∞

0 (R2), we may define the logarithmic potential

(Lϕ)(z) =
2

π

∫
log |z − z′| ϕ(z′) dm(z′)

which has the property

∂∂ (Lϕ) = ϕ.
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Associated to L are the Cauchy transform,

(Pϕ) (z) =
∂

∂z
(Lϕ) (z),

the transform (
Pϕ

)
(z) =

∂

∂z
(Lϕ)(z),

and the Beurling transform

(Sϕ) (z) =
∂2

∂z2
(Lϕ)(z).

From these definitions and (3.2), it is easy to see that

(A.4) P ◦ ∂

∂z
=

∂

∂z
◦ P = I

where I is the identity on C∞
0 (R2), and

(A.5) S
(
∂ϕ

∂z

)
=

∂ϕ

∂z
.

We have

(Pϕ) (z) =
1

π

∫
1

z − z′
ϕ (z′) dm(z′),

(
Pϕ

)
(z) =

1

π

∫
1

z − z′
ϕ(z) dm(z′),

and

(A.6) (Sϕ)(z) = − 1

π
lim
ε↓0

(∫
|z−z′|>ε

1

(z − z′)2
ϕ(z′) dm(z′)

)
.

The following estimates on P extend the Cauchy transform to Lp spaces and
are standard consequences of the Hardy-Littlewood-Sobolev and Hölder inequalities
(see Vekua [92] or [3], §4.3). They are used to prove existence and uniqueness of
solutions to the ∂ problem that defines the inverse problem.

Lemma A.4. (i) For any p ∈ (2,∞) and f ∈ L2p/(p+2)(R2),

(A.7) ‖Pf‖p ≤ Cp ‖f‖2p/(p+2) .

(ii) For any p, q with 1 < q < 2 < p < ∞ and any f ∈ Lp
(
R2
)
∩ Lq

(
R2
)
, the

estimate

(A.8) ‖Pf‖∞ ≤ Cp,q ‖f‖Lp∩Lq

holds. Moreover, P is Hölder continuous of order (p− 2) /p with

(A.9) |(Pf) (z) − (Pf) (w)| ≤ Cp |z − w|(p−2)/p ‖f‖p .

(iii) If v ∈ Ls(R2) and q > 2 with q−1 +1/2 = p−1 + s−1, then for any f ∈ Lp(R2),

(A.10) ‖P (vf)‖q ≤ Cp,q ‖v‖s ‖f‖p .

Remark A.5. Since C∞
0 (R2) is dense in Lp ∩ Lq and (Pf)(z) = O

(
z−1

)
as

|z| → ∞ for any f ∈ C∞
0 (R2), it follows from (ii) that if f ∈ Lp ∩ Lq for 1 < p <

2 < q < ∞, then Pf ∈ C0(R
2), the continuous functions that vanish at infinity.
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Remark A.6. Note that with s = q in (A.10) we have

‖P (vf)‖p ≤ Cp ‖v‖2 ‖f‖p .

For any f ∈ L2p/(p+2)(R2), Lemma A.4 together with (A.4) imply that u = Pf
solves ∂u = f in distribution sense. Suppose, on the other hand, that u ∈ Lp(R2)
for some p ∈ [1,∞) and ∂u = 0 in distribution sense. It follows that ∂∂u =
0 in distribution sense, so that u ∈ C∞ by Weyl’s lemma. Thus, u is actually
holomorphic, so u vanishes identically by Liouville’s Theorem. From this fact and
(A.4), we deduce:

Lemma A.7. Suppose that p ∈ (2,∞), that u ∈ Lp(R2), that f ∈ L2p/(p+2)(R2),
and that ∂u = f in distribution sense. Then u = Pf . Conversely, if f ∈
L2p/(p+2)(R2) and u = Pf , then ∂u = f in distribution sense.

The following expansion for solutions of ∂u = f when f is rapidly decaying gives
rise to the large-k asymptotic expansion for μ(z, k).

Lemma A.8. Suppose that p ∈ (2,∞), that u ∈ Lp(R2), that f ∈ L2p/(p+2),N (R2),
and that ∂u = f . Then

zN

⎡
⎣u(z) −

N−1∑
j=0

1

zj+1

∫
ζjf(ζ) dm(ζ)

⎤
⎦ ∈ Lp(R2).

Proof. An immediate consequence of the estimate (A.7), Lemma A.7 and the
formula

1

z − ζ
=

1

z

N−1∑
j=0

(
ζ

z

)j

+
1

zN
ζN

z − ζ
.

�

Remark A.9. If f ∈ S
(
R

2
)

and depends smoothly on parameters, then the
asymptotic expansion holds pointwise and is differentiable in the parameters.

The principal value integral (A.6) identifies S as a Calderón-Zygmund type
integral operator. We have (see, for example, [3], §4.5.2):

Lemma A.10. Suppose that p ∈ (1,∞). The operator S extends to a bounded
operator from Lp(R2) to itself, unitary if p = 2. Moreover, if ∇ϕ belongs to Lp(R2)
for p ∈ (1,∞), then S (∂ϕ) = ∂ϕ.
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