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Freguenz, Amplitude und Motorgeschwindigkeit
J=29kg*m“, L=0.45m, Feont = 354 N, alphapeak = 86.234 rad/s2
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Figure 5.12: System limits in frequency and amplitude for maximum continuous loading

Figure 5.13: Schematic representation of the SpineMime kinematics




5.2. CALCULATIONS

Motor length and platform angle vectors

Points B, D and F expressed in {1}, motion base in zero position
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ZBg ZDg

Motion of the platform = rotation of the position vectors

Rotation around x-axis with rotation matrix R, and angle oy
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Rotation around z-axis with rotation matrix R, and angle ag
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The three single rotations around the x-, y- and z-axis can be done in one matrix
operation with the rotation matrix:
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My (as, a, ar) = Rz () Ry(a2) Re (1) (5.23)

We get M,yq(as, a2, 1) as (sin = s, cos = ¢):

ChClg CO3gS(¥1SCxg — C¥1Sxgz  CY18Q3SQxp + S1803
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In this we way we have for the position vectors:
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Frame transformation
We want to express the position vectors in reference frame {0}. For this we have to express

the origin of frame {1} in frame {0}. This is done with the transformation vector which is:

0
OFl,org = ZO (528)
0

The position vectors expressed in frame {0} are just an addition of the position vector
expressed in frame {1} with the transformation vector:

O = "Flomg + '8 (5.29)
0FD = OFI,Org + 1'FD (530)

OFF = O_'l,org + 17:’B (531)

Points A, C and E expressed in {0}
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Motor lengths

The motor lengths correspond to the norms of the vectors ﬁ7 @ and ﬁ We have:

AB=% - %% = [ =|AB| (5.35)
CD =% — %% = Iy=|CD| (5.36)

Substituting with above derivations lead to:

h= |0F1,0rg + sz;c (0437 2, 041)
la = |O{F1,Org + szz (a37 Q2, 041)

I3 = |0F1,0rg + szw(a?n Q2, 061)
Finally we get the motor length vector:

|OF1,org + sz.t (013, a2, Oll) TBO - TA|
‘OFl,org + szm (0437 Qag, al) FDO - 0FC|
|O7?1,org + szx(ai% a2, 011) 1TF0 - 7"E|

Approximation for small angles

Calculating the motor lengths L after equation 5.41 is a nonlinear problem due to the
sine and cosine operations in the rotation matrix M., (a3, a2, 1). Concerning the com-
putational effort, the problem was discussed with Prof. Dr. Andreas Stahel, professor for
mathematics at the Bern University of Applied Sciences. It is to consider that the motor
lengths have to calculated inside an adequate time period for guaranteeing real-time opera-
tion of the robotic system. The change of the motor lengths can be approximated through
linearization of the problem. The inverse kinematics can be approximated with:

(5.42)

The forward kinematics can be approximated with:

Ad=AAL (5.43)

The approximation matrix A relates L and @ linearly. It is built from the partial
derivations of L after & for &« = 0. The equations will be approximatively valid for small
variations from the zero position of the platform. The approximation matrix is calculated
as:
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Numerical system description

The system is now described with its numerical values. The kinematics calculation scripts
SpineMime_EulerRot.m and SpineMime_AxisAngleRot.m are available in work package
folder AP313_Kinematik_Aufbau.

Motion base The motion base coordinates in relation to the motion base frame {1} are:

0 0.3 —0.45
Y, = | 0.04 Y7, = —0.04 |m  'Fp, = 0.04
—0.45 0.45 0

Frame transformation Frame {1} expressed in frame {0} is:

0
O org = | 0.668 | m
0

Ground The ground coordinates expressed in the ground frame {0} are:

0 —0.4 —0.45
Y%%a=1| 0473 |m 7 0
—0.45 0.45 0

Approximation matrix With the above values the approximation matrix for the inverse
kinematics is calculated to:

0.4500 0 0 o
A= | —0.0973 0.4394 0.1039 —
0 0 —0.4500 | ™

Approximation errors The motor lengths were calculated for different platform angles
and different rotation directions. Platform angles up to the maximum range of motion
(13°) were respected. The values were one time calculated exact and one time with the
approximation strategy. The results were compared and the approximation errors were
analyzed. The absolute motor length errors are shown in figure 5.14. It is to see that the
errors are growing exponentially with increasing platform angle. In the graph for the y-axis
rotations only two data lines can be seen. This is because the errors for length 1 and length
3 are exactly the same and the lines are superimposed. The absolute errors are always
below 8 mm. 8 mm corresponds approximately to one degree. We can say that the platform
angle errors will be below one degree as long as it is only rotated about the x-, y- or z-axis.
If two or three axes are involved in the platform displacement the errors would add up.
Even in this situation the maximum positioning error can be estimated to be below two
degrees. The actual application doesn’t require high precision, because no positioning tasks
have to be done. The main focus is to generate vibrations for biomechanical stimulation.
Precision is absolutely not of interest when stochastic motion is desired. From this point
of view it can be said that the approximation strategy is adequate. Further it reduces the
computational costs.
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X—axis rotation y—axis rotation z-axis rotation
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Figure 5.14: Approximation errors for different rotation directions

5.2.3 Axis-Angle rotation

In the description above, the platform position was described using the Euler angles o, asg
and «3. Now we consider the definition of a desired motion for stimulation. This could for
example be a sine of the form ¢(t) = ¢sin(27 ft) (see also section 4.4). This would work fine
if the platform rotates around the x-, y- or z-axis when ¢ corresponds to either a;y, as or ag.
If we want to have a rotation axis different from the x-, y- or z-axis the amplitude ¢ won’t
correspond to either aj, ag or ag. Such a motion can be described using the axis-angle
form. A rotation axis k with |k| = 1 and a rotation angle ¢ are needed. A position vector
can be rotated about an arbitrary axis k together with the general rotation matrix Ry [48]
(cos = ¢, sin = s, versine = 1-cos = v).

E:

k2vo + cé kokyvo — ks kyk.vo + kyso
kykyve + k.s¢ kqub +co kyk.ve — kyso (5.46)
kpk.vo — kysg  kyk.vo + kpso k2ve + co

For performing the approximated inverse kinematics after equation 5.42 we need to know
the Euler angles a1, as and a3. Having numerical values for k and ¢ we know the rotation
matrix. The same rotation matrix would result the values for o, as and a3 are set into
M. yz (s, a2, 1) (see equation 5.24). The other way around a1, as and a3 can be calculated
out of the known rotation matrix (for derivation see [48]). We get the Euler angles with
the following formulas. Therein r;; represents the element at the i-th row and j-th column
from the rotation matrix.




