
Octave and MATLAB for Engineers

Andreas Stahel, Bern University of Applied Sciences, Switzerland

Version of 10th September 2020

Foreword

These lecture notes were used at my school to familiarize students with Octave , to be used to solve engineer-
ing problems. A first version was based on Octave and you will still find sections to be adapted to MATLAB.
The current version is avalable at web.sha1.bfh.science/Labs/PWF/Documentation/OctaveAtBFH.pdf .

Wherever possible I attempted to provide code working with both Octave and MATLAB . Most of the
codes are available at web.sha1.bfh.science/Labs/PWF/Codes .

The notes consist of two chapters.

• The first chapter is an introduction to the basic Octave/MATLAB commands and data structures. The
goal is to provide simple examples for often used commands and point out some important aspects of
programming in Octave or MATLAB. The students are expected to work through all of those sections.
Then they should be prepared to use Octave and MATLAB for their projects.

• The second chapter consists of applications of MATLAB/Octave . In each section the question or
problem is formulated and then solved with the help of Octave/MATLAB. This small set of applications
with solutions shall help you to solve your engineering problems. In class I choose a few of those
topics and present them to the students.

Starting in 2015 our students have legal access to MATLAB and thus I have to take this into account in class
and most instructions and codes work with both Octave and MATLAB!

There is no such thing as “the perfect lecture notes” and improvements are always possible. I welcome
feedback and constructive criticism. Please let me know if you use/like/dislike the lecture notes. Please
send your observations and remarks to Andreas.Stahel@bfh.ch .

©Andreas Stahel, 2017
“Octave and Matlab for Engineers” by Andreas Stahel, BFH, Biel, Switzerland is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
You are free: to copy, distribute, transmit the work, to adapt the work and to make commercial use of the work. Under
the following conditions: You must attribute the work to the original author (but not in any way that suggests that the
author endorses you or your use of the work). Attribute this work as follows:
Andreas Stahel: Octave and Matlab for Engineers, Lecture Notes.
If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

1

https://web.sha1.bfh.science/Labs/PWF/Documentation/OctaveAtBFH.pdf
https://web.sha1.bfh.science/Labs/PWF/Codes
mailto:Andreas.Stahel@bfh.ch
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

Foreword . 1

1 Introduction to Octave 6
1.1 Starting up Octave or MATLAB and First Steps . 7

1.1.1 Starting up Octave . 8
1.1.2 Packages for Octave . 12
1.1.3 Information about the operating system and the version of Octave 14
1.1.4 Starting up MATLAB . 15
1.1.5 Calling the operating system and using basic Unix commands 16
1.1.6 How to find out whether you are working with MATLAB or Octave 17
1.1.7 Where and how to get help . 18
1.1.8 Vectors and matrices . 20
1.1.9 Broadcasting . 26
1.1.10 Timing of code and using a profiler . 27
1.1.11 Debugging your code . 28
1.1.12 Command line, script files and function files . 28
1.1.13 Local and global variables, nested functions . 30
1.1.14 Elementary graphics . 31
1.1.15 A breaking needle ploblem . 31
1.1.16 Exercises . 34

1.2 Programming with Octave . 36
1.2.1 Displaying results and commenting code . 36
1.2.2 Basic data types . 36
1.2.3 Structured data types and arrays of matrices . 38
1.2.4 Built-in functions . 41
1.2.5 Working with source code . 49
1.2.6 Loops and other control statements . 50
1.2.7 Conditions and selecting elements . 53
1.2.8 Reading from and writing data to files . 55

1.3 Solving Equations . 60
1.3.1 Systems of linear equations . 60
1.3.2 Zeros of polynomials . 69
1.3.3 Nonlinear equations . 69
1.3.4 Optimization . 75

1.4 Basic Graphics . 79
1.4.1 2-D plots . 79
1.4.2 Printing figures to files . 86
1.4.3 Generating histograms . 88
1.4.4 Generating 3-D graphics . 89
1.4.5 Generating vector fields . 95

1.5 Basic Image Processing . 98

2

CONTENTS 3

1.5.1 First steps with images . 98
1.5.2 Image processing and vectorization, edge detection 103
1.5.3 SVD . 110

1.6 Ordinary Differential Equations . 111
1.6.1 Using lsode() to solve systems of ordinary differential equations 111
1.6.2 Options of lsode . 115
1.6.3 Using C++ code to speed up computations . 116
1.6.4 Determine the period of a Volterra-Lotka solution 119
1.6.5 The commands ode23() and ode45() . 120
1.6.6 Codes from lecture notes by this author . 124
1.6.7 List of files . 126
1.6.8 Exercises . 127

2 Applications of Octave 128
2.1 Numerical Integration and Magnetic Fields . 130

2.1.1 Basic integration methods . 130
2.1.2 Comparison of integration commands in Octave 133
2.1.3 From Biot–Savart to magnetic fields . 134
2.1.4 Field along the central axis and the Helmholtz configuration 135
2.1.5 Field in the plane of the conductor . 137
2.1.6 Field in the xz–plane . 139
2.1.7 The Helmholtz configuration . 140
2.1.8 List of codes and data files . 143

2.2 Linear and Nonlinear Regression . 144
2.2.1 Linear regression for a straight line . 145
2.2.2 General linear regression, matrix notation . 146
2.2.3 Estimation of the variance of parameters, confidence intervals 147
2.2.4 Estimation of variance of the dependent variable 149
2.2.5 Example 1: Intensity of light of an LED depending on the angle of observation . . . 151
2.2.6 QR factorization and linear regression . 155
2.2.7 Weighted linear regression . 156
2.2.8 More commands for regression with Octave or MATLAB 157
2.2.9 Code for the function LinearRegression() 159
2.2.10 Example 2: Performance of a linear motor . 162
2.2.11 Example 3: Calibration of an orientation sensor . 165
2.2.12 Example 4: Analysis of a sphere using an AFM . 168
2.2.13 Example 5: A force sensor with two springs . 172
2.2.14 Nonlinear Regression, Introduction and a First Example 175
2.2.15 Nonlinear Regression with a Logistic Function . 178
2.2.16 Nonlinear Regression with an arctan Function . 180
2.2.17 Approximation by a Tikhonov Regularization . 182
2.2.18 A Real World Nonlinear Regression Problem . 183
2.2.19 New Functions lsqcurvefit and lsqnonlin 187
2.2.20 List of codes and data files . 187
2.2.21 Exercises . 188

2.3 Regression with Constraints . 193
2.3.1 Example 1: Geometric line fit . 193
2.3.2 An algorithm for minimization problems with constraints 193
2.3.3 Example 1: continued . 195
2.3.4 Detect the best plane through a cloud of points . 197
2.3.5 Identification of a straight line in a digital image 198

SHA1 10-9-20

CONTENTS 4

2.3.6 Example 2: Fit an ellipse through some given points in the plane 201
2.3.7 List of codes and data files . 207
2.3.8 Exercises . 207

2.4 Computing Angles on an Embedded Device . 209
2.4.1 Arithmetic operations on a micro controller . 209
2.4.2 Computing the angle based on xy information . 212
2.4.3 Error analysis of arctan–function . 212
2.4.4 Clever evaluation of arctan–function . 213
2.4.5 Implementations of the arctan–function on micro controllers 213
2.4.6 Chebyshev approximations . 221
2.4.7 List of codes and data files . 225
2.4.8 Exercises . 225

2.5 Analysis of Stock Performance, Value of a Stock Option 231
2.5.1 Reading the data from the file, using dlmread() 231
2.5.2 Reading the data from the file, using formatted reading 231
2.5.3 Analysis of the data . 232
2.5.4 A Monte Carlo Simulation . 236
2.5.5 Value of a stock option : Black–Scholes–Merton 239
2.5.6 List of codes and data files . 243

2.6 Motion Analysis of a Circular Disk . 244
2.6.1 Description of problem . 244
2.6.2 Reading the data . 244
2.6.3 Creation of movie . 246
2.6.4 Decompose the motion into displacement and deformation 248
2.6.5 List of codes and data files . 250

2.7 Analysis of a Vibrating Cord . 252
2.7.1 Design of the basic algorithm . 252
2.7.2 Analyzing one data set . 256
2.7.3 Analyzing multiple data sets . 260
2.7.4 Calibration of the device . 265
2.7.5 List of codes and data files . 265

2.8 An Example for Fourier Series . 267
2.8.1 Reading the data . 267
2.8.2 Further information . 269
2.8.3 Using FFT, Fast Fourier Transform . 270
2.8.4 Moving spectrum . 270
2.8.5 Transfer function . 272
2.8.6 List of codes and data files . 274

2.9 Reading Information from the Screen and Spline Interpolation 275
2.9.1 Reading form an Octave/MATLAB graphics window by ginput() 275
2.9.2 Create xinput() to replace ginput() . 275
2.9.3 Reading an LED data sheet with Octave . 276
2.9.4 Interpolation of data points . 279
2.9.5 List of codes and data files . 281

2.10 Intersection of Circles and Spheres, GPS . 283
2.10.1 Intersection of two circles . 283
2.10.2 A function to determine the intersection points of two circles 285
2.10.3 Intersection of three spheres . 286
2.10.4 Intersection of multiple circles . 287
2.10.5 Intersection of multiple spheres . 290
2.10.6 GPS . 291

SHA1 10-9-20

CONTENTS 5

2.10.7 List of codes and data files . 291
2.10.8 Exercises . 292

2.11 Scanning a 3–D Object with a Laser . 293
2.11.1 Reading the data . 293
2.11.2 Display on a regular mesh . 293
2.11.3 Rescan from a different direction and rotate the second result onto the first result . . 296
2.11.4 List of codes and data files . 297

2.12 Transfer function, Bode and Nyquist plots . 299
2.12.1 Create the Bode and Nyquist plots of a system . 299
2.12.2 Create the Bode and Nyquist plots of a system with the MATLAB–toolbox 299
2.12.3 Create the Bode and Nyquist plots of a system with Octave commands 300
2.12.4 Eliminate artificial phase jumps in the argument . 301
2.12.5 The commands for control theory . 303
2.12.6 A root locus problem . 305
2.12.7 List of codes and data files . 307

2.13 Planed Topics . 309

Appendices 310
Bibliography . 310
List of Figures . 312
List of Tables . 315
Index . 316

SHA1 10-9-20

Chapter 1

Introduction to Octave

The first chapter, consisting of five sections, gives a very brief introduction into programming with Octave .
This part is by no measure complete and the standard documentation and other references will have to be
used. Here are some keywords presented in the sections of this chapter:

• Remarks on MATLAB and pointers to documentation.

• Starting up an Octave work environment.

• Installing additional packages.

• How to get help.

• Vectors, matrices and vectorized code.

• Script files and function files.

• Data types, functions, control statements, conditions.

• Data files, reading and writing information.

• Solving equations of different types.

• Create basic graphics and manipulate images.

• Solve ordinary differential equations. Include C++ code in Octave .

6

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 7

1.1 Starting up Octave or MATLAB and First Steps

The goal of this section is to get the students started using Octave , i.e. launching Octave , available docu-
mentation and information. Some of the information is adapted to the local setup at this school and will have
to be modified if used in a different context. Octave1 is very similar to MATLAB. If you master Octave then
MATLAB is easy too. Octave is developed and maintained on Unix systems, but can be used on Mac and
Win* systems too. There is a number of excellent additional packages for Octave available on the internet
at Octave Forge2.

For most tasks MATLAB and Octave are equivalent

The home page of this author3 [www:sha] gives more information and also information on Octave for
different operating systems.

References

• For quick consulting there is a reference card for Octave . It should come with your distribution of
Octave .

• David Griffiths from the University of Dundee prepared an excellent set of short notes on MATLAB
[Grif01]. These notes are available on the local system as MatlabNotes.pdf .

Have a copy of these notes ready when working with MATLAB or Octave

• The Octave manual is available in the form of HTML files and provides basic documentation of all
Octave–commands. Read the files with a browser. Almost all of the commands apply to MATLAB
too.

– On the web page web.sha1.bfh.science/Octave.html (part of this autors web page at [www:sha])
find these files as HTML, PDF or as one compressed file. You are free to copy these files and
use them on your computer, even without an internet connection.

– The Octave packages are documented on the web site of Octave Forge at
http://octave.sourceforge.net/

You need access to this information when working with Octave

• The book [Hans11] by Jesper Hansen is an elementary and short introduction to Octave .

• A good reference for engineers is the book by Biran and Breiner [BiraBrei99].

• Another useful reference is the book by Hanselman and Littlefield ([HansLitt98]). Newer versions
of this book are available. As an introduction to MATLAB and some of its extensions you might
consider [HuntLipsRose14].

• On the Octave web page there is a Frequently Asked Questions (FAQ) page:
http://www.gnu.org/software/octave/FAQ.html

1http://www.gnu.org/software/octave/
2http://octave.sourceforge.net/
3https://web.sha1.bfh.science

SHA1 10-9-20

https://web.sha1.bfh.science/Labs/PWF/Documentation/MatlabNotes.pdf
https://web.sha1.bfh.science/Octave.html
http://octave.sourceforge.net/
http://www.gnu.org/software/octave/FAQ.html
http://www.gnu.org/software/octave/
http://octave.sourceforge.net/
https://web.sha1.bfh.science

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 8

• Find a wiki for Octave at http://wiki.octave.org/ with useful information.

• There is an active mailing list for Octave . Access the mailing list through the main Octave page using
the entry Support. The mailing list is also available at dir.gmane.org/gmane.comp.gnu.octave.general .
Starting in August 2016 the site gmane.org was not available any more, the maintainer suffered to
many networks attacks. You can also use Nabble to be found at octave.1599824.n4.nabble.com/ .

• The book [Quat10] is considerably more advanced and shows how to use Octave and MATLAB for
scientific computing projects.

Since Octave and MATLAB are very similar you can also use MATLAB documentation and books.

• The on-line help system of MATLAB allows to find precise description of commands and also to search
for commands by name, category or keywords. Learning how to use this help system is an essential
step towards getting the most out of MATLAB.

• As part of the help system in MATLAB two files might be handy for beginners:

– GettingStarted.pdf as a short (138 pages) introduction to MATLAB.

– UsingMatlab.pdf is a considerably larger, thorough and complete documentation of com-
mands in MATLAB.

The above documents are also available on the web site of MathWorks at
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

One of the most important points when using advanced software is how to take advantage of the
available documentation.

Notations in these notes

In these notes we show most Octave or MATLAB code in a block, separated by horizontal lines. If input
(commands) and results are shown in the same block, they are separated by a line containing the arrow
string --> , short for “leading to”.

Octave
code
-->
results

Individual commands may be shown within regular text, e.g as plot(x,sin(x)) .

1.1.1 Starting up Octave

Working with the Octave GUI

Starting with version 4.0.0 of Octave has a GUI (Graphical User Interface) as interface, see Figure 1.1. To
start Octave with the GUI use

your mouse to click the menue entry on your desktop environment, e.g. Xfce, Gnome, Mac OS*, Win*

type octave & in a terminal with versions 4.0 and 4.2

type octave --gui & in a terminal with version 4.4, 5.1 and 5.2

Within one window frame you can

SHA1 10-9-20

http://wiki.octave.org/
http://dir.gmane.org/gmane.comp.gnu.octave.general
http://octave.1599824.n4.nabble.com/
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 9

• execute commands and observe their results in the Command Window.

• edit code segments and run the directly from the Editor window with one key stroke (F5).

• gather information on all variable in the current workspace in the Workspace window.

• work with the built-in File Browser.

• read the standard Octave documentation in the Documentation window.

• read and change the current directory in the top line of the GUI.

• Starting with version 4.4.0 Octave has a Variable Editor. By clicking on a variable in the workspace
the name and the value(s) will be displayed in the variable editor, where you can display and change
the value(s). To show and modify the variable a use the command openvar(’a’) .

Figure 1.1: The Octave GUI

Figure 1.1 shows a typical screenshot of the Octave GUI. There are several advantages using the GUI:

• The built in editor has good highlighting and syntax checking of Octave code.

• In the editor you can set break points and step through your code line by line.

• You can detach some windows from the main frame. I most often use the editor in a separate window.

• You can move in the directory tree with the top line of the GUI.

• Graphics generated by Octave will always show up in separate windows.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 10

Working with the CLI (Command Line Interface) of Octave

If you want to use Octave without the GUI then use the command

type octave --no-gui in a terminal with versions 4.0 and 4.2

type octave in a terminal with version 4.4, 5.1 and 5.2

A working CLI environment for Octave consists of

1. A command line shell with Octave to launch the commands.

2. An editor to write the code. Your are free to choose your favorite editor, but editors providing an
Octave or MATLAB mode simplify coding.

• This author has a clear preference for the editor Emacs, available for many operations system.
On Linux systems you might want to try gedit.

• For WIN* systems the editor notepad++ might be a good choice.

3. Possibly a browser to access the documentation.

4. Possilbly one or more graphics windows.

Thus a working screen might look like Figure 1.2. Your window manager (e.g. Xfce, KDE or GNOME)
will allow you to work with multiple, virtual screens. This is very handy to avoid window cluttering on one
screen.

Figure 1.2: Screenshot of a working CLI Octave setup

To start up Octave on a Unix system you may proceed as follows:

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 11

• Open a shell and change to the directory in which you want to work. Use cd to change into the desired
directory.

• Type octave --no-gui (4.0, 4.2) or octave (4.4, 5.1, 5.2) for the CLI, For a setup with GUI
use octave & (4.0, 4.2) and octave --gui& (4.4, 5.1, 5.2) .

• You may also use the currently installed windowing system user interface. Locate the menu entry for
Octave , click on it and the program will start. You will have to set the working directory with a cd
command.

• Use your favorite editor to work on your Octave files. The standard extension for files with Octave
code is *.m .

There are many command line options to be used. Type octave --help or examine Section 2.1.1
Command Line Options in the Octave manual.

The startup file .octaverc

On startup Octave will read a file .octaverc in the current users home directory4. In this file the user
can give commands to Octave to be applied at each startup. You can add a directory to the current search
path by adding to the variable path. Then Octave will search in this directory and all its subdirectories for
commands. Thus the user can place his/her script and function files in this directory and Octave will find
these commands, independent of the current directory. My current version of the startup file is

.octaverc
pkg prefix ˜/octave/forge ˜/octave/forge;
% capitalization of letters is ignored
addpath(genpath(’˜/octave/site’))
set (0,’DefaultTextFontSize’,20)
set (0,’DefaultAxesFontSize’,20)

set (0,’DefaultAxesXGrid’,’on’)
set (0,’DefaultAxesYGrid’,’on’)
set (0,’DefaultAxesZGrid’,’on’)

set (0,’DefaultLinelineWidth’ ,2)
more off

With this initialization file I configure Octave to my desire:

• The packages are installed and searched for in the directory ˜/octave/forge .

• Octave will always search in the directory ˜/octave/site and its sub-directories for commands,
in addition to the standard search path.

• I choose larger default fonts for the text and axis in graphics.

• For any graphics I want to show the grid lines, by default.

• I choose a larger line width by default for lines in graphics.

• The pager more is turned off by default.

If you want to ignore your startup file for some special test you can use a command line option, i.e. launch
Octave by octave --no-init-file .

4On a Windows10 system in 2017 the file octaverc was located in the directory
C:\Octave\Octave-4.0.3\share\octave\site\m\startup . On your system it might be in a similar directory.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 12

1.1.2 Packages for Octave

As an essential addition to Octave a large set of additional packages5 is freely available on the internet at
https://octave.sourceforge.io/. An extensive documentation is given by the option Packages on that web
page. If you find a command in those packages and want to make it available to your installation you have
to install the package once and then load it into your Octave environment.

How to install and use packages provided by the distribution

On Win* systems

• On a recent (2017) win* system with Octave 4.0.3 many packages came with the distribution. You
have to make the prebuilt packages available. To be done once: launch the command pkg rebuild
to make the packages available.

• The Win* package for Octave has many packages prebuilt and installed.

• Use pkg list to generate a list of all packages. Those marked by ∗ are already loaded and ready
to be used.

• Use pkg load image to load the image package and similar for other packages.

On Linux/Unix systems Most Linux distributions provide Octave and the most of Octave Forge with their
distribution. We illustrate the use of the package manager by Debian, also used by Ubuntu ans it derivatives.

• To install Octave use a shell and type sudo apt-get octave .

• Use sudo apt-get install octave-doc octave-info octave-htmldoc to install
most of the documentation.

• To install a few packages (image, IO, optimization and statistics) use sudo apt-get install
octave-image octave-io octave-optim octave-statistics .

• If you plan to compile the packages on your system (see below) you also need the header files and
some libraries. To install those use a shell and sudo apt-get install liboctave-dev .

• To list the installed packages use the Octave prompt and type pkg list . Those marked by ∗ are
already loaded and ready to be used.

• Use pkg load image to load the image package and similar for other packages.

How to install a package from Octave Forge

On the web page https://octave.sourceforge.io/ current versions of the packages are available and can be
installed manually.

• To be done once:

– Decide where you want to store your packages. As an example consider the sub directory
octave/forge in your home directory. Create this directory, launch Octave and tell it to
store packages there with the command

Octave
5For MATLAB you do not have packages, but toolboxes. They are installed when you install your version of MATLAB.

SHA1 10-9-20

https://octave.sourceforge.io/
https://octave.sourceforge.io/

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 13

pkg prefix ˜/octave/forge ˜/octave/forge

Since the tilde character ˜ is replaced by the current users (in this case sha1) home directory the
packages will be setup in the directory /home/sha1/octave/forge and its sub-directories.
This command can and should be integrated in your .octaverc file.

• To be done for each package:
As example we consider the image package, aiming for the command edge(). There are different
options to install the image package, containing this command:

– It might already be installed, try help edge. If Octave knows about the command, the pack-
age is installed and probably loaded. If it is not loaded yet, type pkg load image .

– On a Linux installation use your favorite package manager to install the image package of Oc-
tave , e.g. Synaptic or apt-get ...

– Let Octave try to download, compile and install the package.

Octave
pkg install -forge image

– You can download, compile and install step by step, as outlined below.

– Go to the web page https://octave.sourceforge.io/ and choose the option Packages. Then
search for the package image and download it to your local disk and store it in the above
directory.

– Launch Octave and change in the directory with the package. Then install the package with the
command

Octave
pkg install image-2.12.0.tar.gz

From now on the commands provided by the package are available. To use them you still have
to load the package, e.g. pkg load image .

– You may also locate the source for the command edge.m by

Octave
which edge
-->
’edge’ is a function from the file /home/sha1/octave/forge/image/edge.m

Having the source code may allow you to adapt the code to you personal needs.

• Loading a package: if a package is installed it will show up with the command pkg list, but it is
not loaded yet. To load a package use pkg load image, then the package image will be loaded
and listed with a star.

Octave
pkg load image
pkg list
-->
Package Name | Version | Installation directory
---------------+---------+-----------------------

control | 3.2.0 | /home/sha1/octave/forge/control-3.2.0
financial | 0.5.3 | /home/sha1/octave/forge/financial-0.5.3
general | 2.1.1 | /home/sha1/octave/forge/general-2.1.1
image *| 2.12.0 | /home/sha1/octave/forge/image-2.12.0

io | 2.6.0 | /home/sha1/octave/forge/io-2.6.0

SHA1 10-9-20

https://octave.sourceforge.io/

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 14

miscellaneous | 1.3.0 | /home/sha1/octave/forge/miscellaneous-1.3.0
optim | 1.6.0 | /home/sha1/octave/forge/optim-1.6.0
signal | 1.4.1 | /home/sha1/octave/forge/signal-1.4.1
splines | 1.3.3 | /home/sha1/octave/forge/splines-1.3.3

statistics | 1.4.2 | /home/sha1/octave/forge/statistics-1.4.2
struct | 1.0.16 | /home/sha1/octave/forge/struct-1.0.16

• Commands to maintain the packages:

– To show a list of all packages use

Octave
pkg list

– To make the additional commands unavailable you may unload a package, e.g.

Octave
pkg unload image

– You can load an already installed package, e.g.

Octave
pkg load image

– To update all installed packages using the Octave Forge site.

Octave
pkg update

1.1.3 Information about the operating system and the version of Octave

When working with Octave you can obtain information about the current system with a few commands.
Obviously your results may differ from the results below.

• The command computer() shows the operating system and the maximal number of elements an
array may contain.

Octave
[C, MAXSIZE, ENDIAN] = computer()
-->
C = i686-pc-linux-gnu
MAXSIZE = 2.1475e+09
ENDIAN = L

The resulting maximal array size of 2.1475 · 109 ≈ 231 is a consequence of 32-bit integers being used
to index arrays.

• With the function uname() some more information about the computer and the operating system is
displayed.

Octave
uname()
-->
ans = scalar structure containing the fields:

sysname = Linux
nodename = hilbert
release = 5.4.0-45-generic
version = #49-Ubuntu SMP Wed Aug 26 13:38:52 UTC 2020
machine = x86_64

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 15

• With version() the currently used version of Octave is displayed, e.g. 5.2.0.

Octave
version()
-->
ans = 5.2.0

With the command ver() the versions of all installed packages are displayed.

Octave
>> ver()
--
GNU Octave Version: 5.2.0 (hg id: eb46a9f47164)
GNU Octave License: GNU General Public License
Operating System: Linux 5.4.0-45-generic #49-Ubuntu SMP

Wed Aug 26 13:38:52 UTC 2020 x86_64
--
Package Name | Version | Installation directory
---------------+---------+-----------------------

control | 3.2.0 | /home/sha1/octave/forge/control-3.2.0
financial | 0.5.3 | /home/sha1/octave/forge/financial-0.5.3
general | 2.1.1 | /home/sha1/octave/forge/general-2.1.1
image *| 2.12.0 | /home/sha1/octave/forge/image-2.12.0

io | 2.6.0 | /home/sha1/octave/forge/io-2.6.0
miscellaneous | 1.3.0 | /home/sha1/octave/forge/miscellaneous-1.3.0

optim | 1.6.0 | /home/sha1/octave/forge/optim-1.6.0
signal | 1.4.1 | /home/sha1/octave/forge/signal-1.4.1
splines | 1.3.3 | /home/sha1/octave/forge/splines-1.3.3

statistics | 1.4.2 | /home/sha1/octave/forge/statistics-1.4.2
struct | 1.0.16 | /home/sha1/octave/forge/struct-1.0.16

The star on the line image indicated that the package image is not only installed, but also loaded.

• With the commands ispc(), isunix() and ismac() you can find out what operating system is
currently used. These commands are useful for code depending on the OS, e.g. the exact form of file
and directory names.

Octave
[ispc(), isunix(), ismac()]
--> 0 1 0

The results shows that currenly a Unix system is running, in this case Linux. With

Octave
octave:16> isieee()
--> 1

verify that your system conforms to the IEEE standard for floating point calculations.

• With the command getrusage() you can extract information about the current Octave process,
e.g. memory usage and CPU usage.

1.1.4 Starting up MATLAB

A working environment for MATLAB consists of

1. a command line shell with MATLAB to launch the commands

2. an editor to write the code

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 16

3. possibly a browser to access the documentation

4. possilbly one or more graphics windows

To start up MATLAB on a Unix system at our school you may proceed as follows:

• Open a shell or terminal

• Change to the directory in which you want to work, use cd .

• If you type matlab & then MATLAB will launch with the flashy Java interface. By using the amper-
sand & you can later launch other commands in the same shell.

• Type matlab -nojvm & to launch MATLAB. The option -nojvm launches MATLAB without the
splashy Java interface and thus uses a lot less memory, which might be a precious resource your
system. On newer versions of MATLAB some of the MATLAB features are not available without the
Java interface, this concerns mainly the handling of graphics.

• You may also use the GUI of your operating system, locate the menu entry for MATLAB click on it
and the program will start.

– After a short wait a flashy interface should appear on the screen.

– On the right you find the command line for MATLAB. Elementary commands may be entered on
this line.

– On the left you find a history of the previously applied commands

– On the top you can choose the working directory and a few menus

– When you launch MATLAB with the interface you will use considerably more memory for the
interface (Java) and Greek characters will not show on the screen. You will have to set the
working directory with a cd command.

• When typing the command edit an elementary editor will show up. It might be useful to type longer
codes and store them in a regular text file with the extension .m , the standard for any MATLAB file.
You are free to use your favorite editor to work on your codes.

• On startup MATLAB will read a file startup.m in a subdirectory matlab of the users home
directory. Often it is in ˜/Documents/MATLAB/ . In this file the user can give commands to
MATLAB to be applied at each startup.

1.1.5 Calling the operating system and using basic Unix commands

Within Octave or MATLAB it is possible to launch programs of the operating system. This can be very
useful, e.g. to call external image processing tools, see page 87. The details for the functions obviously
depend on the underlying operating system.

• system() : execute a shell command and return the status and result of the command. As a simple
example call the command whoami which returns the current users name.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 17

Unix Octave

show current directory pwd pwd

change into directory MyDir cd MyDir cd MyDir

change one directory level up cd .. cd ..

list all files in current directory ls ls

list more information about files ls -al ls -al

remove the file go.m rm go.m delete go.m

create a directory NewDir mkdir NewDir mkdir NewDir

remove the directory NewDir rmdir NewDir rmdir NewDir

Table 1.1: Basic system commands

unix(’whoami’);
-->
sha1

• unix() : execute a system command if running under a Unix-like operating system, otherwise do
nothing. dos() : execute a system command if running under a Dos or Windows-like operating
system, otherwise do nothing.

With MATLAB the three commands system(), unix() and dos() are interchangeable. With Octave
their result depends on the operating system. It is a good idea to use the command system() only.

When working on a computer system some basic commands might be handy. Table 1.1 shows a few
useful Unix commands. Some of the commands also work on the Octave/MATLAB command line. The
behavior on a Win* system might be different.

1.1.6 How to find out whether you are working with MATLAB or Octave

There are still very few occasions when the codes for Octave or MATLAB differ slightly. Thus it might
be useful to have a command telling you whether you work with Octave or MATLAB. The command
IsOctave() returns 1 if Octave is running and 0 otherwise. Copy the file below in directories where
MATLAB/Octave will find it, e.g. ˜/Documents/Matlab and ˜/octave/site/ .

isOctave.m
function result = IsOctave()
% Returns true if this code is being executed by Octave.
% Returns false if this code is being executed by MATLAB, or any other MATLAB
% variant.
%
% usage: result = isOctave()

persistent octaveVersionIsBuiltIn;
if (isempty(octaveVersionIsBuiltIn))

octaveVersionIsBuiltIn = (exist(’OCTAVE_VERSION’, ’builtin’) == 5);
% exist returns 5 to indicate a built-in function.

end
result = octaveVersionIsBuiltIn;
% If OCTAVE_VERSION is a built-in function, then we must be in Octave.
% Since the result cannot change between function calls, it is cached in a
% persistent variable. isOctave cannot be a persistent variable, because it

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 18

% is the return value of the function, so instead the persistent result must
% be cached in a separate variable.

end

1.1.7 Where and how to get help

There are different situations when help is useful and important

• You know the command and need to know more details. As an example we use the command
plot().

– Typing help plot will display information about the command help. You will find a list of
all possible arguments of this function.

– Typing doc plot will put you in an on-line version of the Octave manual with the documen-
tation on plot(). You can use this as a starting points to browse for similar commands. doc
works with Octave only.

– Typing lookfor plot will search in all of the on-line documentation and display a list of all
the commands. Type help lookfor to find out more.

• Some commands have demos and example codes built in. Examine the command quiver(). With
example quiver find a listing of working examples.

Octave
example quiver
-->
quiver example 1:
clf;
[x,y] = meshgrid (1:2:20);
h = quiver (x,y, sin (2*pi*x/10), sin (2*pi*y/10));
title (’quiver plot’)

quiver example 2:
clf;
x = linspace (0, 3, 80);
y = sin (2*pi*x);
theta = 2*pi*x + pi/2;
quiver (x, y, sin (theta)/10, cos (theta)/10, 0.4);
axis equal tight;
hold on; plot (x,y,’r’); hold off;
title (’quiver() with scaled arrows’);

By calling demo quiver the examples will be executed and you can examine code and results.

• Most of the Octave code is given as script file. You can look at the source. As it is Open Source code
you can copy the file in your directory and modify the code perform the desired operation. To locate
the source code for the command quiver use which.

Octave
which quiver
--> ’quiver’ is a function from the file

/usr/local/share/octave/4.0.0/m/plot/draw/quiver.m

• If you only know the topic for which you need help, but not the exact command (yet), use the Octave
manual.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 19

– Both are available on the net at http://www.gnu.org/software/octave/ and go to Support. You
can browse in the HTML files or download the PDF file.

– Both should be installed on your computer in HTML and PDF form.

* Search your local disk for the file octave.html. It should be a directory and then the file
index.html is the starting point into the HTML manual.

* Search your local disk for the file octave.pdf with the PDF manual.

– The manual for Octave 5.1.0 is also available on my web site at
web.sha1.bfh.science/Octave.html , as HTML (in compressed form, first download, then uncom-
press) and as PDF file.

• The references given on page 7 might also be useful, and hopefully these notes too.

• For the Octave packages the site http://octave.sourceforge.net/ provides documentation.

SHA1 10-9-20

http://www.gnu.org/software/octave/
https://web.sha1.bfh.science/Octave.html
http://octave.sourceforge.net/

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 20

1.1.8 Vectors and matrices

The basic data type in MATLAB (MATrix LABoratory) and Octave is a matrix of numbers.

• A matrix is enclosed in square brackets ([]) and is a rectangular set of numbers (real or complex).

• Different rows are separated by semicolons (;) .

• Within each row the entries are separated by commas (,) or spaces.

Creation of vectors and matrices

Vectors are special matrices: a column vector is a n × 1-matrix and a row vector a 1 × n-matrix. Octave
does distinguish between row and column vectors, for beginners often a stumbling block.

There are different methods to create vectors:

• To create a row vector with known numbers we may just type them in, separated by commas or spaces.

Octave
x = [1 2 3 4 5]

To create the same vector as a column vector we may either use the transpose sign or separate the
entries by columns.

Octave
x = [1 2 3 4 5]’ % create a column vector by traposing a row vector
x = [1; 2; 3; 4; 5] % create the column vector directly

• To create a matrix we use rows and columns, e.g. to create a 3× 3 matrix with the numbers 1 through
9 as entries use:

Octave
A = [1 2 3; 4 5 6; 7 8 9]

• If the differences between subsequent values are know we can generate the vector more efficiently
using colons (:). Examine the results of the elementary code below.

Octave
% x = begin:step:end
x2 = 1:10 % all integer numbers from one to 10
x1 = 1:0.5:10 % all numbers from 1 to 10, with stepsize 0.5

• With the command linspace() we can specify the first and last value, and the total number of
points. To generate a vector with 30 points between 0 and 10 we may use

Octave
x = linspace(0,10,30)

With the command logspace(a,b,n) we generate n values between 10a and 10b, logarithmically
spaced.

Octave
x = logspace(0,2,11)

• To create a matrix or vector to be filled with zeros or ones Octave provides special commands.

Octave

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 21

x0 = zeros(2,3) % creates a 2 by 3 matrix filled with zeros
x1 = zeros(5,1) % creates a column vector with 5 zeros
y1 = ones(10,6) % creates a 10 by 6 matrix filled with ones

Octave has many built-in functions to generate vectors and matrices of special types. The code below first
generates a row vector with 10 elements, all of the values are set to zero. Then the squares of the numbers 1
through 10 are filled in by a simple loop. Finally the result is displayed.

Octave
n = 10;
a = zeros(1,n);
for i = 1:n
a(i) = iˆ2;

end%for
a

The result is generated more efficiently by using vectorized code, as shown below.

Octave
a = [1:10].ˆ2

Vector operations

Addition and multiplication of matrices and vectors follows strictly (almost, except for broadcasting, see
Section 1.1.9) the operational rules of matrix operations.

Octave
clear *
a = [1 2 3] % create a row vector
b = [4;5;6] % create a column vector

a+b % not permitted, but watch out for automatic broadcasting
a+b’ % permitted
a*a % not permitted
a*a’ % permitted, leading to the scalar product
a’*a % permitted, leading to a 3x3 matrix
a.*a % permitted, leading to element wise multiplication
[a b’] % permitted, leading to a concatenation of the two vectors

The code below will generate a plot of the function of the function y(x) = | cos(x)| for−10 ≤ x ≤ 10 .

Octave
clear
n = 1000;
x = linspace(-10,10,n);
for k = 1:n
y(k) = abs(cos(x(k)));

end%for
plot(x,y);

This code is correct, but very inefficient. It does not use some of the best features of MATLAB and Octave .
Many of the built-in functions apply directly to vectors. This is illustrated by the next implementation of the
above calculations. A vector of 1000 numbers, ranging from -10 to +10 is generated, then the values of the
cos-function is stored in the new vector y . The result is then element-wise multiplied with the sign of the
cos-values and then plotted, leading to Figure 1.3.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 22

Octave
clear
n = 1000;
x = linspace(-10,10,n);
y = cos(x); s = sign(y);
plot(x,s.*y);

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

Figure 1.3: Graph of the function | cos(x)|

1 Example : Speed of vectorized code
The three sections of code below compute the values of sin(n) for n = 1, 2, 3, . . . , 100000. One might

expect similar computation times.

Octave
clear
N = 100000;

tic();
for n = 1:N
x(n) = sin(n);

end%for
timer1 = toc()

tic();
x = zeros(N,1);
for n = 1:N
x(n) = sin(n);

end%for
timer2 = toc()

tic();
x = sin([1:N]);
timer3 = toc()

On a sample run we found

timer1 = 48 sec timer2 = 2.4 sec timer3 = 0.013 sec

and thus a drastic difference in performance. There are two major contributions to this effect:

• preallocation of vectors6

For the second and third code the resulting vector x was first created with the correct size and then the
6Newer version of Octave use an improved memory allocation scheme and thus the first loop will be considerably faster.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 23

values of sin(n) were computed and then filled into the preallocated array. In the first code segment
the size of the vector x had to be increased for each computation. Thus the system uses most of
the time to allocate new vectors and then copy old values. This is the main difference between the
computation time for the first and second code.

• vectorized code
In the third code segment the sin-function was called with a vector as argument and Octave could
compute all values at once. The penalty for a function call had to be paid only once. This is the main
difference between the computation time of the second and third code.

This example clearly illustrates that we should use vectorized code whenever possible and preal-
locate the memory for large vectors and matrices.

♦

Examine the example on page 96 using vectorized code. Since vectorization is important newer versions
of Octave provide a tool to generate vectorized code. A function F (x) = x ·cos(x) ·e(x2) is defined first and
then the command vectorize() is used to generate a vectorized version. More and applied examples of
vectorized codes are shown in Section 1.5.

Octave
F = inline("x*cos(x)*exp(xˆ2)")
F(2)
Fv = vectorize(F)
Fv([2,3])

2 Example : If the integral of the function in Figure 1.3 is to be computed we may use the trapezoidal rule∫ b

a
f(x) dx ≈

n−1∑
k=1

f(xk) + f(xk+1)

2
(xk+1 − xk)

A straightforward implementation of these formula, using a loop, is shown below.

Octave
n = 1000; # number of grid points
x = linspace(-10,10,n);
y = abs(cos(x));
plot(x,y);
integral = 0;
for k = 1:(n-1)

integral = integral+0.5*(y(k)+y(k+1))*(x(k+1)-x(k));
end%for
integral

But this code does again not use some of the best features of MATLAB and Octave . The summation can be
written as scalar product of two vectors.

〈~x , ~y〉 =
n∑
k=1

xk yk

or if the row vectors are regarded as 1× n matrices, as MATLAB does, we find

x · y′ =
n∑
k=1

xk yk

With the help of dxk = xk+1 − xk the summation will run considerably faster.

Octave

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 24

y = cos(x);
y = sign(y).*y;

dx = diff(x);
ynew = (y(2:n)+y(1:n-1))/2;
nintegral = ynew*dx’

The built-in function trapz uses exactly the above idea to perform a numerical integration. ♦

It is usually much faster to use the built-in vectorization of Octave than to use loops. Vectorization is
one of the main speed advantages of Octave over other programs. It should be used whenever possible. Use
tic() and toc() (see Section 1.1.10) to determine the time necessary to run through a piece of code.

Octave
clear % fast version
x = linspace(-10,10,10000);
tic();
for k = 1:10
y = exp(sin(x.*x));

end%for
toc()

Octave
clear % slow version
x = linspace(-10,10,10000);
tic();
for k = 1:10
for i = 1:10000
y(i) = exp(sin(x(i)*x(i)));

end%for
end%for
toc()

Since vectorization is important Octave provides support for this. Some of the basic operations (e.g.
+-*/) can be performed element-wise on vectors or matrices, i.e. each entry will be computed separately.
Octave will ignore the vector or matrix structure of the variable. Some books use the key word point wise
operations instead of element wise operations. As a consequence Octave uses a preceding point to indicate
element wise operations. As an example to compute x(n) = n · sin(n) for n = 1, 2, . . . , 10 we can use a
loop

Octave
for n = 1:10
x(n) = n*sin(n);

end%for

or the faster vectorized code

Octave
n = 1:10;
x = n.*sin(n)

Matrices

Octave obviously has many commands for operations with matrices. Only very seldom loops have to be
used for matrix operations.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 25

Octave
clear % clear all previously defined variables and functions
a = [1 2 3; 4 5 6; 7 8 10]
det(a) % compute the determinant of the matrix
inv(a) % compute the inverse matrix
aˆ2 % compute the square of the matrix, using the matrix product
a.ˆ2 % compute the square of each entry in the matrix
(a+a’)/2 % compute the symmetric part of the matrix
a*inv(a) % should yield the identity matrix
a.*inv(a) % multiply each entry in the matrix with the corresponding

% entry in the inverse matrix

Systems of linear equations

Obviously MATLAB should be capable of solving systems of linear equations. To solve a system A ~x = ~b
of 3 linear equations for 3 unknowns we best use the command x=A\b , i.e. we ‘divide’ the vector b from
the left by the matrix A. Of course the inverse matrix could be used, but the computation is not done as
efficiently and the results are not as reliable. As an example we consider the linear system

1 2 3

4 5 6

7 8 10

 · ~x =

1

2

3

to be solved with the code below.

Octave
clear
A = [1 2 3; 4 5 6; 7 8 10];
b = [1;2;3];
x = inv(A)*b
x = A\b

Computing the inverse matrix is rarely a reasonable way to solve a numerical problem. The other method
is also more reliable as shown by the example below.

1 2 3

4 5 6

7 8 9

 · ~x =

1

2

3

Matlab

clear
A = [1 2 3 ; 4 5 6; 7 8 9];
b = [1;2;3];
x1 = inv(A)*b;
control = A*x1
x2 = A\b
control2 = A*x2

Since this matrix A is not invertible the command null(A)will give more information about the solvability
of the linear system.

One special ‘feature’ of Octave and MATLAB is that also systems with more equations than unknowns

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 26

lead to a solution. The example considers 4 equations for 3 unknowns (A is a 4× 3 matrix)
1 2 3

4 5 6

7 8 10

1 2 4

 · ~x =

1

2

3

2

and is clearly not solvable, but consider the result for this system of over-determined equations:

Matlab
clear
A = [1 2 3 ; 4 5 6; 7 8 10;1 2 4];
b = [1;2;3;2];
x = A\b
A*x

Octave and MATLAB return the solution vector x with residual vector r of smallest length, i.e. the best
possible solution.

Find vector ~x such that ‖~r‖ = ‖A ~x−~b‖ is minimal

This can be a rather useful feature7, but also create a problems if the user is not aware of what MATLAB or
Octave are actually computing.

1.1.9 Broadcasting

In newer versions of Octave broadcasting is applied to some operations and then the computational rules for
matrix operations are not strictly respected. As an example consider the subtraction[

1 2 3

4 5 6

]
−
[

1

2

]

which is mathematical nonsense. With broadcasting Octave will automatically subtract the vector from each
column of the matrix, but not without a warning.

Octave
A = [1 2 3; 4 5 6]; b = [1;2];
r1 = A-b
-->
warning: operator -: automatic broadcasting operation applied
r1 = 0 1 2

2 3 4

If you do not want to see the warning (unwise) you may turn it off by the command warning(’off’,
’Octave:broadcast’)8. To turn it back on use warning(’error’,’Octave:broadcast’) .

MATLAB does not know about broadcasting9. Both Octave and MATLAB have the broadcasting function
bsxfun(), used below to achieve the same result.

Octave
7This can be used to solve linear regression problems, see Section 2.2.
8In version 4.0.0 the broadcasting warning has been removed. You may use another warning to indicate broadcasting, i.e.

warning(’on’,’Octave:language-extension’).
9The most recent version of MATLAB (R2016b) seems to use broadcasting too.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 27

r2 = bsxfun(@minus,A,b)

Use doc bsxfun to find out which operations can be broadcasted. If you want to assure compatibility
with MATLAB you can force Octave to spot broadcasting as an error and stop the execution of the code.

Octave
warning ("error", "Octave:broadcast");
r1 = A-b
-->
error: operator -: automatic broadcasting operation applied

1.1.10 Timing of code and using a profiler

Timing with tic(), toc() and cputime()

In the above code we used tic() and toc() to determine the run-time of the loops. The resolution of this
timer is not very good and it displays the actual time, and not the computation time used by the code. We
may use a higher resolution timer based on the function cputime(). Examine the example below.

Octave
t0 = cputime();
x = sin([1:100000]);
timer = cputime()-t0

• The pair tic(), toc() is based on the wall clock, i.e. if you wait 10 seconds before typing toc
those 10 seconds will be taken into account.

• cputime() is measuring the CPU time consumed by the current job. Thus just waiting will not
increase cputime().

• Some commands (e.g. fft(), fft2()) automatically use multithreaded libraries and cputime()
will add up all the time consumed in the multiple threads, thus you might end up with more CPU time
than wall time!

Using the profiler

Octave has a powerful profiler. It will analyze where your code is consuming time. Here is a simple example.

Octave
clear *
profile on % turn the profiler on
n = 1000;
for jj = 1:100
a = rand(n);
b = exp(cos(a));

end%for

T = profile(’info’);
profile off % turn the profiler off
profshow(T) % display the result
profexplore(T) % interactive exploration

and the results might look like

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 28

Function Attr Time (s) Time (%) Calls
--

3 exp 1.530 42.13 100
2 cos 1.286 35.40 100
1 rand 0.816 22.47 100
4 profile 0.000 0.00 1
6 binary != 0.000 0.00 1
5 nargin 0.000 0.00 1
7 __profiler_data__ 0.000 0.00 1

Thus the above code called the function exp() 100 times and this consumed 1.5 sec of CPU time to evaluate
the exp functions. This is not too bad, as each call actually computed a million10 values of the exponential
function. Thus it only took 0.015 µs to compute one value. Compare this to the result of the code below
and act accordingly!

n = 1000;
for ii = 1:n
for jj = 1:100
a = rand(1);
b = exp(cos(a));

end%for
end%for

1.1.11 Debugging your code

There are different options to debug Octave/MATLAB code.

• In the editor window you can set a breakpoint. When running the code execution will stop at this
point and you can use the command line to examine the current content variables, modify them, or
continue with the execution of the program.

• To continue the running program type dbcont. Execution of the current function will continue. With
dbquit the remaining part of the current function will not be executed, but MATLAB/Octave returns
to the calling function.

• The GUI editor allows to single step through the code, step into sub-functions, or run the code to the
next breakpoint.

• With the command dbstop you can set break point form the command line, e.g. dbstop myfunction
17 will set a breakpoint in the function myfunction() on line 17. With dbclear you can clear
the breakpoint.

• You may also use the function keyboard() to interrupt running code on a selected line and the use
the command line to examine the current values of the variables.

1.1.12 Command line, script files and function files

With Octave different methods can be used to write code and then test the results.

• Use the command line in the interface
This is useful only for very small sections of code or for debugging.

• Write a script file
Longer pieces of code can be written with your favorite editor and stored in a file with the extension
.m , e.g. foobar.m . Then the code can be run from the command line by typing foobar .

10rand(n) generates a n× n matrix of random values. With n = 1000 this leads to a million values.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 29

• Write a function file
Functions to be used repeatedly can be written with an editor of your choice and then stored. A
function can have one or multiple arguments and can also return one or multiple results.

Script files

Script files are used to write code to be run repeatedly, often with slight modifications. This is a common
method to work with Octave .

If the code below is stored in the file foobar.m , then a circle with radius 3 in the complex plane will
be generated by calling foobar .

foobar.m
t = linspace(0,2*pi,200); % generate 200 points, equally spaced from 0 to 2Pi
z = 3*exp(i*t); % compute the values in the complex plane
plot(z) % generate the plot
grid on; % add a grid
axis equal % equal scaling on both axis
title(’Circle, radius 3’) % set a title

Observe that on the Octave command line you type foobar without the trailing extension .m . If working
with the editor of the Octave-GUI you may use the F5 key to save the file and run the code.

Function files

Function files can be used to define functions. As a first example we consider a statistical function to
compute the mean value and the standard deviation of a vector of values. For a vector ~x with n values we
use

mean = µ =
1

n

n∑
k=1

xk

stdev2 = σ2 =
1

n− 1

n∑
k=1

(xk − µ)2

stat.m
function [mean,stdev] = stat(x)
% STAT Interesting statistics. This documentaion is displayed by the command
% help stat
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).ˆ2)/(n-1));

This code has to be stored in a file stat.m and then can be used repeatedly, with one or two return
arguments.

Octave
mymean = stat([1,2,3,4,5])
[mymean,mydev] = stat([1,2,3,4,5])

There are a few differences between MATLAB and Octave concerning script and function files.

• MATLAB11 does not allow for definitions of functions within script files. Thus each function has to be
given in a file of its own. This often leads to a large number of function files in a directory.

11Starting with Version 2016b MATLAB allows definition of functions within script files too. The functions within a script file
have to be at the end of the script.

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 30

• In Octave the definition of a function may also be given within a script file and thus collections
of functions in one file are possible. The end of the function has to be indicated by the keyword
endfunction . MATLAB will not recognize this keyword.

1.1.13 Local and global variables, nested functions

In Octave/MATLAB the visibility of variables has to be taken into account. A variable declared in the
workspace is not visible inside a function, unless you pass it as an argument.

Octave
a = 17 % set the value of a in the global workspace

function res = modify_a(x)
% the variable a from the global workspace is not visible

a = 2; % here a is a new variable in the local context
res = a*x;

endfunction

a2 = modify_a(a)
a % will return the first value in the global context
-->
a = 17
a2 = 34
a = 17

If you really desire a variable to be visible inside a function (usually a bad idea) you can force Octave
to do so by the keyword global, as illustrated by the code below.

Octave
global a = 17 % set the value of a in the global workspace

function res = modify_a(x)
global a % the variable a is global and its value is taken from the workspace
res = a*x;
a = 2; % now the global variable is modified

endfunction

a2 = modify_a(a)
a
-->
a = 17
a2 = 289
a = 2

An important deviation from the above visibility of variable is given by nested functions. If a variable
is declared in a function file, then it is visible inside all of the nested function in the same file.

TestNest.m
function TestNest()
a = 17 % set the value of a in this function

function res = modify_a(x)
% the variable a from the outer function is visible

a = 2; % the outer variable a is overwriten by 2
res = a*x;

endfunction

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 31

a2 = modify_a(a) % display 34, the result of the function
a % displays 2, modified by the function modify_a
endfunction

Since MATLAB allows nested functions, the above idea can be used to define many functions in one file.
But observe that the functions defined within another function body will not be visible outside of the func-
tion. In addition nested functions can not be used inside program control statements e.g. switch/case,
if/else, while, ...

Persistent variables

1.1.14 Elementary graphics

Find more information on graphics commands in Section 1.4. To generate a two–dimensional plot use the
command plot() with the vector of the x and y values as arguments. The code below generates a plot of
the function v = sin(x) with 21 values of x evenly distributed in the interval 0 ≤ x ≤ 9. Find the result in
Figure 1.4.

Octave
x = linspace(0,9,21);
y = sin(x);
plot(x,y)

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Figure 1.4: Elementary plot of a function

Multiple plots can be generated just as easily by calling plot() with more than one set of x and y
values.

Octave
x = linspace(0,10,50);
plot(x,sin(x), x,cos(x))

1.1.15 A breaking needle ploblem

The question

Assume that medical needles will penetrate skin if the applied force is larger than Fp and the same type of
needles will break if the applied force is beyond a limiting breaking force Fb. The values of Fp are given
by a normal distribution with mean value µp and standard deviation σp. The values of Fb are given by a
normal distribution with mean value µb and standard deviation σb. To illustrate the method we work with
hypothetical values for the parameters.

µp = 2.0 [N] , σp = 0.5 [N] , µb = 4.5 [N] , σp = 0.635 [N]

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 32

The theory and the code

Since the normal distribution is given by the probability density function

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
we define a function in our script file to compute the value of this function for a vector of arguments.

Octave
mup = 2.0; sigmap = 0.5; mub = 4.5; sigmab = 0.635;

function p = normal_dist(x,mu,sigma)
p = 1/(sigma*sqrt(2*pi))*exp(-(x-mu).ˆ2/(2*sigma*sigma));

endfunction

The above two distributions can then be visualized in Figure 1.5.

Octave
df = 0.01;
f = 0:df:8; % generate values of forces from 0 to 8 N, stepsize df
pp = normal_dist(f,mup,sigmap);
pb = normal_dist(f,mub,sigmab);
plot(f,pp,f,pb);

0 2 4 6 8
0

0.2

0.4

0.6

0.8

Figure 1.5: Probability of needles to penetrate, or to break

To be determined is the probability that a given needle will break before it penetrates the skin. To
determine this value we examine the following facts for very small values of ∆f :

• With probability pp(f) ∆f a needle penetrates at a force between f and f + ∆f .

• For this needle to break the breaking force has to be smaller than f . This occurs with probability

p2(f) =

∫ f

x=−∞
pb(x) dx

Since for our example we find pb(x) ≈ 0 for x < 0 and thus

p2(f) ≈
∫ f

x=0
pb(x) dx

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 33

• The probability for a needle to break before penetrating at a force f is thus given by the probability
density function.

p(f) = p2(f) · pp(f)

and the total probability to fail is given by

Pfail =

∫ ∞
f=−∞

p2(f) · pp(f) df ≈
∫ 8

f=0
p2(f) · pp(f) df

The above can be implemented in Octave , leading to Figure 1.6 of the probability distribution for failing
and total probability of Pfail ≈ 0.00101 ≈ 1/1000 .

Octave
%p2 = pb; p2(1) = 0; % integration with a loop
%for k = 2:length(pb)
% p2(k) = p2(k-1)+pb(k)*df;
%end%for
p2 = cumsum(pb); % the same integration with a single command

pfail = pp.*p2;
plot(f,pfail);

trapz(f,pfail)

0 2 4 6 8
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

Figure 1.6: Probability distribution of needles to break before penetration

In the above code the function p2(f) was computed with the help of an integral, but is not the best
approach if the underlying distribution is normal. A better approach is to use the error function erf(z),
defined by

erf(z) =
2√
π

∫ z

0
exp(−t2) dt

Using the definition of the normal distribution12

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
12MATLAB and Octave have many and powerfull commands to examine ststistical questions of thes type, see e.g. [Stah16].

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 34

and basic calculus we find

g(f) =

∫ f

x=−∞
p(x) dx =

∫ µ

x=−∞
p(x) dx+

∫ f

x=µ
p(x) dx

=
1

2
+

1

σ
√

2π

∫ f

x=µ
exp

(
−(x− µ)2

2σ2

)
dx

substitution t =
x− µ√

2σ
, dx =

√
2σ dt

=
1

2
+

√
2 σ

σ
√

2π

∫ f−µ√
2σ

t=0
exp

(
−t2
)
dt

=
1

2

(
1 + erf

(
f − µ√

2σ

))
Thus for the above problem we may equivalently write

Pfail =
1

2

∫ ∞
∞

(
1 + erf

(
f − µb√

2σb

))
pp(f) df

This eliminates the need for ignoring extreme values for the forces. In the above code the loop to compute
the probability density function p2 is replaced by a function call.

Octave
p2 = 0.5*(1+erf((f-mub)/(sqrt(2)*sigmab)));

A simple simulation

To verify the above computation we can run a simulation. The command randn(1,NN) creates NN
random data with mean 0 and standard deviation 1. To obtain mean µ and standard deviation σ we have to
multiply these values by σ and then add µ. With this type of simulated data for breaking and penetration
forces we count the number of pairs where the breaking force is smaller than the penetration force. This
number of breaking needles is to be divided by the total number of needles. To understand the behavior of
the comparison operator consider the following example.

Octave
res = [1 2 3 4 5 9] < [0 5 9 1 1 10]
-->
res = 0 1 1 0 0 1

Thus to examine, by a simulation, one million needles we may use the code below. The results will vary
slightly from one run to the other, but should always be close to the above integration result.

Octave
NN = 1e6; % one milion samples to be simulated
fpsimul = randn(NN,1)*sigmap+mup;
fbsimul = randn(NN,1)*sigmab+mub;
simulation = sum(fbsimul<fpsimul)/NN

1.1.16 Exercises

The exercises

Exercise 1.1–1 Explain why the code

Octave

SHA1 10-9-20

1.1. STARTING UP OCTAVE OR MATLAB AND FIRST STEPS 35

x = -2:0.1:3;
y = exp(-xˆ2/2);
plot(x,y)

will not show a graph of a Gauss y(x) = ex
2/2 curve.

Exercise 1.1–2 The breaking needle problem
A different approach to the problem is based on the following argument.

• With probability pb(f) ∆f a needle does break at a force between f and f + ∆f .

• For this needle to penetrate at a larger force we find a probability

p3(f) =

∫ ∞
x=f

pp(x) dx ≈
∫ 8

x=f
pp(x) dx

• The probability for a needle to break before penetration is thus

p(f) = p3(f) · pb(f)

and the total probability to fail is given by

Pfail =

∫ ∞
f=−∞

p3(f) · pb(f) df ≈
∫ 8

f=0
p3(f) · pb(f) df

The final result has to be the same as for the first approach.

The answers

Exercise 1.1–1 We either have to use a loop or vectorize the code with a pointwise multiplication.

Octave
x = -2:0.1:3;
y = exp(-x.ˆ2/2);
plot(x,y)

Exercise 1.1–2 The breaking needle problem

Octave
p3 = pb; p3(length(pp)) = 0;
for k = fliplr(1:(length(pp)-1));

p3(k) = p3(k+1) + pp(k)*df;
end%for

pfail = pb.*p3;
plot(f,pfail);
trapz(f,pfail)

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 36

1.2 Programming with Octave

This short section cannot and will not cover all aspects of programing with MATLAB or Octave . You cer-
tainly have to consult the online documentation and other references, e.g. [Grif01] or [BiraBrei99]. The
amount of available literature is enormous, free and nonfree. It is the goal of this section to get you started
and point out some important aspects of MATLAB/Octave . It is assumed that you are familiar with a proce-
dural programming language, e.g. C, C++, Java, ...

1.2.1 Displaying results and commenting code

If a line of code is not terminated by a semicolon (;) the results will be displayed in the command window
with the name of the variable, followed be a new line. If you do not want to see the result, add the semicolon.
With the command disp() you can display the result. One can use formatted output to add information,
see Section 1.2.4

x = exp(pi)
disp(x)
disp(sprintf(’the value of exp(pi) is %g’,x))
fprintf(’the value of exp(pi) is %g\n’,x)
-->
x = 23.141
23.141
the value of exp(pi) is 23.1407
the value of exp(pi) is 23.1407

An essential feature of good code is a readable documentation. For Octave you may use the characters
% or # to start a comment, i.e. any text after those signs will not be examined by the Octave parser. In
MATLAB only % can be used.

a = 1+2; % this is a comment in Octave and Matlab
b = 2-1; # this is a comment in Octave, but will lead to an error in Matlab

There is no feature in MATLAB or Octave to comment out complete sections, you have to do line by line.
Many editors provide function to comment and uncomment sections.

1.2.2 Basic data types

Octave provides a few basic data types and a few methods to combine the basic data types. For a defined
variable var Octave will display its data type with the command typeinfo(var).

Numerical data types

By far most the important data type in Octave is a double precision floating point number. For most
numerical operations this is the default data type and you have to ask for other data types. On systems that
use the IEEE floating point format, values in the range of approximately 2.2251e-308 to 1.7977e+308 can be
stored, and the relative precision is approximately 2.2204e-16, i.e you can expect at best 15 decimal digits
to be correct. The exact values are given by the variables realmin, realmax, and eps, respectively. The
information about your system can be obtained by the code below.

Octave

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 37

[realmin, realmax, eps]
-->
ans = 2.2251e-308 1.7977e+308 2.2204e-16

Based on floating point numbers we may built vectors and matrices with real or complex entries.13

Complex numbers are described by their real and imaginary parts. All arithmetic operations and most
mathematical functions can be applied to real or complex numbers.

Octave
a = 1.0+2i; b = 3*i;
[a+b, a*b, a/b]
[cos(a), exp(b), log(a+b)]
-->
ans = 1.00000 + 5.00000i -6.00000 + 3.00000i 0.66667 - 0.33333i
ans = 2.03272 - 3.05190i -0.98999 + 0.14112i 1.62905 + 1.37340i

Observe that the simplified syntax 2i is equivalent to 2*i .

Octave also provides the data type single, i.e. single precision floating point numbers. Its main advan-
tage is to use less memory, the disadantage is a smaller range and resolution.

Octave
[realmin(’single’), realmax(’single’), eps(’single’)]
-->
ans = 1.1755e-38 3.4028e+38 1.1921e-07

You can convert between single and double variables with the commands single() and double(). The
command whos will display all current variables, their size, memory foot print and their class.

Octave
clear *
a = rand(3);
aSingle = single(a);
whos
-->
Variables in the current scope:

Attr Name Size Bytes Class
==== ==== ==== ===== =====

a 3x3 72 double
aSingle 3x3 36 single

Total is 18 elements using 108 bytes

Octave has integer data types with fixed ranges. We find signed and unsigned integers with 8, 16, 32
or 64 bit resolution. In Table 1.2 find the types and their corresponding ranges.

type int8 uint8 int16 uint16 int32 uint32 int64 uint64

min -128 0 -32’768 0 -2’147’483’648 0 -9.2e+18 0

max +127 255 +32’767 65’535 +2’147’483’647 4’294’967’295 +9.2e+18 1.8e+19

Table 1.2: Integer data types and their ranges

The basic arithmetic operations (+ - * /) are available for these types, with the usual results, as illustrated
by an elementary example.

Octave
13For many years a matrix of floating point numbers was the only data type in MATLAB.

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 38

a = int16(100); b = int16(111);
[a+b, a-b, 3*b]
-->
ans = 211 -11 333

One has to watch out for the range of these types and the consequences on the results.

Octave
a = uint8(100); b = uint8(111);
[a+b, a-b, 3*b]
-->
ans = [211 -11 255]

When applied to floating point numbers the commands int8(), int16(),... do not return the integer
part, but use rounding.

Integer data types with a prescribed resolution may be used to develop code for micro controllers, as
shown in Section 2.4, starting on page 209.

Observe that there are considerable differences in how the programming language C and MATLAB/Octave
handle integers.

• In Octave calculations are truncated to their range, e.g. int8(100)+ 30 leads to 127.

• Operations with different integer types are not allowed, e.g. int8(10)+int16(70) will generate
an error message.

• Operations with integer and floating types are allowed and lead to integer results, again truncated to
their domain.

Characters

Individual letters can be given as characters, internally they are represented by integers and conversions are
possible, see Section 1.2.4. The internal representation leads to some surprising results. You can subtract
and add letters, or add numbers to letters, for the computations the ASCII codes are used.

Octave
char1 = ’a’; char2 = ’b’; char3 = ’A’;
b_minus_a = char2-char1
a_minus_A = char1-char3
a97 = (char1==97)
-->
b_minus_a = 1
a_minus_A = 32
a97 = 1

1.2.3 Structured data types and arrays of matrices

Building on the basic data types Octave can work with a variety of structured data types: vectors, matrices,
strings, structures, cell arrays, lists.

Strings

Octave also works with strings, consisting of a sequence of characters, enclosed in either singe-quotes or
double-quotes. With MATLAB only single quotes are allowed, thus one might consider using those exclu-
sively. Internally strings are represented as vectors of single characters and thus they can be combined to
longer strings.

Octave

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 39

name1 = ’John’ % a string in Octave and Matlab
name2 = "Joe" % a string in Octave only
combined = [name1,’ ’,name2]
-->
name1 = John
name2 = Joe
combined = John Joe

One may also create a vector of strings, but it will be stored as a matrix of characters. As a consequence
each string in the vector of strings will have the same length. Missing characters are replaced by spaces.14

Octave
combinedMat = [name1;name2]
size(combinedMat)
size(combinedMat(2,:))
-->
combinedMat=
John
Joe
ans = 2 4
ans = 1 4

Structures

One of the major disadvantages of matrices is, that all entries have to be of the same type, most often scalars.
Octave supports structures, whose entries may be of different types. This feature is not yet used in many
codes. Consider the trivial example below.

Octave
Customer1.name = ’John’;
Customer1.age = 23;
Customer1.address = ’Empty Street’
-->
Customer1 =
{
address = Empty Street
age = 23
name = John

}

Lists and cell arrays

Instead of structures we may use cell arrays. To access and create cell arrays curly brackets (i.e. {}) have
to be used. As illustration consider the example below.

Octave
c = {1, ’name’, rand(2,2)}
-->
c =
{
[1,1] = 1
[1,2] = name
[1,3] =

0.17267 0.87506
0.73041 0.85009

}

14In MATLAB you will have to use the function str2mat().

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 40

Each entry in a cell array may be used independently.

Octave
c{2}
-->
ans = name

Octave
m = c{3}
-->
m = 0.17267 0.87506

0.73041 0.85009

or as a subset of the cell array.

Octave
c{2:3}
-->
ans = name
ans = 0.17267 0.87506

0.73041 0.85009

Using cell array we can construct multidimensional matrices. With the code below we store the matrices
2 0 0

0 2 0

0 0 2

 and

1 1 1

1 1 1

1 1 1

in two different layers of the 2× 3× 3 matrix mat3 and then we compute

1 1 1

1 1 1

1 1 1

−

2 0 0

0 2 0

0 0 2

Octave

mat3 = cell(2,1);
mat3{1} = 2*eye(3);
mat3{2} = ones(3);
mat3{2}-mat3{1}
-->
ans =
-1 1 1
1 -1 1
1 1 -1

One has to observe that no standard computational rules for 3-d matrices are defined.

Cell arrays can be used as a counter in a loop.

Octave
disp("Loop over a cell array")
for i = {1,"two","three",4}
i

end%for

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 41

Arrays of matrices or N-d matrices

With Octave we may also work with matrices of higher dimensions, i.e. arrays of matrices. The command
below constructs 5 matrices of size 3 × 2 and fills it with random numbers. You may visualize this by
stacking the 5 matrices on top of each other and thus obtain a 5 story building with one 3 × 2 matrix on
each floor. Or consider it a matrix with three dimensions of size 3 × 2 × 5. To acces individual entries use
thre indices, e.g. A(2,1,4). As an example we compute for each position the average along the height,
leading to a 3× 2 matrix. The average is computed along the third dimension of the matrix.

Octave
A = rand(3,2,5);
Amean = mean(A,3)
-->
Amean = 0.79681 0.70946

0.60815 0.48610
0.38403 0.47336

To extract the “second floor” matrix you may use A2=A(:,:,2), but the result will be a 3 dimensional
object of size 3× 2× 1. To convert this into a classical 3× 2 matrix use the command squeeze(). As an
example multiply the transpose of the second floor with the fifth floor, leading to a 2× 2 matrix.

Octave
squeeze(A(:,:,2))’*squeeze(A(:,:,5))
--> 1.06241 1.05124

0.84722 1.03028

Arrays of matrices can be very convenient and many Octave/MATLAB commands are directly applicable
to these N-d matrices, but not all commands.

1.2.4 Built-in functions

Octave contains a large number of built-in functions. Most of them can be applied to scalar arguments, real
or complex. This may lead to a few surprises.

Functions with scalar arguments

• trigonometric functions: sin(), cos(), tan(), tan(), asin(), acos(), atan(), atan2()
Observe that all trigonometric functions compute in radians, and not degrees. There are a few func-
tions with a version using degree, e.g. sind(), cosd(). This author does not use those.

Octave
r1 = cos(pi)
r2 = acos(-1)
r3 = cos(i)
r4 = acos(-1.01)
r5 = acos(-1.01+i*1e-15)
r6 = tan(0.5)
r7 = atan(0.5)
r8 = atan2(-0.5,-1)

The function atan2() above is very useful to convert Cartesian to polar coordinates. For given x
and y we find the radius r and angle φ by solving

x = r cos(φ) and y = r sin(φ)

Octave will compute the values by

Octave

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 42

r = sqrt(xˆ2 + yˆ2)
phi = atan2(y,x)

Observe that atan((-y)/(-x)) will lead to the same results as atan(y/x), while the calls
atan2(-y,-x) and atan2(y,x) yield different results.

• exponential functions: exp(), cosh(), sinh(), tanh(), pow2(). For most of the exponen-
tial functions the corresponding inverse functions are also available: log(), log2(), log10(),
acosh(), asinh(), atanh(). The only possible surprise is that the functions can be used with
complex arguments. The code below verifies the Euler formula ei α = cos(α)+ i sin(α) for α = 0.2 .

Octave
al = 0.2;
[exp(i*al), cos(al), sin(al)]
-->
ans = 0.98007 + 0.19867i 0.98007 + 0.00000i 0.19867 + 0.00000i

• generating random numbers: for simulations it is often necessary to generate random numbers with
a given probability distribution. The command rand(3) will generate a 3 × 3 matrix of random
numbers, uniformly distributed in the interval [0 , 1].

Octave
r = rand(3)
-->
r = 0.694482 0.747556 0.266156

0.609030 0.713823 0.054658
0.461212 0.695820 0.769618

One often needs random numbers with a normal distribution, i.e. the command randn(). As an
example we create a vector of 1000 random numbers, with mean 2 and standard deviation 0.5, then
we generate a histogram.

Octave
N = 1000;
x = 2 + 0.5*randn(N,1);
hist(x)

Octave provides a few more distributions of random numbers.

0 1 2 3 4
0

50

100

150

200

250

Figure 1.7: Histogram of random numbers with mean 2 and standard deviation 0.5

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 43

– rand() : uniformly distributed in [0 , 1].

– randi() : integer random numbers.

– randn() : normal distribution with mean 0 and variance 1.

– rande() : exponentially distributed.

– randp() : Poisson distribution.

– randg() : gamma distribution.

• special functions: many special functions are directly implemented in Octave , e.g. most of the Bessel
functions bessel(), besselh(), besseli(), besselj(), besselk(), bessely(). One
of the many applications of Bessel functions is radially symmetric vibrating drums, the zeros of the
Bessel function J0(x) lead to the frequencies of the drum. The code below generates the plot of the
function f(x) = J0(x) and its derivative f ′(x) = −J1(x), find the result in Figure 1.8. There are
many other special functions, e.g airy(), beta(), bincoeff(), erf(), erfc(), erfinv(),
gamma(), legendre(). A good reference for special functions and their basic properties is
[AbraSteg] or its modern version [DLMF15], freely accessible on the internet at DLMF.nist.gov.

Octave
x = 0:0.01:14;
plot(x, besselj(0,x), x,-besselj(1,x))
legend(’BesselJ0’,’derivative’)

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
BesselJ0
derivative

Figure 1.8: Graph of the Bessel function J0(x) and its derivative

Functions with matrix and vector arguments

A large number of numerical functions can be applied to vectors or matrices as arguments. The correspond-
ing function will be computed for each of the values. As a simple example for vectors consider

Octave
x = [-1, 0, 1,3]
exp(x)
cos(x)
sqrt(x)
-->
x = -1 0 1 3
exp(x) = 0.36788 1.00000 2.71828 20.08554
cos(x) = 0.54030 1.00000 0.54030 -0.98999
sqrt(x)= 0 + 1i 0+ 0i 1 + 0i 1.73205 + 0i

SHA1 10-9-20

http://DLMF.nist.gov

1.2. PROGRAMMING WITH OCTAVE 44

or for matrices

Octave
A = [0 pi 1; -1 -pi 2];
r1 = cos(A)
r2 = exp(A)
r3 = sqrt(A)
-->
r1 =

1.00000 -1.00000 0.54030
0.54030 -1.00000 -0.41615

r2 =
1.000000 23.140693 2.718282
0.367879 0.043214 7.389056

r3 =
0.00000 + 0.00000i 1.77245 + 0.00000i 1.00000 + 0.00000i
0.00000 + 1.00000i 0.00000 + 1.77245i 1.41421 + 0.00000i

3 Example : Element wise operations
Assume that for a vector of x values you want to compute y = sin(x)/x. The obvious code

Octave
x = linspace(-1,1);
y1 = sin(x)/x
-->
y1 = 0.90164

produces certainly not the desired result. To compute y2 = sin(x)·x2 the code below yields not the expected
vector either.

Octave
x = linspace(-1,1);
y2 = sin(x)*xˆ2
-->
error: for Aˆb, A must be square

In both cases Octave (and MATLAB) use matrix operations, instead of applying the above operations to each
of the components in the corresponding vector. To obtain the desired result the dot operations have to be
used, as shown below.

Octave
x = linspace(-1,1);
y1 = sin(x)./x ;
y2 = sin(x).*x.ˆ2;
plot(x,y1,x,y2)

Leaving out the dot (at first) is the most common syntax problem in MATLAB and Octave .

• x.*y will multiply each component of x with the corresponding component of y. Thus x and y have
to be vectors or matrices of the same size. The result is of the same size too.

• x./y will divide each component of x by the corresponding component of y. Thus x and y have to
be vectors or matrices of the same size. The result is of the same size too.

• x.ˆ2 will square each component of x and return the result as a vector or matrix of the same size.

♦

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 45

4 Example : A few possible implementations of the norm function of a vector

‖~x‖ =

√√√√ n∑
i=1

x2
i

are given by

Octave
normX1 = sqrt(sum(x.ˆ2))
normX2 = sqrt(sum(x.*x))
normX3 = sqrt(sum(x.*conj(x)))

All three codes return the correct result if the vector is real valued, i.e. ~x ∈ Rn. The last formula also
generates the correct result for complex vectors. ♦

5 Example : Matrix exponential
There are also functions that behave differently. The solution of the linear system of differential equations

d

dt
~x(t) = A ~x(t) with ~x(0) = ~x0

can formally be written as
~x(t) = exp(tA) ~x0

Theoretically this matrix could be computed with a Taylor series

exp(tA) =

∞∑
k=0

1

k!
tnAn = I + tA +

1

2
t2 A2 +

1

6
t3 A3 +

1

24
t4 A4 + . . .

Unfortunately this is neither fast nor reliable, as are many other simple ideas, see [MoleVanLoan03]. Octave
can compute this matrix exp(tA) reliably with the command expm() (matrix exponential). As example
consider

Octave
expm([1,2;3,4])
-->

51.969 74.737
112.105 164.074

Observe that the result is different from exp([1,2;3,4]). There also exists a similar function logm(),
i.e. A = logm(B) will compute a matrix A such that B = expm(A). There is also a function to compute
the square root of a matrix, as illustrated below.

Octave
B = [1,2;3,-4]
sB = sqrtm(B)
sB*sB
-->
B =

1 2
3 -4

sB =
1.21218 + 0.31944i 0.40406 - 0.63888i
0.60609 - 0.95831i 0.20203 + 1.91663i

sB*sB =
1.00000 - 0.00000i 2.00000 - 0.00000i
3.00000 + 0.00000i -4.00000 + 0.00000i

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 46

And again the result is different from sqrt(B). ♦

Formatted input and output functions

When reading or writing data one often has to insist on specific formats, e.g. the number of digits displayed.
This can be done with the functions in Table 1.3 with the format templates listed in Table 1.4.

printf() formatted output to stdout, not in MATLAB

sprintf() formatted output to a string

fprintf() formatted output to a stream (file) or stdout

sscanf() formatted input from a string

fscanf() formatted input from a stream (file)

disp() display a string on the terminal

Table 1.3: Formatted output and input commands

As an example we display the number π in different formats.

Octave
printf("this is pi: %6.3f \n",pi) % in Matlab use sprintf()
printf("this is pi: %10.3e \n",pi)
printf("this is pi: %3i \n",pi)
-->
this is pi: 3.142
this is pi: 3.142e+00
this is pi: 3

%i or %d signed integer

%ni or %nd signed integer in a field of length n, no leading zeros

%0ni or %0nd signed integer in a field of length n, with leading zeros

%u unsigned integer

%f regular floating point number

%8.3f in field of width 8 with precision 3

%e floating point number with exponential notation

%10.5e in field of width 10 with precision 5

%g floating point number in normal or exponential format

%s string, will stop at white spaces

%c one or multiple characters

Table 1.4: Some output and input conversion templates

6 Example : Generating numbered file names
Assume that your want to number your files with a three digit integer, e.g. data001.dat, data002.dat,
data003.dat, . . . This requires that you translate the integer number into a string, including the leading
zeros. The name is composed of three sections.

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 47

• The first four characters are data .

• Then we use formatted printing into a string (sprintf()) to generate the string containing the 3
digit number, including the leading zeros. Use the format ’%03d’ .

• The tail of the file name is given by its extension .dat . Since strings are vectors of characters we
can combine the three segments.

Here is one possibility to do so.

Octave
numbers = [0 1 2 3 115]; % numbers to be considered
for n = numbers
filename = [’data’,sprintf(’%03d’,n),’.dat’]

end
-->
filename = data000.dat
filename = data001.dat
filename = data002.dat
filename = data003.dat
filename = data115.dat

If using the simpler format ’%d’, then the length of the file names might change, see below.

Octave
numbers = [0 1 2 3 115]; % numbers to be considered
for n = numbers
filename = [’data’,sprintf(’%d’,n),’.dat’]

end
-->
filename = data0.dat
filename = data1.dat
filename = data2.dat
filename = data3.dat
filename = data115.dat

In a real example you will obviously perform other operations in the loop too! ♦

7 Example : Formatted Scanning
Formatted scanning has to be used when information is to be extracted from strings, as shown in this exam-
ple. Within a string s a few digits of a number are displayed. First read the correct number of characters,
then scan for the scalar number and finally store the remainder of the string. For subsequent calculation the
scalar number piApprox can be used.

• The format string %10c%e%s consists of three contributions.

– %10c : read a vector consisting of 10 characters

– %e : read one floating point number

– %s : read the remainder as a string

• The last parameter "C" indicates that we use a C style formatting.

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 48

Octave
s = ’pi equals 3.14 approximately’;
[head, piApprox, tail] = sscanf(s,’%10c%e%s’,’C’)
-->
head = pi equals
piApprox = 3.1400
tail = approximately

Codes of the above type have to be used when reading data from a file. MATLAB’s version of scanf()
behaves differently. The function textscan() serves as a replacement of sscanf(), as shown by the
example.

Matlab
A = textscan(s,’%10c%f%s’)
piApprox = A{2}

Another possibility for problems of the above type is to use the function regexp(). ♦

Conversion functions

If you need to translate one data type into another Octave provides a few functions.

• char() : will convert an integer to the corresponding character. The function can be applied to
integers, vectors or matrices of integers. You may also use the function with cell arrays, see help
char.

Octave
c1 = char(65)
c2 = char(65:90)
c3 = char([65:75;97:107])
-->
c1 = A
c2 = ABCDEFGHIJKLMNOPQRSTUVWXYZ
c3 = ABCDEFGHIJK

abcdefghijk

• toascii()15 : will convert a character to the corresponding ASCII code, an integer. The function
can be applied to strings or vectors of strings.

Octave
oneLetter = toascii(’A’)
name = toascii(’BFH-TI’)
mat = toascii([’1 2 3’;’abcde’])
-->
oneLetter = 65
name = 66 70 72 45 84 73
mat = 49 32 50 32 51

97 98 99 100 101

• int2str : this function converts integers to strings, e.g.

Octave
15Currently MATLAB does not provide the function tosacii(), but you may obtain a similar by using the function int16().

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 49

s = int2str(4711)
-->
s = 4711

Observe that in the above code the variable s is of type string and not a number, e.g. you can not add
1 to s . The functions num2str() and mat2str() may be useful for similar tasks.

Octave
s2 = num2str(10*pi)
s3 = mat2str(rand(2),[4,3])
s4 = s3([1:4])
-->
s2 = 31.416
s3 = [0.6087,0.1361;0.6818,0.5794]
s4 = [0.6

• Octave provides a few more conversion functions: str2double(), str2num(), hex2num(),
num2hex(), num2cell(), . . .

• To convert strings to numbers the formatted scanning and printing functions above can be used too,
i.e see Section 1.2.4.

The above function can be used when reading data from a file or writing to a file, as examined in Sec-
tion 1.2.8.

1.2.5 Working with source code

One of the big advantages of open source code projects is that you have access to the source and can thus
examine and even modify it to meet your needs.16

• Locating the source code. With the command which you can find the location of the source code for
a given function.

Octave
which logspace
--> ‘logspace’ is a function from the file

/usr/local/share/octave/3.6.4/m/general/logspace.m

Using the location of the source file you can copy it into a directory of yours and adapt the code. This
is a very useful feature if a given function does almost what you need. Then take the source as a
(usually) good starting point. Not all function are written with Octave , but C++ and FORTRAN are
used too, e.g.

Octave
which cosh
-->
’cosh’ is a built-in function from the file libinterp/corefcn/mappers.cc

• To just look at the code you can also use type logspace and Octave or MATLAB will display the
source code of the function.

• The source to many (Octave only) functions have built-in tests and you can call those with the com-
mand test .

Octave
16One has to be careful when redistributing modified code. With MATLAB it is forbidden and with Octave you have to respect

the GPL license.

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 50

test logspace
-->
PASSES 6 out of 6 tests

• The source for many (Octave only) functions have built in demos, try

Octave
demo delaunay

1.2.6 Loops and other control statements

Within Octave the standard loops and controls statements are available. We illustrate them with elementary
examples.17

Loops generated by for

The general form is given by

Octave
for VAR = EXPRESSION

BODY
endfor

We use this example to list all square numbers from 1 to 9.

Octave
for k = 1:9
printf(’the square of %i is given by %i \n’, k, kˆ2)

endfor

It is not necessary to use subsequent numbering. As an example we use all odd numbers from 1 through 20,
or a given list of 3 numbers (4, 7 , 11).

Octave
for k = 1:2:20
printf(’the square of %i is given by %i \n’, k, kˆ2)

endfor

for k = [4 7 11]
printf(’the square of %i is given by %i \n’, k, kˆ2)

endfor

Loops generated by while or until

The general form is given by

Octave
while (CONDITION)
BODY

endwhile

As sample code generate the first 10 numbers of the Fibonacci sequence,

Octave
17If MATLAB is used instead of Octave then endfor has to be replaced by end, endwhile by end and a few more minor

changes of the same type. This author considers the Octave version to be more readable. A possible workaround is to use a well
placed comment sign, e.g end%for or end%while. I have adapted this notation in most places and it is working just fine.

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 51

fib = ones (1, 10);
i = 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
fib

With the while command the condition is tested first. If the body of the loop has to be executed first, and
then the test performed we may use the until command whose general form is

Octave
do
BODY

until (CONDITION)

The Fibonacci sequence is generated by

Octave
fib = ones (1, 10);
i = 2;
do
i++;
fib (i) = fib (i-1) + fib (i-2);

until (i == 10)
fib

MATLAB does not provide a do--until loop. One may simulate this with the help of an extra flag.

Matlab
flag = true;
while flag

BODY;
flag = CONDITION;

end

The if statements

If a body of code is to be used when a certain condition is satisfied we may use the if statement, whose
general form is given by

Octave
if (CONDITION)
THEN-BODY

endif

The code below will first generate a list of random integers between 0 and 100. Then from all numbers
larger than 50 we will subtract 50.

Octave
vec = round(rand(1,10)*100) % generate random numbers between 0 and 100
for k = 1:10
if (vec(k) >= 50) % subtract 50, if number larger than 50
vec(k) += -50; % Octave only

% vec(k) = vec(k) -50; % Matlab and Octave
endif

endfor
vec

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 52

-->
vec = 46 71 18 26 58 3 80 69 92 8
vec = 46 21 18 26 8 3 30 19 42 8

If we want to either subtract or add 50, depending on the size of the numbers we can use the else statement
whose general form is

Octave
if (CONDITION)

THEN-BODY
else

ELSE-BODY
endif

From the random vector of number we subtract or add 50, depending on whether the number is smaller or
larger that 50.

Octave
vec = round(rand(1,10)*100)
for k = 1:10
if (vec(k) >= 50)
vec(k) += -50; % with Matlab use vec(k) = vec(k) - 50

else
vec(k) += +50; % with Matlab use vec(k) = vec(k) + 50

endif
endfor
vec
-->
vec = 54 36 39 3 16 92 63 61 58 5
vec = 4 86 89 53 66 42 13 11 8 55

The third and most general form of the ‘if’ statement allows multiple decisions to be combined in a
single statement. Its general form is given by

Octave
if (CONDITION)

THEN-BODY
elseif (CONDITION)
ELSEIF-BODY

else
ELSE-BODY

endif

Jumping out of loops with continue and break

If the continue statement appears within the body of a loop (for, until or while) the rest of the body
will be jumped over and the loop restarted with the next value. The example below prints only the even
numbers of a selection of 10 random numbers between 0 and 100.

Octave
vec = round(rand(1,10)*100)
for x = vec
if (rem(x,2) != 0)
continue

endif
fprintf("%d ",x)

endfor
fprintf("\n") % generate a new line

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 53

-->
vec = 67 68 33 3 69 74 16 62 76 52
68 74 16 62 76 52

Observe that we do not leave the loop completely, but only ignore the remaining command for the current
run through the loop. It is the break statement that will leave the loop completely. The code below will
display the numbers, until encountering a value larger than 70. Then no further number will be displayed.

Octave
vec = round(rand(1,10)*100)
for x = vec
if (x >= 70)
break

endif
fprintf("%d ",x)

endfor
fprintf("\n") % generate a new line
-->
vec = 10 7 14 72 5 71 15 67 96 5
10 7 14

The switch statment

If a number of different cases have to be considered we may use multiple, nested if statements or the
switch command.

Octave
switch EXPRESSION
case LABEL
COMMAND_LIST

case LABEL
COMMAND_LIST
...

otherwise
COMMAND_LIST

endswitch

A rather useless example of code is shown below. For a list of 10 random numbers the code prints a
statement, depending on the remainder of a division by 5 .

Octave
vec = round(rand(1,10)*100)
for k = 1:10
switch rem(vec(k),5) % remainder of a division by 5
case (0)
fprintf("%i is a multiple of 5\n",vec(k))

case (1)
fprintf("A division of %i by of 5 leaves a remainder of 1\n",vec(k))

case (3)
fprintf("A division of %i by of 5 leaves a remainder of 3\n",vec(k))

otherwise
fprintf("A division of %i by of 5 leaves a remainder of 2 or 4\n",vec(k))

endswitch
endfor

1.2.7 Conditions and selecting elements

When selecting elements in a vector satisfying a given condition you have two options:

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 54

• Use the condition directly to obtain a vector of 0 and 1. A number 0 indicates that the condition is not
satisfied. A number 1 indicates that the condition is satisfied.

• Use the command find() to obtain a list of the indices for which the condition is satisfied.

Both operations apply directly to vectors, which might have a large influence on computation time.

Octave
x = rand(1,10); % create 10 random numbers with uniform distribution
ans1 = x < 0.5 % indicate the elements larger than 0.5
ans2 = find(x<0.5) % return indicies of elements satisfying the condition
-->
ans1 = 0 1 1 1 0 1 0 1 0 1
ans2 = 2 3 4 6 8 10

8 Example : Selecting elements
We generate a large vector of random numbers with a normal distribution with mean value 0 and standard
deviation 1. Then count the numbers between −1 and 1, expecting approximately 69% hits. The results
very clearly illustrate the speed advantage of vectorized code.

Octave
n = 1000000;
x = randn(n,1); % create the random numbers

time0 = cputime(); % use a for loop with an if condition
counter = 0;
for i = 1:n

if abs(x(i))<1
counter = counter+1;

end%if
end%for
percentage1 = counter/n
time1 = cputime-time0

time0 = cputime();
percentage2 = sum(abs(x)<1)/n
time2 = cputime-time0
-->
percentage1 = 0.68374
time1 = 26.038
percentage2 = 0.68374
time2 = 0.032002

Assume you want to know the average values of the above random numbers, but only the ones larger
than 1. To be able to use vectorized code proceed in three steps:

1. Use the command find() to generate the indices ind of the numbers satisfying the condition.

2. Generate a new vector with only those numbers, x(ind) .

3. Use the command mean() to compute the average value.

Octave
ind = find(x>1);
result = mean(x(ind))
-->
result = 1.5249

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 55

There is a shortcut version of the above commands. You may also use an array of logical values to
select elements. In the code below we generate a vector with numbers from 1 through 12. Then we select
and display only the numbers between 5 and 8.7 . There is no need for the command find() . On some
occasions this might be slightly faster.

Octave
x = 1:0.5:12; % all numbers from 1 to 12 in steps of 0.5
ind = (x>=5)&(x<8.7)
x(ind)
--> 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

5.0000 5.5000 6.0000 6.5000 7.0000 7.5000 8.0000 8.5000

♦

1.2.8 Reading from and writing data to files

With Octave you have different options to read information from a file or write to a file:

• Loading and saving variables with load() and save().

• Reading and writing delimited files with dlmread() and dlmwrite().

• Read data from files with complicated structures of the data by scanning line by line.

load() load Octave variables

save() save Octave variables

dlmread() read all data from a file

dlmwrite() write data to a file

textread() read data from a file

strread() read data from a string

fopen() open a stream (file)

fclose() close a stream

fgetl() read one line from the file

sscanf() scan a string for formated data

Table 1.5: Reading and writing with files

Loading and saving Octave variables

With the command save() you can save some, or all, variables to a file. This allows for later loading
of the information with the command load(). You can load and save information in different formats,
including MATLAB formats. Use help save and help load for more information. In the example
below a random matrix is created and saved to a file. Then all variables in Octave are cleared and the matrix
is reloaded.

Octave

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 56

clear *
aMat = rand(2); % create a random matrix
save data.mat aMat % save this matrix to a file
clear % clear the valiables
aMat % try to access the matrix, should fail
load data.mat % load the variable
aMat
-->
‘aMat’ undefined near line 5 column 1
aMat = 0.54174 0.83863

0.17270 0.76162

The above commands work with files adhering to Octave and MATLAB standards only. Using options for
the command one can read and write variables for many different versions on MATLAB and Octave . By
using flags one can choose which format should be used, e.g. save -v6 MyVariable.mat will save
the data on a MATLAB Version 6 specifig format, which can be used by Octave and MATLAB.

When data is generated by other programs or instruments then the format is usually not in the above
format and thus we need more flexible commands.

Delimited reading and writing, dlmread() and dlmwrite()

If your file contains data with known delimiters between the numbers the command dlmread() is very
handy. As an example consider the file

SampleSimple.txt
1 1.2
2 1.2
3 1e-3
4 -3E+3
5 0

to be read with a single command

Octave
x = dlmread(’SampleSimple.txt’)
-->
x =

1.0000e+00 1.2000e+00
2.0000e+00 1.2000e+00
3.0000e+00 1.0000e-03
4.0000e+00 -3.0000e+03
5.0000e+00 0.0000e+00

It is also possible to read only selected columns and rows in a larger set of data. The delimiter used most of-
ten are spaces or commas, leading to CSV files, i.e. Comma Separated Values. Use help dlmread to find
out how the delimiters (e.g. space, TAB, comma, . . .) can be set. With dlmwrite() you can create files
with data, to be read by other programs. These two commands replace csvread() and csvwrite().

An application of the above approach is shown in Sections 2.6.2 and 2.2.12.

Using textread()

With the command textread() a file can be scanned line by line, and a format string can be provided.
As example examine the following file with data in a csv format.

FuelConsumption.csv

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 57

Toyota Auris Hybrid - Fuel Consumption
Date,km-reading,km driven,km driven, gas [l],cost [CHF],l/100km
,,calculated,manual,,,
01/17/15,10800,,,,,
02/20/15,11368,568,568,34.62,47.75,6.10
03/12/15,11987,619,619,34.56,51.50,5.58
04/01/15,12754,767,767,38.93,57.60,5.08
04/25/15,13506,752,752,38.26,56.60,5.09
...

This data is now used in the code FuelConsumption.m, leading to Figure 1.9. The essential function
textread() takes a few arguments:

• The string ’FuelConsumption.csv’ lists the name of the file with the data.

• The format string ’%s %f %f %f %f %f %f’ gives the format of the available data: first a string,
then a sequence of 6 numbers. All numbers a read as data type double, even if integer would be
possible. This is to avoid undesired type conversions in subsequent computations.

• The strings ’delimiter’,’,’ indicate the the data is separated by commas.

• The last argument ’headerlines’,4 informs textread that the first 4 lines are header lines
and should be ignored.

The first data entry is a string in a date format, e.g. ’02/20/15’. This has to be converted to a number of
days of using this car. This is performed by Day = datenum(datevec(Date)); . The first function
datevec converts this string into a serial number corresponding to this data, e.g. [2015, 2, 20, 0,
0, 0]. Then the command datenum is used to convert this into a number of days since the start of the
current year minus 50, e.g. 736015 . Using Day = Day - Day(1) arrive at the days of usage of this
car by the current user. To finish the code two graphics are generated, see Figure 1.9,

• The fuel used for 100 km as function of the days of usage.

• A histogram of the fuel usage of this car.

FuelConsumption.m
% Fuel Consumption Auris 2018
[Date,Status_km,Distance,DistanceManual,FuelUsed,Price,Gasfor100km] = ...

textread(’FuelConsumption.csv’,’%s %f %f %f %f %f %f’,...
’delimiter’,’,’,’headerlines’,4);

Day = datenum(datevec(Date)); Day = Day-Day(1);

FuelFor100km = 100*FuelUsed./Distance;

figure(1)
plot(Day,FuelFor100km,’+’)
xlabel(’Day’); ylabel(’Fuel used [l/100km]’)

figure(2)
hist(FuelFor100km)
xlabel(’Fuel used [l/100km]’)

Scanning a file, line by line

There are many files with data in a nonstandard format or with a few header lines. As an example consider
the file Sample.txt shown below. When reading information from a file (or another data stream) the
following steps have to be taken:

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 58

0 200 400 600 800 1000 1200 1400
4.5

5

5.5

6

6.5

F
ue

l u
se

d
[l/

10
0k

m
]

Day
4.5 5 5.5 6 6.5
0

2

4

6

8

10

12

Fuel used [l/100km]

Figure 1.9: Fuel consumption for a hybrid car

• open the file for reading

• read the information, item by item or line by line

• scan the result to convert into the desired format

• close the file

The commands in Table 1.5 are useful for this task and examine Section 1.2.4 for the scanning command
fscanf().

Sample.txt
this is a header line
the file was generated on Sept 25, 2007

a 4.03 5
b -5.8 4
c 1.0e3 3
d -4.7E-6 2
e 0 1

We seek code to read the information on the last lines of the file. The schema of the code is shown above.
The formatted scanning has to be done carefully, since three different types of data are given on one line.

Octave
filename = ’Sample.txt’;
infile = fopen(filename,’rt’); % open the file for reading, in text mode
c = blanks(20); x = zeros(1,20); n = x; % prealocate the memory

for k = 1:3 % read and dump the three header lines
tline = fgetl(infile);

end%for

k = 1; % initialize the data counter
tline = fgetl(infile);
while ischar(tline))
% if tline not character, then we reached the end of the file
% scan the string in the format: character float integer
[ct,xt,nt] = sscanf(tline,"%1c%g%i","C");
c(k) = ct; x(k) = xt;n(k) = nt; % store the data in the allocated vectors
tline = fgetl(infile); % read the next line
k++; % increment the counter

SHA1 10-9-20

1.2. PROGRAMMING WITH OCTAVE 59

end%while

fclose(infile); % close the file
c = c(1:k-1); x = x(1:k-1); n = n(1:k-1); % use only the effectively read data

As a result we obtain the string c with content abcde, the vector x with the floating point numbers in the
middle column of Sample.txt and the vector n with the numbers 5 through 1 .

The above file can also be raed by using command textread(), as shown below.

[letters, num1, num2] = textread(’Sample.txt’,’%s %f %u’,’headerlines’,3)
-->
letters = {
[1,1] = a
[2,1] = b
[3,1] = c
[4,1] = d
[5,1] = e }

num1 = 4.0300e+00 -5.8000e+00 1.0000e+03 -4.7000e-06 0.0000e+00
num2 = 5 4 3 2 1

Internally textread() is using strread() . Consult help strread to find out about the different
formats supported.

Some applications of the above approach are shown in Sections 2.7.1, 2.8.1 and 2.5.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 60

1.3 Solving Equations

In this subsection we show a few examples on how to solve different types of equations with the help of
Octave . The examples are for instructional purposes only. We will examine:

• systems of linear equations

• zeros of polynomials

• zeros of single nonlinear functions

• zeros of systems of nonlinear functions

• optimization, maxima and minima

Obviously the above list is by no means complete, it may serve as a starting point. There are many other
types of very important problems to be solved that are ignored in this section:

• Ordinary differential equations: to be examined in Section 1.6, with a few examples.

• Numerical integration : to be examined in Section 2.1, with the magnetic fields as application.

• Linear regression : to be examined carefully in Section 2.2, with real world, nontrivial examples.

• Nonlinear regression : to be examined carefully in Section 2.2.14, with real world, nontrivial exam-
ples.

• Fourier series, FFT : to be examined in Section 2.8, with a vibrating beam example.

solving equations and optimization

\ backslash operator to solve systems of linear equations

lu() LU factorization of matrix, to solve linear systems

chol() Cholesky factorization of matrix, to solve linear systems

roots() find zeros of polynomials

fzero() solve one nonlinear equation

fsolve() solve nonlinear equations and systems

fsolveNewton() Newtons algorithm, naive implementation

fminbnd() constrained mimimization with respect to one variable

fmins() mimimization, one or multiple variables

fminsearch() mimimization, one or multiple variables

fminunc() unconstrained mimimization, one or multiple variables

Table 1.6: Commands to solve equations and optimization

1.3.1 Systems of linear equations

Since the main goal of MATLAB was to simplify matrix computations it should not come as a surprise
that MATLAB and Octave provide many commands to work with linear systems. We illustrate some of the
commands with elementary examples.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 61

Using the backslash \ operator and lu() to solve linear equations

9 Example : A linear system with a unique solution
The linear system of three equations

1x + 2 y + 3 z = 1

4x + 5 y + 6 z = 2

7x + 8 y + 10 z = 3

should be rewritten using a matrix notation
1 2 3

4 5 6

7 8 10

x

y

z

 =

1

2

3

A linear system is solved by ”dividing” by the matrix from the correct side

A · ~x = ~b ⇐⇒ ~x = A\A · ~x = A\~b

In Octave and MATLAB this is implemented by

Octave
A = [1 2 3; 4 5 6; 7 8 10]; b = [1;2;3]; % create matrix and vector
x = A\b % solve the system and display the result
-->
x = -3.3333e-01

6.6667e-01
3.1713e-17

This confirms the exact solution (−1
3 , 2

3 , 0)T . This approach is clearly better than computing the inverse
matrix A−1 and then computing A−1~b. For performance and stability reasons it is (almost) never a good
idea to compute the inverse matrix.

If many linear systems have to be solved with the same matrix A, then one shall not use the operator \
many times. One may either use a matrix for the right hand side or use the LU factorization presented in the
two examples below. If you want to solve the above system and also

1x + 2 y + 3 z = −1

4x + 5 y + 6 z = 0

7x + 8 y + 10 z = 11

then use the same matrix as above, but replace the vector with a 3× 2 matrix.

Octave
b = [1, -1;

2, 0;
3, 11];

x = A\b
-->
x = -3.3333e-01 1.1667e+01

6.6667e-01 -2.1333e+01
3.1713e-17 1.0000e+01

Octave uses the Gauss algorithm with partial pivoting to solve the system. This can be written as a
matrix factorization.

L ·U = P ·A

SHA1 10-9-20

1.3. SOLVING EQUATIONS 62

• L is a lower triangular matrix

• U is an upper triangular matrix

• P is a permutation matrix

Octave
[L,U,P] = lu(A)
-->
L = 1.00000 0.00000 0.00000

0.14286 1.00000 0.00000
0.57143 0.50000 1.00000

U = 7.00000 8.00000 10.00000
0.00000 0.85714 1.57143
0.00000 0.00000 -0.50000

P = 0 0 1
1 0 0
0 1 0

Then we use

A ~x = ~b ⇐⇒ LU~x = PA ~x = P~b ⇐⇒
{

L ~y = P~b

U ~x = ~y

Instead of solving A ~x = ~b directly, we first solve the lower triangular system L ~y = P~b and then the upper
triangular system U ~x = ~y.

Octave
x = U\(L\(P*b))
-->
x = -3.3333e-01

6.6667e-01
3.1713e-17

If many more linear system with different right hand sides ~b have to be solved, only the last step has to be
repeated. Thus computing the LU factorization is equivalent to determining the inverse matrix, but with
better numerical stability. ♦

10 Example : Solving linear systems is a n3 process
According to results you have seen in your class on linear algebra the computational effort to solve linear
systems is proportional to n3, the number of equations and unknowns. We want to verify this result with a
simulation.

• First generate a list of sizes n of matrices to be examined.

• For each value of n generate a random matrix of size n × n and add a diagonal matrix to assure that
the system is uniquely solvable.

• Measure the CPU time it takes to solve the linear system.

Then generate a plot of the CPU time a function of the size n. We expect

CPU ≈ c n3

log(CPU) ≈ log(c) + 3 log(n)

SHA1 10-9-20

1.3. SOLVING EQUATIONS 63

On a doubly logarithmic scale we expect a straight line with slope 3. This is confirmed by the code below
and the resulting Figure 1.1018.

Octave
nlist = floor(logspace(3.4,4,10));
timer = zeros(size(nlist));
for k = 1:length(nlist)
n = nlist(k);
A = rand(n)-0.5 + n*eye(n);
f = rand(n,1);
t0 = cputime();
x = A\f;
timer(k) = cputime() - t0;

end%for

MFlops = 1/3*nlist.ˆ3./timer/1e6

figure(1)
plot(nlist,timer,’+-’)
xlabel(’n, size of system’); ylabel(’time [s]’); grid on

figure(2)
plot(log10(nlist),log10(timer),’+-’)
xlabel(’log(n)’); ylabel(’log(time)’); grid on

2000 4000 6000 8000 10000
0

10

20

30

40

50

n, size of system

tim
e

[s
]

(a) linear scales

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
-0.5

0

0.5

1

1.5

2

log(n)

lo
g(

tim
e)

(b) logarithmic scales

Figure 1.10: Performance of linear system solver

One has to be a bit careful when choosing large values of n. A matrix of size n × n needs to store n2

real numbers, requiring approximately 8n2 bits of memory. For n = 1024 this leads to 8 MB of memory,
but for n = 10′240 we need 800 MB of memory. ♦

Linear systems without solution, over- and under-determined systems

Even for systems A ~x = ~b without unique solution the backslash operator will lead to a result.

• Even if a linear system is over-determined and has no solution, Octave and MATLAB will give an
answer. In this case the result will be the solution of a linear regression problem, see Section 2.2. The
answer ~x is determined such that the norm of the residual vector ~r = A ~x−~b is minimal.

18Most of the time for this simulation is used up for generating the random numbers. But only the solving time is measured by
calling cputime().

SHA1 10-9-20

1.3. SOLVING EQUATIONS 64

• If the system is under-determined and has infinitely many solutions, the backslash operator \ will give
one answer. It will return the solution —~x with minimal norm. You have to use linear algebra to be
able to generate all solutions.

11 Example : A linear system without solution
This will be even more useful if there are no unique solutions. The system

1x + 2 y + 3 z = 1

4x + 5 y + 6 z = 2

7x + 8 y + 9 z = 4

does not have a unique solution. We find

Octave
A = [1 2 3; 4 5 6; 7 8 9]; b = [1;2;4];
[L,U,P] = lu(A)
-->
L = 1.00000 0.00000 0.00000

0.14286 1.00000 0.00000
0.57143 0.50000 1.00000

U = 7.00000 8.00000 9.00000
0.00000 0.85714 1.71429
0.00000 0.00000 -0.00000

P = 0 0 1
1 0 0
0 1 0

Then solving L~y = P~b leads to

Octave
y = L\(P*b)
-->
y = 4.00000

0.42857
-0.50000

and thus the system U ~x = ~y turns into

7x1 + 8x2 + 9x3 = 4

0.85714x2 + 1.71429x3 = 0.42857

0x3 = −0.5

Obviously the last equation does not have a solution. Using the inverse matrix to solve this system with
inv(A)*b will return a solution, accompanied by a warning message.

xInv = inv(A)*b
-->
warning: inverse: matrix singular to machine precision, rcond = 2.20304e-18

xInv = 3.1522e+15
-6.3044e+15
3.1522e+15

The backslash operator \ leads to a similar warning, but a very different result.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 65

xBack = A\b
warning: matrix singular to machine precision, rcond = 2.20304e-18
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 3x3 matrix, rank = 2

xBack = 0.250000
0.166667
0.083333

Keep this example in mind and do not ignore warning messages.

Since the determinant of the above 3 × 3 matrix A vanishes, the linear system has only solutions for
vector~b of a special form. Consult you linear algebra book for details. The system has (nonunique) solutions
only if the right hand side ~b of the equation is in the range of the matrix A. Obtain a basis for this space
with the command orth().

Octave
RangeSpace = orth(A)
-->
RangeSpace = 0.21484 -0.88723

0.52059 -0.24964
0.82634 0.38794

This implies that for vectors

~b = λ1

0.21484

0.52059

0.82634

+ λ2

−0.88723

−0.24964

0.38794

the system has a solution ~x of A ~x = ~b. This solution is not unique, but we can add a multiple of a vector in
the null-space or kernel of the matrix A. The command null() computes a basis for the null-space.

Octave
ns = null(A)
-->
ns = -0.40825

+0.81650
-0.40825

The result implies that for vectors ~c = α (1 , −2 , 1)T we have A~c = ~0 and any vector ~x + µ~c is another
solution of A ~x = ~b. ♦

12 Example : Solving an over-determined system of linear equations
With the system of four equations

1x1 + 2x2 = 1

4x1 + 5x2 = 2

9x1 + 8x2 = 4

3x1 + 6x2 = 0

we only have two unknowns. The system is over-determined. Surprisingly Octave and MATLAB give a
solution without any warning.

Octave

SHA1 10-9-20

1.3. SOLVING EQUATIONS 66

A = [1 2; 4 5; 9 8; 3 6]; b = [1;2;3;0];
x = A\b
-->
x = 0.48610

-0.14297

A quick test shows that this is not a solution.

Octave
A*x - b
-->
-0.79984
-0.77045
0.23114
0.60048

At first sight this might be surprising and can lead to problems for uninformed users. In fact Octave and
MATLAB solve an optimization problem. Octave returns the vector x such that the norm of the residual
~r = A ~x − ~b is minimized. Thus we might say that Octave returns the best possible solution. For many
applications this is the desired solution, e.g. for linear regression problems (see Section 2.2). Internally
Octave is using a QR factorization to solve this problem, i.e the matrix is factored in the form A = QR.
Some details are spelled out in Section 2.2.6. ♦

13 Example : Solving an under-determined system of linear equations
The linear system of 2 equations

1x + 2 y + 3 z = 7

4x + 5 y + 6 z = −5

must have infinitely many solutions. You find a description of all solutions by finding one particular solution
~xp ∈ R3 and the vector ~n ∈ R2 generating the null space. Then all solutions are of the form ~x = ~xp + λ~n,
where λ ∈ R. Octave can generate those vectors.

A = [1 2 3; 4 5 6]; b = [7; -5];
xp = A\b
n = null(A)
-->
xp = -8.8333

-1.3333
6.1667

n = 0.40825
-0.81650
0.40825

The particular solution found by Octave is the one with the smallest possible norm, as can be verified by the
orthogonality 〈~xp , ~n〉 = 0 . ♦

Commands to solve special linear systems

For matrices with special properties Octave can take advantage of these properties and find the solution with
better reliability, or faster.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 67

14 Example : Cholesky factorization for symmetric, positive definite matrices
If the matrix A is known to be symmetric and positive definite we can use a more efficient and reliable
algorithm, based on the Cholesky factorization of the matrix.

A = RT ·R

where R is an upper triangular matrix. A linear system of equations can then be solved as a sequence of
systems with triangular matrix.

A ~x = ~b ⇐⇒ RT R ~x = ~b ⇐⇒
{

RT ~y = ~b

R ~x = ~y

To examine the system
3x + 0 y + 1 z = 1

0x + 3 y + 2 z = 2

1x + 2 y + 9 z = 3

we use the code below, verifying that we have the same solution with both solution methods.

Octave
A = [3,0,1; 0,3,2; 1,2,9];
R = chol(A)
b = [1;2;3];
x1 = A\b;
xChol = R\(R’\b)
MaxError = max(abs(x1-xChol))
-->
R = 1.73205 0.00000 0.57735

0.00000 1.73205 1.15470
0.00000 0.00000 2.70801

xChol = 0.27273
0.54545
0.18182

MaxError = 0

A second output argument of chol() indicates whether the matrix was positive definite or not. Use help
chol to find out more. ♦

15 Example : Sparse matrices
There are many applications where the matrix A consists mostly of zero entries and thus the standard

algorithms will waste a lot of effort dealing with zeros. To avoid this sparse matrices were introduced. As
an example we consider the n× n matrix A given by

A =
1

(n+ 1)2

2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2

SHA1 10-9-20

1.3. SOLVING EQUATIONS 68

This type of matrix appears very often when using the finite difference method to solve differential equations,
e.g. heat equations.

Using the command spdiags() we create a sparse matrix where Octave only stores the nonzero
values and their position in the matrix.

Octave
n = 10;
A = spdiags([-ones(n,1),2*ones(n,1),-ones(n,1)],[-1,0,1],n,n)/(n+1)ˆ2
-->
A = Compressed Column Sparse (rows = 10, cols = 10, nnz = 28 [28%])
(1, 1) -> 0.016529
(2, 1) -> -0.0082645
(1, 2) -> -0.0082645
(2, 2) -> 0.016529
(3, 2) -> -0.0082645
(2, 3) -> -0.0082645
(3, 3) -> 0.016529
...

Then a system of linear equations can be solved as before, but Octave will automatically take advantage of
the sparseness of the matrix.

Octave
b = ones(n,1);
x = A\b; % solve the sparse system
x’ % diplay as row vector
-->
605.0 1089.0 1452.0 1694.0 1815.0 1815.0 1694.0 1452.0 1089.0 605.0

By changing the size n of the matrix you can solve a large number of linear equations, e.g. n = 100′000.
Working with full matrices you would run out of memory. ♦

16 Example : Sparse Cholesky factorization
The matrix in the previous example is symmetric and positive definite, thus we may use the Cholesky
factorization A = RTR. Octave returns R as a sparse matrix.

Octave
R = chol(A);
xChol = R\(R’\b)

If the matrix A is known to be sparse we can call the function chol() with three output arguments and
find a sparsity preserving permutation matrix Q such that

QT ·A ·Q = RT ·R

The permutation matrix Q is best returned as a permutation vector. This allows to save large amounts of
memory for some applications. To solve the system we have to take the permutation matrices into account.
Use the fact that Q−1 = QT to examine the system A ~x = ~b with the help of

QTAQQT~x = QT~b ⇐⇒ RT RQT~x = QT~b ⇐⇒
{

RT ~y = QT~b

RQT~x = ~y

and thus
~x = QR−1(RT)−1QT~b

In Octave this is implemented by

Octave

SHA1 10-9-20

1.3. SOLVING EQUATIONS 69

[R, P, Q] = chol(A);
x3 = Q*(R\(R’\(Q’*b)));

This code is longer than just x = A\b, but there are cases where it is considerably faster and saves memory.
♦

1.3.2 Zeros of polynomials

Real or complex polynomials of degree n have exactly n zeros, maybe complex and/or multiple. Thus Oc-
tave provides a special command to determine those zeros, often called roots, of polynomials. To determine
the zeros of

p(z) = 1 + 2 z + 3 z3

we use

Octave
roots([3 0 2 1])
-->

0.20116 + 0.88773i
0.20116 - 0.88773i
-0.40232 + 0.00000i

Thus we find one real root at x ≈ −0.4 and two complex conjugate roots. This is confirmed by the graph of
the polynomial p(x) in Figure 1.11.

Octave
x = -1:0.01:2; % choose values between -1 and 2
y = polyval([3 0 2 1],x) % evaluate the polynomial at those points
plot(x,y) % generate the plot
xlabel(’x’); ylabel(’y = 1+2*x+3*xˆ3’)

-1 -0.5 0 0.5 1 1.5 2
-5

0

5

10

15

20

25

30

x

y
=

 1
+

2*
x+

3*
x^

3

Figure 1.11: Graph of the polynomial 1 + 2x+ 3x3

1.3.3 Nonlinear equations

Not all equations are linear equations or zeros of polynomials in one variable. Many applications lead to
nonlinear equations or systems of equations. Solving nonlinear equations, or systems, can be very difficult.
Octave provides a few algorithms to help solving nonlinear equations.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 70

Solving a single nonlinear equation

With the commands fzero() or fsolve() we can solve single equations or systems of equations. Given
a good initial guess for a solution of f(x) = 0. To determine the obvious solution x = π of sin(x) = 0 we
can use

Octave
x0 = fsolve(@(x)sin(x),3)
-->
x0 = 3.1416

The command fzero() is very reliable at solving one single equation for one unknown. In particular
if you can bracket the solution, i.e. you have one value with f(a) < 0 and another with f(b) > 0, then there
is a solution in the interval between a and b.

Octave
format long
x0 = fzero(@(x)sin(x),[3,3.2])
difference = x0-pi
-->
x0 = 3.14159265358979
difference = -1.33226762955019e-15

17 Example : Zero of a Bessel function
Examine Figure 1.8 (page 43) to see that the function f(x) = J0(x) has a zero close to x0 = 6. Since
the value of x and y are displayed for each evaluation of the function we can observe the iterations and its
convergence. With the help of options we are asking for 12 correct digits.

Octave
x0 = 6.0;
clear options
options.TolFun = 1e-12; options.TolX = 1e-12;

function y = f(x)
y = besselj(0,x);
[x y]

endfunction

[x, fval, info] = fsolve(@f,x0,options)
-->

6.00000 0.15065
6.00004 0.15066
5.99996 0.15064
5.455533 -0.022077
5.455566 -0.022065
5.455500 -0.022088
5.5198e+00 -9.8715e-05
5.5201e+00 -9.3923e-07
5.5201e+00 -8.9600e-09
5.5201e+00 -8.5477e-11
5.5201e+00 -8.1499e-13

x = 5.5201
fval = -8.1499e-13
info = 1

The algorithm seems to lead to a linear convergence, i.e. the number of correct digits increases at a constant

SHA1 10-9-20

1.3. SOLVING EQUATIONS 71

rate. We needed 11 iterations to arrive at the desired accuracy. The return value of info contains informa-
tion on whether the solution converged or not. Find information on the interpretation of the values of info
by help fsolve . ♦

18 Example : Using a user provided Jacobian
The algorithm used in fsolve() uses a Newton iteration

xn+1 = xn −
f(xn)

f ′(xn)

to determine an approximate solution. This algorithm should converge quadratically, i.e. the number of
correct digits is (approximately) doubled at each step. The documentation of Octave states that one can
pass a function for the derivative to the command fsolve() and then this derivative will be used for the
iteration. This excellent feature might be very efficient, in particular for systems of equations. One should
observe fewer evaluations19 of the function f , provided the initial value is close enough to the true solution.

Octave
x0 = 6.0 % choose the starting value

function [y,dy] = f2(x)
y = besselj(0,x);
dy = -besselj(1,x);
disp([x,y]) % display value and derivative for each evaluation of the function

endfunction

clear options % set the options for fsolve
options.TolFun = 1e-12;
options.TolX = 1e-12;
options.Jacobian = ’on’;
options.Updating = ’off’;

[x2, fval, info] = fsolve(@f2,x0,options)
-->

6.00000 0.15065
6.00000 0.15065
5.455533 -0.022077
5.455533 -0.022077
5.5198e+00 -9.8715e-05
5.5198e+00 -9.8715e-05
5.5201e+00 -2.5912e-09
5.5201e+00 -2.5912e-09
5.5201e+00 3.2470e-16

We observe that the number of correct digits is doubled for each iteration. We needed only 5 iterations to
arrive at the desired accuracy.

♦

19 Example : Options of fsolve()20

The function fsolve() allows to set a few options.

• TolX : the tolerance in x values, The default value is 1.5 · 10−8.

• FunX : the tolerance in the function values, The default value is 1.5 · 10−8.
19Without any further measures the function will be called twice for each step, which is not necessary. Read help fsolve to

learn how to avoid this double evaluation.
20Specific for Octave .

SHA1 10-9-20

1.3. SOLVING EQUATIONS 72

• MaxIter : maximal number of iterations to be used. The default value is 400 .

• Jacobian : a user supplied derivative may be used.

• Updating : if set to ”off” a Newton algorithm is used.

The default values of those options can be found in the source file for the function fsolve(). Type
which fsolve on the Octave command promt to find the exact location of the source file and then
examine the file with your favourite editor. As an example we compute the first zero of sin(x) without and
with options.

Octave
clear options
res1 = fsolve(@(x)sin(x),3)-pi
options.TolFun = 1e-15; options.TolX = 1e-15
res2 = fsolve(@(x)sin(x),3,options)-pi
-->
res1 = -2.8937e-10
options = scalar structure containing the fields:

TolFun = 1.0000e-15
TolX = 1.0000e-15

res2 = 4.4409e-16

♦

The command fsolve() is rather powerful, it can also examine over-determined systems of equations
and may be used for nonlinear regression problems, see Section 2.2.14.

Solving systems of nonlinear equations

The command fsolve() can also be used to solve systems of equations. Use some geometry (intersection
of ellipses) to convince yourself that the system

x2 + 4 y2 − 1 = 0

4x4 + y2 − 1 = 0

must have a solution close to x ≈ 1 and y ≈ 1. This solution can be found by the code below.

Octave
x0 = [1;1]; % choose the starting value

function y = f(x) % define the system of equations
y = [x(1)ˆ2 + 4*x(2)ˆ2-1;

4*x(1)ˆ4 + x(2)ˆ2-1];
endfunction

[x,fval,info] = fsolve(@f,x0) % determine one of the possible solutions
-->
x = 0.68219

0.36559
fval = -1.3447e-07

1.1496e-07
info = 1

SHA1 10-9-20

1.3. SOLVING EQUATIONS 73

Implementing Newton’s Algorithm

As a first example of an extended function we develop code for Newton’s algorithm to solve systems of
equations.

The main tool to solve a system of nonlinear equations of the form ~f(~x) = ~0 is Newton’s algorithm. For
a well chosen starting vector ~x0 apply the iteration

~xn+1 = ~xn − (DF (~xn))−1 ~f(~xn)

where the Jacobian matrix of partial derivatives is given by

DF (~x) =

∂f1(~x)
∂x1

∂f1(~x)
∂x2

. . . ∂f1(~x)
∂xn

∂f2(~x)
∂x1

∂f2(~x)
∂x2

∂f2(~x)
∂xn

...
. . .

...
∂fn(~x)
∂x1

∂fn(~x)
∂x2

. . . ∂fn(~x)
∂xn

Consult your calculus lecture notes for information on the algorithm. Below we implement this algorithm
in Octave . Since MATLAB hides the function fsolve.m in an expensive toolbox, we assure the code will
work with basic MATLAB. The code will by no means replace the Octave function fsolve.m, which has
more options and will examine over-determined systems too (see Section 2.2.14).

All the code segments below have to be in a file fsolveNewton.m, together with the necessary
copyright statement. Then the code can be used to solve the system

x2 + 4 y2 − 1 = 0

4x4 + y2 − 1 = 0

by calling

Octave
clear *
x0 = [1;1]; % choose the starting value

function y = f(x) % define the system of equations
y = [x(1)ˆ2 + 4*x(2)ˆ2-1;

4*x(1)ˆ4 + x(2)ˆ2-1];
endfunction

function y = dfdx(x) % Jacobian
y = [2*x(1), 8*x(2);

16*x(1)ˆ3, 2*x(2)ˆ2];
endfunction

[x,iter] = fsolveNewton(’f’,x0,1e-4*[1;1]) % use a finite difference Jacobian
[x,iter] = fsolveNewton(’f’,x0,1e-6) % higher accuracy
[x,iter] = fsolveNewton(’f’,x0,1e-6,’dfdx’) % user provided Jacobian

This example was already solved in the previous Section 1.3.3.

• Define the function name and give the basic documentation.

function [x,iter] = fsolveNewton(f,x0,tolx,dfdx)

% [x,iter] = fsolveNewton(f,x0,tolx,dfdx)
%

SHA1 10-9-20

1.3. SOLVING EQUATIONS 74

% use Newtons method to solve a system of equations f(x)=0,
% the number of equations and unknowns have to match
% the Jacobian matrix is either given by the function dfdx or
% determined with finite difference computations
%
% input parameters:
% f string with the function name
% function has to return a column vector
% x0 starting value
% tolx allowed tolerances,
% a vector with the maximal tolerance for each component
% if tolx is a scalar, use this value for each of the components
% dfdx string with function name to compute the Jacobian
%
% output parameters:
% x vector with the approximate solution
% iter number of required iterations
% it iter>20 then the algorithm did not converge

• Verify the input arguments and set up the starting point for the loop to come.

if ((nargin < 3)|(nargin>=5))
usage(’wrong number of arguments in fsolveNewton(f,x0,tolx,dfdx)’);

end
maxit = 20; % maximal number of iterations
x = x0;
iter = 0;
if isscalar(tolx) tolx = tolx*ones(size(x0)); end
dx = 100*abs(tolx);
f0 = feval(f,x);
m = length(f0); n = length(x);
if (n ˜= m) error(’number of equations not equal number of unknown’)
end

if (n ˜= length(dx)) error(’tolerance not correctly specified’)
end

• Start the loop. Compute the Jacobian matrix, either by calling the provided function or by using a
finite difference approximation.

jac = zeros(m,n); % reserve memory for the Jacobian
done = false; % Matlab has no ’do until’
while ˜done
if nargin==4 % use the provided Jacobian
jac = feval(dfdx,x);

else % use a finite difference approx for Jacobian
dx = dx/100;
for jj= 1:n
xn = x; xn(jj) = xn(jj)+dx(jj);
jac(:,jj) = ((feval(f,xn)-f0)/dx(jj));

end
end

• Apply a Newton step and close the loop.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 75

dx = jac\f0;
x = x - dx;
iter = iter+1;
f0 = feval(f,x);
if ((iter>=maxit)|(abs(dx)<tolx))
done = true;

end
end

To estimate the derivatives ∂ f(x)
∂x the above codes uses finite difference approximations of the form

∂ f(x)

∂x
≈ f(x+ h)− f(x)

h
for h small enough.

1.3.4 Optimization

In this section we will use some commands from the optimization package at SourceForge21. Thus have
a quick look at the package, resp. its documentation. If the package is not installed on your system (hint:
pkg list) you will have to download, install and load the package, using the instructions in Section 1.1.2
(page 12).

20 Example : The function f(x) = sin(2x) has a minimum at xmin = 3π
4 ≈ 2.3562. For the command

fmins() we have to provide an initial guess and then obtain an approximate answer.

Octave
xMin = fmins(@(x)sin(2*x), 2.5)
-->
xMin = 2.3560

If we want better accuracy of the solution we have to choose the correct options. Find the documentation
with help fmins . In the example below we ask fmins() to show intermediate results and work with
better accuracy, which is obtained for the final result. The intermediate results show the Nelder–Mead
simplex algorithm at work.

Octave
options = [1, 1e-7];
xMin = fmins(@(x)sin(2*x),2.5,options)
-->
f(x0) = 9.5892e-01
Iter. 1, how = initial nf = 2, f = 9.5892e-01 (0.0%)
Iter. 2, how = shrink, nf = 5, f = 9.5892e-01 (0.0%)
Iter. 3, how = shrink, nf = 8, f = 9.5892e-01 (0.0%)
Iter. 4, how = shrink, nf = 11, f = 9.5892e-01 (0.0%)
Iter. 5, how = contract, nf = 13, f = 9.9969e-01 (4.3%)
Iter. 6, how = shrink, nf = 16, f = 9.9969e-01 (0.0%)
Iter. 7, how = shrink, nf = 19, f = 9.9969e-01 (0.0%)
Iter. 8, how = contract, nf = 21, f = 9.9990e-01 (0.0%)
Iter. 9, how = contract, nf = 23, f = 9.9999e-01 (0.0%)
Iter. 10, how = contract, nf = 25, f = 9.9999e-01 (0.0%)
Iter. 11, how = contract, nf = 27, f = 1.0000e+00 (0.0%)
Iter. 12, how = shrink, nf = 30, f = 1.0000e+00 (0.0%)
Iter. 13, how = shrink, nf = 33, f = 1.0000e+00 (0.0%)
Iter. 14, how = contract, nf = 35, f = 1.0000e+00 (0.0%)
Iter. 15, how = shrink, nf = 38, f = 1.0000e+00 (0.0%)

21In MATLAB with the Optimization toolbox installed you may use the function fminsearch() instead of fmins(). In
Octave both are available.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 76

Iter. 16, how = contract, nf = 40, f = 1.0000e+00 (0.0%)
Iter. 17, how = shrink, nf = 43, f = 1.0000e+00 (0.0%)
Iter. 18, how = shrink, nf = 46, f = 1.0000e+00 (0.0%)
Iter. 19, how = contract, nf = 48, f = 1.0000e+00 (0.0%)
Iter. 20, how = shrink, nf = 51, f = 1.0000e+00 (0.0%)
Iter. 21, how = shrink, nf = 54, f = 1.0000e+00 (0.0%)
Iter. 22, how = contract, nf = 56, f = 1.0000e+00 (0.0%)
Iter. 23, how = shrink, nf = 59, f = 1.0000e+00 (0.0%)
Iter. 24, how = contract, nf = 61, f = 1.0000e+00 (0.0%)
Iter. 25, how = shrink, nf = 64, f = 1.0000e+00 (0.0%)
Simplex size 6.3242e-08 <= 1.0000e-07...quitting
xMin = 2.3562

♦

If the function depends on one variable only you may also use the command fminbnd(). It uses a
different algorithm and is usually more efficient for functions of one variable.

Octave
xMin = fminbnd(@(x)sin(2*x), 0,pi)
-->
xMin = 2.3562

21 Example : We can also optimize functions of multiple variables. Instead of a maximum of

f(x, y) = −2x2 − 3x y − 2 y2 + 5x+ 2 y

we seek a minumum of −f(x, y). Examine the graph of f(x, y) in Figure 1.12.

Octave
[xx,yy] = meshgrid([-1:0.1:4],[-2:0.1:2]);

function res = f(x,y)
res = -2*x.ˆ2 -3*x.*y-2*y.ˆ2 + 5*x+2*y;

endfunction

surfc(xx,yy,f(xx,yy)); xlabel(’x’); ylabel(’y’);

y
x

-40

-30

-20

-10

0

-1
0

1
2

-2 -1
0

1
2

3
4

10

Figure 1.12: Graph of a function h = f(x, y), with contour lines

Using the graph we conclude that there is a maximum not too far away from (x, y) ≈ (1.5 , 0). We use
fmins() with the function −f and the above starting values.

Octave

SHA1 10-9-20

1.3. SOLVING EQUATIONS 77

xMin = fmins(@(x)-f(x(1),x(2)),[1.5,0])
-->
xMin = 1.9996 -1.0005

An exact computation will find the exact position of the maximum at (x, y) = (2 , −1). To obtain better
accuracy we can use options again, e.g.

Octave
xMin = fmins(@(x)-f(x(1),x(2)),[1.5,0], [0, 1e-10])
-->
xMin = 2.0000 -1.0000

♦

22 Example : For an efficient hardware implementation of division of floating point numbers one needs
a good approximation of the function 1/x on the interval [1

2 , 1] by a polynomial of degree 2. We want to
minimize the maximal error, i.e. we seek the minimum of

f(a, b, c) = max
0.5≤x≤1

|1
x
− a x2 − b x− c|

As a starting guess for our parabola we use the straight line through the points (0.5 , 2) and (1 , 1). Another
option would be to generate the Chebyshev approximating polynomial of degree 2, see Section 2.4.6 on
page 221.

To improve accuracy and reliability we repeat the call of fmins() until the result stabilizes.

Octave
x = linspace(0.5,1,1001);
format long % display (too) many digits
function res = toMin(p,x)
res = max(abs(1./x - polyval(p,x)));

endfunction

pOptim = fmins(@(p)toMin(p,x),[0,-2,3],[0, 1e-15])
pOptim = fmins(@(p)toMin(p,x),pOptim,[0, 1e-15])
-->
pOptim = 2.74516598909596 -6.05887449195935 4.32842712578459
pOptim = 2.74516598880275 -6.05887449156216 4.32842712566662

The result can be verified visually by the code below and the resulting Figure 1.13. Obviously we have an
excellent approximation of 1/x by a second order polynomial.

Octave
yOptim = polyval(pOptim,x);
figure(1); plot(x,1./x,x,yOptim); xlabel(’x’); ylabel(’1/x and polynomial approx.’)
figure(2); plot(x,yOptim-1./x); xlabel(’x’); ylabel(’difference’)

♦

Linear and nonlinear regression problems can also be considered as minimization problem. For this spe-
cial type of problem there are better algorithms, see Chapter 2.2 and Section 2.2.14 for nonlinear regression
problems.

SHA1 10-9-20

1.3. SOLVING EQUATIONS 78

0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

x

1/
x

an
d

po
ly

no
m

ia
l a

pp
ro

x.

(a) 1/x and the approximation

0.5 0.6 0.7 0.8 0.9 1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

x

di
ffe

re
nc

e

(b) difference of 1/x and its approximation

Figure 1.13: 1/x and a polynomial approximation of degree two

SHA1 10-9-20

1.4. BASIC GRAPHICS 79

1.4 Basic Graphics

For the graphics commands there are only some small differences between MATLAB and Octave . In addition
there ar1e many more options and possibilities than it is possible to illustrate in the given time and space for
these notes.

• Octave and MATLAB will by default open up a graphics window on screen to display graphics.

• After a graph is displayed you can change its appearance with many commands: choose different axis,
put on labels or a title, add text, . . .

• If you generate a new picture, the old one will be overwritten, You can change this behavior with
hold or figure().

• You can open up multiple graphics windows, using the command figure().

• Within a graphics window you can use the mouse to zoom, move or rotate the picture.

• With the command print() you can write the current figure into a file, choosing from many differ-
ent formats.

• When starting up Octave you can choose which graphics toolkit to use.

– qt : this toolkit is used with Octave 4.0.1 and allows for interactive modifications of the figure.

– gnuplot : this was the default. Octave will use Gnuplot as graphics engine to generate the
graphics on screen or in files. This is a time tested method, but not very efficient for large 3D
graphics. Use gnuplot binary to find out which binary is actually used.

– fltk : this is a graphics engine using OpenGL. It will use the specialized hardware on the
graphics card.

– Switching forth and back between the two toolkits within one Octave session is possible. Close
all graphics windows with close all and then change the graphics toolkit, e.g. with the
command below.

Octave
graphics_toolkit % display the current graphics toolkit
graphics_toolkit fltk % switch to the fltk toolkit

• With MATLAB there is only one graphics toolkit, thus there is nothing to choose.

In this section a few examples will be shown, but much more is possible.

1.4.1 2-D plots

The basic plot() command

Graphs of known functions are easy to generate with MATLAB or Octave , as shown with the code below and
the resulting Figure 1.14(a).

Octave

SHA1 10-9-20

1.4. BASIC GRAPHICS 80

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

(a) a raw graph

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1
two elementary graphs

(b) a graph with formats used

Figure 1.14: Elementary graphs of functions

x = 0:0.1:7;
y1 = sin(x);
plot(x,y1)

MATLAB and Octave will essentially plot a number of points and you can choose how to connect the
points.

• The command plot() can only22 display points and straight line connections between them. Thus
you have to compute the coordinates of the points first and then generate the graphics.

– The command plot() with one argument only will use the numbering of the given values for
the horizontal coordinate and the values for the vertical coordinates.

– The command plot() with two arguments requires the values of the x coordinates as the first
argument and the y components as the second argument.

– A third argument of plot() may be a format string, specifying how plot() has to display
and connect the individual points. There are many options:

* Choose a lines style: - lines, . dots, ˆ impulses, L steps

* Choose the color by a letter: k (black), r (red), g (green), b (blue), m (megenta), c (cyan),
w (white)

* Use +, *, o or x in combination with the lines style to choose the point style
– In Octave you can set the text for the legend with ’;key text;’ .
– In Octave and MATLAB you can set the text for the legend by legend(’key text’) .

• Multiple sets of points can be displayed with one single call to plot(). List the arguments sequen-
tially.

• Use help plot to access further information.

The code below shows a simple example, leading to Figure 1.14(b).

Octave
y2 = cos(x).*exp(-x/3);
plot(x,y1,’-*r’,x,y2,’+b’)
title(’two elementary graphs’);
grid on

22We knowingly ignore the command ezplot(), fplot() and its friends. They are of very limited use and you are better off
using the Octave/MATLAB way to generate figures: first compute the data, then display the data.

SHA1 10-9-20

1.4. BASIC GRAPHICS 81

plot commands

plot() basic command to plot one or multiple functions

semilogx() same as plot() but with logarithmic horizontal scale

semilogy() same as plot() but with logarithmic vertical scale

loglog() same as plot() but with double logarithmic scales

hist() generate and plot a histogram

bar() generate a bar chart

plotyy() generate a plot with 2 independent y axes

options and settings

graphics toolkit choose the graphics engine to be used

figure() choose the display window on the screen

title() set a title for the graphic

xlabel() specify a label for the horizontal axis

ylabel() specify a label for the vertical axis

zlabel() specify a label for the third axis

text() put a text at a given position in the graph

legend() puts a legend on the plot or turns them on/off

grid turn grid on (grid on) or off (grid off)

axis() choose the viewing area, use axis() to reset

xlim() choose the limits on the x axis, similar for y and z axis

hold toggle the hold state of the current graphic

colorbar() add a colorbar to the graphic

subplot() create one of the figures in a multiplot

print() save the current figure in a file

clf clear the current figure

Table 1.7: Generating 2D plots

SHA1 10-9-20

1.4. BASIC GRAPHICS 82

Options and additions to plot()

The result of the basic command plot() may be modified by a number of options and parameters, most
of which are shown in Table 1.7. The code below is using some of these options with the result shown in
Figure 1.15(a).

• To generate a PDF (Portable Document Format) use print -dpdf (MATLAB and Octave). This
will lead to a full PDF page. You will have to crop the large margins of the graphics if you only
need the picture and the are many tools achieve this, e.g. the command pdfcrop to be used outside
of MATLAB.. With Octave you may use print -dpdfwrite to generated the cropped graphics
directly. This file is suitable to be included in LATEX documents when using PDF as graphics format,
e.g. by pdflatex.

• An encapsulated Postscript file graph3.eps, containing the graphics, will be created in the current
directory. The command in the code below generates a level 2 encapsulated file, using a tight bounding
box and a different font. This file is suitable to be included in LATEX documents when using EPS as
graohics format, e.g. by latex.

• For LibreOffice or Word documents the PNG format is useful. It is important to generate bitmap files
with the correct size and not rescale them with the word processor! In the example below an image of
size 600 by 400 is generated.

• Observe that with MATLAB a command print(’myPic.png’) will print directly to the printer of
your system, and not write the graphics to a file. If you want the file specify the device explicitly, e.g.
print(’myPic.png’,’-dpng’) .

• The are many more formats available, see help print or examine Section 1.4.2.

Octave
clf
x = -4:0.1:4;
y = (1+x.ˆ2).*exp(3*x);
semilogy(x,y);
text(-3,2000,’Text in Graph’);
title(’logarithmic scale in vertical direction’)
xlabel(’Distance [m]’); ylabel(’Temp [K]’)
print(’graph3.eps’,’-depsc2’,’-FTimes-Roman:20’,’-tight’)
% Matlab is slightly different
print(’graph3.pdf’,’-dpdfwrite’) % Octave only
print(’graph3.png’,’-S600,400’) % in Matlab slightly different
%% to obtain a 4 by 3 inches picture with a resolution of 200dpi use
%% the code below. The resulting PNG file will contain a 800x600 picture
% set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 4 3])
% print(’graph3.png’,’-dpng’,’-r200’)

Octave
clf % clear the current figure
x = linspace(0,pi,50); y = cos(x);
plot(x,y,’g’,y,x,’r’);
legend(’show’)
legend(’cos(x)’,’arccos(x)’,’location’,’northeast’)
legend(’boxon’)
axis([-1.2 pi+0.2 -1.2 pi+0.2],’equal’)
hold on
plot([-1 pi],[0 0],’b’,[0 0],[-1 pi],’b’); % show coordinate axis
grid on
hold off

SHA1 10-9-20

1.4. BASIC GRAPHICS 83

-4 -2 0 2 4
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

Distance [m]

T
em

p
[K

]

logarithmic scale in vertical direction

Text in Graph

(a) a raw graph

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1-0.5 0 0.5 1 1.5 2 2.5 3

cos(x)

arccos(x)

(b) with decorations

Figure 1.15: Two graphs without and with some decorations

With subplot() one can generate multiple graphs in one figure. The code on the last two lines
generates a title over all subfigures.

Octave
x = linspace(-2*pi,2*pi,200);
clf
axis(’normal’);
axis() % leave the scaling up to Octave/Matlab
subplot(2,2,1); plot(x,sin(x));
subplot(2,2,2); plot(x,cos(x));
subplot(2,2,3); plot(x,sinh(x));
subplot(2,2,4); plot(x,cosh(x));
ha = axes(’Position’,[0 0 1 1],’Xlim’,[0 1],’Ylim’,[0 1],...

’Box’,’off’,’Visible’,’off’,’Units’,’normalized’,’clipping’,’off’);
text(0.4, 0.95,’Titel Over all Subplots’)

Find another example in Figure 1.28 on page 100.

Interactive manipulations

With MATLAB and new versions of Octave you can manipulate properties of graphics interactively.

• You can zoom in and out.

• Rotate a 3D graph. Works with 2D graphs too!!

• You can add text at any position in the picture.

• Label and rescale the axis.

• You can turn the grid on and off.

– With Matlab choose the small arrow in the menu line of the graphics to edit the plot. Then click
in the graph and use the right mouse button to obtain the menu with the options to choose.

– With Octave click on the graph and either hit the key “G” (Gnuplot toolkit) or use the menue
item in the top line.

SHA1 10-9-20

1.4. BASIC GRAPHICS 84

Grid lines and tick marks

One can modify the tick marks and the grid lines in a plot by setting properties of the axis object. With the
code below we generate figure 1.16(a).

• With the command set()the properties of the current axis are modified. The function gca() returns
a handle to the current axis.

• On the x-axis the tick marks are shown at multiples of π/2 and labeled accordingly.

• On the y–axis the labels are unevenly spaced, but more grid lines are shown.

x = linspace(0,10);
figure(1); plot(x,sin(x))
set(gca(),’XTick’,[0:pi/2:3*pi],...

’XTickLabel’,{’0’,’\pi/2’,’\pi’,’3\pi/2’,’2\pi’,’5\pi/2’,’3\pi’})
set(gca(),’XGrid’,’on’)
set(gca(),’YTick’,[-0.5,0,0.4,1])
set(gca(),’YMinorGrid’,’on’);

An axis object has many properties to be modified by set(). To examine the list of all those use the
command get(gca()). The list will be rather long!

0 π/2 π 3π/2 2π 5π/2 3π

-0.5

0

0.4

1

(a) A plot with tick marks and grid lines

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

A graph inserted

sin(x)

0 2 4 6 8 10
-1

-0.5

0

0.5

1
cos(x)

(b) A figure in a figure

Figure 1.16: Tick marks, grid lines and a figure in a figure

A figure in a figure

Octave allows for many more tricks with pictures, e.g. you can generate a figure in a figure, as shown in
Figure 1.16(b).

Octave
x = linspace(0,10); f1 = sin(x); f2 = cos(x); % generate the data
figure(1); subplot(1,1,1) % assure it is one figure
plot(x,f1,’r’,’linewidth’,3)
axis([0 8 -1.5 1.2])
set(gca,’fontsize’,16); grid on
line([3 4],[sin(3) 0.5]); text(3.8,0.6,’sin(x)’,’fontsize’, 16)
title(’A graph inserted’)

SHA1 10-9-20

1.4. BASIC GRAPHICS 85

axes(’position’,[0.2 0.15 0.3 0.3]) % this sets the new frame for the graph
set(gca,’xlim’,[0,10],’ylim’,[-1.1 1.1])
axis([0 10 -1.2 1.2])
plot(x,f2,’linewidth’,2); grid on
line([8 9],[cos(8) 0.5]); text(7.8,0.6,’cos(x)’)

When MATLAB/Octave generate a graphics it has many default options set. You can access those through
the command get(). Find more information on this in section 15.3 Graphics Data Structure of the Octave
manual

Size of graphics when printing

When printing or generating a PostScript or PDF file the size is specified by the figure’s ’papersize’ property
and the position on the page by ’paperposition’. In the code below we generate a figure that is wider than
usual, leading23 to Figure 1.17. With the command gca() we can get a handle to the current axis, and
then modify some of the properties. To find out more, generate an arbitrary graphics and then examine the
result of get(gca()). In the above example we set the markers on the x–axis at specific locations and
used the special symbol π.

x = linspace(0,10); y1 = sin(x); y2 = cos(x);

h = figure(1); clf;
plot(x,y1,x,y2)
legend(’sin(x)’,’cos(x)’); xlabel(’x’)
set(h,’paperunits’,’centimeters’)
set(h,’papersize’,[15,6])
set(h,’paperposition’,[0,0,16,6])
set(gca(),’xtick’,[0,pi,2*pi, 3*pi],’xticklabel’,{’0’,’\pi’,’2 \pi’,’3 \pi’})

print -dpdfwrite SizeAndTick.pdf
print -depsc SizeAndTick.eps

x
0 : 2 : 3 :

-1

-0.5

0

0.5

1

sin(x)
cos(x)

Figure 1.17: A graphics of specific size and with special tick marks

23Currently the MATLAB version looks nicer than the Octave version.

SHA1 10-9-20

1.4. BASIC GRAPHICS 86

1.4.2 Printing figures to files

The GUI of Octave and MATLAB allow you to save a figure in different formats. In many applications it is
more convenient to generate the file with the figure by a command. Here you can choose and modify many
different aspects of a figure.

Generating files in different formats

In the above section we already mentioned that on-screen figures can be written to files, for them to be
included in your favorite text processing tool or to be used with LATEX. The basic command to be used is
print(). It takes the name of the file to be generated and other options as parameters. The print()
command has many options, consult the documentation with help print or doc print .

print the basic command to write a picture in a file

options

-d... choose the device to be used

-depsc colored EPS (Encapsulated PostScript)

-dpng PNG (Portable Network Graphics)

-dpdf PDF (Portable Document Format), full page

-dpdfwrite PDF, with bounding box (Octave only)

Table 1.8: the print() command and its options

Octave and MATLAB usually choose the file format by looking at the given extension of the given file
name. If no device is given explicitly MATLAB will send the file to the printer, while Octave writes to the
given file.

print MyFigure.png % Matlab sends to printer, Octave to file or printer
print -dpng MyFigure.png % Matlab and Octave write to the file

There are different types of files that might be useful. Here only 4 formats will be commented: eps,
png, pdf and fig.

EPS : Encapsulated PostScript files can be used with LATEX or other good text processing tools. Many
printers, resp. their drivers, can print these files directly to paper.

– EPS files may be generated by either one of the lines below. The file graph.eps will contain
the image.

Octave
print(’graph.eps’,’-depsc’,’-FTimes-Roman:20’,’-tight’)
print -depsc -FTimes-Roman:20 -tight graph.eps

– These figures can be rescaled without problems and the fonts for the included characters remain
intact.

– For photographs the created files might be unnecessarily large.

– LibreOffice/OpenOffice/Word can not handle Postscript pictures

PNG : Portable Network Graphics files are a good format for bitmaps, e.g. photos.

SHA1 10-9-20

1.4. BASIC GRAPHICS 87

– The files may be generated by either of the lines below. The image will have a resolution of 600
columns and 400 lines. The file graph.png will contain the image.

Octave
print(’graph3.png’,’-S600,400’)
print ’-S600,400’ graph3.png

– These figures can not be rescaled without serious loss of image quality. Thus you have to
generate it in the correct size and the above option to specify the resolution of the image is
essential.

– The codes in MATLAB are slightely different. To generate a picure of dimension 6× 4 cm with
a resolution of 100 dpi use

Matlab
set(gcf,’PaperUnits’,’centimeters’,’PaperPosition’,[0 0 6 4])
print -dpng graph3.png -r100

– LATEX and LibreOffice/OpenOffice/Word can handle PNG files.

PDF : Portable Document Format can be used in LATEXor to directly print the figure. PDF can be used
instead of EPS.

– PDF files may be generated by either one of the lines below. The file graph.pdf will contain
the image.

Octave
print(’graph.pdf’) % for a full page, Matlab/Octave
print(’graph.pdf’,’-dpdfwrite’) % for a figure with bounding box, Octave

Use the second line if you need to include the generated picture into another document, as the
first line will always generate a full page. Use system tools the remove excess margins, e.g.
pdfcrop.

– For photographs the created files might be unnecessarily large.

– LibreOffice/OpenOffice/Word can not handle PDF pictures

fig : If you want to apply further modifications to your figure the fig format might be handy. You can
then use the Unix program xfig to modify your picture, e.g. change fonts, colors, thickness of lines,
and many more. With xfig you can then save the figure in the desired format for the final usage. To
generate a colored figure use to option -color, e.g.

Octave
print -color graph.fig % color might only work with the fltk toolkit

Converting an image to different formats

On occasion it is necessary to convert between different formats. Most Unix systems provide powerful tools
for this task.

ImageMagick is a cross platform, open source software suite for displaying, converting, and editing
raster image files. It can read and write over 100 image file formats. It can not only convert, but also apply
many operations to images: resize, rescale, rotate, ... To convert a file graph.gif to the PNG format
you may type convert graph.gif graph.png on a Unix command line. If you want to achieve
identical results from within Octave you have to use the system command.

Octave

SHA1 10-9-20

1.4. BASIC GRAPHICS 88

system(’convert graph.gif graph.png’)

For these lecture notes I had to convert many EPS figures into the PDF format. For this I used the tool
epstopdf, e.g. type epstopdf graph.eps on a Unix command line to generate the PDF file. This
can be done within Octave by using the system() command, as shown above.

Since the command often has to be applied to all *.eps files in a sub-directory I created a shell command
to convert all images at once. This shell script only works on Unix systems!

doEPStoPDF.sh
#!/bin/bash
for file in *.eps
do

epstopdf $file
done

Using printFigureToPdf.m to generate nice PDF files

The script file printFigureToPdf.m uses features of MATLAB and Octave to generate a PDF with a
desired size. Observe that the size of the fonts are adapted accordingly24. If you have to fiddle with the
exact form of an output, have a closer look at the source of this command. It uses a few set() commands
to generate the desired size and then calls to standard commands. It might just give you the necessary hints.

Octave
% script file to test the PDF output of printFigureToPdf()
x = linspace(0,10);
plot(x,sin(x),x,cos(x))
legend(’sin(x)’,’cos(x)’)
xlabel(’x’)
% size given in inches, with a 10% border
printFigureToPdf(’Sin_Cos.pdf’,[6,4],’inches’,[0.1,0.1,0.1,0.1])
% size given in inches again (problems with cm),
% with a 10% border, except at the top only 5%
printFigureToPdf(’Sin_Cos_cm.pdf’,[4,3],’inches’,[0.1,0.1,0.1,0.05])

1.4.3 Generating histograms

The command hist() will create a histogram of the values in the given vector. The following code and
the resulting Figure 1.18 illustrate that the values around±1 are more likely to show up as results of the sin–
function on−5π ≤ x ≤ 5π. The interval of all occurring values ([−1 , 1]) is divided up into subintervals of
equal length. Then the command hist(y,20) counts the number of values in each of the 20 subintervals
and displays the result as height of the column. This leads to Figure 1.18(a). The histogram in Figure 1.18(b)
is normalized, such that the sum of all heights equals 1 . Thus we can read the probability for the values
to fall into one of the bins. The values of the centers are in the vector center and the corresponding
heights are stored in height and thus available for further computations. The resulting graph can also be
generated by bar(center,height) or with plot(center,height). Observe that the scaling has
to be left to MATLAB/Octave by a call of axis() without arguments. The codes for Octave and MATLAB
differ slightly and are shown below.

24With versions 3.8.2 and 4.0.* of Octave the legends are not handled correctly. With the first release cadidate for Octave 4.2
the situation is better, but not perfect. One might use text() as a fix. On occasion I had to call the command twice to obtain the
desired result!

SHA1 10-9-20

1.4. BASIC GRAPHICS 89

x = -5*pi:0.01:5*pi; y = sin(x);
figure(1);
hist(y,20)
axis([-1.3 1.3]); % Matlab can not choose the x-scaling only
%axis([-1.3 1.3 0 500]); % for Matlab use this line

figure(2);
[height,center] = hist(y,-1:0.1:1,1)
height = height/sum(height);
bar(center,height);
axis([-1.2 1.2]); % Matlab can not choose the x-scaling only
%axis([-1.1 1.1 0 0.12]) % for Matlab use this line

0

100

200

300

400

500

-1 -0.5 0 0.5 1

(a) counting histogram

0

0.02

0.04

0.06

0.08

0.1

0.12

-1 -0.5 0 0.5 1

(b) normalized histogram

Figure 1.18: Histogram of the values of the sin–function

1.4.4 Generating 3-D graphics

With Octave and MATLAB three dimensional plots can also be generated. A list of some of the commands
is shown in Table 1.9.

Curves in space: plot3()

To examine a curve in space use the command plot3(). One may also plot multiple curves and choose
styles, just as for the command plot() .

Octave
t = 0:0.1:5*pi;
x = cos(t); y = 2*sin(t); z = t/(2*pi);
plot3(x,y,z)
grid on
view(25,45);

A surface plot in space: meshgrid(), surf() and mesh()

If a surface of the type z = f(x, y) in space is to be plotted then one has to apply a few steps.

• Choose the values for x and y.

SHA1 10-9-20

1.4. BASIC GRAPHICS 90

plot commands

plot3() to plot a curve in space

meshgrid() generate a mesh for a surface plot

surf() generate a surface plot on a mesh

surfc() generate a surface plot and contour lines

mesh() generate a mesh plot on a mesh

meshc() generate a mesh plot and contour lines

contour() graph the contour lines of a surface

contourf() graph the contour lines with colored patches

quiver() generate a vector field

options and settings

view() set the viewing angles for 3d–plots

caxis() choose the colormap and color scaling for the surfaces

Table 1.9: Generating 3D plots

-0.5
0

0.5
1

-1

-2

0

0.5

1

1.5

2

2.5

-1

0

1

2

Figure 1.19: A spiral curve in space

SHA1 10-9-20

1.4. BASIC GRAPHICS 91

• Generate matrices with values for the coordinates at each point on a mesh with the help of meshgrid().

• Compute the values of the height at those points with the help of the given function z = f(x, y).

• Generate the graphics with surf() or mesh() and choose a good view point and scaling.

To better understand the effect of the command meshgrid one may examine the result of

Octave
[xx,yy] = meshgrid(1:6,-1:3)
-->
xx =
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

yy =
-1 -1 -1 -1 -1 -1
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3

To examine the surface generated by the function

z = f(x, y) = e−x
2−y2 for − 2 < x < 2 and − 1 < y < 3

use the codes below to create Figure 1.20.

Octave
x = -2:0.1:2; y = -1:0.1:3;
[xx,yy] = meshgrid(x,y);
zz = exp(-xx.ˆ2-yy.ˆ2);
mesh(xx,yy,zz)
grid on
view(120,40)
xlabel(’x’); ylabel(’y’); zlabel(’height’);

y

0

0.2

1

0.4he
ig

ht 0.6

0.8

0
1

-1

2
3 2

1 x
0

-1

-2

Figure 1.20: The surface z = exp(−x2 − y2)

SHA1 10-9-20

1.4. BASIC GRAPHICS 92

It is just as easy to draw contour lines of a given graph on a mesh.

Octave
figure(1)
clf
x = -2:0.1:2; y = -1:0.1:2; [xx,yy] = meshgrid(x,y);
zz = exp(-xx.ˆ2-0.3*yy.ˆ2);
axis(’equal’)
figure(2)
contour(xx,yy,zz,15)

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

Figure 1.21: The contour lines of the function z = exp(−x2 − 0.3 y2)

Instead of a mesh, as shown in Figure 1.20 we can create fully colored patches with the command
surf(). Find the result in Figure 1.22(a). For the graph we can also insist that the levels shown are
between 0 and 1, with steps of 0.1 and we want the levels labeled, as shown in Figure 1.22(b). We can
modifiy the above code.

Octave
x = -2:0.1:2; y = -1:0.1:2; [xx,yy] = meshgrid(x,y);
zz = exp(-xx.ˆ2-0.3*yy.ˆ2);
figure(3)
surf(xx,yy,exp(-xx.ˆ2-yy.ˆ2))
xlabel(’x’); ylabel(’y’);zlabel(’height’)
figure(4)
cc = [0:0.1:1] % select the desired levels
[C,h] = contour(xx,yy,zz,cc); % compute the level curves
clabel(C,h,cc,’FontSize’,10); % display the level curves
xlabel(’x’); ylabel(’y’);
axis equal

• With mesh() and meshc() only the lines connecting the points are drawn, no surface patches are
used. Thus you can see through the surface.

• With surf() and surfc() the rectangles connecting the lines are filled with colored patches and
thus you can not see through the surface.

With contourf() not only the lines are drawn, but also colored paths. With an option you can
not display the contour lines at all. In addition a colorbar is displayed and the shading is based on an
interpolation.

SHA1 10-9-20

1.4. BASIC GRAPHICS 93

y

0

0.2

0.4he
ig

ht 0.6

0.8

1

0
0.5

1
1.5

2

-0.5
-1 -2

-1 x
0

1
2

(a) result of surf()

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

x
y

0.1

0.
1

0.1

0.
10.2

0.
2

0.2

0.
20.3

0.
3

0.3

0.
3

0.4

0.
4

0.4

0.
4

0.
5

0.5

0.
5

0.6

0.6

0.
6

0.7

0.7

0.
7

0.
8

0.8

0.8

0.
9

0.
9

(b) result of contour()

Figure 1.22: Two modifications of the above surface and contour plot

-1

1

-0.5

0.5 1

0

0.5

0.5

y

0

x

1

0
-0.5

-0.5
-1 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) result of surf()

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) result of contourf()

Figure 1.23: Surface and contour plots, without visible lines

SHA1 10-9-20

1.4. BASIC GRAPHICS 94

alpha = linspace(0,2*pi,31)’; radius = linspace(0,1,31);
x = cos(alpha)*radius; y = sin(alpha)*radius;
z = x.ˆ2 + y.ˆ3;
figure(1); H1 = surf(x,y,z); xlabel(’x’); ylabel(’y’)
colormap(jet());
shading interp
set(H1,’EdgeColor’,’none’);
colorbar

figure(2); colormap(jet());
[C,H2] = contourf(x,y,z,50);
colorbar
shading interp
set(H2,’LineStyle’,’none’);

The above structure of commands allows to examine rather involved surfaces. Any surface parametrized
over a rectangle can be displayed. As an example we consider the torus in Figure 1.24. The torus is
parametrized by two angles u and v.

Octave
u1 = linspace(0,2*pi,51); v1 = linspace(pi/4,2*pi-pi/4,21);
[u,v] = meshgrid(u1,v1);
r0 = 4; r1 = 1;

x = cos(u).*(r0+r1*cos(v));
y = sin(u).*(r0+r1*cos(v));
z = r1*sin(v);
mesh(x,y,z)

0.5

1

-1

-0.5

0

6
4

2
0

-2
-4

-6 -6 -4 -2 0 2 4 6

Figure 1.24: A general 3D surface

SHA1 10-9-20

1.4. BASIC GRAPHICS 95

1.4.5 Generating vector fields

Octave has commands to display vector fields. As an example we consider the planar vector field

~F (~x) =

(
y

−x

)

on the domain −1 ≤ x, y ≤ 1.5. Thus at a point (x, y) ∈ R2 we attach the vector (y , −x). To display this
vector field we have to generate a set of points (xi , yi) ∈ R2 at which the vectors are to be plotted. In this
example the horizontal component of the vector field is given by +y and the vertical component by −x. To
obtain a good result the length of the vectors have to be scaled. The effect of the scaling factor might depend
on the version of Octave/MATLAB used! Then the vector field is generated, find the result in Figure 1.25.

Octave
xvec = -1:0.2:1.5; yvec = -1:0.2:1.5;
[x,y] = meshgrid(xvec,yvec);
x = x(:); y = y(:); % convert the matrix into a column vector.
Vx = y; Vy = -x; % define the vector field
scale = 2; % scaling
quiver(x,y,Vx,Vy,scale) % display the vector field

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 1.25: A vector field

23 Example : Octave provides the command peaks to generate a a nice, reasonably complicated surface.
If you want to find out about the function used in peaks.m, examine its source code. With the help of
gradient and quiver we can also generate the gradient vector field belonging to that function.

Octave
[xx,yy,zz] = peaks();
figure(1); meshc(xx,yy,zz);
figure(2); contour(xx,yy,zz)
figure(3); [Dx,Dy] = gradient(zz,yy(2)-yy(1)); quiver(xx,yy,Dx,Dy)

♦

SHA1 10-9-20

1.4. BASIC GRAPHICS 96

24 Example : As a second example we consider visualizing the magnetic field generated by two vertical
conductors. According to Ampère’s law the field strength is given by B = µ0 I

2π r where I is the current and
r the horizontal distance from the conductor. The direction of the vector is tangential to a circle with the
center at the wire and follows the right hand rule. This can be written in the form

~B(x, y) =
µ0 I

2π

1

x2 + y2

(
−y
x

)
With this information we can now write code to generate the vector field.

• First set the desired parameters. We put the the value of µ0 I2π into a constant cI1, resp. cI2.

• Generate the points where the vector field is to be computed by linspace() and meshgrid().

• Compute the distance from the wires with a vectorized call. Then use find() to set the values of
the distance to NaN for points too close to the wire.

• Compute the two components of the vector field and use quiver() to generate Figure 1.26.

• Since most of the vectors are very short it is difficult to detect the direction in Figure 1.26(a). Thus
we modify the vectors such that they all have length 1 and then generate Figure 1.26(b). In addition
one can remove the heads of the vectors by set(h,’maxheadsize’,0).

MagneticField.m
Lx = 2; Ly = +1.5 ; % domain to be examined
cI1 = 1; cI2 = +1 ; % the two curents
D = 1; % half the distance of the two conductors
Nx = 35; Ny = 25; % number of grid points
Dmin = 0.1; % minimal distance from conductor to be examined

x = linspace(-Lx,Lx,Nx); y = linspace(-Ly,+Ly,Ny); % generate the grid
[xx,yy] = meshgrid(x,y);

Dist1 = sqrt((xx-D).ˆ2+ yy.ˆ2); % distance of (x,y) from the first conductor
remove1 = find(Dist1<Dmin); % remove points too close to conductor
Dist1(remove1) = NaN;

Dist2 = sqrt((xx+D).ˆ2+ yy.ˆ2); % distance of (x,y) from the second conductor
remove2 = find(Dist2<Dmin); % remove points too close to conductor
Dist2(remove2) = NaN;

Vy = +cI1*(xx-D)./Dist1.ˆ2 + cI2*(xx+D)./Dist2.ˆ2; % compute the vector field
Vx = -cI1*(yy)./Dist1.ˆ2 - cI2*(yy)./Dist2.ˆ2;

figure(1); h = quiver(xx,yy,Vx,Vy,2);
xlabel(’x’); ylabel(’y’); axis([-Lx,Lx,-Ly,Ly]); axis equal

norms = sqrt(Vx.ˆ2 + Vy.ˆ2);
Vxn = Vx./norms; Vyn = Vy./norms;
figure(2); h = quiver(xx,yy,Vxn,Vyn);
set(h,’maxheadsize’, 0)
xlabel(’x’); ylabel(’y’); axis([-Lx,Lx,-Ly,Ly]); axis equal

In Figures 1.26(a) and 1.26(b) both currents are positive. In Figures 1.26(c) and 1.26(d) find the similar
results with currents of opposite sign. Observe that between the two conductors the behavior of the magnetic
field is drastically different25. ♦

25With MATLAB once can use the commands stream2() or streamline() to generate stream lines. In Octave this is not
available yet.

SHA1 10-9-20

1.4. BASIC GRAPHICS 97

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(a) both positive, vector field

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(b) both positive, normalized vectors

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(c) opposite sign, vector field

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(d) opposite sign, normalized vectors

Figure 1.26: Magnetic fields with either both currents positive or opposite sign

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 98

1.5 Basic Image Processing

For the graphics commands there are some noticeable differences between MATLAB and Octave . Thus it is
necessary to consult the corresponding help files to find the documentation. In addition there are many more
options and possibilities than it is possible to illustrate in the given time and space for these notes.

1.5.1 First steps with images

Most of the information in this section is based on the image processing toolbox of Octave and you will
need to install the toolbox and have access to its documentation.

Mathematically speaking an image is a matrix of numbers, or matrix of triples of numbers. If the image
is represented by the n×m matrix M , then

• M(1, 1) contains the information about the pixel in the top left corner of the image.

• M(1, 10) contains the information about the tenth pixel in the top row of the image.

• M(10, 1) contains the information about the tenth pixel in the first column of the image.

• the vector M(:, 1) contains the information about all pixels in the first column of the image.

The information about each pixel can be given in different forms:

• For BW images each pixel is represented by 0 or 1, since the only two colors available are black and
white.

• For grayscale images each pixel is represented by the level of gray, which can be of type uint8,
uint16 or double .

• For RGB images the intensity for each of the colors Red, Green and Blue is given by a number, which
can be of type uint8, uint16 or double .

• For indexed images each pixel is represented by the number of its color, i.e. an integer. Then you
need the colormap with the translation of the number of the color to the actual color, usually given
by RGB codes.

Indexed images require less memory and Octave uses the command colormap() to switch between
the many colormaps (autumn(), bone(), cool(), copper(), flag(), gray(), hot(), hsv(),
jet(), ocean(), pink(), prism(), rainbow(), spring(), summer(), white(), winter(),
contrast(), gpmap40()). You can create your own colormap.

It is sometimes useful to change from one image format to another and Octave provides the commands:

• rgb2gray(): convert an RGB image to a gray scale image.

• gray2ind(): convert gray scale image to an index image

• ind2gray(): convert an indexed image to a gray scale image

• ind2rgb(): convert an indexed image to an RGB image

• There are more possible conversions and also the commands to detect of what type an image is.
Consult the manuals.

• With the command imformats() generate a list of all the image formats available on your platform.

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 99

Table 1.10 gives a very incomplete selection of commands related to image processing. It is essential to
consult the available documentation. Octave and MATLAB provide basic commands and data structures to
implement image processing operations efficiently. There are also many more resources on image processing
with Octave and MATLAB on the internet, e.g.

• http://www.peterkovesi.com/matlabfns/

• www.irit.fr/PERSONNEL/SAMOVA/joly/Teaching/M2IRR/IRR05/index.html

commands for images

imshow() display image

image() display a matrix as image

imagesc() scale image and display

imfinfo() obtain information about an image in a file

imread() load an image from a file

imwrite() write an image to a file

imformats() list all the image formats available

colormap() return or set the colormap

rgb2gray() convert RGB to gray scale image

rgb2ind() convert an RGB image to an indexed image

ind2gray() convert indexed image to gray scale image

gray2ind() convert a gray scale image to an indexed image

imresize() change the size of an image

imrotate() rotate an image matrix

fspecial() create filters for image processing

imfilter() apply an image filter

imsmooth() smooth an image with different algorithms

imshear() shear an image

edge() use a selection of edge detection algorithms

conv(), conv2() convolution, one and two dimensional

fft2(), ifft2() 2D Fast Fourier Transforms

Table 1.10: Image commands

25 Example : RGB, grayscale
A picture WallaceGromit.png in the PNG format (portable network graphics) is loaded into Octave
and imfinfo() displays all available information on the image. It is an image of size 724× 666 and each
pixel (picture element) consists of three colors (RGB), encoded by an integer between 0 and 255. Thus the
”matrix” im in the code below is of size 724× 622× 3 and the image is shown in Figure 1.27(a).

Octave
imfinfo(’WallaceGromit.png’) % show information on the file
im = imread(’WallaceGromit.png’); % load the file
size(im)
figure(1)
imshow(im) % display the original picture

SHA1 10-9-20

http://www.peterkovesi.com/matlabfns/
http://www.irit.fr/PERSONNEL/SAMOVA/joly/Teaching/M2IRR/IRR05/index.html

1.5. BASIC IMAGE PROCESSING 100

(a) original image (b) after an averaging filter

Figure 1.27: Wallace and Gromit, original and with an averaging filter applied

The image can be converted to a grayscale image with the help of rgb2gray() and then displayed.
Each color in RGB can be displayed independently, where a white spot indicates a high intensity of this
color. Find the results in Figure 1.28.

Octave
imGray = rgb2gray(im);
imR = im(:,:,1); imG = im(:,:,2); imB = im(:,:,3);
figure(2)
subplot(2,2,1); imshow(imGray)
subplot(2,2,2); imshow(imR)
subplot(2,2,3); imshow(imG)
subplot(2,2,4); imshow(imB)

Figure 1.28: Wallace and Gromit, as grayscale and R, G and B images

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 101

With the above code all pictures are displayed as gray-scale pictures, since we provide a single intensity
level as information. If you need color after all you can use a colormap. To display the red component above
as a red picture use

Octave
redmap = zeros(256,3); % fill the colormap with zeros
redmap(:,1) = linspace(0,1,256); % put numbers in the first (red) column
figure(3)
imshow(imR,redmap) % display the image with the red colormap

Currently (2016) you can not use different colormaps in Figure 1.28 to see the red, green and blue parts.
You need an separate figure for each color.

The image processing toolbox in Octave contains many and powerful commands for image processing.
As an elementary example we consider a filter to replace the values at each pixel with the average values of
its neighbors. The result in Figure 1.27(b) is a smeared out version of the original image 1.27(a).

Octave
F = fspecial(’average’, 12);
imFilter = imfilter(im, F);
figure(3)
imshow(imFilter)

♦

26 Example : Edge Detection
This is a first example of edge detection, using the command provided by the Octave Forge package. More
information is given in a later example. For a gray-scale image we

1. read some information about the picture, using the command imfinfo().

2. load the image in Octave and display it on screen, using imread() and imshow().

3. then use one of the many edge detection parameters to hopefully find all edges of the objects displayed.

4. finally we display the image with the edges only.

Find the result of the commands below in the left half of Figure 1.29.

Octave
imfinfo(’shapessm.jpg’) % show information on the file
im = imread(’shapessm.jpg’); % load the file
figure(1)
imshow(im) % display the original picture
edgeim = edge(im,’Canny’); % run one of the possible edge detections
figure(2)
imshow(edgeim) % display the picture with edges only

Since the sections in the original picture are either very dark, or very bright, we may convert the gray
scale image into a BW (black and white) picture and try another edge detection. This might get rid of some
artifacts. Find the result of the commands below in the right half of Figure 1.29. To not obtain black blobs
on paper the roles of black an white are inverted by displaying 1-imbw instead of the BW image.

Octave
imbw = im2bw(im,0.5); % convert to a bw picture (0 and 1 only)
figure(3)
imshow(1-imbw)
edgeimbw = bwmorph(imbw,’remove’) % run one of the possible edge detections
figure(4)
imshow(1-edgeimbw) % display the picture with edges only

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 102

Figure 1.29: A grayscale and BW picture and edge detection

♦

27 Example : Filtering with FFT
The idea presented in this example is also used for the JPEG compression. Find a very readable description
in [Stew13, §9].

Using FFT we can write an image as sum of periodic signals with different frequencies. Then we can
filter high or low frequencies. As an example we examine the image in Figure 1.31. First load the image,
convert it to a grayscale image and display the result.

Octave
imfinfo(’Lenna.jpg’)
im = imread(’Lenna.jpg’);
imG = rgb2gray(im); % convert to a grayscale image
figure(1)
imshow(imG) % display the result

Then we apply the two dimensional FFT with the help of the command fft2() and choose the number
of frequencies to keep by n=40 . This corresponds to a perfect low-pass filter. Due to the symmetries in
the FFT of real valued signals and images we have to keep the lowest n frequencies and the highest n − 1
frequencies and thus 4 blocks of the FFT of the image are copied into the FFT of the filtered image. This
algorithm is visualized in Figure 1.30. Observe that the code below uses block operations instead of multiple
loops. This is for speed reasons.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������������ ���������� ����������

fft2 ifft2filter

original image filtered image

low

low high

high

frequencies frequencies

Figure 1.30: Apply a low pass filter to an image, based on FFT

imFFT = fft2(im2double(imG)); % convert to floating numbers and apply FFT
n = 40 % number of frequencies to keep
[nx,ny] = size(imFFT) % size of the image, and FFT
imFilter = zeros(nx,ny); % zero matrix
imFilter(1:n+1,1:n+1) = imFFT(1:n+1,1:n+1); % block top left
imFilter(1:n+1,ny-n+1:ny) = imFFT(1:n+1,ny-n+1:ny); % block top right

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 103

imFilter(nx-n+1:nx,1:n+1) = imFFT(nx-n+1:nx,1:n+1); % block bottom left
imFilter(nx-n+1:nx,ny-n+1:ny) = imFFT(nx-n+1:nx,ny-n+1:ny); % block bottom right

Finally we apply the inverse FFT by ifft2() and keep the real part only. Then we display the filtered
image, as shown in Figure 1.31(b).

Octave
newIm = real(ifft2(imFilter)); % apply inverse FFT
figure(2)
imshow(newIm) % display the filtered image
imwrite(newIm,’LennaFiltered.png’); % save the filtered image

(a) original image (b) with low pass filter

Figure 1.31: Original image of Lenna, and with a lowpass filter by FFT

♦

1.5.2 Image processing and vectorization, edge detection

28 Example : Adding Noise to a Picture
The main purpose of this example is to illustrate the power of vectorized code. We start with the Lena picture
in Figure 1.31(a). Each pixel of the picture is represented by an integer value between 0 and 255 . We add
some noise to this picture by adding a random number, generated by a normal distribution with average 0
and a standard deviation given by NoiseAmp=20 . The code below applies this idea with a double loop.

Octave
im = imread(’Lenna.jpg’);
imG = rgb2gray(im); % convert to a grayscale image
figure(1)
imshow(imG) % display the result

[Nlines,Ncols] = size(imG); % compute the size of the picture
NoiseAmp = 20; % amplitude of noise
newIm = imG; % copy the image

t0 = cputime();
for lin = 1:Nlines % loop over al rows
for col = 1:Ncols % loop over al columns
newIm(lin,col) = newIm(lin,col) + NoiseAmp*randn(1);% add noise to the pixel

end%for
end%for

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 104

timingLoop = cputime()-t0
figure(2); imshow(newIm)

A sample run took 32 seconds and produced the expected, noisy result. The same algorithm can be applied
using vectorized code, getting rid of the loops. Generate a matrix of random numbers with one command
(NoiseAmp*randn(NLines,Ncols)) and add it to the original matrix.

Octave
t0 = cputime();
newIm2 = imG + NoiseAmp*randn(Nlines,Ncols);
timingVectorized = cputime()-t0
figure(3); imshow(newIm2)

This code only used 0.048 sec of CPU time, i.e. the code is 670 times faster. ♦

29 Example : Edge detection
In many application the first step of image processing is edge detection, e.g. to identify objects. As example
consider Figure 1.32 and the goal is to mark the edges of the different objects.

Figure 1.32: A few objects, for edge detection

• The basic idea
We illustrate the basic idea by analyzing one line in the picture. The size of the picture is 350 × 500
and we pick a horizontal line, cutting through the shadow below the carabiner, through the Pritt stick
and the pocket knife. The darker sections correspond to lower values in Figure 1.33(a).

The basic idea of an edge detection is to look for steep slopes in the graph 1.33(a). Based on the
definition of the derivative we examine

f ′(x) ≈ f(x+ h)− f(x− h)

2h

For the discrete values u(k) of the intensity we define

edgeLine(k) = +u(k + 1)− u(k − 1) for 2 ≤ k ≤ n− 1

or with Octave

Octave

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 105

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

in
te

n
s
it
y

pixel

(a) intensity

0

20

40

60

80

100

120

140

0 100 200 300 400 500

s
lo

p
e

pixel

(b) absolute value of the derivative

Figure 1.33: Intensity along a horizontal line through the objects

imRaw = rgb2gray(imread(’Edgetest.png’));
figure(1); imshow(imRaw);
hold(’on’)
plot([1,500],[200,200],"r");

test_line = double(imRaw(200,:)); % pick one line to be examined
% convert to data type double

figure(2)
plot(test_line)
xlabel(’pixel’); ylabel(’intensity’)

n = length(test_line);
edgeLine = test_line(3:n)-test_line(1:n-2);

figure(3)
plot(abs(edgeLine))
xlabel(’pixel’); ylabel(’slope’)

This leads to Figure 1.33(b). Now we can choose a cutoff level, e.g. 40, to decide where we see an
edge. This will point towards four points sitting on an edge in Figure 1.32, which is visually confirmed
by scanning along the thin horizontal line in that figure.

The above implementation uses a for...end loop, which can be replaced by a vector operation,
mainly for speed reasons.

Octave
edge = [0 , -test_line(1:n-2) + test_line(3:n) , 0];

The above can also be considered as a convolution26 of the vector of the intensity values along the
line to be examined with the vector.

−1 0 1

• Detecting horizontal edges, with the Sobel filter
26Check you math lecture notes for the definition of convolution, either in the chapter on Laplace or Fourier transforms.

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 106

The above idea has to be carried over to the full image. We replace the vector by the 3 matrix

−1 0 1

−2 0 2

−1 0 1

This corresponds to a weighted average of the slopes in three lines. To apply the procedure to the
matrix

A =

1 11 11 1 1 1

2 12 12 2 2 2

3 13 13 3 3 3

4 14 14 3 3 3

5 15 15 3 3 3

6 16 16 3 3 3

we proceed as follows:

1. Put the central element of the 3× 3 filter matrix over one entry in the matrix A.

2. Multiply and add the overlapping numbers.

3. Put the result in the new, filtered matrix.

Let us examine a few examples:

– In the second row and second column we obtain

b2,2 =

+(−1) · 1 + (0) · 11 + (1) · 11

+(−2) · 2 + (0) · 12 + (2) · 12

+(−1) · 3 + (0) · 13 + (1) · 13

 = 30

This indicates an edge with positive slope, i.e. an increasing intensity.

– In the second row and fourth column we obtain

b2,4 =

+(−1) · 11 + (0) · 1 + (1) · 1
+(−2) · 12 + (0) · 2 + (2) · 2
+(−1) · 13 + (0) · 3 + (1) · 3

 = −30

This indicates an edge with negative slope, i.e. an decreasing intensity.

– In the second row and fifth column we obtain

b2,5 =

+(−1) · 1 + (0) · 1 + (1) · 1
+(−2) · 2 + (0) · 2 + (2) · 2
+(−1) · 3 + (0) · 3 + (1) · 3

 = 0

This indicates no edge.

We implement this directly by matrix operations and apply it to the given image. Observe the code
without loops, leading to fast computations.

Octave

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 107

[nx,ny] = size(imRaw); % size of picture
ix = 2:nx-1; iy = 2:ny-1; % indices, unshifted
imRaw = double(imRaw);
Gx = -1*imRaw(ix-1,iy-1) + 1*imRaw(ix+1,iy-1)...

-2*imRaw(ix-1,iy) + 2*imRaw(ix+1,iy)...
-1*imRaw(ix-1,iy+1) + 1*imRaw(ix+1,iy+1);

edgeLevel = 100; % choose the detection level
imshow(1-(abs(Gx)>edgeLevel))

Find the result on in Figure 1.34(a). Observe that we only marked horizontal edges. The obvious
vertical edges in the original image are not detected.

(a) horizontal (b) vertical (c) combined

Figure 1.34: Sobel edge detection

• Detecting vertical edges
For vertical edges we apply a similar procedure, but use the matrix

+1 +2 +1

0 0 0

−1 −2 −1

and use the code

Octave
Gy = +1*imRaw(ix-1,iy-1) + 2*imRaw(ix,iy-1) + 1*imRaw(ix+1,iy-1)...

-1*imRaw(ix-1,iy+1) - 2*imRaw(ix,iy+1) - 1*imRaw(ix+1,iy+1);

leading to the result in Figure 1.34(b).

• Combining horizontal and vertical edges
Now we combine the two basic detection algorithms, leading to Figure 1.34(c). We finally see all
edges.

Octave
imshow(1-((sqrt(Gx.ˆ2+Gy.ˆ2))>edgeLevel))

• The function edge()
The image package has a built in function edge(), which can be used to apply the Sobel edge
detection algorithm, leading to Figure 1.35. The function edge() allows to use a few other filters

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 108

for edge detection, e.g. Sobel, Prewitt27, Roberts, Canny, . . . All those algorithms are using the above
idea, with different filter matrices. Examine the result of help edge or the source code of edge.m
to find out more.

Octave
imSobel = edge(uint8(imRaw),’Sobel’);
imshow(1-imSobel)

Figure 1.35: Result of a Sobel edge detection

♦

30 Example : Observations on edge detection
The above idea can be modified in many different ways.

• We may use other filters, e.g. the matrices

+3 0 −3

+10 0 −10

+3 0 −3

and

+3 +10 +3

0 0 0

−3 −10 −3

Since the above filter operations can be written as convolution, we can use the command conv2()
in Octave to apply the edge detection filters. Particular attention has to be paid to the behavior of the
convolution at the boundary of the images, consult the documentation on conv() and conv2().
This leads to very efficient code and Figure 1.36(a) as result.

Octave
imRaw = rgb2gray(imread(’Edgetest.png’));

Sx = single([3 0 -3 ; 10 0 -10 ; 3 0 -3]);
Sy = single([3 10 3 ; 0 0 0 ; -3 -10 -3]);

27For the Prewitt filter use the matrices
+1 0 −1
+1 0 −1
+1 0 −1

 and

+1 +1 +1

0 0 0

−1 −1 −1

 .

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 109

imRawEdge = sqrt(conv2(imRaw,Sx).ˆ2 + conv2(imRaw,Sy).ˆ2);
figure(2)
imshow(1-(imRawEdge>250))

• The above fails miserably if noise is added, as can be seen in Figure 1.36(b). Our eye and brain can
still see the real edges, but the code does not.

Octave
[n,m] = size(imRaw);
imNoise = imRaw + 10*randn(n,m);
figure(3); imshow(imNoiseEdge)

imNoiseEdge = sqrt(conv2(imNoise,Sx).ˆ2 + conv2(imNoise,Sy).ˆ2);
figure(4); imshow(1-(imNoiseEdge>250))

• The effect of noise can sometimes be controlled by an averaging filter. The value at one pixel is
replaced by a weighted average of points close to this pixel. To average over a 5 × 5 section we can
(many other options are possible) use the matrix

A =
1

m

1 3 6 3 1

3 8 10 8 3

6 10 12 10 6

3 8 10 8 3

1 3 6 3 1

wherem is chosen such that the sum of all values in A equals 1 . This assures that the average intensity
of the image is not modified. Use a convolution of the noisy image matrix with this averaging matrix
to generate a new picture. Now we can detect the edges in a noisy image, as seen in Figure 1.36(c).

Octave
AvgMat = [1 3 6 3 1; 3 8 10 8 3;6 10 12 10 6; 3 8 10 8 3; 1 3 6 3 1];
AvgMat = AvgMat/sum(AvgMat(:));
imNoiseAvg = conv2(imNoiseEdge,AvgMat,’same’); % apply the averaging filter
% now run the two edge detecion filters and add
imNoiseAvgEdge = sqrt(conv2(imNoiseAvg,Sx).ˆ2 + conv2(imNoiseAvg,Sy).ˆ2);
figure(5);
imshow(1-(imNoiseAvgEdge>250)) % invert the intensity and display

(a) without noise (b) with noise (c) with noise and averaging filter

Figure 1.36: Edge detection, using a different filter

♦

SHA1 10-9-20

1.5. BASIC IMAGE PROCESSING 110

31 Example : Filters can also be applied directly with the help of the commands fspecial() and
imfilter(). As an example we try to detect edges in the Wallace and Gromit picture. Examine and
explain the result!

GromitEdge.m
im = imread (’WallaceGromit.png’);
imH = imfilter(im,fspecial(’Sobel’) ,’replicate’);
imV = imfilter(im,fspecial(’Sobel’)’,’replicate’);

figure(11)
subplot(1,3,1); imshow(im);
subplot(1,3,2); imshow(imH);
subplot(1,3,3); imshow(imV);

♦

1.5.3 SVD

With a Singular Value Decomposition (SVD) of a matrix one can apply good compression algorithms to
images.

• Use my file imageSVD.m

• Use the good presentation [HuntLipsRose14, p.172ff]

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 111

1.6 Ordinary Differential Equations

From your class on Engineering Mathematics or Ordinary Differential Equations you should have some
basic knowledge and suitable examples for fixed step size algorithms, e.g. Euler, Heun and Runge-Kutta.
Thus we concentrate on the usage of the Octave commands to solve differential equations. It is assumed
that you are familiar with the theoretical aspects of ODEs (Ordinary Differential Equations).

For a given, smooth function f(x, t) and given initial time t0 and initial values x0 the initial value
problem

d

d t
x(t) = f(t, x(t)) with x(t0) = x0

has exactly one solution, a function x(t). One can attempt to find a solution, by analytical or numerical
methods. Octave and MATLAB use numerical methods to determine solutions of differential equations. In
this section we present a few basic ideas:

1. With Octave use lsode() to solve a single ODE or a system. We use the Volterra-Lotka model as
an example.

2. Show how to use the options provided by lsode().

3. Examine how to use C++ code within Octave to improve the speed.

4. Examine how to perform further calculations with solutions of ODEs. We examine the period of a
Volterra-Lotka solution.

5. Examine the functions provided by the ODE package on Octave Forge.

6. To close the section a code from your author’s lecture notes is examined.

Unfortunately MATLAB and Octave (resp. lsode()) show a minor, but annoying difference, as pointed
out in subsection 1.6.5 on page 120. MATLAB does not provide the command lsode(), you are restricted
to ode45() and its friends. The most recent version of Octave 4.2 has a full set of MATLAB compatible
commands, e.g. ode45(), ode23(), odeset() and odeget(). Consequently you should use those
commands if you want to assure compatibility of your code with Octave and MATLAB.

1.6.1 Using lsode() to solve systems of ordinary differential equations

Octave provides the standard command lsode() to solve ordinary differential equations. Find two care-
fully worked out examples, the first for a single differential equation, the second for a system.

32 Example : Logistic equation
As a first example we consider the equation

d

dt
x(t) = x(t)− x(t)2 with x(0) = 0.2

To find a numerical solution we have to provide Octave with a function describing the function f(x, t) =
x− x2, the initial time and value and the times at which we want to know the solution.

Octave

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 112

%% script file to solve a logistic differential equation
x0 = 0.2; % initial value
t0 = 0; % initial time
Tend = 10; % time interval for which solution has to be computed
n = 50; % number of intermediate times

%% define the function describing the right hand side
function y = logF(x,t)
y = x-x.*x ;

end%function

% generate vector with the times at which solution is desired
T = t0+linspace(0,Tend,n);

Then a simple call of the function lsode() yields the desired solution and we may plot a single or multiple
solutions, as shown in Figure 1.37.

Octave
X = lsode(’logF’, x0, T);

plot(T,X)
axis([0,Tend,0,1]); grid on

X2 = lsode(’logF’, 2*x0, T);
X3 = lsode(’logF’, 0.2*x0, T);

plot(T,[X X2 X3])
xlabel(’time t’); ylabel(’population’); grid on

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

p
o

p
u

la
ti
o

n

time t

Figure 1.37: Some solutions of the logistic differential equation

♦

The above code may easily be adapted to solve systems of ODEs, as illustrated by the Volterra-Lotka
simulation.

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 113

33 Example : Volterra-Lotka model
Consider two different species with the size of their population given by x(t) and y(t). The predators y

(e.g. sharks) are feeding of the pray x (e.g. small fish). The food supply for the pray is limited by the
environment.

x(t) population size of pray at time t

y(t) population size of predator at time t

The behavior of these two populations can be described by a system of first order differential equations.

ẋ(t) = (c1 − c2 y(t))x(t)

ẏ(t) = (c3 x(t)− c4) y(t)

where ci are positive constants. This function can be implemented in a function file VolterraLotka.m
in Octave .

VolterraLotka.m
function res = VolterraLotka(x,t)
c1 = 1; c2 = 2; c3 = 1; c4 = 1;
res = [(c1-c2*x(2))*x(1);

(c3*x(1)-c4)*x(2)];
endfunction

With the help of the above function we can create a vector field plot for this system of two differential
equations. Find the result as vector field in Figure 1.38.

Octave
x = 0:0.2:2.6; % define the x values to be examined
y = 0:0.2:2.0; % define the y values to be examined

n = length(x); m = length(y);
Vx = zeros(n,m); Vy = Vx; % create zero vectors for the vector field

for i = 1:n
for j = 1:m
v = VolterraLotka([x(i),y(j)],0); % compute the vector
Vx(i,j) = v(1); Vy(i,j) = v(2);

endfor
endfor

figure(1);
quiver(x,y,Vx’,Vy’,3);
axis([min(x),max(x),min(y),max(y)]);
grid on; xlabel(’prey’); ylabel(’predator’);

Again using the above defined function VolterraLotka we can solve the differential equation for
times 0 ≤ t ≤ 15 with the initial conditions x(0) = 2 and y(0) = 1. In the code below we choose to use
100 different values for the time t to display the solution. Observe that the algorithm lsode() internally
uses considerably more points.

Octave
t = linspace(0,15,100);
XY = lsode(’VolterraLotka’,[2,1],t);

The resulting solution can now be used to visualize the solution.

• Find the size of the two populations as function of time on the left in Figure 1.38. One observes that
the solution might be periodic, with a period of T ≈ 7.

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 114

• Find the size of the two populations directly on the right in Figure 1.38, together with the correspond-
ing vector field. The periodicity of the solution is confirmed.

Octave
figure(2);
plot(t,XY)
xlabel(’time’); legend(’prey’,’predator’); axis([0,15,0,3]); grid on

figure(3);
plot(XY(:,1),XY(:,2));
axis([min(x),max(x),min(y),max(y)]); hold on
quiver(x,y,Vx’,Vy’,2);
grid on; xlabel(’prey’); ylabel(’predator’); hold off

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

time

prey
predator

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

prey

pr
ed

at
or

Figure 1.38: One solution and the vector field for the Volterra-Lotka problem

♦

34 Example : Converting a second order problem to a system of first order differential equations
A second order differential equation for one dependent variable x(t) can always be transformed into a

system of two differential equations of order one. We illustrate this with an example. The equation

ẍ(t) + α ẋ(t) + k x(t) = f(t)

might be generated by a mass attached to a spring with an additional damping term α ẋ. We introduce the
new variables

y1(t) = x(t) and y2(t) = ẋ(t)

This leads to
d

dt
y1(t) = ẋ(t) = y2(t)

and
d

dt
y2(t) =

d

dt
ẋ(t) = ẍ(t) = f(t)− α ẋ(t)− k x(t) = f(t)− α y2(t)(t)− k y1(t)

This can be written as a system of first order equations

d

dt

(
y1(t)

y2(t)

)
=

(
ẏ1(t)

ẏ2(t)

)
=

(
y2(t)

f(t)− k y1(t)− α y2(t)(t)

)

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 115

or
d

dt
~y(t) = ~F (~y(t))

and with the help of a function file the problem can be solved with computations very similar to the above
Volterra-Lotka example. The code below will compute a solution with the initial conditions x(0) = 0 and
ẋ(0) = 1. Then the Figure 1.39 will be generated.

Octave
y = -1:0.2:1;
v = -1:0.2:1;

n = length(y); m = length(v);
Vx = zeros(n,m); Vy = Vx; % create zero vectors for the vector field

function ydot = Spring(y,t)
ydot = zeros(size(y));
k = 1; al = 0.1;
ydot(1) = y(2);
ydot(2) = -k*y(1)-al*y(2);

endfunction

for i = 1:n
for j =1 :m
z = Spring([y(i),v(j)],0); % compute the vector
Vx(i,j) = z(1); Vy(i,j) = z(2); % store the components

endfor
endfor

t = linspace(0,25,100);
XY = lsode(’Spring’,[0,1],t);

figure(1);
plot(t,XY)
xlabel(’time’); legend(’position’,’velocity’)
axis(); grid on

To generate the vector field on the left in Figure 1.39 use the command quiver().

Octave
figure(2);
plot(XY(:,1),XY(:,2)); % plot solution in phase portrait
axis([min(y),max(y),min(v),max(v)]);
hold on
quiver(y,v,Vx’,Vy’);
xlabel(’position’); ylabel(’velocity’);
grid on; hold off

In the left part of Figure 1.39 find the vector field and the computed solution. The horizontal axis
represents the displacement x and the vertical axis indicates the velocity v = ẋ. In the right part find the
graphs of x(t) and v(t) as function of the time t. The effect of the damping term −α v(t) = −0.1 v(t) is
clearly visible. ♦

1.6.2 Options of lsode

The algorithms used by the command lsode() (Livermore Solver for Ordinary Differential Equations)
were developed by Alan Hindmarsh [Hind93]. The code in Octave allows to set many options:

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 116

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

position

ve
lo

ci
ty

0 5 10 15 20 25
-1

-0.5

0

0.5

1

time

position
velocity

Figure 1.39: Vector field and a solution for a spring-mass problem

• integration method (Adams, stiff, bdf)

• absolute tolerance

• relative tolerance

• initial step size

• minimal and maximal step size

This is done by the command lsode options(). If called without arguments the current values will be
returned, e.g.

Octave
lsode_options()
-->
Options for LSODE include:

keyword value
------- -----
absolute tolerance 1.49012e-08
relative tolerance 1.49012e-08
integration method stiff
initial step size -1
maximum order -1
maximum step size -1
minimum step size 0
step limit 100000

Find more documentation in the on-line manual. As an example we might ask for a smaller absolute abolute
and relative tolerance of 10−10 by

Octave
lsode_options("relative tolerance",1e-10)
lsode_options("absolute tolerance",1e-10)

Solving the above differential equations will now require more computation time.

1.6.3 Using C++ code to speed up computations

Thre are two reasons to use C/C++ code within Octave or MATLAB:

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 117

• Speed: if your code can not be vectorized you might gain a lott of speed by incorporating C/C++
code.

• Hardware: you might want to acces special hardware through a library provided by the hardware
producer.

There are two way to incorporate C or C++ code into Octave or MATLAB:

• Use OCT files with Octave only. This approach has better performance, since all structures are based
on Octave .

• Use MEX files with Octave or MATLAB. This approach allows to share code between MATLAB and
Octave , but has lower performance. To quote the Octave manual: “In particular, to support the manner
in which variables are passed to mex functions there are a significant number of additional copies of
memory blocks when calling or returning from a mex-file function.”

C++ code in Octave , using OCT files

When solving a differential equation ẋ(t) = ~F (~x(t)) numerically the function ~F will have to be called
many times. Thus we have to look out for fast computations. Octave has a good interface for C++
code to be integrated into the Octave environment. As an example we rewrite the Octave function file
VolterraLotka.m as C++ code. Observe that within Octave the indexing of arrays starts with 1, but in
C and C++ the first index is 0. Thus the components x(1) and x(2) in Octave now become x(0) and x(1) in
C++.

VolterraLotkaC.cc
#include <octave/oct.h>

DEFUN_DLD (VolterraLotkaC, args, ,
"Function for a Volterra Lotka model")

{
ColumnVector dx (2);
ColumnVector x (args(0).vector_value ());

double c1 = 1.0, c2 = 2.0, c3 = 1.0, c4 = 1.0;

dx(0) = (c1-c2*x(1))*x(0);
dx(1) = (c3*x(0)-c4)*x(1);

return octave_value (dx);
}

Then we have to launch the Octave compiler in a shell (or within the Octave environment) in the current
directory by the command

mkoctfile VolterraLotkaC.cc

A compiled version VolterraLotkaC.oct will be created. If the command VolterraLotkaC() is
launched in Octave and this file is in the current directory we can now use compiled code. To test the code
we may compare the function file and the compiled code.

Octave
[VolterraLotka([2.22,1.12],0), VolterraLotkaC([2.22,1.12],0)]
-->
-2.7528 -2.7528
1.3664 1.3664

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 118

The main advantage of C++ code is speed. With the code below one can compare the performence of
the script file with the C++ code.

Octave
t = linspace(0,500,100);
lsode_options("relative tolerance",1e-10);
lsode_options("absolute tolerance",1e-10);

t0 = cputime();
%%XY = lsode(@(t,x)VolterraLotka(t,x),[2,1],t);
XY = lsode(@VolterraLotka,[2,1],t);
TimeScript = cputime()-t0

t0 = cputime();
XY = lsode(@VolterraLotkaC,[2,1],t);
TimeCPP = cputime()-t0

ratio = TimeScript/TimeCPP

On my current (2019) test system the C++ ran 8.5 times faster than the function file. The difference for
more complicated examples can be considerably larger. Calling with @(x,t)VolterraLotka(x,t)
slows it down considerably,

Other examples are provided with the Octave distribution, e.g. oregonator.

C++ code in Octave or MATLAB, using MEX files

As an example, given by the Octave documentation, examine a function to compute the square of each entry
in a matrix.

mypow2.c
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{ mwSize n;
mwIndex i;
double *vri, *vro;
if (nrhs != 1 || ! mxIsDouble (prhs[0]))
mexErrMsgTxt ("ARG1 must be a double matrix");

n = mxGetNumberOfElements (prhs[0]);
plhs[0] = mxCreateNumericArray (mxGetNumberOfDimensions (prhs[0]),

mxGetDimensions (prhs[0]),
mxGetClassID (prhs[0]),
mxIsComplex (prhs[0]));

vri = mxGetPr (prhs[0]);
vro = mxGetPr (plhs[0]);

for (i = 0; i < n; i++)
vro[i] = vri[i] * vri[i];

}

This code is compiled within Octave or MATLAB by calling mex mypow2.c, leading to a file mypow2.mex.
Then you can call this function witin Octave/MATLAB by

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 119

a = rand(3)
mypow2(a)

The above Volterra–Lotka computation can be performed using a mex file.

VolteraLotkaMex.c
#include "mex.h"
void mexFunction (int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{
double *x, *y;
/* Create matrix for the return argument. */
plhs[0] = mxCreateDoubleMatrix((mwSize)2, (mwSize)1, mxREAL);

/* Assign pointers to each input and output. */
x = mxGetPr(prhs[0]);
y = mxGetPr(plhs[0]);
/* compute the expression */
double c1 = 1.0, c2 = 2.0, c3 = 1.0, c4 = 1.0;
y[0] = (c1-c2*x[1])*x[0];
y[1] = (c3*x[0]-c4)*x[1];

}

This code is compiled by mex VolterraLotkaMex.c and the resulting code, using the function call
XY = lsode(@VolterraLotkaMex,[2,1],t);, is 6.5 times faster than the script version.

1.6.4 Determine the period of a Volterra-Lotka solution

Using Figure 1.38 we may guess that the solution of the Volterra-Lotka equation is periodic with a period
6.5 ≤ T ≤ 7. We use Octave to confirm this proposition.

• We first choose the initial values and solve the system of differential equations using lsode(). We
use the inital time 0 and generate values of the solution at 1000 times between 6.5 and 7.0 . We require
an absolute and relative tolerance of 10−10.

Octave
x0 = 2; y0 = 1; % initial values
t = [0,linspace(6,7,1000)]; % examine times between 6 and 7
lsode_options("relative tolerance",1e-10)
lsode_options("absolute tolerance",1e-10)
XY = lsode((x,t)VolterraLotkaC(t,x),[x0,y0],t); % solve the ODE

• We examine the first component (prey) of the solution only and want to determine at what time its
value crosses the initial value. For this we detect a sign change of x(t) − x(0) by multiplying two
subsequent values and examine the sign. At the crossing we will find a negative sign. As a result we
know in which time interval the period will be.

Octave
y = XY(2:end,1)-x0; t = t(2:end); % examine the first component only
plot(t,y); % visual test for zero
grid on
s = sign((XY(2:end,1)-x0).*(XY(1:end-1,1)-x0)); % detect sign changes
pos = find(s<0); % position of sign change

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 120

• To increase accuracy we use linear interpolation. If a function f(t) crosses zero between a and b
we replace the actual function by a straight line and search the zero of this linear interpolation. By
solving

f(a+ ∆t) ≈ g(∆t) = f(a) +
f(b)− f(a)

b− a ∆t = 0

we find

∆t =
−f(a)

f(b)− f(a)
(b− a)

Using this idea we can solve the Volterra-Lotka equation again with initial time given by the time just
before the first component of the solution crosses its initial value again. Thus we only have to solve
for a very short time interval.

Octave
% use linear interpolation to determine the partial time step
dt = (t(pos)-t(pos-1))*y(pos-1)/(y(pos-1)-y(pos))
T = t(pos-1)+dt % estimate the period, then compute the value at T
XYt = lsode(@VolterraLotkaC,XY(pos,:),[T-dt,T]);
XYt(2,:)-[x0,y0] % difference to initial values
-->
dt = 1.6494e-04
T = 6.9411

1.3717e-07 -7.5397e-08

The numerical result confirms that both components are periodic with a period of T ≈ 6.9411.

1.6.5 The commands ode23() and ode45()

The standard command in Octave to solve ordinary differential equations is lsode(), as used in the
previous section. Starting with version 4.0 Octave includes the MATLAB compatible commands ode45()
and ode23(). For earlier versions of Octave you can use the package odepkg on Octave Forge at the site
http://octave.sourceforge.net/.

• If working with a version of Octave earlier than 4.0, you have to install the package odepkg. Use
the instructions in section 1.1.2 starting on page 12 to assure that the package odepkg is installed
and loaded.

• With this package many commands from MATLAB are now available in Octave , as well as some
additional commands. Table 1.11 shows some of the commands in the package.

• Observe a minor, but annoying difference to the command lsode(): the arguments in the function
describing the differential equation have to be swapped.

lsode() ←→ dx = f(x,t)

ode??() ←→ dx = f(t,x)

The package provides many additional commands, some of them shown in Table 1.12. Find a description
of the algorithms, their advantages and disadvantages in the file odepkg.pdf, to be found in the sub-
directory with the package. Observe that the implementations of ode23() and ode45() for Octave 4.2.0
are slightly different and the syntax identical to the command in MATLAB.

As a typical example we consider ode45(), but the options for other ODE commands are very similar.
The command ode45() takes three arguments, e.g. [t,x] = ode45(@(t,x)t-x,[1,5],[7]).

• The first argument is the function handle, e.g. @(t,x)t-x describes the differential equation to be
solved, in this example d

dt x(t) = t− x(t).

SHA1 10-9-20

http://octave.sourceforge.net/

1.6. ORDINARY DIFFERENTIAL EQUATIONS 121

Solver Description

lsode() efficient, adaptive solver based on Hindmarsh’s work ([Hind93])

ode23() adaptive, explicit solver, based on Heun’s method

ode45() adaptive, explicit solver, based on Runge-Kutta method of order 4, resp. 5

ode54() Runge Kutta solver

ode78() adaptive, explicit solver, based on Runge-Kutta method of order 7, resp. 8

ode2r() solver for stiff problems, based on Hairer and Wanner’s code

ode5r() solver for stiff problems, based on Hairer and Wanner’s code

Table 1.11: Octave commands in odepkg to solve ordinary differential equations

Command Description

odeexamples() launch demos for ordinary differential equations

ode23d() solver for delay differential equations

ode45d() solver for delay differential equations

ode78d() solver for delay differential equations

Table 1.12: Additional commands in the ODE package

• The second argument [1,5] describes the time span, i.e. the times t for which the differential
equation will be solved. If more than two values are specified, then the solution will be returned at
those values.

• The third argument gives the initial value, while the initial time is specified at the first data point of
the time span. In the above example we require x(1) = 7.

• In the optional fourth argument you can specify options for the solver, to be examined in the next
section.

• The solution can then be plotted by plot(t,x) .

The implementation of ode45() will determine the number and values of the times ti at which values
of the solution are returned based on the requested accuracy. In the above example only 14 time values
are returned. If you want the values of the solution at specified times you can provide a vector of time
values. With [t,x] = ode45(@(t,x)t-x,linspace(1,5,41),[7]) the solution is returned at
41 equally spaced time values, only ∆t = 0.1 apart. Internally ode45() will first determine the solution
at the same time values, as if the time span were [1,5], then an interpolation is used to find the values at
the requested time spots. Find details on algorithms of this type in [HairNorsWann08].

35 Example : As a first example we solve the logistic equation from the example on page 111 again, now
using the command ode45(). The differential equation to be solved is given by

d

dt
x(t) = x(t)− x2(t) with x(0) = x0

%% script file to solve a logistic differential equation
x0 = 0.2; % initial value
t0 = 0; % initial time
Tend = 10; % length of time interval on which solution has to be computed
n = 50; % number of intermediate times

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 122

%% define the function describing the right hand side
logF = @(t,x) x-x.*x ;

% generate vector with the times at which solution is desired
T = t0 + linspace(0,Tend,n);
% solve the differential equation with three different initial values
[T1,X1] = ode45(logF,T,x0);
[T2,X2] = ode45(logF,T,2*x0);
[T3,X3] = ode45(logF,T,0.2*x0);

plot(T1,X1,T2,X2,T3,X3)
xlabel(’time t’); ylabel(’population’); grid on

♦

Options for ode23() and ode45()

For these ODE solvers many options can and should be set. The command odeset()will generate a list of
the available options and their default values. With help odeset you obtain more information on these
options. The available options differ slightly for Octave and MATLAB.

The most frequently used options are AbsTol (default value 10−6) and RelTol (default value 10−3),
used to specify the absolute and relative tolerances for the solution.

With the command odeget() one can read out specific options for the ode solvers.

Octave odeset()
odeset()
-->
List of the most common ODE solver options.
Default values are in square brackets.

AbsTol: scalar or vector, >0, [1e-6]
BDF: binary, {["off"], "on"}

Events: function_handle, []
InitialSlope: vector, []
InitialStep: scalar, >0, []

Jacobian: matrix or function_handle, []
JConstant: binary, {["off"], "on"}
JPattern: sparse matrix, []

Mass: matrix or function_handle, []
MassSingular: switch, {["maybe"], "no", "yes"}

MaxOrder: switch, {[5], 1, 2, 3, 4, }
MaxStep: scalar, >0, []

MStateDependence: switch, {["weak"], "none", "strong"}
MvPattern: sparse matrix, []

NonNegative: vector of integers, []
NormControl: binary, {["off"], "on"}
OutputFcn: function_handle, []
OutputSel: scalar or vector, []

Refine: scalar, integer, >0, []
RelTol: scalar, >0, [1e-3]
Stats: binary, {["off"], "on"}

Vectorized: binary, {["off"], "on"}

Matlab odeset()
AbsTol: [positive scalar or vector {1e-6}]
RelTol: [positive scalar {1e-3}]

NormControl: [on | {off}]

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 123

NonNegative: [vector of integers]
OutputFcn: [function_handle]
OutputSel: [vector of integers]

Refine: [positive integer]
Stats: [on | {off}]

InitialStep: [positive scalar]
MaxStep: [positive scalar]

BDF: [on | {off}]
MaxOrder: [1 | 2 | 3 | 4 | {5}]
Jacobian: [matrix | function_handle]
JPattern: [sparse matrix]

Vectorized: [on | {off}]
Mass: [matrix | function_handle]

MStateDependence: [none | {weak} | strong]
MvPattern: [sparse matrix]

MassSingular: [yes | no | {maybe}]
InitialSlope: [vector]

Events: [function_handle]

Examples for ode23(), ode45() and ode78()

As an example we consider again the pendulum equation

d

dt

(
y(y)

v(t)

)
=

(
v(t)

−y(t)− 0.1 v(t)

)
with

(
y(0)

v(0)

)
=

(
0

0.9

)

Thus a function file with this function may be generated and then used by all examples below.

ODEPend.m
function dy = ODEPend(t,y)
k = 1; alpha = 0.1;
dy = [y(2);-k*y(1)-alpha*y(2)];

end%function

As a general rule we first choose the parameters for the solver. As a first example we choose a relative
tolerance of 10−3 and an absolute tolerance of 10−3. We want a graph to be generated while the differential
equation is solved.

Octave
vopt = odeset(’RelTol’, 1e-3, ’AbsTol’, 1e-3,’NormControl’, ’on’,...

’OutputFcn’, @odeplot);

Then we use ode78() to solve the system of equations.

Octave
ode78(@ODEPend, [0 25], [0 0.9], vopt);

The resulting animation and final solution will look rather ragged. Since the Runge–Kutta algorithm of
order 7 is very efficient, only very few points have to be computed. Thus the graphic does not look nice, but
the numerical results are reliable. The command

Octave
ode23(@ODEPend, [0 25], [0 0.9], vopt);

will generate a nice looking graph, but require more computation time.

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 124

With all of the above codes the numerical values will not be returned and are thus not available for
further computation. Use the code below if further computations have to be performed. You will find a plot
of position and velocity as function of time and a phase plot.

Octave
vopt = odeset(’RelTol’, 1e-10, ’AbsTol’, 1e-10,’NormControl’, ’on’);
[t,y] = ode78(@ODEPend, [0 25], [0 0.9], vopt);
figure(1); plot(t,y);
xlabel(’time’);ylabel(’position and velocity’);grid on
figure(2); plot(y(:,1),y(:,2));
xlabel(’position’);ylabel(’velocity’); grid on

1.6.6 Codes from lecture notes by this author

To illustrate the codes (written by this author) presented in the regular class28 on differential equations we
use the example of a diode circuit examined in the corresponding lecture notes. The behavior of the diode
is given by a function

i = D (u) =

{
0 for u ≥ −us

RD (u+ us) for u < −us
Based on Kirchhoff’s law we find the differential equations

u̇h(t) =
1

C1
(−D (uh(t)− uin(t)) +D (uout(t)− uh(t)))

u̇out(t) = u̇in(t)− 1

C2
D (uout(t)− uh(t))

We define the initial conditions and the two functions in a script file. We examine an input voltage of
uin(t) = 10 sin(t).

Octave
Tend = 30; u0 = [0;0];

function curr = Diode(u)
Rd = 10; us = 0.7;
if (u >= -us) curr = 0;
else curr = Rd*(u+us);
endif

endfunction

function y = circuit(t,u)
C1 = 1; C2 = 1;
y = [-1/C1*(Diode(u(1)-10*sin(t))-Diode(u(2)-u(1)));

10*cos(t)-1/C2*Diode(u(2)-u(1))];
endfunction

Using RK45(), Runge-Kutta adaptive

We can use the adaptive Runge-Kutta algorithm with relative and absolute tolerance of 10−5 and generate
the plot by

Octave
28web.sha1.bfh.science/Math1.pdf

SHA1 10-9-20

https://web.sha1.bfh.science/Math1.pdf

1.6. ORDINARY DIFFERENTIAL EQUATIONS 125

t0 = cputime();
[t,u] = rk45(’circuit’,0,Tend,u0,1e-5,1e-5); % Runge Kutta adaptiv
timer = cputime()-t0
figure(1);
plot(t,u(:,2),’.’)
grid on; xlabel(’time’); ylabel(’tension’);

The result in Figure 1.40 seems reasonable, but it took 8 seconds of CPU time to compute.

Using ode Runge(), Runge-Kutta with fixed step

We can compare the result with a Runge-Kutta calculation with 100 steps, resulting in Figure 1.40.

Octave
tFix = linspace(0,Tend,100);
t0 = cputime();
[tFix,uFix] = ode_Runge(’circuit’,tFix,u0,1); % Runge Kutta
timer = cputime()-t0
plot(tFix,uFix(:,2),t,u(:,2))
grid on; xlabel(’time’); ylabel(’tension’);
legend(’u fix’,’u adapt’,’location’,’northwest’)

It took only 0.15 seconds, but the solution is ragged at the turning points. This can be improved by using 10
intermediate steps between the output times. Use

Octave
[tFix,uFix] = ode_Runge(’circuit’,tFix,u0,10); % Runge Kutta

to find a competitive solution in 1.3 seconds. This is one of the rare occasions where a fixed size algorithm
outperforms an adaptive algorithm.

0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

time

te
ns

io
n

u fix
u adapt

Figure 1.40: Solution for the diode circuit with Runge-Kutta, fixed step and adaptive

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 126

Using lsode()

We can compare the above result with the performance of lsode(). Unfortunately the arguments t and
u have to be given in reverse order for lsode() and the above codes and thus the header of the function
circuit has to be modified slightly. We have to specify the tolerances. With a computation time of 0.48
seconds we find a good solution. This illustrates the quality of the algorithm in lsode.m.

DoubleTensionLSODE.m
1; % assure script file
function y = circuit(u,t)
C1 = 1; C2 = 1;
y = [-1/C1*(Diode(u(1)-10*sin(t))-Diode(u(2)-u(1)));

10*cos(t)-1/C2*Diode(u(2)-u(1))];
endfunction

t = linspace(0,Tend,100);
lsode_options("absolute tolerance",1e-5);
lsode_options("relative tolerance",1e-5);

t0 = cputime();
u = lsode(’circuit’,u0,t);
timer = cputime()-t0
plot(t,u(:,2))
grid on; xlabel(’time’); ylabel(’tension’);

Exercise 1.6–1 As an exercise you may solve the differential equations for the above diode circuit, using
the codes form the Octave-package: ode23(), ode45(), ode78(), ode3r() and ode5r(). Aim for
relative and absolute errors of 10−5, measure and compare the computation times.

1.6.7 List of files

In the previous section the codes and data files in Table 1.13 were used.

filename function

logistic.m script file to solve the logistic equation

VolterraLotka.m function file for the Volterra-Lotka model

VolterraLotkaField.m script file to solve the Volterra-Lotka model

VolterraLotkaC.cc C++ code file for the Volterra-Lotka model

VolterraLotkaPeriod.m script file to determine the period of solutions

SpringODE.m script file to solve the damped spring model

ode Euler.m algorithm of Euler, fixed step size

ode Heun.m algorithm of Heun, fixed step size

ode Runge.m algorithm of Runge-Kutta, fixed step size

rk45.m adaptive Runke Kutta algorithm

DoubleTension.m sample code for the diode circuit

DoubleTensionLSODE.m using lsode()

Table 1.13: Codes and data files for section 1.6

SHA1 10-9-20

1.6. ORDINARY DIFFERENTIAL EQUATIONS 127

1.6.8 Exercises

The exercises

Exercise 1.6–2 The physical pendulum, large angles
The differential equation

α̈(t) = −k2 sin(α(t))

corresponds to a pendulum with possible large angles α. With k = 1 the period for small angles α is given
by T = 2π.

(a) Rewrite the single differential equation as a system of equations of order 1.

(b) Generate a vector field plot for the domain −0.2 ≤ α ≤ 0.2 and −0.2 ≤ α̇ ≤ 0.2.

(c) Use lsode() to compute a solution with a small starting angle α(0) = 0.1 ≈ 5.7◦ and initial
velocity v(0) = 0. Plot the solution for times 0 ≤ t ≤ 6π, i.e. 3 periods for small angles.

(d) Generate a vector field plot for the domain 5 ≤ α ≤ 5 and −2 ≤ α̇ ≤ 2.

(e) Use lsode() to compute a solution with a starting angle α(0) = 3 ≈ 172◦ initial velocity v(0) =
0.

Exercise 1.6–3 The physical pendulum with damping
Repeat the above exercise with an additional small damping term, i.e. examine the differential equation

α̈(t) = −k2 sin(α(t))− µ α̇(t)

Use the values k = 1 and µ = 0.1.

Exercise 1.6–4 A series expansion of the solution of the differential equation

u′′(x) = −xu(x) with u(0) = 1 and u′(0) = 0

is given by

u(x) = 1− x3

6
+

x6

180
− x9

12960
+ . . .

Thus we can use the first terms to determine the first positive zero x1 of the solution. We will find x1 =
3
√

6 ≈ 1.81 (2 terms) or better x1 ≈ 2.024 (3 terms). Solve the differential equation numerically and
determine the zero.

The solution of this differential equation and its first zero are used to determine the theoretical maximal
length of a stable upright column (Euler buckling).

SHA1 10-9-20

Chapter 2

Applications of Octave

In this chapter we examine a number of applications of Octave . In each the question or problem is for-
mulated and then solved with the help of Octave . For some of the necessary mathematical tools brief
explanations are provided. But the notes are assuming that the reader is familiar with the Math and Physics
of a typical engineering curriculum.

This small set of applications with solutions shall help you to use Octave to solve your engineering
problems. The selection is strongly influenced by my personal preference and some of the topics are based
on works by students . For each section find the Octave skills to be used to solve the problems.

• 2.1: Numerical Integration and Magnetic Fields
Based on the law of Biot–Savart the magnetic field of a wire carrying a current is computed. The
Helmholtz configuration of two coils is examined carefully.

– Numerical integration

– Generate a vector field

• 2.2: Linear and Nonlinear Regression
The basic notations for linear and nonlinear regression are explained and possibles sources of errors
discussed. This is followed by a few real world applications.

– Linear regression, using LinearRegression()

– Nonlinear regression, using leasqr() and fsolve()

• 2.3: Regression with Constraints
Using a linear regression with a constraint fitting of a straight line to data points is performed, using
the true geometric distance. Then a plane is fitted to data points and one possible algorithm to fit an
ellipse to data points is presented.

• 2.4: Computing Angles on an Embedded Device
Using integer arithmetic only arbitrary functions are approximated. This is then used to computed
angles on an embedded device.

– Integer arithmetic with data type int16 and similar

– Simulation of operations on a micro controller

– Visualization and analysis of approximation errors

• 2.5: Analysis of Stock Performance, Value of a Stock Option
A probabilistic analysis of stock performance as presented, leading to the Black–Scholes–Merton
approach to put a price tag on a stock option.

– Formatted reading from a file

128

129

– Probabilistic analysis of data

– Monte Carlo simulation

• 2.6: Motion Analysis of a Circular Disk
The motion and deformation of a watch caliber falling on the ground is analyzed and visualized.

– Reading data from a file

– Generating an animation on screen

– Generating a movie, to be played by any movie player

• 2.7: Analysis of a Vibrating Cord
The performance of a vibrating string based force sensor is examined. The motion of a damped
vibrating cord is analyzed and the quality factor determined.

– Fitting of an exponentially decaying vibration to measured data

– Calling external programs within Octave

– Construction of Octave commands by combining strings and then evaluating the command.

• 2.8: An Example for Fourier Series
The motion of a beam struck by a hammer is measured by acceleration sensors on beam and hammer.
The resulting frequency spectrum is computed, as function of time.

– Reading and displaying data

– Use FFT to determine the frequency spectrum on different time slices

• 2.9: Reading Information from the Screen and Spline Interpolation
At first mouse clicks on the display are converted to data, then regularly spaced data is generated by
interpolation.

– Reading data from screen, either in an MATLAB/Octave window (ginput) or even anywhere
on the screen (xinput).

– Interpolation of data.

• 2.10: Intersection of Circles and Spheres, GPS
An algorithm to determine intersection points of circles and spheres is presented. Then the over-
determined system of the intersection of many circles and spheres is examined and reduced to a least
square problem. This is then the basis for a short presentation of some Mathematics for the GPS
(Global Positioning System).

• 2.11: Scanning a 3–D Object with a Laser
A solid is scanned by a laser from two different angles. Based on this data the shape of the solid is
reconstructed.

– Evaluation irregularly spaced data on a uniform grid.

– Merging two function into one picture.

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 130

2.1 Numerical Integration and Magnetic Fields

2.1.1 Basic integration methods

Trapezoidal integration using trapz()

The simples integration in Octave is based on the trapezoidal rule and implemented in the command
trapz(). Examine the online help. The code below computes∫ π

0
sin(x) dx

with 100 subintervalls of equal length.

Octave
x = 0:pi/100:pi;
y = sin(x);
trapz(x,y)

The returned value of 1.9998 is rather close to the exact value of 2 .

Numerical analysis indicates that the approximation error of the trapezoidal rule is proportional to h2,
where h the the length of the subintervals. This is confirmed by the graphic created by the code below.

• for n = 10, 20, 40, . . . , 10 · 29 the integral is computed with n subintervals.

• The error is then plotted with double logarithmic scales. Since

error ≈ c · h2

ln(error) ≈ ln(c) + 2 lnh = ln(c) + 2 ln
π

n
= ln(c) + 2 lnπ − 2 lnn

the result should be a straight line with slope −2. This is confirmed in Figure 2.2.

Octave
Nrun = 10; n = zeros(1,Nrun); err = zeros(1,Nrun);
for k = 1:Nrun
n(k) = 10*2ˆ(k-1);
x = linspace(0,pi,n(k)+1);
err(k) = abs(2-trapz(x,sin(x)));

end%for

loglog(n,err);

Using the linear regression commands

Octave
F = [ones(size(n))’, log(n’)];
LinearRegression(F,log(err’))

we find
ln(err(n)) ≈ 0.5− 2 ln(n) and err(n) ≈ 1.6

n2

and this confirms the error estimate for the trapezoidal integration method.

With the command cumtrapz() (cumulative trapezoidal) we can not only compute the integral over
the complete interval, but also the values of the integral at the intermediate points, i.e. the code

Octave

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 131

x = 0:pi/100:pi;
y = sin(x);
ys = cumtrapz(x,y);
plot(x,ys)
xlabel(’position x’); ylabel(’integral of sin(x)’); grid on

will compute ∫ x

0
sin(s) ds

for 101 values of x evenly distributed form 0 to π . The result is shown in Figure 2.1.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

position x

in
te

gr
al

 o
f s

in
(x

)

Figure 2.1: Cumulative trapezoidal integration of sin(x)

Simpson integration

In your (numerical) analysis course you should have learned about the Simpson method for numerical inte-
grals. Below find an implementation in Octave . We have the following requirements for the code:

• Simpsons integration formula for an even number of subintervals has to be applied. The code can
only handle subintervals of equal length.

• The function can be given either as a function name or by a list of values.

simpson.m
function res = simpson(f,a,b,n)

%% simpson(integrand,a,b,n) compute the integral of the function f
%% on the interval [a,b] with using Simpsons rule
%% use n subintervals of equal length , n has to be even, otherwise n+1 is used
%% f is either a function handle, e.g @sin or a vector of values

if isa(f,’function_handle’)
n = round(n/2+0.1)*2; %% assure even number of subintervals
h = (b-a)/n;
x = linspace(a,b,n+1);
f_x = x;

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 132

for k = 0:n
f_x(k+1) = feval(f,x(k+1));

end%for
else
n = length(f)
if (floor(n/2)-n/2==0)
error(’simpson: odd number of data points required’);

else
n = n-1;
h = (b-a)/n;
f_x = f(:)’;

end%if
end%if

w = 2*[ones(1,n/2); 2*ones(1,n/2)]; w = w(:); % construct the simpson weights
w = [w;1]; w(1)=1;
res = (b-a)/(3*n)*f_x*w;

10 1 10 2 10 3 10 4

number of grid points

10 -15

10 -10

10 -5

10 0

in
te

gr
at

io
n

er
ro

r

Simpson
trapezoidal

Figure 2.2: Error of trapezoidal and Simpsons integration method

This Simpson integration can now be tested similarly to the above tests. The convergence rate of the
trapezoidal and Simpson integration is visualized in Figure 2.2.

Octave
Nrun = 10; n = zeros(1,Nrun); err = zeros(1,Nrun);
for k = 1:Nrun
n(k) = 10*2ˆ(k-1);
err(k) = abs(2-simpson(’sin’,0,pi,n(k)));

end%for
loglog(n,err,’-+’,n,errTrap,’-*’);
xlabel(’number of grid points’); ylabel(’integration error’); grid on
legend(’Simpson’,’trapezoidal’)

F = [ones(size(n))’ log(n’)];
LinearRegression(F,log(err’))

The result of the regression confirms that the error is proportional to h4 . This is confirmed in Figure 2.2.

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 133

Observe that the accuracy of the integration methods can not be better than machine accuracy. This effect is
starting to show in the lower right corner of Figure 2.2.

Adaptive integration using quad(), using anonymous functions

The built-in MATLAB/Octave command quad()1 (short for quadrature) is based on the Quadpack software
to compute integrals numerically. This is a well tested, reliable package. Its usage in Octave is rather simple,
as shown by a simple example.

Octave
f = @(x)4/(1+xˆ2);
nInt = quad(f,0,1,1e-5)

Read the on-line help of help quad to learn how to set absolute and relative error requirements. The
return results of quad() can also include information on the number of function evaluations and estimates
of the error. Internally quad() is using an adaptive method of integration.

With quad() a function can be integrated with respect to one variable. Very often the function to be
integrated depends on parameters. As an example consider

I(p) =

∫ 1

0
sin(p x 2π) dx

The result will depend on the parameter p. the function f(x, p) = sin(p x 2π) can be integrated with respect
to x using an anonymous function, as illustrated below.

Octave
%% integration using an anonymous function
p = 2; % value of parameter
f = @(x,p)sin(p*x*2*pi);
quad(@(x)f(x,p),0,1) % if p is an integer number, then the exact value is 0

2.1.2 Comparison of integration commands in Octave

Above three different commands for numerical integration are shown. For any given integration one has to
choose the best method. In Table 2.1 find a brief description.

trapz(), cumtrapz() uses trapezoidal rule

to be used for discretized values only

uneven spacing is possible

simpson() uses Simpson’s method

for discretized values of an anonymous function or

by an even number of subintervals of equal length

quad() uses Quadpack, adaptive algorithm

function name has to be given

Table 2.1: Integration commands in Octave

For each situation the best algorithm has to be chosen. A comparison is given in Table 2.2.

The command quad() should be used whenever possible.

1There are other functions available for numerical integration, with different features. E.g the function quadgk() can work
with discontinuous first derivatives by “WayPoints”.

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 134

trapz() simpson() quad()

accuracy poor intermediate excellent

built–in error control no no yes

applicable if values only given yes yes no

applicable if function name is given no yes yes

applicable if subintervals have unequal length yes no

Table 2.2: Comparison of the integration commands in Octave

2.1.3 From Biot–Savart to magnetic fields

The Octave command for numerical integration will be used to determine the magnetic field of a circular
conductor. The situation is shown in Figure 2.3. If a short segment ~ds of a conductor carries a current I then
the contribution ~dH to the magnetic field is given by the law of Biot–Savart

~dH =
I

4π r3
~ds× ~r

where ~r is the vector connecting the point on the conductor to the points at which the field is to be computed.

x

y

z

I

r

dH

Figure 2.3: Circular conductor for which the magnetic field has to be computed

A parametrization of the circle is given by
R cos φ

R sin φ

0

 where 0 ≤ φ ≤ 2π

leading to a line segment ~ds of

~ds =

−R sin φ

R cos φ

0

 dφ

The field ~H generated will have a radial symmetry and we may examine the field in the xz–plane only, i.e.

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 135

at points (x, 0, z). We find

~r =

x

0

z

−

R cos φ

R sin φ

0

and

r2 = (R cos φ− x)2 +R2 sin2 φ+ z2

= R2 − 2xR cos φ+ x2 + z2

To apply Biot–Savart we need the expression

~ds× ~r =

−R sin φ

R cos φ

0

×

x−R cos φ

−R sin φ

z

 dφ =

z R cos φ

z R sin φ

R2 − xR cos φ

 dφ

and thus obtain an integral for the 3 components of the field ~H at the point (x, 0, z)

~H(x, 0, z) =
I

4π

∫ 2π

0

1

(R2 − 2xR cos φ+ x2 + z2)3/2

z R cos φ

z R sin φ

R2 − xR cos φ

 dφ (2.1)

For each of the three components of the field we find one integral to be computed.

In the following sections we examine the special situation R = 1 and I = 1.

2.1.4 Field along the central axis and the Helmholtz configuration

Along the z–axis we use x = 0 and the above integral simplifies to

~H =
I

4π

∫ 2π

0

1

(R2 + z2)3/2

z R cos φ

z R sin φ

R2

 dφ

Verify that the x- and y component of ~H vanish, as they should because of the radial symmetry. For the z
component Hz(z) we obtain

Hz(z) =
I

4π

∫ 2π

0

R2

(R2 + z2)3/2
dφ =

I

2

R2

(R2 + z2)3/2

For very small and large values of z the above may be simplified to

Hz�R ≈
I

2

1

R
and Hz�R ≈

I

2

R2

z3

The above approximations allow to compute the field at the center of the coil and show that the field along
the center axis converges to 0 like 1/z3 .

For many applications is is important that the magnetic field should be constant over the domain to be
examined. The above computations show that the field generated by a single coil is far from constant. For a
Helmholtz configuration we place two of the above coils, at the heights z = ±h. The value of h has to be
such that the field around the center is as homogeneous as possible. To examine this situation we shift one
coil up by h and another coil down by −h and then examine the resulting field. On the left in Figure 2.4

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 136

-2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

height z

F
ie

ld
 F

z

(a) close to axis

-2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

height z

F
ie

ld
 F

z

(b) on a wide range

Figure 2.4: Magnetic field along the central axis

we find the results if the two coils are close together, on the right if they are far apart. Neither situation is
optimal for a homogeneous magnetic field.

We have to examine the field G generated by both coils and thus G is given as the sum of the two fields
by the individual coils at height z = ±h.

G(z) = Hz(z + h) +Hz(z − h) =
I

2

(
R2

(R2 + (z − h)2)3/2
+

R2

(R2 + (z + h)2)3/2

)
The field at z = 0 is as homogeneous as possible if as many terms as possible in the Taylor expansion
vanish.

G(z) ≈ G(0) +
dG(0)

dz
z +

1

2

d2G(0)

dz2
z2 +

1

6

d3G(0)

dz3
z3 + . . .

Since Hz is an even function know that the first derivative is an odd function and the second derivative is an
even function. Thus we find

dG(0)

dz
=

d

dz
H(h) +

d

dz
H(−h) = 0

and
d2G(0)

dz2
=

d2

dz2
Hz(h) +

d2

dz2
Hz(−h) = 2

d2

dz2
Hz(h)

Thus the optimal solution is characterized as zero of the second derivative of Hz(z).

d2

dz2
Hx(z) =

I R2

2

d2

dz2

(
1

(R2 + z2)3/2

)
= 0

We find
d

dz

1

(R2 + z2)3/2
=

−3 · 2 z
2 (R2 + z2)5/2

=
−3 z

(R2 + z2)5/2

d2

dz2

1

(R2 + z2)3/2
=
−3 (R2 + z2)5/2 + 3 z 5

2(R2 + z2)3/2 2 z

(R2 + z2)5

=
−3 (R2 + z2) + 3 z 5 z

(R2 + z2)7/2
= 3

4 z2 −R2

(R2 + z2)7/2

Thus the second derivative of G(0) vanishes if h = ±R
2 . This implies the the distance between the centers

of the coil should be equal to the Radius R. This is confirmed by the results in Figure 2.5. Figures 2.4
and 2.5 are generated by Octave/MATLAB with the help of an anonymous function HzAxis() to compute
the field along the axis with the commands

Octave

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 137

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

height z

F
ie

ld
 F

z

Figure 2.5: Magnetic field along the central axis, Helmholtz configuration

HzAxis = @(z)Rˆ2/2*(Rˆ2+z.ˆ2).ˆ(-3/2);
z = linspace(-2,3,101); R = 1;

figure(1);
dz = 0.0;
plot(z,HzAxis(z-dz)+HzAxis(z+dz))
axis([-2,3,0,1])
grid on; xlabel(’height z’); ylabel(’Field Fz’);

figure(2);
dz = 1;
plot(z,HzAxis(z-dz)+HzAxis(z+dz))
axis([-2,3,0,1])
grid on; xlabel(’height z’); ylabel(’Field Fz’);

figure(3);
dz = 1/2;
plot(z,HzAxis(z-dz)+HzAxis(z+dz))
axis([-1,1,0,1])
grid on; xlabel(’height z’); ylabel(’Field Fz’);

2.1.5 Field in the plane of the conductor

In the plane z = 0 of the conductor the field will show a radial symmetry again, the field at the point (x, y, 0)
is given by a rotation of the field at the point (

√
x2 + y2, 0, 0). Thus we compute the field along the x–axis

only. Based on equation (2.1) we have to compute three integrals.

~H(x, 0, z) =
I

4π

∫ 2π

0

1

(R2 − 2xR cos φ+ x2 + z2)3/2

z R cos φ

z R sin φ

R2 − xR cos φ

 dφ

For the z component Hz we need to integrate a scalar valued function, depending on the variable angle φ
and the parameters R, x, y and z. We define an anonymous function dHz().

Currently we are only interested in z along the x–axis, i.e. y = z = 0 and we want to compute

Hz(x, 0, 0) =
I

4π

∫ 2π

0

R2 − xR cos φ

(R2 − 2xR cos φ+ x2)3/2
dφ

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 138

An analytical formula for this integral can be given, but the expression is very complicated. Thus we prefer a
numerical approach. The integral to be computed will depend on the parameters x, y and R representing the
position at which the magnetic field will be computed. We use function handles and anonymous functions
to deal with these parameters for the integration. We examine a coil with diameter R = 1 and first compute
the field for values−0.5 ≤ x ≤ 0.8 and then for 1.2 ≤ x ≤ 3. The results are shown in Figure 2.6. Observe
that the magnetic field is large if we are close to the wire at x ≈ R = 1 and the z component changes sign
outside of the circular coil. As x increases Hz converges to 0 . This is confirmed by physical facts.

Octave
dHz = @(al,R,x,z)R*(R-x.*cos(al))./sqrt(Rˆ2-2*x.*R.*cos(al)+x.ˆ2 +z.ˆ2).ˆ3;
x = -0.5:0.05:0.8;
Fz = zeros(size(x));
for k = 1:length(x)
fz = @(al)dHz(al,1,x(k),0); % define the anonymous function
Fz(k) = quad(fz,0,2*pi)/(4*pi); % integrate

end%for

figure(1)
plot(x,Fz)
grid on
axis([-0.5 0.8 0 1.2]);
xlabel(’position x’); ylabel(’Field Fz’);

x2 = 1.2:0.05:3;
Fz2 = zeros(size(x2));
for k = 1:length(x2)
fz = @(al)dHz(al,1,x2(k),0); % define the anonymous function
Fz2(k) = quad(fz,0,2*pi)/(4*pi); % integrate

end%for

figure(2)
plot(x,Fz,x2,Fz2)
grid on
axis([-0.5 3 -0.6 1.2]);
xlabel(’position x’); ylabel(’Field Fz’);

0

0.2

0.4

0.6

0.8

1

1.2

-0.4 -0.2 0 0.2 0.4 0.6 0.8

F
ie

ld
 F

z

position x

(a) close to axis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5 1 1.5 2 2.5 3

F
ie

ld
 F

z

position x

(b) on a wide range

Figure 2.6: Magnetic field along the x axis

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 139

2.1.6 Field in the xz–plane

In the xz plane we have to examine both components of the field and thus we need to compute Hx(x, 0, y)
too. Using equation (2.1) we find

Hx(x, 0, z) =
I

4π

∫ 2π

0

z R cos φ

(R2 − 2xR cos φ+ x2 + z2)3/2
dφ

We write an anonymous function dHx()for the expression to be integrated. Then we proceed as follows:

1. Choose the domain of −0.4 ≤ x ≤ 0.7 and −1 ≤ z ≤ 2. Generate vectors with the values of x and z
for which the field ~H will be computed.

2. Generate a mesh of points with the command meshgrid() .

3. Create the empty matrices Hx and Hz for the components of the field.

4. Use a for loop to fill in the values of both components of ~H , using the integrals based on (2.1).

Octave
dHz = @(al,R,x,z)R*(R-x.*cos(al))./sqrt(Rˆ2-2*x.*R.*cos(al)+x.ˆ2 +z.ˆ2).ˆ3;
dHx = @(phi,R,x,z)R*z.*cos(phi) ./sqrt(Rˆ2-2*x.*R.*cos(phi)+x.ˆ2 +z.ˆ2).ˆ3;

z = -1:0.2:2; x = -0.4:0.1:0.7;
[xx,zz] = meshgrid(x,z); x = xx(:); z = zz(:); % convert matrix to vector
Hx = zeros(size(x)); Hz = Hx;

for k = 1:length(x)
fx = @(al)dHx(al,1,x(k),z(k)); % define the anonymous function
Hx(k) = quad(fx,0,2*pi)/(4*pi); % integrate
fz = @(al)dHz(al,1,x(k),z(k)); % define the anonymous function
Hz(k) = quad(fz,0,2*pi)/(4*pi); % integrate

end%for

The next step is to visualize the vector field ~H in the xz plane in the center of the circular coil. To arrive
at Figure 2.7 we use the command quiver() to display the vector field. Depending on which version of
Octave/MATLAB you are using, you might have to adapt the scaling factors in the quiver() command.

In the left part of Figure 2.7 we find magnetic fields of drastically different sizes, in particular close to
the conductor. For a good visualization it is often useful to normalize all vectors to have equal length. Find
the result of the code below in the right part of Figure 2.7.

Octave
subplot(1,2,1)
quiver(x,z,Hx,Hz,1.5)
grid on; axis([-0.4 0.8 -1 2])

scal = 1./sqrt(Hx(:).ˆ2+Hz(:).ˆ2); % length of each vector
Hx = scal.*Hx; Hz = scal.*Hz; % normalize length

subplot(1,2,2)
quiver(x,z,Hx,Hz,0.6)
grid on; axis([-0.4 0.8 -1 2])

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 140

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

Figure 2.7: Magnetic vector field in a plane, actual length and normalized

2.1.7 The Helmholtz configuration

To obtain a homogeneous field in the center of two coils we have to place them at a distance equal to the
radii of the circular coils. We can compute and visualize the field of this configuration using the same ideas
and codes as in the section above. Find the result in Figure 2.8.

Octave
clf
x = -0.3:0.05:0.3; z = x;
h = 0.5; % optimal distance for Helmholtz configuration

[xx,zz] = meshgrid(x,z); x = xx(:); z = zz(:);
Hx = zeros(size(x)); Hz = Hx;

for k = 1:length(x)
fx = @(al)(dHx(al,1,x(k),z(k)-h)+dHx(al,1,x(k),z(k)+h));
Hx(k) = quad(fx,0,2*pi)/(4*pi);
fz = @(al)(dHz(al,1,x(k),z(k)-h)+dHz(al,1,x(k),z(k)+h));
Hz(k) = quad(fz,0,2*pi)/(4*pi);

end%for

quiver(x,z,Hx,Hz,0.6) % new scaling
grid on; xlabel(’x’);ylabel(’z’)
axis([-0.3 0.3 -0.3 0.3])

Analysis of homogeneity of the magnetic field

The main purpose of the Helmholtz configuration is to provide a homogeneous field at the center of the
coils. Thus we want the all components of the field to be constant. It is not obvious how to quantify the
deviation from a constant magnetic field. We suggest three options:

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 141

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

z

x

Figure 2.8: Magnetic field for two coils in the Helmholtz configuration

1. Variation in z component only
The z component Hz is clearly the largest component. Thus we might examine the variations of Hz

only. One possible method is to generate level curves for the relative deviation

relative deviation in Hz =

∣∣∣∣Hz(x, y, z)−Hz(0, 0, 0)

Hz(0, 0, 0)

∣∣∣∣
2. Variation in all components

We might also take the other components into account and examine the deviation vector

~H(x, y, z)− ~H(0, 0, 0) =

Hx(x, y, z)

Hy(x, y, z)

Hz(x, y, z)

−

0

0

Hz(0, 0, 0)

and then generate level curves for the relative deviation

relative deviation in ~H =
‖ ~H(x, y, z)− ~Hz(0, 0, 0)‖

Hz(0, 0, 0)

3. Variation in the strength of the magnetic field
If only the strength ‖ ~H‖matters and the direction of the magnetic field is irrelevant we might examine
level curves for

relative deviation in strength ‖ ~H‖ =

∣∣∣∣∣‖ ~H(x, y, z)‖ −Hz(0, 0, 0)

Hz(0, 0, 0)

∣∣∣∣∣
The above ideas can be implemented in Octave , leading to the result in Figure 2.9 for the relative deviation
in Hz . The deviation is examined in the xz–plane, i.e. for y = 0. The result in Figure 2.9 for the relative
deviation shows that the relative deviation is rather small at the center (x, z) ≈ (0, 0) but increases shaply
at the corners of the examined domain of −0.3 ≤ x ≤ 0.3 and −0.3 ≤ z ≤ 0.3.

Octave

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 142

n = sqrt(length(Hz))
HzM = reshape(Hz,n,n);
Hz0 = HzM(floor(n/2)+1,floor(n/2)+1)
reldev = abs(HzM-Hz0)/Hz0;
mesh(xx,zz,reldev)

-0.3
-0.2

-0.1
0

0.1
0.2

0.3

-0.3
-0.2

-0.1
0

0.1
0.2

0.30

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 2.9: Relative changes of Hz in the plane y = 0

Level curves for relative deviations

To estimate the domain for which the relative deviation is small we can use the tool of level curves. In
Figure 2.10(a) we find the level curves for relative deviation in Hz at levels 0.001, 0.002, 0.005 and 0.01 .
Observe that the deviation remains small along a few lines, even if we move away from the center. This
is confirmed by Figure 2.9. We use a rather fine mesh2 to obtain smoother curves. On might have to pay
attention to the computation time. If a grid on n × n points is examined, then 2n2 integrals have to be
computed. For the sample code below this translates to 2 · 512 = 5202 integrals.

Octave
n = 51; x = linspace(-0.3,0.3,n); z = x;
h = 0.5; % optimal distance for Helmholtz configuration

[xx,zz] = meshgrid(x,z); x = xx(:); z = zz(:);
Hx = zeros(size(x)); Hz = Hx;

for k = 1:length(x)
fx = @(al)(dHx(al,1,x(k),z(k)-h)+dHx(al,1,x(k),z(k)+h));
Hx(k) = quad(fx,0,2*pi)/(4*pi);
fz = @(al)(dHz(al,1,x(k),z(k)-h)+dHz(al,1,x(k),z(k)+h));
Hz(k) = quad(fz,0,2*pi)/(4*pi);

end%for
HzM = reshape(Hz,n,n);
Hz0 = HzM(floor(n/2)+1,floor(n/2)+1)
reldev = abs(HzM-Hz0)/Hz0;
contour(xx,zz,reldev,[0.001,0.002,0.005,0.01])
axis(’equal’); grid on ; xlabel(’x’); ylabel(’z’);

2The price to pay is some CPU time. For a quick check one may work at a lower resolution.

SHA1 10-9-20

2.1. NUMERICAL INTEGRATION AND MAGNETIC FIELDS 143

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

z

x

(a) error of Hz

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

z

x

(b) error of ~H

Figure 2.10: Level curves for the relative changes of Hz at levels 0.001, 0.002, 0.005 and 0.01

It might be a better approach to examine the relative deviation in ~H and not the z component only.
Find the code below and the resulting Figure 2.10(b). Observe that the relative deviation of ~H increases
uniformly as we move away from the center. For Helmholtz coils with radius R = 1 we find that in an
approximate cylinder with radius 0.2 and height 0.4 the relative deviation in the magnetic field is smaller
than 0.001, thus the field is rather homogeneous. This is the main advantage of the Helmholtz configuration.

Octave
HxM = reshape(Hx,n,n);
HDev = sqrt(HxM.ˆ2 + (HzM-Hz0).ˆ2)/Hz0;
contour(xx,zz,HDev,[0.001,0.002,0.005,0.01])
axis(’equal’);grid on
xlabel(’x’); ylabel(’z’);

2.1.8 List of codes and data files

In the previous section the codes and data files in Table 2.3 were used.

filename function

testtrapez.m script file for test of trapz()

simpson.m function file, implementing Simpson’s algorithm

testsimpson.m script file for test of simpson()

Hz along x axis.m script file to compute z–component of field along z–axis

VectorFields.m script file to compute vector field in xz–plane

VectorFieldsHelmholtz.m script file to compute vector field for Helmholtz configuration

HelmholtzContours.m script file to compute level curves for Helmholtz configuration

Table 2.3: Codes and data files for section 2.1

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 144

2.2 Linear and Nonlinear Regression

One of the most common engineering problems is to find optimal parameters for your model to be as close as
possible to some measured data. This very often leads to a regression problem and there is a vast literature
(e.g. [Stah99],[MontPeckVini12],[Hock05],[Bevi69]) and many pieces of code are available. Obviously
Octave and MATLAB also provides a set of tools for this task. This section shall serve as an introduction on
when and how to use those codes. The structure of the section is as follows:

• First we show the example of a straight line regression, the most common case. Only basic Octave
commands are used. See Section 2.2.1.

• Then a generally applicable matrix notation is introduced to examine all types of linear regression
problems. See Section 2.2.2.

• Then we examine the variance (accuracy) of the parameters to be determined. This aspect is often not
given the deserved attention by engineers. See Section 2.2.3.

• Using a real example we illustrate how the basis ideas might lead to serious problems (and wrong
results), as is the case for many real world problems. We point out how to avoid or eliminate those
problems. Some of the mathematical background (QR factorization) is given. See Sections 2.2.5
and 2.2.6.

• Then we present some information on weighted regression problems and the resulting algorithm. See
Section 2.2.7.

• All of the above will lead to the code in LinearRegression.m. This code is part of the optimiza-
tion package of Octave . You can use the same code with MATLAB. See Section 2.2.9.

• Then all part of the above puzzle will be used to examine four real world, non obvious applications of
linear regression.

1. The performance of a magnetic motor is examined as function of two parameters. In this exam-
ple we use a linear regression with two independent variables, i.e. we seek a function of two
variables. See Section 2.2.10

2. Using two acceleration sensors one can design an orientation sensor. To calibrate this sensor we
use linear regression. See Section 2.2.11.

3. With an AFM microscope the surface of ball bearing can be examined. With linear regression
we determine the exact shape of the bills. See Section 2.2.12.

4. Using linear regression with a piecewise linear function we examine a system consisting of two
springs. In this example the regression is combined with a nonlinear optimization problem. See
Section 2.2.13.

• In Section 2.2.14 the commands leasqr() and fsolve() are used to solve nonlinear regression
problems, illustrated by simple examples. This is the applied to a real problem in Sections 2.2.15 and
2.2.16. In Section 2.2.18 examine a real world problem is examined. The importance of obtaining
good starting values is illustrated.

For most of the sample code you need the optimization package loaded in Octave . Use the command
pkg list to display the installed packages, the one marked by a star ∗ are currently loaded. To load the
optimization package use the command pkg load optim .

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 145

2.2.1 Linear regression for a straight line

For n given points (xi , yi) in a plane we try to determine a straight line y(x) = p1 ·1+p2 ·x to match those
points as good as possible. One good option is to examine the residuals ri = p1 · 1 + p2 · xi − yi. Using
matrix notation we find

~r = F · ~p− ~y =

1 x1

1 x2

1 x3

...
...

1 xn

·
(
p1

p2

)
−

y1

y2

y3

...

yn

.

Linear regression corresponds to minimization of the norm of ~r, i.e. minimize

‖~r‖2 = ‖F · ~p− ~y‖2 = 〈F · ~p− ~y , F · ~p− ~y〉 .

Consider ‖~r‖2 as a function of p1 and p2. At the minimal point the two partial derivatives have to vanish.
This leads to a system of linear equations for the vector ~p.

X · ~p =
(
FT · F

)
· ~p = FT · ~y .

This can easily be implemented in Octave , leading to the result in Figure 2.11 and a residual of ‖~r‖2 ≈ 1.23.

Octave
x = [0; 1; 2; 3.5; 4]; y = [-0.5; 1; 2.4; 2.0; 3.1];

F = [ones(size(x)) x]
p = (F’*F)\(F’*y)
residual = norm(F*p-y)

xn = [-1 5]; yn = p(1)+p(2)*xn;
plot(x,y,’*r’,xn,yn);
xlabel(’independent variable x’); ylabel(’dependent variable y’)

-1 0 1 2 3 4 5
-1

0

1

2

3

4

de
pe

nd
en

t v
ar

ia
bl

e
y

independent variable x

Figure 2.11: Regression of a straight line

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 146

2.2.2 General linear regression, matrix notation

The above idea carries over to a linear combination of functions fj(x) for 1 ≤ j ≤ m. For a vector
~x = (x1, x2, . . . , xk)

T we examine a function of the form

f(~x) =

m∑
j=1

pj · fj(~x) .

The optimal values of the parameter vector ~p = (p1, p2, . . . , pm)T have to be determined. Thus we try to
minimize the expression

χ2 = ‖~r‖2 =
n∑
i=1

(f(xi)− yi)2 =
n∑
i=1

 m∑
j=1

pj · fj(xi)

− yi
2

Using a vector and matrix notation this can be written in the form

~p =

p1

p2

...

pm

 , ~y =

y1

y2

...

yn

 , F =

f1(x1) f2(x1) . . . fm(x1)

f1(x2) f2(x2) . . . fm(x2)
...

...
. . .

...

f1(xn) f2(xn) . . . fm(xn)

we have to minimize the expression

‖~r‖2 = ‖F · ~p− ~y‖2 = 〈F · ~p− ~y , F · ~p− ~y〉 ,

leading again to the necessary condition

X · ~p =
(
FT · F

)
· ~p = FT · ~y .

This is a system of n linear equations for the unknown n–vector ~p. Once we have the optimal parameter
vector ~p, compute the values of the regression curve with a matrix multiplication.

(F · ~p)i =
m∑
j=1

pj · fj (xi)

As an example fit a parabola
y = p1 · 1 + p2 · x+ p3 · x2

through the points given in the above example. The matrix F is given by

F =

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5

=

1 0 0

1 1 1

1 2 22

1 3.5 3.52

1 4 42

.

This can be coded leading to the result in Figure 2.12 and a residual of ‖~r‖2 ≈ 0.89. This residual is, as
expected, smaller than the residual for a straight line fit.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 147

Octave
x = [0; 1; 2; 3.5; 4]; y = [-0.5; 1; 2.4; 2.0; 3.1];

F = [ones(length(x),1) x x.ˆ2]
p = (F’*F)\(F’*y)
residual = norm(F*p-y)

xn = [-1:0.1:5]’;
yn = p(1) + p(2)*xn + p(3)*xn.ˆ2;
plot(x,y,’*r’,xn,yn)
xlabel(’independent variable x’); ylabel(’dependent variable y’)

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

independent variable x

de
pe

nd
en

t v
ar

ia
bl

e
y

Figure 2.12: Regression of a parabola

2.2.3 Estimation of the variance of parameters, confidence intervals

Using the above results (for the parabola fit) we can determine the residual vector

~r = F · ~p− ~y

and then the mean and variance V = σ2 of the y–errors can be estimated. The estimation is valid if all
y–errors are assumed to be of equal size, i.e. we assume a-priori that the errors are given by a normal
distribution.

Octave
residual = F*p-y;
mean(residual)
sum(residual.ˆ2)/(length(residual)-3) % 3 parameters in parabola

The mean should equal zero and the standard deviation σ ≈
√

0.39 ≈ 0.63 is an estimate for the errors in
the y–values. Smaller values of σ indicate that the values of y are closer to the regression curve.

In most applications the values of the parameters pj contain the essential information. It is often im-
portant to know how reliable the obtained results are, i.e. we want to know the variance of the determined
parameter values pj . To this end consider the normal equation(

FT · F
)
· ~p = FT · ~y

and thus the explicit expression for ~p

~p =
(
FT · F

)−1 · FT · ~y = M · ~y (2.2)

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 148

or

pj =

n∑
i=1

mj,i yi for 1 ≤ j ≤ m

where
M = [mj,i]1≤j≤m,1≤i≤n =

(
FT · F

)−1 · FT

is a m× n–matrix, where m < n (more columns than rows).
This explicit representation of pj allows3 to compute the variance var(pj) of the parameters pj , using

the estimated variance σ2 of the y–values. The result is given by

var(pj) =
n∑
i=1

m2
j,i σ

2 where σ2 =
1

n−m
n∑
i=1

r2
1

Once we know the standard deviation and assume a normal distribution one can readily4 determine the 95%
confidence interval for the parameters, i.e. with a probability of 95% the actual value of the parameter is
between pi − 1.96

√
vari and pi + 1.96

√
vari .

All the above computations can be packed in a function file LinearRegression.m5 to compute the
optimal values of the parameters and the estimated variances.

Octave
function [p,e_var,r,p_var] = LinearRegression1(F,y)

p = (F’*F)\(F’*y); % estimate the values of the parameters
residual = F*p-y; % compute the residual vector
r = norm(residual); % and its norm
e_var = sum(residual.ˆ2)/(rF-cF); % variance of the y-errors

M = inv(F’*F)*F’;
M = M.*M; % square each entry in the matrix M
p_var = sum(M,2)*e_var; % variance of the parameters

The function LinearRegression() now allows to solve the straight line problem leading to Fig-
ure 2.11 with only a few lines of code.

Octave
x = [0; 1; 2; 3.5; 4]; y = [-0.5; 1; 2.4; 2.0; 3.1];
F = [ones(length(x),1) x];
[p,y_v,r,p_v] = LinearRegression(F,y)
sigma = sqrt(p_v)
alpha = 0.05;
p95 = p + norminv(1-alpha/2)*[-sigma +sigma]

3If zk are independent random variables given by a normal distribution with variances var(zk), then a linear combination of
the zi also leads to a normal distribution. The variances are given by the following rules:

var (z1 + z2) = var (z1) + var (z2)

var (α1 z1) = α2
1 var (z1)

var (
∑
i

αi zi) =
∑
i

α2
i var (zi)

4Use ∫ +1.96σ

−1.96σ

1√
2π

exp(−x2/(2σ2)) dx ≈ 0.95

Using the statistics package of Octave this value can be computed by fsolve(@(x)normcdf(x)-normcdf(-x)-0.95,2) .
5A better implementation is shown in Figure 2.18 on page 161, thus we use a temporary function name.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 149

The result implies that the equation for the optimal straight line is

y = 0.025 + 0.75 · x

where the constant contribution (0.025) has a standard deviation of 0.55 and the standard deviation of the
slope (0.75) is given by 0.21 . Thus with a probability of 95% we find for the parameters in y(x) = α+ β x

−1.05 = 0.025− 1.96 · 0.55 < α < 0.025 + 1.96 · 0.55 = +1.10

+0.33 = 0.75− 1.96 · 0.21 < β < 0.75 + 1.96 · 0.21 = +1.17
.

Thus the tolerance for the parameters α and β is this example is huge. This information should prevent you
from showing too many digits when analyzing measured data.

The above assumes that the distribution of the parameters are normal distributions. Actually the distri-
bution to use is a Student’s t-distribution with n− 2 degrees of freedom and the code should be modified to

p95 = p + tinv(1-alpha/2,length(x)-2)*[-sigma +sigma]

leading to
−1.720517 < α < 1.770517

0.073118 < β < 1.426882
.

If we would have many data points (not only 5 in the above example) the normal distribution and the
Student’s t- distribution differ very little. Then the estimated confidence intervals will differ very little.

To fit a parabola through the same points replace one line of code by

Octave
F = [ones(length(x),1) x x.ˆ2];

2.2.4 Estimation of variance of the dependent variable

For the regression of a straight line y(x) = α + β x we can also estimate the expected variance of the
y–values. We assume that all measured values yi of y share a common standard deviation of σ. We use the
notations Sx =

∑
i xi, Sxx =

∑
i x

2
i and Sxy =

∑
i xi yi and the explicit formulas

∆ = n · Sxx − S2
x , α =

1

∆
(Sxx Sy − Sx Sxy) , β =

1

∆
(nSxy Sy − Sx Sy) .

Thus use6

y = α+ β x =
1

∆
(SxxSy − SxSxy) +

1

∆
(n · Sxy − SxSy) x

=
1

∆

∑
i

(Sxx − Sx xi + nxxi − xSx) yi

and the computational rules for variances lead7 to

V (y) =
1

∆2

∑
i

(Sxx − Sx xi + nxxi − xSx)2 σ2 = elementary, tedious algebra =

=
σ2

∆

(
n (x− Sx

n
)2 +

1

n
(nSxx − S2

x)

)
= σ2

(
1

n
+
n

∆
(x− x̄)2

)
.

6Observe that the simple formula y = α + β x does not lead to V (y) = V (α) + V (β)x2 since the two parameters α and β
are not statistically independent.

7Ask this author for a printout with all the glorious details shown.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 150

This is the variance of the computed y values on the straight line. Since a new measurement adds another
contribution to the variance we obtain a width of the confidence band by(

1 +
1

n
+
n

∆
(x− x̄)2

)1/2

σ .

The above formula is correct when fitting a straight line through given data points. For general linear
regressions we have to use the general formulas. Let ~ym denote the set of measured y values and ~yp the
vector of predicted y values, using the result of a linear regression. Based on equation (2.2) and ~yp = F · ~p
we find

~yp = F · (FT · F)−1 · FT ~ym = B ~ym . (2.3)

Estimate the variance of the straight line

Based on this explicit formula (2.3) for the values of yi we can estimate the variances of the components of
the computed values of yi.

V (yi) =

n∑
k=1

b2i,k σ
2 .

This is implemented in the function LinearRegression() and the values are returned in the variable
fit var. With this expression one can determine the confidence band for the straight line.

Estimate the variance of a future measurement

If we want to predict the variance of a new data point at xi there are two contributions to the variance:
the independent variance of the measurement and the variance from the straight line. Since the events are
assumed to be independent, we have to add the variances, leading to

σ2 + V (yi) = σ2 +
n∑
k=1

b2i,k σ
2 .

With LinearRegression() this can be computed by e var+fit var and used in the code below,
leading to Figure 2.13(a). There find the raw data, the best fitting straight line and the 95% confidence band
for straight line and possible new values. The confidence band can be displayed by multiplying the square
root of the estimated variance by 1.96 and adding/subtracting this from the fitted value. Observe that the
confidence band for the straight line is considerably narrower than the one for the expected new values of y .

n = 100; x = sort(rand(n,1)*5-1); y = 1+0.05*x + 0.1*randn(size(x));
F = [ones(n,1),x(:)]; % straight line regression
[p,e_var,r,p_var,y_var] = LinearRegression(F,y);
yFit = F*p;
figure(1)
fac = fsolve(@(x)normcdf(x)-normcdf(-x)-0.95,2); % 95% level, fac = 1.96
plot(x,y,’+b’,x,yFit,’-g’,...

x,yFit+fac*sqrt(y_var),’--r’,x,yFit+fac*sqrt(e_var+y_var),’--k’,...
x,yFit-fac*sqrt(y_var),’--r’,x,yFit-fac*sqrt(e_var+y_var),’--k’)

title(’straight line by linear regression’)
legend(’data’,’fit’,’+/-95% line’,’+/-95% data’,’location’,’northwest’); grid on

The above result is not restricted to straight line regressions, e.g. we may fit a curve y(x) = p1 +
p2 sin(x) through a set of data points and display similar results in Figure 2.13(b).

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 151

-1 0 1 2 3 4
0.6

0.8

1

1.2

1.4

1.6
straight line by linear regression

data
fit
+/-95% line
+/-95% data

(a) fitting y = p1 + p2 x

-1 0 1 2 3 4
0

0.5

1

1.5

2
data
fit
+/-95%

(b) fitting y = p1 + p2 sin(x)

Figure 2.13: Regressions with the fitted data and the 95% confidence bands

n = 100; x = sort(rand(n,1)*5-1); y = 1+0.5*sin(x) + 0.1*randn(size(x));
F = [ones(n,1),sin(x(:))];
[p,e_var,r,p_var,y_var] = LinearRegression(F,y);
yFit = F*p;
figure(2)
plot(x,y,’+b’,x,yFit,’-g’,...

x,yFit+1.96*sqrt(e_var+y_var),’--r’,x,yFit-1.96*sqrt(e_var+y_var),’--r’)
legend(’data’,’fit’,’+/-95%’); grid on

2.2.5 Example 1: Intensity of light of an LED depending on the angle of observation

The intensity of the light emitted by an LED will depend on the angle α of observation. The data sheets of
the supplier should show this information. A sample of real data is stored in the file LEDdata.txt.The
script LEDdata.m also contains the data. In Section 2.9.3 you find the information on how to import the
data from the data sheet into Octave . Then Figure 2.14(b) is generated by simple code.

Octave
LEDdata; % load the data
figure(1);
plot(angle,intensity,’*’);

To do further analysis it can be useful to have a formula for the intensity as function of the angle
and linear regression is one of the options on how to obtain such a formula. The following code will fit
a polynomial of degree 5 through those points and then display the result in Figure 2.15. The resulting
parameters point towards an intensity function

T (α) = 124.28 + 0.1111α− 4.0576 · 10−3 α2 + 5.0299 · 10−5 α3 − 2.1087 · 10−7 α4 .

Octave
LEDdata; % load the data
n = 6; % try with a polynomial of degree 5
F = ones(length(angle),n);
for k = 1:n
F(:,k) = angle.ˆ(k-1);

end

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 152

α

(a) setup of LED

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

angle

in
te

ns
ity

(b) relative intensity

Figure 2.14: Intensity of light as function of the angle

[p,int_var,r,p_var] = LinearRegression1(F,intensity);
[p,sqrt(p_var)] % display the estimated values for the parameters

al = (0:1:90)’; % consider angles from 0 to 90 degree
Fnew = ones(length(al),n);
for k = 1:n
Fnew(:,k) = al.ˆ(k-1);

end

Inew = Fnew*p;
plot(angle,intensity,’*’,al,Inew)
grid on
xlabel(’angle’);ylabel(’intensity’)

0 20 40 60 80 100
-0.2

0

0.2

0.4

0.6

0.8

1

angle

in
te

n
s
it
y

Figure 2.15: Intensity of light as function of the angle and a first regression curve

The result in Figure 2.15 is obviously useless. The estimated variances of the parameters are of the same
order of magnitude as the values of the parameters, or even larger. We need to find the reason for the failure
and how to avoid the problem.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 153

The above implementation of the linear regression algorithm has to solve a system of equations with the
matrix F′ · F. With the help of

Octave
F’*F
--> 1.4000e+01 6.7000e+02 4.1114e+04 2.8161e+06 2.0767e+08 1.6113e+10

6.7000e+02 4.1114e+04 2.8161e+06 2.0767e+08 1.6113e+10 1.2949e+12
4.1114e+04 2.8161e+06 2.0767e+08 1.6113e+10 1.2949e+12 1.0666e+14
2.8161e+06 2.0767e+08 1.6113e+10 1.2949e+12 1.0666e+14 8.9414e+15
2.0767e+08 1.6113e+10 1.2949e+12 1.0666e+14 8.9414e+15 7.5911e+17
1.6113e+10 1.2949e+12 1.0666e+14 8.9414e+15 7.5911e+17 6.5056e+19

we see that the matrix contains numbers of the order 1 and of the order 1019 and one should not be surprised
by trouble when solving such a system of equations. Mathematically speaking we have a very large condi-
tion number of 1016 and thus we will loose many digits of precision. Entries of vastly different sizes are an
indication for large condition numbers, but other effects also matter and you will have to consult specialized
literature or a mathematician to obtain more information.

There are different measures to be taken to avoid the problem. For a good, reliable solution they should
all be used.

1. Rescaling
For a polynomial of degree 6 and angles of 90◦ the matrix F will contain numbers of the size 1 and
904. Thus F′ · F will contain number of the size 908 ≈ 1008 = 1020. If we switch to radians instead
of degrees this will be reduced to (π2)8 ≈ 100 and thus this problem should be taken care of. The
code below will generate a good solution.

Octave
LEDdata;
scalefactor = 180/pi; angle = angle/scalefactor;

n = 6;
F = ones(length(angle),n);
for k = 1:n
F(:,k) = angle.ˆ(k-1);

end

[p,int_var,r,p_var] = LinearRegression1(F,intensity);
result = [p sqrt(p_var)] % display the estimated values for the parameters

al = ((0:1:90)’)/scalefactor; % consider angles from 0 to 90 degree

Fnew = ones(length(al),n);
for k = 1:n
Fnew(:,k) = al.ˆ(k-1);

end

Inew = Fnew*p;
plot(angle*scalefactor,intensity,’*’,al*scalefactor,Inew)
grid on
xlabel(’angle’);ylabel(’intensity’)

This is confirmed by the smaller condition number.

Octave
cond(F’*F)
-->
2.1427e+05

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 154

2. Better choice of basis functions
Since the intensity function I(α) has to be symmetric with respect to α, i.e. I(−α) = I(α), there

can be no contributions of the form α, α3 or α5. Thus we seek a good fit for a function of the type

I(α) = p1 + p2 α
2 + p3 α

4 .

The code below leads to the result in Figure 2.16. The condition number of F′ ·F is approximately 200
and thus poses no problem. The result in Figure 2.16 is now useful for further investigations and the
computations indicate that the intensity is approximated by

I(α) = 1.02951− 0.95635α2 + 0.21890α4

The new code is a slight modification of the previous code.

Octave
LEDdata;
scalefactor = 180/pi; angle = angle/scalefactor;
n = 3;
F = ones(length(angle),n);
for k = 1:n
F(:,k) = angle.ˆ(2*(k-1));

end

[p,int_var,r,p_var] = LinearRegression1(F,intensity);
result = [p,sqrt(p_var)] % display the estimated values for the parameters

al = ((0:1:90)’)/scalefactor; % consider angles from 0 to 90 degree

Fnew = ones(length(al),n);
for k = 1:n
Fnew(:,k) = al.ˆ(2*(k-1));

end

Inew = Fnew*p;
plot(angle*scalefactor,intensity,’*’,al*scalefactor,Inew)
grid on
xlabel(’angle’);ylabel(’intensity’)

This point is by far the most important aspect to consider when using the linear regression method.

Choose your basis functions for linear regression very carefully,
based on information about the system to be examined.

There are many software packages (Mathematica , MATLAB, Octave , Excel, . . .) to perform linear
regression with polynomials of high degrees. This author is not aware of one single problem where a
polynomial of high degree leads to useful information. All software behave according to the GIGO8

principle.

3. QR factorization instead of the matrix F′ · F
Idea and consequences of this change in algorithm are based on QR factorization and are given in

the next section. Any serious implementation of a linear regression method should use this mod-
ification. In all the above code the function LinearRegression1() has to be replaced by
LinearRegression() to take advantage of the improved algorithm, based on the QR factor-
ization.

8Garbage In, Garbage Out

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 155

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

angle

in
te

ns
ity

Figure 2.16: Intensity of light as function of the angle and regression with an even function

2.2.6 QR factorization and linear regression

For a n × m matrix F with more rows than columns (n > m) a QR decomposition of the matrix can be
computed

F = Q ·R
where the n × n matrix Q is orthogonal (Q−1 = QT) and the n × m matrix R has an upper triangular
structure. No consider the block matrix notation

Q =
[
Ql Qr

]
and R =

[
Ru

0

]
.

The m × m matrix Ru is square and upper triangular. The left part Ql of the square matrix Q is of size
n×m and satisfies QT

l Ql = In. Use the zeros in the lower part of R to verify that

F = Q ·R = Ql ·Ru .

MATLAB/Octave can compute the QR factorization by [Q,R]=qr(F) and the reduced form by the com-
mand [Ql,Ru]=qr(F,0). This factorization is very useful to implement linear regression.

Multiplying a vector ~r ∈ Rn with the orthogonal matrix Q or its inverse QT corresponds to a rotation of
the vector and thus will not change its length. This observation can be used to rewrite the linear regression
problem from Section 2.2.2.

F · ~p− ~y = ~r length to be minimized

Q ·R · ~p− ~y = ~r length to be minimized

R · ~p−QT · ~y = QT · ~r[
Ru · ~p

0

]
−
[

QT
l · ~y

QT
r · ~y

]
=

[
QT
l · ~r

QT
r · ~r

]
Since the vector ~p does not change the lower part of the above system, the problem can be replaced by a
smaller system of m equations for m unknowns, namely the upper part only of the above system.

Ru · ~p−QT
l · ~y = QT

l · ~r length to be minimized

Obviously this length is minimized if QT
l · ~r = ~0 and thus we find the reduced equations for the vector ~p.

Ru · ~p = QT
l · ~y

~p = R−1
u ·QT

l · ~y

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 156

In Octave the above algorithm can be implemented with two commands only.

Octave
[Q,R] = qr(F,0);
p = R\(Q’*y);

It can be shown that the condition number for the QR algorithm is much smaller than the condition number
for the algorithm based on FT ·F · ~p = FT · ~y. Thus there are fewer accuracy problems to be expected and
we obtain results with higher reliability9.

2.2.7 Weighted linear regression

The general method

So far we minimized the length of the residual vector

~r = F · ~p− ~y

using the standard length ‖~r‖2 =
∑n

i=1 r
2
1. There are situations where not all errors have equal weight and

thus we try to minimize a weighted length

‖~r‖2W =
n∑
i=1

w2
i r

2
i = 〈W · ~r , W · ~r〉

If the estimated standard deviation for each measurement yi is given by σi, use wi = 1/σi. Thus points
measured with a high accuracy obtain a larger weight. The weight matrix W is given by

W = diag(~w) =

w1

w2

. . .

wn

 .
A large value of the weightwi implies that an error ri in that component has large weight. Thus the algorithm
will try to keep ri small.

Now an algorithm similar to the previous section can be applied to estimate the optimal values for the
parameters ~p.

F · ~p− ~y = ~r weighted length to be minimized

W · F · ~p−W · ~y = W · ~r standard length to be minimized

Q ·R · ~p−W · ~y = W · ~r standard length to be minimized

R · ~p−QT ·W · ~y = QT ·W · ~r[
Ru · ~p

0

]
−
[

QT
l ·W · ~y

QT
r ·W · ~y

]
=

[
QT
l ·W · ~r

QT
r ·W · ~r

]
Ru · ~p = QT

l ·W · ~y
~p = R−1

u ·QT
l ·W · ~y

This algorithm is implemented in Figure 2.18 (see page 161).
To estimate the variances of the parameters ~p we have to use assumptions on the variances σi of the yi

values. A heuristic argument in the next section motivates the estimate

σ2
j ≈

1

w2
j

1

n−m
n∑
i=1

r2
i w

2
i

9A careful computation shows that using the QR factorization F = QR in FT F ~p = FT ~y also leads to Ru ~p = QT
l ~y.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 157

and then use
~p = R−1

u ·QT
l ·W · ~y = M · ~y

to conclude

pj =

n∑
i=1

mj,i yi for 1 ≤ j ≤ m

V (pj) =

n∑
i=1

m2
j,i σ

2
i for 1 ≤ j ≤ m.

Observe that this calculation is only correct if the σ2
i are not correlated.

Uniformly distributed errors

If we set all weights towi = 1 this leads back to the results in Section 2.2.3 . The expression to be minimized
is

χ2 =

n∑
i=1

(yi − f(xi))
2 with f(x) =

m∑
j=1

pj fj(x) .

Uniformly distributed relative errors

In this case we expect the standard deviations to be proportional to the absolute value of yi and thus we
choose the weights w1 = 1/|yi| . The expression to be minimized is

χ2 =
n∑
i=1

(yi − f(xi))
2

y2
i

.

A priori known error distributions

If we have good estimates σi for the standard deviations of the values yi we choose the weights wi = 1/σi
and the expression to be minimized is

χ2 =

n∑
i=1

(yi − f(xi))
2

σ2
i

.

In this case the standard deviation of wi yi is expected to be constant 1 . The estimation of the standard
deviations has to respect this fact and this leads to the estimates based on the data points and the given
weights.

σ2
j w

2
j ≈

1

n

n∑
i=1

w2
i r

2
i =⇒ σ2

j ≈
∑n

i=1w
2
i r

2
i

n w2
j

.

This leads to the estimate for σj in the previous section. The method is implemented in the code of
LinearRegression() in Figure 2.18.

2.2.8 More commands for regression with Octave or MATLAB

In these notes I mainly use the command LinearRegression(), but MATLAB/Octave provide many
more commands, some shown in Table 2.4. Consult the manuals for more information.

For nonlinear regression there are special commands too, see Table 2.5. Observe that the syntax and
algorithm of these commands might differ between MATLAB and Octave . You definitely have to consult the
manuals and examine example applications.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 158

Command Properties

LinearRegression() standard and weighted linear regression

returns standard deviations for parameters

regress() standard linear regression

returns confidence intervals for parameters

ols() ordinary least square estimation

gls() gerneralized least square estimation

lscov() gerneralized least square estimation, with weights

polyfit() regression with for polynomials only

lsqnonneg() regression with positivity constraint

Table 2.4: Commands for linear regression

Command Properties

leasqr() standard non linear regression, Levenberg-Marquardt

see section 2.2.14

fsolve() can be used for nonlinear regression too

nlinfit() nonlinear regression

lsqcurvefit() nonlinear curve fitting

nonlin curvefit() frontend, Octave only

lsqnonlin() nonlinear minimization of residue

nonlin residmin() frontend, Octave only

nlparci() determine confidence intervals of parameters, MATLAB only

expfit() regression with exponential functions

Table 2.5: Commands for nonlinear regression

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 159

2.2.9 Code for the function LinearRegression()

The structure of the function file has the typical structure of a Octave function file.

• The first few lines contain the copyright.

• The first section in the file LinearRegression.m is the documentation. This text will be dis-
played by the command help LinearRegression . A description of the parameters and the
return values is given. Find the result in Figure 2.17.

help LinearRegression
-->
Function File LinearRegression (F, y, w)
[p, e_var, r, p_var, fit_var] = LinearRegression (...)

general linear regression

determine the parameters p_j (j=1,2,...,m) such that the function
f(x) = sum_(j=1,...,m) p_j*f_j(x) is the best fit to the given values
y_i by f(x_i) for i=1,...,n, i.e. minimize
sum_(i=1,...,n)(y_i-sum_(j=1,...,m) p_j*f_j(x_i))ˆ2 with respect to p_j

parameters:
F is an n*m matrix with the values of the basis functions at
the support points. In column j give the values of f_j at the points
x_i (i=1,2,...,n)

y is a column vector of length n with the given values
w is an optional column vector of length n with the weights of
the data points. 1/w_i is expected to be proportional to the
estimated uncertainty in the y values. Then the weighted expression
sum_(i=1,...,n)(w_iˆ2*(y_i-f(x_i))ˆ2) is minimized.

return values:
p is the vector of length m with the estimated values of the parameters
e_var is the vector of estimated variances of the residuals, i.e. the

difference between the provided y values and the fitted function.
If weights are provided, then the product e_var_i * wˆ2_i is assumed to
be constant.

r is the weighted norm of the residual
p_var is the vector of estimated variances of the parameters p_j
fit_var is the vector of estimated variances of the fitted function values f(x_i)

To estimate the variance of the difference between future y values
and fitted y values use the sum of e_var and fit_var

Caution: do NOT request fit_varfor large data sets, as a n*n matrix is generated

see also: ols,gls,regress,leasqr,nonlin_curvefit,polyfit,wpolyfit,expfit

Copyright (C) 2007-2018 Andreas Stahel <Andreas.Stahel@bfh.ch>

Figure 2.17: Documentation of the command LinearRegression()

• Then the function is defined, showing all possible parameters and return values.

• The function verifies that the correct number of arguments (2 or 3) is given, otherwise returns with a
message.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 160

• The correct size of the arguments (F and y) is verified. An error message is displayed if the size of
matrix and vector do not match.

• Finally the necessary computations are carried out.

• The estimated variances of the parameters and the predicted values of y are only computed if the
output is requested. This is implemented by counting the return arguments of the call of the function
(nargout).

The resulting function can be called with 1 to 5 return arguments. The function will return only the requested
values.

• p = LinearRegression(F,y) will return the estimated value of the parameters ~p only .

• [p,e var] = LinearRegression(F,y) will also return the variance of the y–error.

• [p,e var,r,p var,fit var] = LinearRegression(F,y) will return all 5 results.

Find the documentation in Figure 2.17 and the code in Figure 2.18.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 161

LinearRegression.m
function [p, e_var, r, p_var, fit_var] = LinearRegression (F, y, weight)

if (nargin < 2 || nargin >= 4) print_usage (); end%if

[rF, cF] = size (F); [ry, cy] = size (y);
if (rF ˜= ry || cy > 1)
error (’LinearRegression: incorrect matrix dimensions’);

end%if

if (nargin == 2) % set uniform weights if not provided
weight = ones (size (y));

else
weight = weight(:);

end%if

wF = diag (weight) * F; % this efficent with the diagonal matrix
[Q, R] = qr (wF, 0); % estimate the values of the parameters
p = R \ (Q’ * (weight .* y));

%% Compute the residual vector and its weighted norm
residual = F * p - y;
r = norm (weight .* residual);
weight2 = weight.ˆ2;
%% If the variance of data y is sigmaˆ2 * weight.ˆ2, var is an
%% unbiased estimator of sigmaˆ2
var = residual.ˆ2’ * weight2 / (rF - cF);
%% Estimated variance of residuals
e_var = var ./ weight2;

%% Compute variance of parameters, only if requested
if (nargout > 3)
M = R \ (Q’ * diag (weight));
%% compute variance of the fitted values, only if requested
if (nargout > 4)
%% WARNING the nonsparse matrix M2 is of size rF by rF,
%% wehre rF = number of data points
M2 = (F * M).ˆ2;
fit_var = M2 * e_var; % variance of the function values

end%if
p_var = M.ˆ2 * e_var; % variance of the parameters

end%if

end%function

Figure 2.18: Code for the command LinearRegression()

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 162

2.2.10 Example 2: Performance of a linear motor

In his diploma thesis in 2005 Aloı̈s Pfenniger examined the forces of a linear magnetic motor as function
of length and diameter of the coils used to construct the motor. A typical configuration is displayed in
Figure 2.19. With a lengthy computation (approximately 4 hours per configuration) he computed the forces
for 25 different configurations. The result is shown in Figure 2.20.

Figure 2.19: A magnetic linear motor

Octave
PfennigerData;
figure(1)
plot(long(:,1),force(:,1),long(:,2),force(:,2),long(:,3),force(:,3),...

long(:,4),force(:,4),long(:,5),force(:,5));
xlabel(’length of coil’); ylabel(’force’);

figure(2)
mesh(diam,long,force)
xlabel(’diameter’); ylabel(’length’); zlabel(’force’);
view(-30,30);

0 5 10 15 20 25
0

1

2

3

4

5

6

7

length of coil

fo
rc

e

diameterlength

0
1
2
3fo

rc
e4

5
6
7

15
20

25

10
5

4
5

6
7

8

0 2
3

Figure 2.20: Force as function of length of coils, for 5 different diameters

General function

These graphs indicate that the force f might depend linearly on the length l and quadratically on the diam-
eter d.

f(l, d) = p1 + p2 l + p3 l d+ p4 l d
2

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 163

A call of LinearRegression() and Mesh()

Octave
diam1 = diam(:);long1=long(:);force1=force(:);

F = [ones(size(long1)) long1 long1.*diam1 long1.*(diam1.ˆ2)];
coef = LinearRegression(F,force1)

[L,DIA] = meshgrid(2:30,2:0.5:8);
forceA = coef(1)+L.*(coef(2)+coef(3)*DIA+coef(4)*DIA.ˆ2);
figure(2);
mesh(DIA,L,forceA)
xlabel(’diameter of coil’); ylabel(’length of coil’); zlabel(’force’);
view(-10,30);

leads to the approximate function

f(l, d) = −0.0252 + 0.0193 l − 0.0114 l d+ 0.0065 l d2

and the residual of r ≈ 0.065 gives an indication on the size of the error. The results generated by the code

Octave
forceA2 = coef(1)+long.*(coef(4)*diam.ˆ2+coef(3)*diam+coef(2));
maxerror = max(max(abs(forceA2-force)))
maxrelerror = max(max(abs(forceA2-force)./force))

show the maximal error of 0.04 and a relative error of 10% .
If we seek to minimize the relative error we have to replace the call of LinearRegression() by

Octave
[coef,f_var,r,coef_var] = LinearRegression(F,force1,1./sqrt(force1))

and will find a larger maximal error of 0.05 but a smaller relative error of only 3% . The approximate
function is

f(l, d) = −0.00639 + 0.00662 l − 0.00730 l d+ 0.00617 l d2

The contour plot in Figure 2.21 is generated by the code below. The level-curves are 0.5 apart, with values
from 0.5 to 8 .

Octave
contour(DIA,L,forceA,[0.5:0.5:8])
xlabel(’diameter of coil’); ylabel(’length of coil’);

Adapted function

Physical reasoning might make believe that the form of the function should be simpler than in the previous
section. We search a solution of the form

f(l, d) = p1 l + p2 l d
2

and apply a weighted linear regression to keep the relative errors small.

Octave
F = [long1 long1.*(diam1.ˆ2)];
[coef,f_var,r,coef_var] = LinearRegression(F,force1,1./sqrt(force1))

forceB = L.*(coef(1)+coef(2)*DIA.ˆ2);

figure(1);

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 164

2 3 4 5 6 7 8

5

10

15

20

25

30

diameter of coil

le
ng

th
 o

f c
oi

l

Figure 2.21: Level curves for force as function of length and diameter of coil

mesh(DIA,L,forceB)
xlabel(’diameter of coil’); ylabel(’length of coil’); zlabel(’force’);
view(-10,30);
figure(2);
contour(DIA,L,forceA,[0.5:0.5:8])
xlabel(’diameter of coil’); ylabel(’length of coil’);

forceB2 = long.*(coef(1)+coef(2)*diam.ˆ2);
maxrelerror = max(max(abs(forceB2-force)./force))
maxerror = max(max(abs(forceB2-force)))

The graphical result can be seen in Figure 2.22 and the numerical results indicates a solution

f(l, d) = −0.00990 l + 0.00543975 l d2 .

The maximal error is 0.1 and the maximal relative error is 5% . With the above function further computations
can be carried out quite easily.

length of coil

diameter of coil

0

2

fo
rc

e

4

6

8

10

12

6 7 8

10
15

20
25

30

54
5

2 30

(a) the surface

2 3 4 5 6 7 8

5

10

15

20

25

30

diameter of coil

le
ng

th
 o

f c
oi

l

(b) the level curves

Figure 2.22: Computations with simplified function

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 165

2.2.11 Example 3: Calibration of an orientation sensor

Description of the problem

With the help of two accelerations sensors one can determine the vertical (x) and horizontal (y) components
of the gravitational field. Under perfect conditions we would find

x = g cos(α) and y = g sin(α)

where α is the angle by which the device was rotated, clockwise. Typical sensor yield a signal proportional

y

x

Figure 2.23: A slightly rotated direction sensor

to the applied field, but there might be an offset. The sensor might not be perfectly orthogonal and not be
mounted perfectly. Thus we actually receive signals of the type

x = x0 + rx cos(α− φx) and y = y0 + ry sin(α− φy) .

If the orientation of the device is to be determined we have to compute α, given the values of x and y. Use

x− x0

rx
= cos(α− φx) and

y − y0

ry
= sin(α− φy)

where the parameters x0, y0, rx, ry, φx and φy might be different for each sensor.

Solution with the help of linear regression

Assume that the x direction sensor is mounted in the direction given by a vector ~mx. Its sensitivity is given
by ‖~mx‖. Then the signal on the x–sensor is given by

sx = 〈~g , ~mx〉+ cx .

The constant cx corresponds to the offset of the sensor, i.e. the sensors output signal for a zero input. For a
number of given vectors ~gi (1 ≤ i ≤ n) and the resulting signals si we have to minimize the residual vector
~r determined by

gx,1 gy,1 1

gx,2 gy,2 1

gx,3 gy,3 1
...

gx,n gy,n 1

·

mx,1

mx,2

cx

−

s1

s2

s3

...

sn

=

r1

r2

r3

...

rn

.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 166

A linear regression will give the optimal values of ~mx and cx. Similar calculations can be applied for the
y–sensor, leading to the best values for ~my and cy.

Once the parameter values are determined we can compute the signal at the sensors for a given orienta-
tion of the ~g vector by

~s =

(
sx

sy

)
=

[
mx,1 mx,2

my,1 my,2

]
·
(
g1

g2

)
+

(
cx

cy

)
= M · ~g + ~c

This can be solved for the vector g by
~g = M−1 (~s− ~c) .

This is the expression to determine the direction of the ~g vector as function of the signals ~s at the sensors.
The angle β between the x axis and the ~g field the given by

tanβ =
gy
gx
.

The above algorithm is implemented in the code below, using some simulated data.

Octave
OrientationData; %% read the values of alpha, x and y

plot(x,y); axis(’equal’)
gx = cos(al); gy = sin(al);

F = [gx gy ones(size(al))];
[px,xvar,r,pvar] = LinearRegression(F,x);
[py,xvar,r,pvar] = LinearRegression(F,y);

mx = px(1:2); cx = px(3); my = py(1:2); cy = py(3);

m = [mx my]
c = [cx;cy]

xn = F*px; yn = F*py;
hold on
plot(xn,yn,’b’)

This computation leads to Figure 2.24 and the numerical results below.

0 1 2 3 4

0

1

2

3

4

Figure 2.24: Measured data and the fitted circle

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 167

~s =

(
sx

sy

)
=

[
2.40299 −0.19664

0.30382 2.13793

]
·
(
g1

g2

)
+

(
2.1549

1.8899

)
= M · ~g + ~c

The diagonal dominance of this matrix indicates the two sensor have (almost) the same orientation as the
coordinate axis. The numbers show that the x sensor has an offset of x0 ≈ 2.155 and an amplification of
rx =

√
m2

1,x +m2
x,2 ≈ 2.4221 . Similarly we determine the offset of the y–sensor as y0 ≈ 1.89 and an

amplification of ry ≈ 2.15 .
The results also allow to determine the angles of the sensors with respect to their axis. If ~g points in

x–direction then we should obtain a maximal signal on the x sensor and if ~g points in y–direction we expect
no signal on the x sensor. Thus the angle at which the sensor is mounted can be estimated by

φx ≈ arctan

(
mx,1

mx,2

)
and similarly for the y–sensor. The code

Octave
atan2(mx(2),mx(1))*180/pi
atan2(my(2),my(1))*180/pi-90

leads to deviations of φx ≈ 7.21◦ and φy ≈ 5.26◦. The difference of these two angles corresponds to the
angle between the two sensors.

To determine the direction of ~g using the measurements sx and sy we will use

~g = M−1 · (~s− ~c) =

[
0.411365 0.037835

−0.058458 0.462365

]
·
(
sx − 2.1549

sy − 1.8899

)
.

This formula contains all calibration data for this (simulated) sensor.

Estimation of errors

In this subsection we want to estimate the variances of the parameters. The variances of M, x0 and y0 are
directly given by the return parameters of the command p var of LinearRegression(). This might
be sufficient to estimate the measurement errors for the vector ~g.

As a next step we estimate the variances or rx, ry and the two angles φx and φy. Use the notation
p2 = mx,1 and p3 = mx,2 and

rx =
√
m2
x,1 +m2

x,2 =
√
p2

2 + p2
3 ,

∂ rx
∂p2

=
p2

rx
and

∂ ry
∂p3

=
p3

rx

to determine the variance of rx as

V (rx) =
p2

2

r2
x

V (p2) +
p2

3

r2
x

V (p3) .

If V (p2) ≈ V (p3) this simplifies to V (rx) ≈ V (p2). The similar result is valid for V (ry).

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 168

Since ∂
∂x arctanx = 1

1+x2
we conclude

φx = arctan
p3

p2

∂

∂p2
φx =

1

1 + (p3/p2)2

−p3

p2
2

=
−p3

p2
2 + p2

3

=
−p3

r2
x

∂

∂p3
φx =

1

1 + (p3/p2)2

1

p2
=

p2

p2
2 + p2

3

=
p2

r2
x

V (φx) ≈ 1

r4
x

(
p2

3 V (p2) + p2
2 V (p3)

)
σ(φx) =

√
V (φx) ≈ 1

r2
x

√
p2

3 V (p2) + p2
2 V (p3)

and similarly10 for φy. If V (p2) = V (p3) this simplifies drastically to

σ(φx) ≈
√
V (p2)

rx
=
σ(p2)

rx

Repeat the simulation with the data

x0 = 0.5 , y0 = 0 , rx = 1 , ry = 1.1 , φx = 0◦ , φy = 5◦

and add a random perturbation to x and y of the size 0.001 (variance of the simulated values). Then find
with identical computations the approximated values

x0 ≈ 0.5 , y0 ≈ 0 , rx ≈ 1 , ry ≈ 1.1 , φx ≈ 0.01◦ , φy ≈ 4.99◦

and all variances V (pi) are of the order 10−8 and thus the standard deviations of the order 10−4. This is
small compared to the standard deviations of x and y, i.e. σ(x) = σ(y) = 0.001. One can verify that the
standard deviation of φx for the above simulation is approximately 0.013◦ and thus explains the deviation
of φx from zero.

2.2.12 Example 4: Analysis of a sphere using an AFM

In his diploma thesis in 2006 Ralph Schmidhalter used an atomic force microscope (AFM) to examine the
surface of ball bearing balls, produced by the local company Micro Precision Systems (MPS). The AFM
yields a measured height h(x, y) as function of the horizontal coordinates x and y. One can then try to
determine the radius R of the ball with the given data.

Approximation of the sphere

Examine the height of a sphere with radius R and the highest point at (x0 , y0) . Use the Taylor approxi-
mation

√
1 + z ≈ 1 + 1

2 z to express the height h as a linear combination of the four functions 1, x, y and

10

tanφy =
−p2
p3

=⇒
∂
∂p2

φy = 1
1+(p2/p3)2

−1
p3

= −p3
r2x

∂
∂p3

φy = 1
1+(p2/p3)2

+p2
p23

= p2
r2x

=⇒ V (φx) ≈
1

r4x

(
p23 V (p2) + p22 V (p3)

)

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 169

(x2 + y2).

h(x, y) = h0 +
√
R2 − (x− x0)2 − (y − y0)2

= h0 +R

√
1− 1

R2
((x− x0)2 + (y − y0)2)

≈ h0 +R− (x− x0)2

2R
− (y − y0)2

2R

= h0 +R− x2
0 + y2

0

2R
+
x0

R
x+

y0

R
y − 1

2R
(x2 + y2)

= p1 + p2 x+ p3 y + p4 (x2 + y2)

where

p1 = h0 +R− x2
0 + y2

0

2R

p2 =
x0

R

p3 =
y0

R

p4 = − 1

2R

If all values of pi are known we can solve for the parameters of the sphere.

R = − 1

2 p4

x0 = Rp2

y0 = Rp3

h0 = p1 −R+
x2

0 + y2
0

2R

In particular we can read of the estimated radius R of the sphere.

Reading the data, visualize and apply linear regression

The data is measured and then stored in a file SphereData.csv. The first few lines of the file are shown
below. For each of 5 different values of y, ranging from 0 to 14 µm, 256 values of x were examined, also
ranging from 0 to 14 µm.

SphereData.csv
0,0,5.044e-006
5.491e-008,0,5.044e-006
1.098e-007,0,5.042e-006
1.647e-007,0,5.044e-006
2.196e-007,0,5.048e-006
2.745e-007,0,5.05e-006
3.294e-007,0,5.052e-006
3.844e-007,0,5.054e-006
4.393e-007,0,5.055e-006
4.942e-007,0,5.058e-006
5.491e-007,0,5.06e-006
6.040e-007,0,5.06e-006
6.589e-007,0,5.06e-006
...

Each row contains the values of x, y and the height z. These values have to be read into variables in Octave .
We may use the command dlmread() introduced in Section 1.2.8 .

Octave

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 170

ttt = dlmread (’SphereData.csv’);
x = tt(:,1); y = tt(:,2); z = tt(:,3);
N = length(x);

As a next step we generate the plots with the surface and another plot with the level curves. Find the
results in Figure 2.25.

Octave
steps = 5;
xx = reshape(x,N/steps,steps);
yy = reshape(y,N/steps,steps);
zz = reshape(z,N/steps,steps);

figure(1); %% create a contour plot
contour(xx,yy,zz,5);
axis(’equal’)

figure(2); %% create a surface plot
mesh(xx,yy,zz);
axis(’normal’);

y
x

5e-06
5.05e-06

5.1e-06

6e-06
8e-06

1e-05
1.2e-05

4e-06

1.4e-05

5.15e-06
5.2e-06

5.25e-06
5.3e-06

8e-061e-05
1.4e-051.2e-05

6e-064e-062e-06

z

5.35e-06

2e-06
00

(a) the surface

0 2e-06 4e-06 6e-06 8e-06 1e-051.2e-051.4e-05
0

2e-06

4e-06

6e-06

8e-06

1e-05

1.2e-05

1.4e-05

(b) the level curves

Figure 2.25: The surface of a ball and the level curves

A quick look at Figure 2.25 confirms that the top of the ball is within the scanned area. This allows for
a quick check of the validity of the Taylor approximation at the start of this section.

The radius of the ball is approximately 300 µm and since the top is part of the scanned area we may
estimate |x− x0| ≤ 14 µm and |y − y0| ≤ 14 µm. This leads to

z =
1

R2

(
(x− x0)2 + (y − y0)2

)
≤ 0.0044

and since the error of the approximation
√

1 + z ≈ 1 + 1
2 z is typically given by 1

8 z
2 ≤ 2.5 · 10−6.

This approximation error is considerably smaller than the variation in the measured data. This justifies the
simplifying approximation.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 171

Linear regression and an error analysis

The height is written as a linear combination of the functions 1, x, y and x2 + y2 and thus we have to
construct the matrix

F =

1 x1 y1 x2
1 + y2

1

1 x2 y2 x2
2 + y2

2

1 x3 y1 x2
3 + y2

3
...

1 xn yn x2
n + y2

n

.

Then determine the estimates for the parameters pi and their standard deviations ∆pi and thus for the radius
R and the center (x0, y0) .

Octave
F = [ones(size(x)) x y x.ˆ2+y.ˆ2];
[p,e_var,r,p_var] = LinearRegression(F,z);
Radius = -1/(2*p(4))
x0 = Radius*p(2)
y0 = Radius*p(3)

To estimate the standard deviations for R, x0 and y0 we need to apply the rules of error propagation and we
find:

R =
−1

2 p4

∆R ≈
∣∣∣∣∂ R∂p4

∣∣∣∣ ∆p4 =
1

2 p2
4

∆p4 = 2R2 ∆p4

x0 = Rp2

∆x2
0 ≈

(
∂ x0

∂p2
∆p2

)2

+

(
∂ x0

∂R
∆R

)2

= (R∆p2)2 + (p2 ∆R)2

∆x0 ≈
√

(R∆p2)2 + (p2 ∆R)2

∆y0 ≈
√

(R∆p3)2 + (p3 ∆R)2

These results are readily translated into Octave code

Octave
deltaRadius = 2*Radiusˆ2*sqrt(p_var(4))
deltaX0 = sqrt(Radiusˆ2*p_var(2) + p(2)ˆ2*deltaRadiusˆ2)
deltaY0 = sqrt(Radiusˆ2*p_var(3) + p(3)ˆ2*deltaRadiusˆ2)

leading to the results

R±∆R ≈ 296.4± 1.7 µm

x0 ±∆x0 ≈ 8.46± 0.07 µm

y0 ±∆y0 ≈ 8.77± 0.07 µm .

Thus we seem to have a valid measurement of the radius R and the center (x0, y0) of the circle.
Unfortunately different measurements of R lead to vastly different results, thus the problems requires

some further analysis.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 172

Regression with general second order surface

If we replace the approximation of a sphere by general surface of second order

h(x, y) = p1 + p2 x+ p3 y + p4 x
2 + p5 y

2 + p6 x y .

The radii of curvature are determined by the function

f(x, y) = p4 x
2 + p5 y

2 + p6 x y = 〈
(
x

y

)
,

[
p4 p6/2

p6/2 p5

]
·
(
x

y

)
〉 .

If λi and ~ei are the two eigenvalues and eigenvectors of the symmetric matrix

A =

[
p4 p6/2

p6/2 p5

]
.

Then any vector (x, y)T can be written in the form t~ei + s~e2 and

f(x, y) = λ1 t
2 + λ2 s

2

and consequently the two principal radii are given by

R1 =
−1

2λ1
and R2 =

−1

2λ2
.

This leads to Octave code

Octave
F2 = [ones(size(x)) x y x.ˆ2 y.ˆ2 x.*y];
[p,e_var,r,p_var] = LinearRegression(F2,z);
RadiusNew = -0.5./eig([p(4), p(6)/2;p(6)/2,p(5)])

and the results
R1 ≈ 267µm and R2 ≈ 316µm .

We seem to have an enormous difference between the two radii, which does certainly not correspond to
reality. This was confirmed by different measurements. Thus there must be a systematic error in the mea-
surements. A possible candidate is an inadequate calibration of the AFM microscope.

2.2.13 Example 5: A force sensor with two springs

In 2013 Remo Pfaff examined a mechanical spring system consisting of two springs with spring constants
k1 and k2. The second spring will only effect the force if a critical xc position is exceeded. Thus we have
the following form of a force (f) distance (x) relation:

f(x) =

{
a+ k1 x for x ≤ xc
a+ (k1 + k2)x for x ≥ xc

.

Using the offset p1 = a and the spring constants p2 = k1, p3 = k2 this can be written in the form

f(x) = p1 + p2 x+ p3 max{0, x− xc} . (2.4)

For a given data set we can try to find the optimal values for ~p, such that measured data and (2.4) fit together.
Find an example in Figure 2.26. There find the measured data, a poorly fitting model and the best possible
fit for the value of xc = 5.

For a fixed value of xc we use the three basis functions

f1(x) = 1 , f2(x) = x and f3(x) = max{0, x− xc}
and finding the optimal parameters pi in equation (2.4) is a linear regression problem. The code below
generated Figure 2.26 with the raw data, a poorly fitting model f(x) = 10 + 2 · x+ 3 ·max{0, x− 5} and
the best fitting model with for the fixed value of xc = 5.

Octave

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 173

2 4 6 8 10 12 14
0

20

40

60

80

100

position

fo
rc

e

raw data
force shape
fitted data

Figure 2.26: A data set for a two spring force distance system and two models

force = load(’kraftmessung1.dat’); % read the data
dist = load(’wegmessung1.dat’);

xMin = 2; xMax = 13; % select the useful domain
ind = find ((dist>=xMin).*(dist<=xMax));
dist = dist(ind); force = force(ind);

x_c = 5; % choose a horizontal position for the break point
M = ones(length(dist),3);
M(:,2) = dist(:);
M(:,3) = max(0,dist(:)-x_c);
[p,e_var,r,p_var] = LinearRegression(M,force);
[p sqrt(p_var)]
force_fit = M*p;
force_off = 10 + 2*dist + 3*max(0,dist-x_c);

figure(1)
plot(dist, force,’b’, dist,force_off,’m’, dist,force_fit,’r’)
legend(’raw data’,’force shape’,’fitted data’,’location’,’northwest’)
xlabel(’position’); ylabel(’force’)

In the above algorithm we can compute σ, the standard deviation of the residuals, i.e. the difference
between the measurements and the two straight line segments. The smaller the value of σ, the better the fit.
Thus we may consider the position xc of the break as a variable and plot σ as a function of xc, as shown in
Figure 2.27(a).

Octave
x_list = 2:0.5:12;
sigma_list = zeros(size(x_list));

function sigma = EvaluateBreak(x_c,dist,force)
M = ones(length(dist),3);
M(:,2) = dist(:);
M(:,3) = max(0,dist(:)-x_c);
[p,sigma] = LinearRegression(M,force);
sigma = mean(sigma);

endfunction

for k = 1:length(x_list)

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 174

sigma_list(k) = EvaluateBreak(x_list(k),dist,force);
endfor

figure(2)
plot(x_list,sigma_list)
xlabel(’position of break’); ylabel(’sigma’)

2 4 6 8 10 12
0

2

4

6

8

10

position of break

si
gm

a

(a) σ as function of xc

2 4 6 8 10 12 14
0

20

40

60

80

100

position

fo
rc

e

raw data
best fit

(b) optimal regression

Figure 2.27: Optimal values for the two spring system

In Figure 2.27(a) it is clearly visible that there is an optimal value of xc, such that σ is minimized. We
use the command fminunc() to solve the unconstrained minimization problem.

Octave
[x_opt,sigma_opt,Info] = fminunc (@(x_c)EvaluateBreak(x_c,dist,force),5)
M = ones(length(dist),3); % redo the linear regression
M(:,2) = dist(:); % with the optimal value for x_c
M(:,3) = max(0,dist(:)-x_opt);
[p,e_var,r,p_var] = LinearRegression(M,force);
param = [p sqrt(p_var)]
force_fit = M*p;

figure(3)
plot(dist, force, ’b’, dist, force_fit,’r’)
legend(’raw data’,’best fit’)
xlabel(’position’); ylabel(’force’)
-->
x_opt = 6.7645
sigma_opt = 1.2391
Info = 3
param = -6.048381 0.138453

5.252886 0.026087
3.789025 0.038254

Thus the best position of the break point is at xc ≈ 6.76 and the resulting minimal value is σ ≈ 1.24. This
is confimed by Figure 2.27(a). Find the optimal result in Figure 2.27(b). The numerical results

p1

p2

p3

 =

−6.05

5.253

3.789

 and

σ1

σ2

σs

 =

0.14

0.026

0.038

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 175

point towards a best fitting function in equation (2.4)

f(x) = p1 + p2 x+ p3 max{0, x− xc} = −6.05 + 5.253x+ 3.789 max{0, x− 6.76}

2.2.14 Nonlinear Regression, Introduction and a First Example

The commands in the above section are well suited for linear regression problems, but there are many
important nonlinear regression problems. Examine Table 2.6 to distinguish linear and nonlinear regression
problems. Unfortunately nonlinear regression problems are considerably more delicate to work with and
special algorithm are to be used. It is in many problems critical to find good initial guesses for the parameters
to be determined. Linear and nonlinear regression problems may also be treated as minimization problems.
This is often not a good idea, as regression problems have special properties that one can and has to take
advantage of.

function parameters

y = a+mx a, m linear

y = a x2 + b x+ c a, b, c linear

y = a ec x a, c nonlinear

y = d+ a ec x a, c, d nonlinear

y = a ec x a linear

y = a sin (ωt+ δ) a, ω, δ nonlinear

y = a cos (ωt) + b sin (ωt) a, b linear

Table 2.6: Examples for linear and nonlinear regression

Find a list of commands for nonlinear regression in Table 2.5 on page 158. In the next section leasqr()
is used to illustrate the typical process when solving a nonlinear regression problem. Observe that this may
be considerably more difficult than using linear regression.

Nonlinear least square fit with leasqr()

The optimization package of Octave provides the command leasqr()11. It is an excellent implementation
of the Levenberg–Marquardt algorithm. The package also provides one example as leasqrdemo() and
you can examine its source.

As a first example we try to fit a function of the type

f(t) = Ae−αt cos(ω t+ φ)

through a number of measured points (ti, yi). We search the values for the parameters A, α, ω and φ to
minimize ∑

i

|f(ti)− yi|2 .

Since the function is nonlinear with respect to the parametersA, α, ω and φwe can not use linear regression.
In Octave the command leasqr() will solve nonlinear regression problems. As an example we will:

1. Choose ”exact” values for the parameters.
11MATLAB users may use the code provided with the samples codes for the class. Use leasqr.m and dfdp.m .

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 176

2. Generate normaly distributed random numbers as perturbation of the ”exact” result.

3. Define the appropriate function and generate the data.

Find the code below and the generated data points are shown in Figure 2.28, together with the best possible
approximation by a function of the above type.

Octave
Ae = 1.5; ale = 0.1; omegae = 0.9 ; phie = 1.5;
noise = 0.1;
t = linspace(0,10,50)’; n = noise*randn(size(t));
function y = f(t,p)
y = p(1)*exp(-p(2)*t).*cos(p(3)*t + p(4));

endfunction
y = f(t,[Ae,ale,omegae,phie])+n;
plot(t,y,’+;data;’)

You have to provide the function leasqr() with good initial estimates for the parameters. Examining
the selection of points in Figure 2.28 we estimate

• A ≈ 1.5: this might be the amplitude at t = 0.

• α ≈ 0: there seems to be very little damping.

• ω ≈ 0.9: the period seems to be slightly larger than 2π, thus ω slightly smaller than 1.

• ψ ≈ π/2: the graph seems to start out like − sin(ω t) = cos(ω t+ π
2)

The results of your simulation might vary slightly, caused by the random numbers involved.

Octave
A0 = 2; al0 = 0; omega0 = 1; phi0 = pi/2;
[fr,p] = leasqr(t,y,[A0,al0,omega0,phi0],’f’,1e-10);
p’

yFit = f(t,p);
plot(t,y,’+’, t,yFit)
legend(’data’,’fit’)
-->
p = 1.523957 0.098949 0.891675 1.545294

The above result contains the estimates for the parameters. For many problems the deviations from
the true curve are randomly distributed, with a normal distribution, with small variance. In this case the
parameters are also randomly distributed with a normal distribution. The diagonal of the covariance matrix
contains the variances of the parameters and thus we can estimate the standard deviations by taking the
square root.

Octave
pkg load optim % load the optimization package in Octave
[fr,p,kvg,iter,corp,covp,covr,stdresid,Z,r2] =...

leasqr(t,y,[A0,al0,omega0,phi0],’f’,1e-10);
pDev = sqrt(diag(covp))’
-->
pDev = 0.0545981 0.0077622 0.0073468 0.0307322

With the above results we obtain Table 2.7. Observe that the results are consistent, i.e. the estimated
parameters are rather close to the ”exact” values. To obtain even better estimates, rerun the simulation with
less noise or more points.

The above algorithm is applicable if we have only very few periods of the signal to examine. For a
longer signal it typically fails miserably. Consider Fourier methods or ideas examined in Section 2.7 on a
vibrating cord.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 177

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1
data
fit

Figure 2.28: Least square approximation of a damped oscillation

parameter estimated value standard dev. ”exact” value

A 1.52 0.055 1.5

α 0.099 0.0078 0.1

ω 0.892 0.0073 0.9

φ 1.54 0.031 1.5

Table 2.7: Estimated and exact values of the parameters

Nonlinear Regression with fsolve()

The command fsolve() is used to solve systems of nonlinear equations, see Section 1.3.3. Assume that
a function depends on parameters ~p ∈ Rm and the actual variable x, i.e.

y = f(~p , x) .

A few (n) points are given, thus ~x ∈ Rn, and the same number of values of ~yd ∈ Rn are measured. For
precise measurements we expect ~yd ≈ ~y = f(~p , ~x). Then we can search for the optimal parameters ~p ∈ Rm
such that

f(~p , ~x)− ~yd = ~0 .

If m < n this is an over determined system of n equation for the m unknowns ~p ∈ Rm. In this case the
command fsolve() will convert the system of equations to a minimization problem

‖f(~p , ~x)− ~yd‖ is minimized with respect to ~p ∈ Rm .

It is also possible12 to estimate the variances of the optimal parameters, using the techniques from Sec-
tion 2.2.3.

As an illustrative example some data y = exp(−0.2x) + 3 are generated and then some noise is added.
As initial parameters we use the naive guess y(x) = exp(0 · x) + 0. The best possible fit is determined and
displayed in Figure 2.29.

Octave
12Ask this author for the sample code NLRegTest.m.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 178

b0 = 3; a0 = 0.2; % chose the data
x = 0:.5:5;
noise = 0.1 * sin (100*x);
y = exp (-a0*x) + b0 + noise;

[p, fval, info, output] = fsolve (@(p) (exp(-p(1)*x) + p(2) - y), [0, 0]);
plot(x,y,’+’, x,exp(-p(1)*x)+p(2))

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0 1 2 3 4 5

Figure 2.29: Nonlinear least square approximation with fsolve()

2.2.15 Nonlinear Regression with a Logistic Function

Many growth phenomena can be described by rescaling and shifting the basic logistic13 growth function
exp(x)

1+exp(x) = 1
1+exp(−x) . Thus examine the logistic function

f(x) = p1 + p2
exp(p3 (x− p4))

1 + exp(p3 (x− p4))
(2.5)

with the four parameters pi, i = 1, 2, 3, 4. An example is shown in Figure 2.30. For the given data points (in
red) the optimal values for the parameters pi have to be determined. This is a nonlinear regression problem.

An essential point for a nonlinear regression problems is to find good estimates for the values of the
parameters. Thus we examine the graph of the logistic function (2.5) carefully:

• At the midpoint x = p4 find f(p4) = p1 + p2
1
2 .

• For the extreme values observe limx→−∞ f(x) = p1 and limx→+∞ f(x) = p1 + p2.

• The maximal slope is at the midpoint and given by14 f ′(p4) = p2 p3
4 .

Assuming p2, p3 > 0 we can now find good estimates for the parameter values.

• p1 offset: minimal height of the data points

• p2 amplitude: difference of maximal and minimal value

• p3 slope: the maximal slope is m = p2 p3
4 and thus p3 = 4m

p2

• p4 midpoint: average of x values

Based on this use the code below to determine the estimated values.

13Also called sigmoid function
14For g(x) = exp(x)

1+exp(x)
use g′(0) = 1

4
and then some rescaling to determine f ′(p4).

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 179

-2 0 2 4 6 8 10
45

50

55

60

65

distance

fr
eq

ue
nc

y

Figure 2.30: Data points and the optimal fit by a logistic function

x_data = [0 1 2 3 4 5 6 7 8]’;
y_data = [46.8 47.2 48.8 51.8 55.7 58.6 61.8 63 63.8]’;

p1 = min(y_data);
p2 = max(y_data)-min(y_data);
p3 = 4*max(diff(y_data)./diff(x_data))/p2;
p4 = mean(x_data);

This result can now be used to apply a nonlinear regression, using the functions leasqr(), fsolve()
or lsqcurvefit().

Solution by leasqr()

To determine the optimal values of the parameters:

• Define the logistic function, with the parameters pi.

• Call leasqr(), returning the values and the covariance matrix. On the diagonal of the covariance
matrix find the estimated variances of the parameters pi.

Find the result in Figure 2.30. As numerical result the optimal values of pi and their standard deviations are
shown. In addition the number of required iterations and the resulting residual (

∑n
i=1(f(xi) − yi)2)1/2 is

displayed.

f = @(x,p) p(1) + p(2)*exp(p(3)*(x-p(4)))./(1+exp(p(3)*(x-p(4))));
[fr, p,˜, iter,˜, covp] = leasqr(x_data,y_data,[p1,p2,p3,p4],f);
optimal_values = [p’;sqrt(diag(covp))’]
iter_residual = [iter,norm(fr-y_data)]

figure(1); plot(x,f(x,p),x_data,y_data,’or’)
xlabel(’distance’); ylabel(’frequency’)

-->
optimal_values = 45.931829 18.428664 0.838742 3.932786

0.380858 0.645210 0.062353 0.080993
iter_residual = 4 0.64832

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 180

Solution by fsolve()

The command fsolve() is used to solve systems of nonlinear equations. If more data points than param-
eters are given (more equations than unknowns), then a nonlinear least square solution is determined. Thus
we can solve the above problem using this command.

f2 = @(p) p(1) + p(2)*exp(p(3)*(x_data-p(4)))./(1+exp(p(3)*(x_data-p(4))))-y_data;
[p,fval] = fsolve(f2,[p1,p2,p3,p4]);
optimal_values = p
residual = norm(fval)
-->
optimal_values = 45.93183 18.42866 0.83874 3.93279
residual = 0.64832

It is no surprise that the same result is found. fsolve() does not estimate standard deviations for the
parameters. One might use nlparci() to determine confidence intervals.

Solution by lsqcurvefit()

With the command lsqcurvefit() the method of nonlinear least squares can be used to fit a function to
data points. A solution for the above problem is given by

f3 = @(p,x_data) p(1) + p(2)*exp(p(3)*(x_data-p(4)))./(1+exp(p(3)*(x_data-p(4))));
[p,residual] = lsqcurvefit(f3,[p1,p2,p3,p4],x_data,y_data)
optimal_values = p’
residual = sqrt(residual)
-->
optimal_values = 45.93183 18.42866 0.83874 3.93279
residual = 0.64832

It is no surprise that the same result is found. lsqcurvefit() does not estimate standard deviations for
the parameters.

2.2.16 Nonlinear Regression with an arctan Function

Similar to the previous section on can use a rescaled and shifted arctan function to describe a similar curve.
The function for the regression is thus given by

f(x) = p1 + p2 arctan(p3 (x− p4)) (2.6)

Examine for this function we observe:

• At the midpoint x = p4 find f(p4) = 0.

• For the extreme values limx→−∞ f(x) = −π
2 and limx→+∞ f(x) = +π

2 and

• The maximal slope is at the the midpoint and given by f ′(p4) = p2 p3.

Assuming p2, p3 > 0 we can now find good estimates for the parameter values.

• p1 offset: average height of the data points

• p2 amplitude: difference of maximal and minimal value, divided by π.

• p3 slope: the maximal slope is m = p2 p3 and thus p3 = m
p2

• p4 midpoint: average of x values

Based on this use the code below to determine the estaimated values.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 181

p1 = mean(y_data)
p2 = (max(y_data)-min(y_data))/pi
p3 = max(diff(y_data)./diff(x_data))/p2
p4 = mean(x_data)

This result can now be used to apply a nonlinear regression, using the functions leasqr(), fsolve()
or lsqcurvefit().

Solution by leasqr()

With the code below the optimal values for the parameters pi and the estimated standard deviations are
computed. In addition the number of required iterations and the resulting residual are shown. Find the result
in Figure 2.31.

f = @(x,p) p(1) + p(2)*atan(p(3)*(x-p(4)));
[fr, p,˜, iter,˜, covp] = leasqr(x_data,y_data,[p1,p2,p3,p4],f);
optimal_values = [p’;sqrt(diag(covp))’]
iter_residum = [iter,norm(fr’-y_data)]

x = linspace(-2,10);
figure(1)
plot(x,f(x,p),x_data,y_data,’or’)
xlabel(’distance’); ylabel(’frequency’)
-->
optimal_values = 55.112684 7.731968 0.521908 3.917840

0.244363 0.481495 0.065494 0.106043
iter_residum = 4 0.79932

-2 0 2 4 6 8 10
45

50

55

60

65

distance

fr
eq

ue
nc

y

Figure 2.31: Data points and the optimal fit by an arctan function

The residual norm of 0.799 for the arctan function is larger than the residual norm of 0.648 for the
approximation by a logistic function. Thus the approximation by an arctan function is slightly worse than
the logistic approach.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 182

Solution by fsolve()

We may again of fsolve() for an over determined system to apply the nonlinear regression algorithm.

f2 = @(p) p(1) + p(2)*atan(p(3)*(x_data-p(4)))-y_data;
[p,fval] = fsolve(f2,[p1,p2,p3,p4]);
optimal_values = p
residal = norm(fval)
-->
optimal_values = 55.11278 7.73150 0.52198 3.91788
residal = 0.79932

It is no surprise that the same result is found. fsolve() does not estimate standard deviations for the
parameters.

Solution by lsqcurvefit()

With the command lsqcurvefit() the method of nonlinear least squares can be used to fit a function to
data points. A solution for the above problem is given by

f3 = @(p,x_data) p(1) + p(2)*atan(p(3)*(x_data-p(4)));
[p,residual] = lsqcurvefit(f3,[p1,p2,p3,p4],x_data,y_data)
optimal_values = p’
residual = sqrt(residual)
-->
optimal_values = 55.11268 7.73197 0.52191 3.91784
residual = 0.79932

It is no surprise that the same result is found. lsqcurvefit() does not estimate standard deviations for
the parameters.

2.2.17 Approximation by a Tikhonov Regularization

A different approach to generate a function fitting the given data points (xi, yi) is given by a Tikhonov
regularization. For given parameters λ1 ≥ 0 and λ2 ≥ 0 find the function u(x) minimizing the functional

F (λ1, λ2) =
n∑
i=1

(u(xi)− yi)2 + λ1

∫ 10

−2
(u′(x))2 dx+ λ2

∫ 10

−2
(u′′(x))2 dx .

Your author15 has an Octave command solving this problem and the code below leads to Figure 2.32. The
shape of the solution can be modified by changing the values of λ1 = 0.1 and λ2 = 0.03 . The residual of
0.413 is smaller than the residuals by the nonlinear regression approaches. An additional advantage of the
regularization approach is that one does not have to choose the type of function, i.e. arctan or logistic.

x_data = [0 1 2 3 4 5 6 7 8];
y_data = [46.8 47.2 48.8 51.8 55.7 58.6 61.8 63 63.8];

F1.lambda = 1e-1;
F2.lambda = 3e-2;
[x,y] = regularization([x_data’,y_data’],[-2,10],100,F1,F2);

figure(1)
plot(x,y,x_data,y_data,’or’)

15Additional documentation is available on request.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 183

xlabel(’distance’); ylabel(’frequency’)

y_fit = interp1(x,y,x_data);
residual = norm(y_fit-y_data)
-->
residual = 0.41310

-2 0 2 4 6 8 10
45

50

55

60

65

distance

fr
eq

ue
nc

y

Figure 2.32: Data points and the optimal fit by a Tikhonov regularization

2.2.18 A Real World Nonlinear Regression Problem

For her Bachelor project Linda Welter had to solve a nontrivial nonlinear regression problem. The dependent
variable was assumed to be the sum of a linear function and a trigonometric function with exponentially
decaying amplitude. For a given set of points examine a function of the form

y = f(t) = p1 · exp(−p2 · t) · cos(p3 · t+ p4) + p5 + p6 · t

and one has to find the optimal values for the six parameters pi. At first sight this is a straight forward
application for the function leasqr(), presented in the previous section. Thus we run the code below16.

Octave
ReadData % read the data

function y = f_exp_trig_lin(t,p)
y = p(1)*exp(-p(2)*t).*cos(p(3)*t + p(4)) + p(5) + p(6)*t;

endfunction

p_in = zeros(6,1); % guess for initial values for parameters
[fr,p] = leasqr(t,y,p_in,’f_exp_trig_lin’,1e-8);

y_fit1 = f_exp_trig_lin(t,p);
figure(1)
plot(t,y,t,y_fit1)
xlabel(’t’); legend(’y’,’y_{fit1}’); grid on

16The presented code works with Octave , for MATLAB minor adaptations are required.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 184

10 15 20 25 30 35 40
550

560

570

580

590

t

y

y_fit1

y_fit2

Figure 2.33: Raw data and two failed attempts of nonlinear regression

This first result (green curve in Figure 2.33) is clearly of low quality and we try to improve by using
better initial estimates for the parameters. Examine the graph carefully and estimate the values, leading to
the code and second regression result (red) in Figure 2.33.

Octave
p_in = [1,0,0.5,0,570,0]; % guess for initial values for parameters
[fr,p] = leasqr(t,y,p_in,’f_exp_trig_lin’,1e-8);
y_fit2 = f_exp_trig_lin(t,p);
figure(1)
plot(t,y,t,y_fit1,t,y_fit2)
xlabel(’t’); legend(’y’,’y_{fit1}’,’y_{fit2}’); grid on

To improve upon the above result we need a plan on how to proceed, and then implement the plan.

1. First determine a good estimate on the linear function by fitting a straight line through those points.

2. The difference of the straight line and the given data should be a trigonometric function with expo-
nentially decaying amplitude. Use a nonlinear regression to determine those parameters.

3. Use the above parameter results to run a full nonlinear regression, but now with good initial guesses.

Now we implement and test the above, step by step.

1. Using LinearRegression() we fit a straight line through the given data points.

Octave
%%% fitting a straight line
F = ones(length(t),2); F(:,2) = t;
pLin = LinearRegression(F,y)
yLin = F*pLin;

figure(2)
plot(t,y,’+-’,t,yLin)
xlabel(’t’); legend(’y’,’yLin’); grid on
-->
pLin = 556.84180

0.59710

Thus the best possible line has a slope of approximately 0.6 and a y–intercept at y ≈ 557. This is
confirmed by Figure 2.34(a) .

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 185

10 15 20 25 30 35 40
550

560

570

580

590

t

y

y_Lin

(a) the straight line fit

10 15 20 25 30 35 40
-20

-10

0

10

20

30

t

y-y_Lin

y_Fit

(b) exponential regression to difference

Figure 2.34: Regression by a straight line and an exponentially decaying trigonometric function

2. Now we examine the difference of the optimal straight line and the actual data. Using a new function
and leasqr() we find the best fitting function. The initial parameters are estimated by using Fig-
ure 2.34(b) . Find the estimated standard deviations in the square roots of the diagonal elements of
the covariance matrix.

Octave
% nonlinear regression with leasqr
AEst = 50; alphaEst = log(16/12)/14; omegaEst = 0.5 ; phiEst = -15;

function y = f_exp_trig(t,p)
y = p(1)*exp(-p(2)*t).*cos(p(3)*t + p(4));

endfunction

[fr,p,kvg,iter,corp,covp] = ...
leasqr(t,y-yLin,[AEst,alphaEst,omegaEst,phiEst],’f_exp_trig’,1e-4);

pVal = p’
pDev = sqrt(diag(covp))’
-->
pVal = 51.054390 0.060480 0.476920 -12.902044
pDev = 8.6404054 0.0078864 0.0082692 0.1842718

The above implies
y(t)− ylin(t) ≈ 51 exp(−0.06 t) · cos(0.477 t− 13)

The estimated standard deviations of the parameters are rather large, e.g. for the initial amplitude
51.1± 8.6 . Now we can generate Figure 2.34(b) .

Octave
yFit = f_exp_trig(t,p);

figure(3)
plot(t,y-yLin,’+-’,t,yFit)
xlabel(’t’); legend(’y-yLin’,’yFit’); grid on

To verify the above result, we rerun leasqr() using the previously obtained parameters as starting
values and asking for more accuracy. The result should not differ drastically from the above. This is
confirmed by the following code and result.

Octave

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 186

[fr,p,kvg,iter,corp,covp,covr,stdresid,Z,r2] =...
leasqr(t,t-tLin,pVal,’f_exp_trig’,1e-8);

pVal = p’
pDev = sqrt(diag(covp))’
-->
pVal = 51.011746 0.06044 0.477038 -12.904584
pDev = 8.630768 0.00788 0.008269 0.184299

3. Now we have good estimates for all parameters and we are ready to rerun the original, fully nonlinear
regression.

Octave
pNew = [p;pLin]; % combine the two parameter sets
[fr,p2,kvg,iter,corp,covp] = leasqr(t,y,pNew,’f_exp_trig_lin’,1e-8);
p2Val = p2’
p2Dev = sqrt(diag(covp))’
-->
p2Val = 56.050 0.064194 0.48503 -13.162 550.00 0.83888
p2Dev = 7.962 0.006757 0.00781 0.177 1.54 0.05403

y = f(t) = 56 · exp(−0.064 · t) · cos(0.485 · t− 13.16) + 550 + 0.84 · t

The result in Figure 2.35 is obviously superior to the naive attempt shown in Figure 2.33 .

Octave
yFit2 = f_exp_trig_lin(t,p2);
figure(4)
plot(t,y,’+-’,t,yFit2)
xlabel(’t’); legend(’y’,’yFit2’); grid on

10 15 20 25 30 35 40
550

560

570

580

590

t

y

y_Fit2

Figure 2.35: The optimal fit, using nonlinear regression

This example clearly illustrates that one of the most important aspect of nonlinear regression problems
is to have good estimates for the parameters to be determined. If you start a fishing expedition in the dark
for too many parameters, you will fail.

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 187

2.2.19 New Functions lsqcurvefit and lsqnonlin

The above nonlinear problems can probably be solved by the MATLAB/Octave functions lsqcurvefit()
and/or lsqnonlin() too. For a project I used nlparci() to determine the confidence interval, this
function is not available yet in Octave .

In Octave those two functions use the more general functions nonlin curvefit and nonlin residmin.

2.2.20 List of codes and data files

In the previous section the codes and data files in Table 2.8 were used.

file name function

LinearRegression.m function to perform general linear regression

LinearRegression1.m temporary code for linear regression

testLine.m do a linear regression for a straight line

NSHU550ALEDwide.pdf data sheet for an LED

ReadGraph.m script file to grab data for LED from PDF file

LEDdata.m script file with the intensity data for above LED

FitLEDIntensity1.m first attempt to analyze intensity

FitLEDIntensity2.m with rescaling

FitLEDIntensity3.m even function with rescaling

PfennigerData.m script file with the data on the linear motor

Pfenniger1.m script file for a first regression

Pfenniger2.m improved script file for the regression

OrientationTest.m script file for calibration

OrientationData.m data set 1 for the calibration

OrientationData2.m data set 2 for the calibration

SphrereRegression.m script file for radius of sphere

SphereData.csv data file for radius of sphere

Pfaff.m code for the two spring system

wegmessung1.dat data the two spring system

kraftmessung1.dat data the two spring system

Welter.m script file for the real world, nonlinear regression

ReadData.m script file to read data for the above

Matlab directory with MATLAB compatible files

Table 2.8: Codes and data files for section 2.2

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 188

2.2.21 Exercises

The exercises

Exercise 2.2–1 Linear regression
If a straight line y = a0 + a1 x should pass through the points

x = 0.0 1.0 2.0 3.5 4.0

y = −0.5 1.0 2.4 2.0 3.1

then one has to construct the matrix

X =

1 0.0

1 1.0

1 2.0

1 3.5

1 4.0

and ~y =

−0.5

1.0

2.4

2.0

3.1

and then solve the linear system

XT ·X
(
a0

a1

)
= XT · ~y

(a) Plot the given data points

(b) Construct the matrix X and the vector ~y

(c) Solve for the parameters a0 and a1

(d) Generate a plot with the given data points and the regression by a straight line

Exercise 2.2–2 Example of linear regression by parabola
If a parabola y = a0 + a1 x+ a2 x

2 should pass through the points

x = 0.0 1.0 2.0 3.5 4.0

y = −0.5 1.0 2.4 2.0 3.1

then one has to construct the matrix

F =

1 0.0 0.02

1 1.0 1.02

1 2.0 2.02

1 3.5 3.52

1 4.0 4.02

and ~y =

−0.5

1.0

2.4

2.0

3.1

and then solve the linear system

FT · F
(
a0

a1

)
= FT · ~y

(a) Plot the given data points

(b) Construct the matrix F and the vector ~y

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 189

(c) Solve for the parameters a0 and a1

(d) Generate a plot with the given data points and the regression by a parabola

Exercise 2.2–3 General linear regression by parabola
When trying to fit a parabola

y = p1 · 1 + p2 · x+ p3 · x2

through a given set of points (xi , yi) for 1 ≤ i ≤ n we end up solving a system of linear equations

X · ~p = ~b

Determine the matrix X and the vector~b as function of the given values xi and yi.

Exercise 2.2–4 Nova Energy
In 2004 the company Nova Energy was celebrating the event of 100 communities joining their program to
conserve energy. Find the data below.

year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

number of cities 1 3 5 11 20 35 48 67 84 102

number of people (1000) 7.5 51 177 299 512 870 1343 1530 1750 1950

Create graphical representations of

(a) the number of cities in the program as function of time

(b) the number of people in the program as function of time

(c) the average size of the cities in the program as function of time

Exercise 2.2–5 Nova Energy, linear
Assume that number of cities in exercise 4 is a linear function of time.

(a) Use linear regression to determine the equation of the straight line. It is advisable to choose the time
t = 0 in the year 1994.

(b) Give a graphical representation of the data and the regression line.

(c) There are 2900 communities in Switzerland. Use the above straight line to predict by when all cities
will have joined the program.

Exercise 2.2–6 Nova Energy, quadratic
Assume that number of cities in exercise 4 is a quadratic function of time.

(a) Use linear regression to determine the equation of the parabola. It is advisable to choose the time
t = 0 in the year 1994.

(b) Give a graphical representation of the data and the regression parabola.

(c) There are 2900 communities in Switzerland. Use the above straight line to predict by when all cities
will have joined the program.

Exercise 2.2–7 Nova Energy, exponential
Assume that number of cities in exercise 4 is an exponential function of time. Thus we find

cities(t) = A eα t

ln(cities(t)) = ln(A) + α t

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 190

(a) Compute the logarithm of the number of cities. Then use linear regression to determine the equation
of the straight line, i.e. the values of ln(A) and α. It is advisable to choose the time t = 0 in the year
1994.

(b) Give a graphical representation of the data and the exponential curve.

(c) There are 2900 communities in Switzerland. Use the above straight line to predict by when all cities
will have joined the program.

Exercise 2.2–8 Nova Energy, number of inhabitants
Redo the above three exercises, but use the number of inhabitants instead of the number of communities.
Try to find an explanation for some of the striking differences. Assume that there are 7’000’000 inhabitants
in Switzerland.

Exercise 2.2–9 Nonlinear Regression with fsolve()
Solve the nonlinear regression example in Section 2.2.14 with the help of fsolve(), i.e. use Sec-
tion 2.2.14.

The answers

Exercise 2.2–1 Linear regression
The solution below is generated with Octave , the MATLAB solution is very similar. The correct values

are a0 = 0.025 and a1 = 0.75.

Octave
x = [0.0 1.0 2.0 3.5 4.0]’
y = [-0.5 1.0 2.4 2.0 3.1]’
plot(x,y)

X = [ones(length(x),1) x]
a = (X’*X)\(X’*y)

xFit = linspace(-1,5,21)’;
yFit = a(1)*ones(length(xFit),1)+a(2)*xFit;

plot(x,y,"+",xFit,yFit)

Exercise 2.2–2 Example of linear regression by parabola
The solution below is generated with Octave , the MATLAB solution is very similar. The correct values

are a0 = −0.45298, a1 = 1.74037 and a2 = −0.24087.

Octave
x = [0.0 1.0 2.0 3.5 4.0]’
y = [-0.5 1.0 2.4 2.0 3.1]’
F = [ones(length(x),1) x x.ˆ2]
a = (F’*F)\(F’*y)

xFit = linspace(-1,5,21)’;
yFit = a(1)*ones(length(xFit),1)+a(2)*xFit +a(3)*xFit.ˆ2;

plot(x,y,"+",xFit,yFit)

Exercise 2.2–3 General linear regression by parabola
To examine is the system

X · p = FT · F · ~p = FT · ~y

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 191

where

F =

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

...

1 xn x2
n

Thus the result is given by

X = FT · F

=

1 1 1 · · · 1

x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n

 ·

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

...

1 xn x2
n

=

n

∑n
i=1 xi

∑n
i=1 x

2
i∑n

i=1 xi
∑n

i=1 x
2
i

∑n
i=1 x

3
i∑n

i=1 x
2
i

∑n
i=1 x

3
i

∑n
i=1 x

4
i

 =

n Sx Sxx

Sx Sxx Sxxx

Sxx Sxxx Sxxxx

and

FT · ~y =

1 1 1 · · · 1

x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n

 ·

y1

y2

y3

...

yn

=

∑n

i=1 yi∑n
i=1 xi yi∑n
i=1 x

2
i yi

 =

Sy

Sxy

Sxxy

Thus the system to be solved is
n Sx Sxx

Sx Sxx Sxxx

Sxx Sxxx Sxxxx

 ·

p1

p2

p3

 =

Sy

Sxy

Sxxy

Exercise 2.2–5 Nova Energy, linear

(a) cities(t) = −14.5 + 11.6 t where t = year− 1994

(b) a graphic

(c) at t = 251, i.e. in the year 2245

Exercise 2.2–6 Nova Energy, quadratic

(a) cities(t) = 0.136 + 0.577 t+ 1.22 t2 where t = year− 1994

(b) a graphic

(c) at t = 48, i.e. in the year 2042

SHA1 10-9-20

2.2. LINEAR AND NONLINEAR REGRESSION 192

Exercise 2.2–7 Nova Energy, exponential

(a) ln(A) = 0.618 and α = 0.502. Thus cities(t) = 1.85 + e0.502 t.

(b) a graphic

(c) at t = 14.6, i.e. in the year 2008

Exercise 2.2–9 Nonlinear Regression with fsolve()

Octave
Ae = 1.5; ale = 0.1; omegae = 0.9 ; phie = 1.5;
noise = 0.1;
t = linspace(0,10,50)’; n = noise*randn(size(t));
function y = f(t,p)
y = p(1)*exp(-p(2)*t).*cos(p(3)*t + p(4));

endfunction
y = f(t,[Ae,ale,omegae,phie]) + n;
plot(t,y,’+;data;’)

A0 = 2; al0 = 0; omega0 = 1; phi0 = pi/2;
% [fr,p]= leasqr(t,y,[A0,al0,omega0,phi0],’f’,1e-10); p’
[p, fval, info, output] = fsolve (@(p)(f(t,p)- y), [A0,al0,omega0,phi0]);
p
yFit = f(t,p);
plot(t,y,’+;data;’, t,yFit,’;fit;’)

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 193

2.3 Regression with Constraints

2.3.1 Example 1: Geometric line fit

The Hessian form of the equation of a straight line is given by

n1 x+ n2 y + d =

(
n1

n2

) (
x

y

)
+ d = ~n · ~x+ d = 0 where ‖~n‖ = 1

For a number of points (xi , yi) for 1 ≤ i ≤ n the signed distance ri of these points from the line is given
by

ri =

(
n1

n2

) (
x

y

)
+ d

Thus if we try to find the straight line such that the sum of the squared distances to the points is minimal we
end of with the problem to minimize the length of the vector ~r. This leads to the formulation in Figure 2.36.

minimize length of

~r =

r1

r2

...

rn

 =

1 x1 y1

1 x2 y2

...

1 xn yn

d

n1

n2

subject to the constraint ‖~n‖2 = 1

x

y
r4

r3

r2

r1

Figure 2.36: A straight line with minimal distance from a set of given points

We will first present a general approach to solve this type of problem and then come back to this example,
with a solution.

2.3.2 An algorithm for minimization problems with constraints

Most of the results in this section are based on [GandHreb95, §6].

Description of the algorithm

For a n×m matrix F with n > m minimize the length of the vector ~r where

F · ~p = ~r subject to ‖~n‖ = 1 where ~p =

(
~d

~n

)
∈ Rm1+m2 (2.7)

The algorithm is based on a QR factorization and one might consult Section 2.2.6.

F · ~p = Q ·R · ~p

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 194

The matrix R may be written in block form

R =

[
Ru

0

]
=

R1,1 R1,2

0 R2,2

0 0

where R1,1 and R2,2 are upper triangular matrices. This leads to a new formulation of the minimization
problem. For each of the expressions below the length of the vector on the RHS has to be minimized subject
to the constraint ‖~n‖ = 1.

F · ~p = Q ·R · ~p = ~r

R · ~p = QT · ~r = ~z[
Ru

0

]
·
(

~d

~n

)
=

~zu

~zl
~0

[

R1,1 R1,2

0 R2,2

]
·
(

~d

~n

)
=

(
~zu

~zl

)
For a given vector ~n the first set of equations in

R1,1 · ~d = −R1,2 ~n+ ~zu

R2,2 · ~n = ~zl

can be solved such that ~zu = ~0. Thus we have to minimize the length of ~zl by finding the best vector ~n. This
subproblem can be solved with two different algorithms.

• Eigenvalue computation
Examine the gradient of

‖~zl‖2 = 〈R2,2 · ~n , R2,2 · ~n〉 = 〈RT
2,2 ·R2,2 · ~n , ~n〉

to realize that the smallest eigenvalue of the symmetric matrix

RT
2,2 ·R2,2

gives the minimal value for ‖~zl‖2 and the corresponding eigenvector equals the vector ~n for which the
minimum is attained.

• Singular value decomposition
The matrix R2,2 can be decomposed as product of three matrices

R2,2 = U ·

σ1

σ2

. . .

σk

 ·VT where σ1 ≥ σ2 ≥ . . . ≥ σk > 0

with orthogonal matrices U and V. The smallest value σk in the diagonal matrix gives the minimal
value of the function to be minimized and the last column of V equals the vector ~n for which the
minimum is attained.

Using this vector ~n and
R1,1 · ~d = −R1,2 ~n

we find the optimal solution of the problem in equation (2.7).

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 195

Weighted regression with constraint

The result in the previous section can be modified to take weights of the different points into account. Instead
of minimizing the standard norm

‖~r‖2 =
n∑
i=1

r2
i

we want to minimize the weighted norm

‖W · ~r‖2 =
n∑
i=1

√
wi r

2
i

Using the weight matrix W and the QR factorization of W · F the algorithm can be modified.

F · ~p = ~r weighted length to be minimized

W · F · ~p = W · ~r standard length to be minimized

Q ·R · ~p = W · ~r standard length to be minimized

R · ~p = QT ·W · ~r = ~z[
R1,1 R1,2

0 R2,2

]
·
(

~d

~n

)
=

(
~zu

~zl

)

The remaining part of the algorithm is unchanged. The final code can be found in Figure 2.37.

2.3.3 Example 1: continued

Now we use the presented algorithm to solve the problem of fitting a straight line through some given points.
The file LineData.m contains x and y values of a few points and with the code below we load the

data and display the result.

Octave
LineData;
n = length(xi);
F1 = [ones(n,1) xi yi];
[p1,yvar,residual1orthogonal] = RegressionConstraint(F1,2);
p1 % display the optimal parameters
x = -2:0.1:2;
y = -(p1(1)+p1(2)*x)/p1(3);
plot(xi,yi,’*r’,x,y,’g’);

The equation of the line with minimal orthogonal distances is determined as

0.34978 + 0.70030 x− 0.71385 y = 0

or in the standard form
y = 0.49000 + 0.98101 x

We can also perform a standard linear regression. It will minimize the sum of the squares of the vertical
distances.

Octave

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 196

RegressionConstraint.m
function [p,y_var,r] = RegressionConstraint(F,nn,weight)

% [p,y_var,r] = RegressionConstraint(F,nn)
% [p,y_var,r] = RegressionConstraint(F,nn,weight)
% regression with a constraint
%
% determine the parameters p_j (j=1,2,...,m) such that the function
% f(x) = sum_(i=1,...,m) p_j*f_j(x) fits as good as possible to the
% given values y_i = f(x_i), subject to the constraint that the norm
% of the last nn components of p equals 1
%
% parameters
% F n*m matrix with the values of the basis functions at the support points
% in column j give the values of f_j at the points x_i (i=1,2,...,n)
% nn number of components to use for constraint
% weight n column vector of given weights
%
% return values
% p m vector with the estimated values of the parameters
% y_var estimated variance of the error
% r residual sqrt(sum_i (y_i- f(x_i))ˆ2))

if ((nargin < 2)||(nargin>=4))
usage(’wrong number of arguments in RegressionConstraint(F,nn,weight)’);
end

[n,m] = size(F);

if (nargin==2) % set uniform weights if not provided
weight = ones(n,1);

end

[Q,R] = qr(diag(weight)*F,0);
R11 = R(1:m-nn,1:m-nn);
R12 = R(1:m-nn,m-nn+1:m);
R22 = R(m-nn+1:m,m-nn+1:m);
[u,l,v] = svd(R22);
p = [-R11\(R12*v(:,nn));v(:,nn)];

residual = F*p; % compute the residual vector
r = norm(diag(weight)*residual); % and its norm

% variance of the weighted y-errors
y_var = sum((residual.ˆ2).*(weight.ˆ4))/(n-m+nn);

Figure 2.37: Code for RegressionConstraint()

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 197

F2 = [ones(n,1) xi];
[p2,yvar,residual2vertical] = LinearRegression(F2,yi);
p2
x = -2:0.1:2;
y2 = p2(1)+p2(2)*x;
plot(xi,yi,’*r’,x,y,’b’,x,y2,’g’);

This optimal solution is given by the equation

y = 0.47547 + 0.91919 x

or in the Hessian normal form

0.35006 + 0.67673 x− 0.73623 y = 0

Thus the straight line in Figure 2.38 with the slightly smaller slope minimizes the vertical distances to the
given set of points.

-2 -1 0 1 2
-2

-1

0

1

2

3

Figure 2.38: Some points with optimal vertical and orthogonal distance fit

The above two solutions should be compared, leading to the results in the table below.

Octave
y1new = -(p1(1)+p1(2)*xi)/p1(3);
residual1orthogonal
residual1vertical = sqrt(sum((yi-y1new).ˆ2))

pp = [p2(1);p2(2);-1]/sqrt(1+p2(2)ˆ2);
residual2vertical
residual2orthogonal = sqrt(sum((F1*pp).ˆ2))

orthogonal distance vertical distance

optimized for orthogonal distance 0.787 1.103

optimized for vertical distance 0.799 1.085

This table confirms the results to be expected, e.g. when optimizing for orthogonal distance then the orthog-
onal distance is minimal.

2.3.4 Detect the best plane through a cloud of points

Assume we have a cloud of n points (xi, yi, zi)
T ∈ R3. Then we seek the equation of the plane fitting best

through the plane. This fits into the context of the previous section. Minimize the length of the vector ~r

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 198

where

~r =

r1

r2

...

rn

 =

1 x1 y1 z1

1 x2 y2 z2

...

1 xn yn zn

d

n1

n2

n3

subject to the constraint ‖~n‖2 = 1. This situation is similar to Figure 2.36 and thus we can use the command
RegressionConstraint(). As a demo we first generate a cloud of points almost on a plane and
display the points in space in Figure 2.39.

Octave
nn = 100; % number of points
% generate and display the random points
A = [1 2 3;4 5 6; 7 8 10];
[V,lambda] = eig(A’*A);
T = V*diag([1 3 0.1])*V’;
points = randn(nn,3)*T;
x = points(:,1); y = points(:,2); z = points(:,3);
plot3(x,y,z,’b*’)
xlabel(’x’); ylabel(’y’); zlabel(’z’);

y
x-1

0
1

2
3

-4

-2

z 0

2

4

-2 -6 -4 -2 0 2 4 6

Figure 2.39: A cloud of points, almost on a plane

Now we determine the normal vector ~n and the distance d of the optimal plane from the origin.

Octave
p = RegressionConstraint([ones(nn,1),points],3);
p’
-->
0.0073459 -0.4681715 -0.5546819 -0.6878542

The above result implies

~n ≈

−0.468

−0.555

−0.688

 and d ≈ 0.0073

2.3.5 Identification of a straight line in a digital image

The above method of regression with constraint and weights can be used to identify the parameters of a
straight line in a digital image. The basic idea is to use a weighted linear regression where dark points have
a large weight and white spots will have no weight.

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 199

In Figure 2.40 find photographs of two lines, a freehand version (2.40(a)) and one generated with a ruler
(2.40(b)). The digital camera produces the images in the jpg format and with the command convert
from the ImageMagick suite the high resolution photographs were transformed into 256 × 256 bitmaps,
using the bmp format.

convert Line1.jpg -scale 256x256! Line1.bmp
convert Line2.jpg -scale 256x256! Line2.bmp

(a) freehand line (b) straight line by ruler

Figure 2.40: Two photographs of (almost) straight lines

Now we try to determine the obvious straight lines in those images.

• Read the file and display the result
We use the command imread to get the data of the picture into Octave .

Octave
aa = imread(’Line1.bmp’);
aa = rgb2gray(aa);
colormap(gray);
imagesc(aa);

Since bright spots correspond to a high value we have to revert the scaling to obtain a high weight for
the dark pixels. In addition we subtract the minimal value and chop all points below a given threshold.

Octave
a = 255-aa(:); a = a-min(a(:));

pos = find(a>(0.4*max(a))); % select the points to be considered
a = double(a(pos));
numberOfPoints = length(a) % number of points to be considered

[xx,yy] = meshgrid(1:256,1:256);
x = xx(:); x = x(pos); y = yy(:); y = y(pos);
plot3(x,y,a)
-->
numberOfPoints = 1661

The resulting 3D graph clearly shows the points to be on a straight line.

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 200

• Regression with constraint
Since we have to determine straight lines at all possible angles we use the method from Section 2.3.2
to determine the parameters of the straight line.

Octave
p = RegressionConstraint([ones(size(x)) x y],2,a)
-->
p = 17.02256

0.55381
-0.83264

Thus the distance of the origin from the line is approximately 17 . Observe that the top left corner
is the origin (0 , 0) and the lower right corner corresponds to the point (255 , 255) . These values
indicate that the straight line in the left part of Figure 2.40 is of the form

0 = 17.02256 + 0.55381x− 0.83264 y

y = 20.44404 + 0.66513x

• Estimation of the variance of the parameters
The command RegressionConstraint() does not give any information on the variance of the
parameter ~p. To obtain this information we rotate the straight line in a horizontal position and then
apply standard linear regression, including the estimation of the variance of the parameters.

Octave
beta = pi/2 - atan2(p(3),p(2));
rotation = [cos(beta) -sin(beta);sin(beta) cos(beta)];
newcoord = rotation*[x’;y’];
xn = newcoord(1,:)’; yn = newcoord(2,:)’;
[p2,d_var,r,p2_var] = LinearRegression([ones(size(x)) xn],yn,a);
p2’
p2_var’
-->
p2’ = -1.7023e+01 -1.8148e-16
p2_var’ = 2.4450e-02 6.2699e-07

The results of ~p2 ≈ (−17 , −1.8 · 10−16) confirm the distance from the origin and also show that
the rotated line is in fact horizontal. The values of p2 var imply that the position of the line is
determined with a standard deviation of

√
0.024 = 0.16 and for the angle we obtain a standard

deviation of
√

6.26 · 10−7 ≈ 0.0008 ≈ 0.05◦.

It is worth observing that we can determine the position of the straight line with a sub-pixel resolution, since
we get some help from statistics.

All of the above code may be rerun with the image in Figure 2.40(b). The only change is to replace the
file name Line1.bmp by Line2.bmp.

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 201

2.3.6 Example 2: Fit an ellipse through some given points in the plane

Ellipse, axes parallel to coordinate axes

The equation of an ellipse with axes parallel to the coordinate axes and semi-axes of length a and b with
center at (x0 , y0) can be given in different forms.

(x− x0)2

a2
+

(y − y0)2

b2
= 1

〈
[

1/a 0

0 1/b

] (
x− x0

y − y0

)
,

[
1/a 0

0 1/b

] (
x− x0

y − y0

)
〉 = 1

1

a2
x2 − 2x0

a2
x+

1

b2
y2 − 2 y0

b2
y +

x2
0

a2
+
y2

0

b2
= 1

From the last form we could conclude that the search for an ellipse passing through a set of given points
might be formulated as a regression problem17. Multiply the equation by a2 and set γ = a

b to find the
equivalent equation

x2 − 2x0 x+
a2

b2
y2 − 2 a2 y0

b2
y + x2

0 +
a2 y2

0

b2
= a2

x2 − 2x0 x+ γ2 y2 − 2 y0 γ
2 y + x2

0 + γ2 y2
0 − a2 = 0

We seek parameters ~p ∈ R4 such that the length of the residual vector ~r is minimal, where

p1 xi + p2 y
2
i + p3 yi + p4 + x2

i = ri

With standard linear regression we determine the optimal parameters ~p . Then we have to solve for the
parameters of the ellipse by solving the following system top to bottom.

−2x0 = p1

a2

b2
= γ2 = p2

−2 y0 γ
2 = p3

x2
0 + γ2 y2

0 − a2 = p4

The Octave code below solves for the best ellipse where the points of the ellipse are stored in the file
EllipseData1.m .

Octave
clf;
axis([-2 2 -2 2],’equal’);
EllipseData1;
plot(xi,yi,’*r’);

F = [xi yi.ˆ2 yi ones(size(xi))];
[p,yvar,r] = LinearRegression(F,-xi.ˆ2);

x0 = -p(1)/2
y0 = -p(3)/(2*p(2))
a = sqrt(x0ˆ2 + p(2)*y0ˆ2 - p(4))
b = sqrt(aˆ2/p(2))

17A straight linear regression in the above form will fail, since there is a constant contribution x20
a2

+
y20
b2

on the left hand side.
If we would know that x0 = y0 = 0 then a linear regression of the form p1 x

2 + p2 y
2 = 1 would work just fine. If a general

orientation is asked for use p1 x2 + p2 y
2 + p3 x y = 1

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 202

With the computed parameters

x0 = 0.15032 , y0 = −0.17548 , a = 1.7109 and b = 0.79109

we can draw the ellipse, leading to the left half of Figure 2.41.

Octave
phi = (0:5:360)’*pi/180;
x = x0+a*cos(phi);
y = y0+b*sin(phi);
plot(xi,yi,’*r’,x,y,’b’);

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) parallel axis

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) general orientation

Figure 2.41: Some points and best fit ellipses, parallel to axes and general orientation

Ellipse with general orientation

As a starting point we consider the equation for an ellipse with semi–axes (parallel to coordinates) of length
a and b in the matrix form

〈
[

1/a 0

0 1/b

] (
x− x0

y − y0

)
,

[
1/a 0

0 1/b

] (
x− x0

y − y0

)
〉 = 1

Rotating a vector by an angle α can be written as a matrix multiplication[
cosα − sinα

sinα cosα

] (
x

y

)
=

[
n1 −n2

n2 n1

] (
x

y

)

Thus we can write down the equation of a general ellipse with the help of

M =

[
1/a 0

0 1/b

]
·
[
n1 −n2

n2 n1

]
=

[
n1
a

−n2
a

n2
b

n1
b

]

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 203

in the form

1 = 〈M ·
(
x− x0

y − y0

)
, M ·

(
x− x0

y − y0

)
〉

= 〈
(
x− x0

y − y0

)
,

[
n2
1
a2

+
n2
2
b2

−n1 n2
a2

+ n1 n2
b2

−n1 n2
a2

+ n1 n2
b2

n2
2
a2

+
n2
1
b2

](
x− x0

y − y0

)
〉

= 〈
(
x− x0

y − y0

)
, A ·

(
x− x0

y − y0

)
〉

= 〈
(
x

y

)
, A ·

(
x

y

)
〉 − 2 〈

(
x0

y0

)
, A ·

(
x

y

)
〉+ 〈

(
x0

y0

)
, A ·

(
x0

y0

)
〉

With the help of the symmetric matrix

A =

[
a1,1 a1,2

a1,2 a2,2

]

we can compute a residual ri for each given point (xi , yi)

ri = a1,1 x
2
i + 2 a1,2 xi yi + a2,2 y

2
i − 2 (a1,1 x0 xi + a1,2 (x0 yi + y0 xi) + a2,2 y0 yi)

+a1,1 x
2
0 + 2 a1,2 x0 y0 + a2,2 y

2
0 − 1

= a1,1 x
2
i + 2 a1,2 xi yi + a2,2 y

2
i − 2 (a1,1 x0 + a1,2 y0)xi − 2 (a2,2 y0 + a1,2 x0) yi

+a1,1 x
2
0 + 2 a1,2 x0 y0 + a2,2 y

2
0 − 1

Dividing this expression by a1,1 leads us to a least square problem with modified residuals

ri
a1,1

= x2
i + p1 xi yi + p2 y

2
i + p3 xi + p4 yi + p5

This is now a standard linear regression problem for the vector ~p ∈ R5. Knowing the optimal values of ~p
we have to compute the parameters of the ellipse with the help of the equations.

a1,1 p1 = 2 a1,2

a1,1 p2 = a2,2

a1,1 p3 = −2 (a1,1 x0 + a1,2 y0)

a1,1 p4 = −2 (a1,2 x0 + a2,2 y0)

a1,1 p5 = a1,1 x
2
0 + 2 a1,2 x0 y0 + a2,2 y

2
0 − 1

Using the first two equations in the last 3, divided by a1,1 we conclude

p3 = −2x0 − p1 y0

p4 = −p1 x0 − 2 p2 y0

p5 = x2
0 + p1 x0 y0 + p2 y

2
0 −

1

a1,1

The first two equations are linear with respect to the unknowns x0 and y0 .[
2 p1

p1 2 p2

]
·
(
x0

y0

)
= −

(
p3

p4

)

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 204

Thus we know the values for x0 and y0. Now the last equation can be solved for the only remaining unknown
a1,1 since

1

a1,1
= x2

0 + p1 x0 y0 + p2 y
2
0 − p5

Now we know all values in the matrix A . The eigenvalues and eigenvectors of A give the lengths a and b of
the semi-axis and the angle of rotation α.

A =

[
n1 n2

−n2 n1

]
·
[
λ1 0

0 λ2

]
·
[
n1 −n2

n2 n1

]

=

[
cosα − sinα

sinα cosα

]
·
[

1
a2

0

0 1
b2

]
·
[

cosα − sinα

sinα cosα

]

The above algorithm is implemented in Octave and the graphical result can be found in the right half of
Figure 2.41.

Octave
EllipseData1;
plot(xi,yi,’*r’);

F = [xi.*yi yi.ˆ2 xi yi ones(size(xi))];
p = LinearRegression(F,-xi.ˆ2);

m = [2 p(1);p(1) 2*p(2)];
x0 = -m\[p(3);p(4)]
a11 =1/(x0(1)ˆ2+p(1)*x0(1)*x0(2)+p(2)*x0(2)ˆ2-p(5));

[V,la] = eig(a11*m/2);
alpha = atan(V(2,1)/V(1,1))*180/pi
a = 1/sqrt(la(1,1))
b = 1/sqrt(la(2,2))

np = 37; phi = linspace(0,2*pi,np);

xx = V*([a*cos(phi); b*sin(phi)])+x0*ones(1,np);
x = xx(1,:); y = xx(2,:);

plot(xi,yi,’*r’,x,y,’b’); grid on

Observations about the fitting of ellipses

The algorithm in the previous section only yields good results if the points to be examined are rather close
to an ellipse. If we run the algorithm on a set of random points we can not expect reasonable results. Often
we will obtain no result at all, since the values of a2 or b2 turn out to be negative.

Also observe that we do not minimize the distance to the ellipse, since the residuals ri used in the
algorithm correspond not exactly to the distance of a point (xi , yi) from the ellipse. The precise minimal
distance problem is considerably harder to solve and leads to a nonlinear regression problem. One of the
subproblems to be solved is how to determine the distance of a point from an ellipse.

We illustrate the above remarks with a simulation. First choose the parameters of an ellipse, then gener-
ate a set of points rather close to this ellipse. The values are stored in the column vectors xi and yi.

Octave

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 205

ain = 1.2; bin = 0.8; alphain = 15*pi/180; x0in = 0.1 ; y0in = -0.2;
np = 15; sigma = 0.05;

phi = linspace(0,2*pi,np)’;
xi = x0in+ain*cos(phi)+sigma*randn(size(phi));
yi = y0in+bin*sin(phi)+sigma*randn(size(phi));

xynew = [cos(alphain) -sin(alphain); sin(alphain) cos(alphain)]*[xi,yi]’;
xi = xynew(1,:)’; yi=xynew(2,:)’;

Then we fit an ellipse with axes parallel to the coordinates to those points and display the parameters of the
ellipse.

Octave
%% fit ellipse parallel to axis
F = [xi yi.ˆ2 yi ones(size(xi))];
[p,yvar,r] = LinearRegression(F,-xi.ˆ2);

x0 = -p(1)/2
y0 = -p(3)/(2*p(2))
a = sqrt(x0ˆ2 + p(2)*y0ˆ2 - p(4))
b = sqrt(aˆ2/p(2))

phi = (0:5:360)’*pi/180;
x = x0+a*cos(phi); y = y0+b*sin(phi);
figure(1);
plot(xi,yi,’*r’,x,y,’b’);

Then redo the fitting for a general ellipse, display the parameters and create Figure 2.42.

Octave
%% fit general ellipse
F = [xi.*yi yi.ˆ2 xi yi ones(size(xi))];
p = LinearRegression(F,-xi.ˆ2);

m = [2 p(1);p(1) 2*p(2)];
x0 = -m\[p(3);p(4)]
a11 = 1/(x0(1)ˆ2+p(1)*x0(1)*x0(2)+p(2)*x0(2)ˆ2-p(5));
[V,la] = eig(a11*m/2);

alpha = atan(V(2,1)/V(1,1))*180/pi
a = 1/sqrt(la(1,1))
b = 1/sqrt(la(2,2))

np = 37;
phi = linspace(0,2*pi,np);
xx = V*([a*cos(phi); b*sin(phi)])+x0*ones(1,np);

xg = xx(1,:); yg = xx(2,:);

figure(2);
plot(xi,yi,’*r’,x,y,’b’,xg,yg,’r’); grid on

If exactly 4 points are given then an ellipse parallel to the axis is uniquely determined. If exactly 5
points are given then an ellipse parallel to the axis is uniquely determined. But not all combination of points
will admit solutions. The above algorithm will obtain a negative number for b2 and thus fail to produce an
ellipse. This can be illustrated with the code below. The instructions are as follows:

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 206

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

Figure 2.42: Some random points and a best fit ellipses, parallel to axes and general

1. Start the script and it will first pause for 2 seconds.

2. Mark the x and y scale on the screen. Read the on-screen instruction.

3. Use the left button of the mouse to mark the points. Give at least 5 points, approximately on an ellipse.

4. Click on the right button to terminate the collection of data points.

5. Determine the parameters of a horizontal ellipse.

6. Determine the parameters of a general ellipse.

7. Draw both ellipses and the chosen points.

Observe that the call of the function ginput() assumes that Octave is used on a X Window System. This
command has to be modified when using MATLAB and it might not work at all with Octave on Windows.

Octave
pause(2); % wait 2 seconds
[xi,yi] = ginput([-2 2 -2 2])
axis(’equal’);

%% fit ellipse parallel to axis
F = [xi yi.ˆ2 yi ones(size(xi))];
[p,yvar,r] = LinearRegression(F,-xi.ˆ2);

x0 = -p(1)/2
y0 = -p(3)/(2*p(2))
a = sqrt(x0ˆ2 + p(2)*y0ˆ2 - p(4))
b = sqrt(aˆ2/p(2))

phi = (0:5:360)’*pi/180;
x = x0+a*cos(phi); y = y0+b*sin(phi);

%% fit general ellipse

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 207

F = [xi.*yi yi.ˆ2 xi yi ones(size(xi))];
p = LinearRegression(F,-xi.ˆ2);

m = [2 p(1);p(1) 2*p(2)];
x0 = -m\[p(3);p(4)]
a11 = 1/(x0(1)ˆ2+p(1)*x0(1)*x0(2)+p(2)*x0(2)ˆ2-p(5));
[V,la] = eig(a11*m/2);

alpha = atan(V(2,1)/V(1,1))*180/pi
a = 1/sqrt(la(1,1))
b = 1/sqrt(la(2,2))

np = 37;
phi = linspace(0,2*pi,np);
xx = V*([a*cos(phi); b*sin(phi)])+x0*ones(1,np);

xg = xx(1,:); yg = xx(2,:);

figure(1);
plot(xi,yi,’*r’,x,y,’b’,xg,yg,’r’);

2.3.7 List of codes and data files

In the previous section the codes and data files in Table 2.9 were used.

filename function

RegressionConstraint.m function to perform regression with constraint

LineFitOrthogonal.m regression for a straight line

LineData.m data file for a line fit

ImageLine.m script file to determine a line in an digital image

Line1.bmp image data for a first line

Line2.bmp image data for a second line

Ellipse1.m fit a parallel ellipse to data

Ellipse2.m fit a general ellipse to data

EllipseData1.m data file for an ellipse

EllipseCompare.m script file to comapre the two methods

EllipseClick.m script file to read points with mouse and fit ellipses

Table 2.9: Codes and data files for section 2.3

2.3.8 Exercises

The exercises

Exercise 2.3–1 Repeat the analysis in Section 2.3.5 for the line in the right part of Figure 2.40. The file is
stored in Line2.bmp.

Exercise 2.3–2 Circle, center at origin
Find an algorithm to fit a circle with radius R and center at the origin through a given set of points (xi , y1)
where 1 ≤ i ≤ n.

SHA1 10-9-20

2.3. REGRESSION WITH CONSTRAINTS 208

Exercise 2.3–3 Circle, aritrary center
Find an algorithm to fit a circle with radius R and center at (x0 , y0) through a given set of points (xi , y1)
where 1 ≤ i ≤ n.

The answers

Exercise 2.3–2 Circle, center at origin
The equation of a circle with radius R is given by x2 + y2 −R2 = 0. Thus we consider a linear regression
problem for the residuals

(x2
i + y2

i) p1 − 1 = ri

where the parameter p corresponds to p = 1
R2 . For this regression problem we can find the optimal solution

explicitly.

minimize ‖~r‖2 =
n∑
k=1

(
(x2
k + y2

k) p− 1
)2

=
n∑
k=1

(
(x2
k + y2

k)
2 p2 − 2 (x2

k + y2
k) p+ 1

)
∂

∂p
‖~r‖2 = 0 =

n∑
k=1

(
2 (x2

k + y2
k)

2 p− 2 (x2
k + y2

k)
)

p =

∑n
k=1(x2

k + y2
k)∑n

k=1(x2
k + y2

k)
2

R2 =

∑n
k=1(x2

k + y2
k)

2∑n
k=1(x2

k + y2
k)

Exercise 2.3–3 Circle, arbitrary center
The equation of a circle with radius R is given by

(x− x0)2 + (y − y0)2 −R2 = 0

x2 + y2 − 2x0 x− 2 y0 y + x2
0 + y2

0 −R2 = 0

Consider this as a regression problem with residuals

p1 xi + p2 yi + p3 + x2 + y2 = ri

where the parameters ~p are related to the circle by

p1 = −2x0 , p2 = −2 y0 and p3 = +x2
0 + y2

0 −R2

Thus we try to minimize the length of
x1 y1 1

x2 y2 1
...

xn yn 1

 ·

p1

p2

p3

+

x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n

 =

r1

r2

...

rn

Now a standard regression problem will give the optimal values of the parameters ~p and thus the circle.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 209

2.4 Computing Angles on an Embedded Device

In this section we illustrate how to use Octave to design an algorithm and its implementation on a micro
controller with limited hardware resources. A particular example is examined very carefully, but the methods
and results are applicable to a wide variety of problems.

2.4.1 Arithmetic operations on a micro controller

On most micro controllers only the integer operations for addition, subtraction and multiplication are imple-
mented directly. We use integer data types int16 or int32 to examine the results of the algorithms. The
use of Octave to design an integer algorithm has some obvious advantages:

• Octave code is easier to develop than code in C, do not even think of the trouble with assembler code.

• Using the data types int16 in Octave will automatically take care of overflow and underflow and
make rounding problems visible.

• We can compare the results of an integer computation with a similar floating point computations and
thus determine approximation errors.

• We can use all the graphical power of Octave to visualize results and approximation errors.

• Once the integer computation algorithm is developed and tested in Octave we can translate to C code
or even assembler.

General observations

Typical micro controllers have either 8–bit or 16–bit integer arithmetic, but lack any floating point com-
mands. Emulating floating point operations with the help of a library leads to a huge computational overhead
and should be avoided if possible. Most often software is written in C, occasionally in assembler.

Most micro controllers provide a set of arithmetic operations with a given resolution. Precise informa-
tion can be found in the manuals of the micro controllers.

• 8-bit micro controller, e.g. 8051, Cygnal

– Signed integer numbers have to be between −128 and 127.

– Unsigned integer numbers have to be between 0 and 255.

– 8-bit add/subtract 8-bit leads to 8-bit result.

– 8-bit multiply 8-bit leads to 16-bit result.

– 8-bit divide by 8-bit leads to 16-bit result, 8-bit integer part, 8-bit remainder.

– 16-bit additions and subtracions are not very difficult to implement.

Based on the above commands one can implement fast 16-bit additions and subtraction and also 8 bit
multiplications

• 16-bit micro controller (e.g. Cyan)

– Signed integer numbers have to be between −215 and 215 − 1 .

– Unsigned integer numbers have to be between 0 and 216 − 1 .

– 16-bit add/subtract 16-bit leads to 16-bit result.

– 16-bit multiply 16-bit leads to 32-bit result.

– 32-bit divide by 16-bit leads to 32-bit result, 16-bit integer part, 16-bit remainder.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 210

Based on the above commands one can implement fast 16-bit additions and subtraction and also 16-bit
multiplications/divisions

When writing arithmetic code for a micro controller the following facts should be kept in mind:

• Multiplication by 2k are easy to implement as shifts of binary representation. Multiplications and
division by 28 have not be be computed at all, since they result in shifts by complete bytes.

• When implementing the algorithm one may apply shifts to make full use of the 16 bit resolution.

• When adding two numbers z = x+ y we find the error estimations

z = x+ y

∆z ≈ ∆x+ ∆y

Thus the absolute errors are to be added and the final error is dominated by the largest error of the
arguments.

• Multiplication is also susceptible to loss of accuracy. Examine the error analysis.

z = x · y
∆z ≈ y∆x+ x∆y
∆z

z
≈ ∆x

x
+

∆y

y

Thus the relative errors are to be added. If one argument has a large relative error, then the result has
a large relative error.

As a consequence we should design algorithms that use the full accuracy of the hardware.

A sample computation with int8 and int16 data types

As an example we want to compute y = f(x) = 1− 0.8x2 for 0 ≤ x ≤ 2 on an 16-bit processor, assuming
that for x and y we need an 8-bit resolution. The code is developped with MATLAB/Octave and we first
generate a graph of the function.

x = linspace(0,2,1001);
%function y = f(x) % test function
% y = 1 - 0.8*x.ˆ2;
%endfunction
f = @(x)1-0.8*x.ˆ2;
y = f(x);

figure(1)
plot(x,y);
title(’original function’);
xlabel(’x’); ylabel(’y = 1-0.8*x*x’);grid on

Now we want to perform the arithmetic operations for

y = 1− 0.8 · x2 = 1− 0.8 · (x · x)

keeping track of the effects of the 16-bit arithmetic.

• For the return values y we know −3 ≤ y ≤ 1 and this domain should be represented with the data
range for int8, i.e. between -128 and +127. Thus we aim for y8 = y · 25 as results.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 211

• The true values of x are 0 ≤ x ≤ 2. To use an 8-bit resolution we pass the values x8 = x ·26 = x ·64.
We the know 0 ≤ x8 ≤ 127 and thus we use it as an int8 data type.

x8 = int8(x*2ˆ6);

• As a first intermediate result we compute r1 = x8 ∗ x8 = x2 · 212. The result will be a 16-bit integer.
We verify that the data range is respected.

r1 = uint16(int16(x8).*int16(x8)); % r1 = xˆ2*2ˆ(6+6) = xˆ2*2ˆ12
limr1 = [min(r1),max(r1)] % verify the limits, maximal value 2ˆ16 (uint16)
-->
limr1 = 0 16129

• The next step is to multiply the previous result by 0.8 with an integer multiplication. Since 0.8 ·256 ≈
204.8 we use the factor 205. But before multiplying r1 by 205 we have to divide r1 by 2−8 , otherwise
the data range is not respected. The result is rescaled, such that it may be treated as an 8-bit integer.

% 0.8*2ˆ8 approximately 205
r2 = int16(205*(r1*2ˆ-8)); % r2=0.8*xˆ2*2ˆ12
r3 = int8(bitshift(r2,-7)); % rescale, r3 = 0.8*xˆ2*2ˆ5
limr3 = [min(r3),max(r3)] % verify the limits, maximal value 2ˆ7
-->
limr3 = 0 100

• Now we have to subtract the previous result r3 from 1, respectively from 25 = 32.

r4 = int8(1*2ˆ5-r3); % r4 =(1-0.8*xˆ2)*2ˆ5
limr4 = [min(r4),max(r4)] % verify the limits
-->
limr4 = -68 32

The results equals y · 25 and thus we may plot the exact function y = 1 − 0.8 · x2 and the 8-bit
approximation.

r5 = single(r4)/2ˆ5;
plot(x,y,x,r5)
xlabel(’x’); ylabel(’1-0.8*x*x’); grid on

To examine the error we plot the difference of the exact and approximate function.

figure(2);
plot(x,r5-y)
title(’arithmetic error’)
xlabel(’x’); ylabel(’error’); grid on
relErr = max(abs(r5-y))/max(abs(y))
bitError = log2(relErr)
bitErrorMean = log2(mean(abs(r5-y))/max(abs(y)))
-->
relErr = 0.040962
bitError = -4.6096
bitErrorMean = -6.0771

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 212

2.4.2 Computing the angle based on xy information

A pair of sensors might give the x and y component of a point in the plane. The expression to be measured
is the angle α. On a pure mathematical level the answer is given with the formulas in Figure 2.43, but for a
good impementation in an actual device some further aspect have to be taken into account.

tanα =
y

x

α = arctan
y

x
α = atan2(y, x)

x

y

α

(x,y)

Figure 2.43: The angle α as function of x and y

• The values of x and y are given with errors ∆x and ∆y. The error ∆α has to be controlled and
minimized.

• The evaluation of the formulas has to be implemented on a micro controller and thus should require
as little computational resources as possible.

• The evaluation has to be reliable and fast.

2.4.3 Error analysis of arctan–function

Use the derivative ∂
∂u arctanu = 1

1+u2
and a linear approximation for the function f(x, y) = arctan y

x .

∆α ≈ ∂ f

∂x
∆x+

∂ f

∂y
∆y

=
1

1 + (y/x)2

−y
x2

∆x+
1

1 + (y/x)2

1

x
∆y

=
−y

x2 + y2
∆x+

x

x2 + y2
∆y

=
1

r2
(−y∆x+ x∆y)

If the errors are randomly given, with variance V (x) = σ2
x (resp. V (y) = σ2

y), we use the law of error
propagation to conclude

V (α) =
1

r4

(
y2 V (x) + x2 V (y)

)
σα =

1

r2

√
y2 σ2

x + x2 σ2
y

If the standard deviations for the angles are of equal size (σx = σy = σ) this simplifies to

V (α) =
1

r2
σ2 or σα =

σ

r

The error contributions ∆x and ∆y are influenced by the hardware (e.g. resolution of AD converters) and
might be determined by statistical methods, see also Section 2.2.11.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 213

2.4.4 Clever evaluation of arctan–function

The formula α = arctan y
x might lead to an unnecessary division by zero. Thus we divide the plane in 8

different sectors and use a slightly different formula for each sector in Figure 2.44 .

No conditions result

1 x > 0 y ≥ 0 y ≤ x α = arctan y
x

2 x ≥ 0 y > 0 x ≤ y α = π
2 − arctan x

y

3 x ≤ 0 y > 0 |x| ≤ y α = π
2 + arctan −xy

4 x < 0 y ≥ 0 y ≤ |x| α = π − arctan y
−x

5 x < 0 y ≤ 0 |y| ≤ |x| α = −π + arctan −y−x

6 x ≤ 0 y < 0 |x| ≤ |y| α = −π
2 − arctan −x−y

7 x ≥ 0 y < 0 |x| ≤ |y| α = −π
2 + arctan x

−y

8 x > 0 y ≤ 0 |y| ≤ |x| α = − arctan −yx

x

y

2
1

8
76

5

4
3

Figure 2.44: The eight sectors used to compute tanα = y
x

Using the table in Figure 2.44 we see that the arctan–function only has to be evaluated for arguments
0 ≤ z ≤ 1. As additional effort we have to distinguish the eight sectors. All good mathematical packages
offer this type of function. As typical example consider the result of the command help atan2 from
Octave/MATLAB.

help atan2
.
atan2 is a built-in function

-- Mapping Function: atan2 (Y, X)
Compute atan (Y / X) for corresponding elements of Y and X. The
result is in range -pi to pi.

The algorithms in the next section thus only have to compute values of y = arctan z for 0 ≤ z ≤
1 leading to results 0 ≤ y ≤ π

4 . This is suitable for a Chebyshev approximation. On larger intervals
polynomials of higher degree would be necessary.

2.4.5 Implementations of the arctan–function on micro controllers

Thus we are left with the task to compute the function f(z) = arctan z for arguments 0 ≤ z ≤ 1. We
assume that x and y are measured and then digitalized with a 10-bit AD converter. The values of x and y
vary between −r and +r. Thus we can expect at best a relative error of ∆x

x ≈ 2−9 ≈ 1
500 = 0.02. Based

on the result of the previous section we can not hope for a better accuracy for α. The only operations to be
used on a micro controller are the basic arithmetic operations.

Taylor series approximation

A standard Taylor series (with error estimate) leads to the formula

arctan z =

n∑
k=0

(−1)k

2 k + 1
z2 k+1 +Rn

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 214

where the approximation error is |Rn| ≈ 1
2 k+3 z

2 k+3. Since we examine 0 ≤ z ≤ 1 we would need
2 k + 3 ≈ 500, that is k ≈ 250 terms. Obviously there have to be better solutions than this.

Chebyshev polynomial of degree 2

Any good book on numerical analysis has a section on Chebyshev polynomials and as an application one
can verify that the polynomial

arctan z ≈ −0.003113205848 + 1.073115615 z − 0.283642707 z2

= −0.003113205848 + z (1.073115615− z 0.283642707)

is an approximation with a maximal error of 0.003 on 0 ≤ z ≤ 1. For sake of completeness a very brief
explanation is given in Section 2.4.6. This error is comparable to the error contribution from the 10–bit
resolution of the AD converters. The number of given digits is too large and using the Horner scheme we
may simplify the expression to

arctan z ≈ −0.0031 + z (1.0731− z 0.2836) for 0 ≤ z ≤ 1

This requires only 2 additions and multiplications to compute the value of arctan z. The computational
sequence is given by

1. Multiply z by 0.2836

2. Subtract this result from 1.0731

3. Multiply the result by z

4. Subtract 0.0031 from the result

A few plots let you recognize that all intermediate results are positive for all 0 ≤ z ≤ 1. The goal is to
implement these calculations on a micro controller using the following arithmetic operations with integer
numbers. Since all expressions are positive we use the data type unsigned integers.

• Addition of 16-bit unsigned integers leading to a 16-bit integer result

• Multiplication of 8-bit unsigned integers leading to a 16-bit integer result

• Multiplications by 2k to be implemented with arithmetic shifts.

All of the above operations are suited for an 8-bit micro controller. For each intermediate step we check
for under- and overflow. Since we also aim for accuracy we have to assure that the arguments of the
multiplications are as close as possible to the maximal number 28.

Prepare the computations by storing the precomputed constants 0.2836 ·28, 1.0731 ·215 and 0.0031 ·216

and also define the Chebyshev approximation to the arctan–function for comparative purposes.

a0 = 0.283642707; i0 = uint16(a0*2ˆ8)
a1 = 1.073115615; i1 = uint16(a1*2ˆ15)
a2 = 0.003113205848; i2 = uint16(a2*2ˆ16)

myatan = @(z)-0.003113205848 + z.*(1.073115615 - z*0.283642707);

Then for a given value 0 ≤ z ≤ 1 compute z · 28 as a 16-bit unsigned integer. The algorithm below requires
2 multiplications, 2 additions and a few shifts.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 215

z = 0:0.001:1;
zi = uint16(z*2ˆ8);

1. Multiply z by 0.2836

• Compute (z · 28) · (0.2836 · 28)

• The intermediate result is modified by a factor of 216

r1 = uint16(zi.*i0);
limits1 = [min(r1) max(r1)]

2. Subtract this result from 1.0731

• Divide the previous result by 2
• Subtract it from 1.0731 · 215

• The intermediate result is modified by a factor of 215

r2 = uint16(i1-r1/2);
limits2 = [min(r2) max(r2)]

3. Multiply the result by z

• Divide the previous result by 27. It might be faster to divide by 28 and then multiply by 2 .
• Multiply it with z · 28

• The intermediate result is modified by a factor of 216

r3 = uint16(zi.*bitshift(r2,-7));
limits3 = [min(r3) max(r3)]

4. Subtract 0.0031 from the result

• Subtract 0.0031 · 216 from the result
• The intermediate result is modified by a factor of 216

r4 = uint16(r3-i2);
limits4 = [min(r4) max(r4)]

This result is converted back to floats and then Figure 2.45 can be generated. The graph shows that the error
is smaller than 0.005 which corresponds to 0.29◦ . Considering that the possible results range from 0◦ to
45◦ we find an accuracy of 7.5 bit (log2(45 ∗ 4)). This is quite good since we started with 8-bit accuracy
for the input z. Figure 2.45 shows that the contributions from the Chebyshev approximation and the integer
arithmetic are both of the same size.

res = single(r4)/2**16;
plot(z,res-atan(z),’r’,z,myatan(z)-atan(z),’b’)
legend(’int16’,’float’)
xlabel(’z’); ylabel(’difference’)
grid on; legend(’show’)

This can all be crammed into one lengthy formula

arctan z ≈ 2−16 (−0.0031 · 216 + (z · 28) · (2−7(1.0731 · 215 − 2−1(z · 28) · (0.2836 · 28))))

but for an implementation it is wise to use the above description.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 216

0 0.2 0.4 0.6 0.8 1
-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

z

di
ffe

re
nc

e

int16
float

Figure 2.45: Comparison of errors for a Chebyshev approximation and its integer implementation

Improvements and implementation in C

The approximation error in the previous section can be improved by choosing a higher order approxima-
tion and by using better integer arithmetic. Exercise 1 shows a modified, improved version of the above
solution, using a micro controller with more powerful arithmetic commands. In Exercise 2 the algorithm is
implemented in C .

Look up tables, 8-bit

Another approach might be to use a look-up table for the values of the arctan–function. For easy and fast
processing we choose a table of 256 equally spaced values for z. Thus we use zi = i−1

255 as midpoints of the
intervals and compute the corresponding values yi = arctan zi. Then we scale those values to use the full
range of a 8-bit resolution and we choose to round to the closest integer. We are lead to the tabulated values
Ti = round

(
255·4
π yi

)
. These 256 values have to be computed once and then stored on the device.

zc = linspace(0,1,256);
atantab = round(atan(zc)*255*4/pi);

For a given value of 0 ≤ z ≤ 1 we then perform the following steps to find an approximated values of the
arctan function:

• Round 255 z to the closest integer. This is equivalent to the integer part of 255 z + 0.5 .

• Add 1 to the above index, since in Octave and MATLAB indexes are 1–based. Use this index to acces
the number on the above table of precomputed values.

z = 0:0.001:1;

res = zeros(size(z));
for k = 1:length(z)
res(k) = atantab(single(255*z(k)+0.5)+1)/255*pi/4;

end%for

figure(1);
plot(z,res-atan(z),’r’)
grid on; legend(’difference’)

The resulting Figure 2.46 shows a maximal error of approximately 0.003, which corresponds to 0.17◦ .

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 217

0 0.2 0.4 0.6 0.8 1
-0.004

-0.002

0

0.002

0.004

z

di
ffe

re
nc

e

difference

Figure 2.46: The difference for a tabulated approximation of the arctan–function

Piecewise linear interpolation

Lets us divide the interval 0 ≤ z ≤ 1 into n−1 subintervals of length h = 1
n . Then we tabulate the values of

the function at the n points zi = i h for i = 0, 1, 2, . . . n . For values of z between the points of support we
use piecewise linear interpolation to estimate the value of the function arctan z . According to Figure 2.47
the interpolated value is given by

f(zi + ∆z) ≈ f(zi) +
f(zi+1)− f(zi)

zi+1 − zi
∆z = f(zi) +mi ·∆z (2.8)

y

z

Figure 2.47: Linear interpolation of a function

Using calculus one verifies that on an interval of length h the error of a linear interpolation using the left
and right endpoint is estimated by

|error| ≤ 1

8
M2 h

2

where M2 is the maximal absolute value of the second derivative of the function. For our function f(z) =

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 218

arctan z with 0 ≤ z ≤ 1 we have to determine M2 by the calculations below.

f ′′(z) =
−2 z

(1 + z2)2

f ′′′(z) =
−2 (1 + z2)2 + 8 z2 (1 + z2)

(1 + z2)2
= 2
−1− z2 + 4 z2

(1 + z2)
= 0

zm =
1√
3

M2 = |f ′′(1/
√

3)| = 2/
√

3

(1 + 1/3)2
=

3
√

3

8
≈ 0.64 < 1

If we divide the interval 0 ≤ z ≤ 1 into 25 = 32 subintervals of equal length we find h = 1
32 and thus

|error| ≤ 1

8
M2 h

2 ≤ 1

8 · 322
≈ 1.3 · 10−4

Since log2
1.3·10−4

π/4 ≈ −12.6 we conclude that we have at least 12-bit accuracy with this algorithm.

To understand the following computations we have to examine the binary representation of numbers. As
example consider the number z = 0.3. The code

Octave
bin = dec2bin(round(0.33*2ˆ15))
-->
bin = 010101000111101

implies that

z = 0.33 ≈ 1

22
+

1

24
+

1

26
+

1

210
+

1

211
+

1

212
+

1

213
+

1

215

and we decompose the number into the 5 leading digits of the binary representation and the remainder

z ≈ 0. 01010︸ ︷︷ ︸
zint=10

1000111101︸ ︷︷ ︸
zfrac=573

= zint · 2−5 + zfrac · 2−15 = zi + ∆z

Using the linear interpolation formula (2.8) we conclude

arctan(z) ≈ arctan(zi) +mi ·∆z = arctan(zint · 2−5) +mi · zfrac · 2−15

arctan(z) · 231 ≈ arctan(zint · 2−5) · 231 +mi · 216 · zfrac

The above idea leads to the following algorithm:

1. Precompute the integer parts yi = arctan(i
25

) · 215 for i = 0, 1, . . . 31 and store these 32 values.
These 16-bit values will be used as the upper half of 32-bit values. This hides a multiplication by 216 .

2. Precompute the integer parts of

si = mi · 216 =
arctan(i+1

25
)− arctan(i

25
)

2−5
· 216 = (arctan(

i+ 1

25
)− arctan(

i

25
)) · 221

for i = 0, 1, . . . 31 and store these 32 values. These are 16-bit values.

3. Use the 5 bits on positions 10 through 14 of z · 215 as integer index i = zint into the table entries yi
and si.

4. Consider bits 0 through 10 of z · 215 as integer zfrac and compute

yi · 216 + si · zfrac

The result is a good approximation of arctan(z) · 231 .

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 219

The only computationally demanding task in the above algorithm are one multiplication of 16-bit numbers,
with 32-bit results and one 32-bit addition18. The code below is one possible implementation and leads to
Figure 2.48. The maximal error of 1.2 · 10−4 leads to a value of bitaccuracy≈ −12.9 and thus we find
at least 12-bit resolution of this implementation.

LinearInterpol.m
nn = 5; zc = linspace(0,1,2ˆnn+1);
atantab = int16(round(atan(zc)*(2ˆ(15)))); % 16-bit values tabulated
%% errorest=1/8*zc./(1+zc.ˆ2).ˆ2*2ˆ(-2*nn);
%% atantab=int16(round((atan(zc)+errorest)*(2ˆ(15))));
atantab = int32(int32(atantab)*(2ˆ(16))); % move to upper half of 32-bit
datantab = int32(round(diff(atan(zc))*2ˆ(16+nn))); % 16-bit unsigned

z = 0:0.001:1-1e-10;

zint = uint8(floor(z*2ˆnn)); % integer part
zfrac = int32(mod(z*2ˆ15,2ˆ(15-nn))); % fractional part

res = zeros(size(z)); res2 = res;
for k = 1:length(z);
ind = zint(k)+1;
res(k) = int32(atantab(ind) + zfrac(k)*datantab(ind));

end%for

res = res/2ˆ(31);

figure(1);
plot(z,res-atan(z),’r’)
legend(’difference’)
grid on
accuracybits = log(max(abs(res-atan(z))*4/pi))/log(2)

0 0.2 0.4 0.6 0.8 1
-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

di
ffe

re
nc

e

z

Figure 2.48: The errors for a piecewise linear approximation of the arctan–function

Figure 2.47 and the graph of arctan z explain why the piecewise linear interpolation is below the actual
function. Thus the error in Figure 2.48 is everywhere negative. Since we have an estimate for the maximal

18This author developed a modification that uses only one 8-bit multiplication, with a 16-bit result, and one 16-bit addition.
The resolution is slightly better than 12-bit. It requires 96 Bytes to store lookup tables. This might be a good solution for a 8-bit
controller and moderate accuracy requirements. The result is given in the next section.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 220

error on each subinterval given by

1

8
f ′′(z) h2 =

−2 z

8 (1 + z2)2

1

322

we can try to correct this error. This is implemented by the commented out section in the above code. When
using this modification we find a maximal absolute error of 0.00006 and accuracybits≈ −13.4 and
thus we have a slightly improved result.

Standard C code for a piecewise linear interpolation

The above mentioned algorithm using piecewise linear interpolation with one 8-bit multiplication and one
16-bit addition can be implemented in the programming language C. The code below will, when called with
an unsigned 16-bit integer z (0 ≤ z ≤ 216 − 1 = 65535), return an integer value y (0 ≤ y ≤ 215 − 1 =
32767), giving a good approximation of

y ≈ (215 − 1) arctan

(
z

216 − 1

)
Observe that the computations of the integer part and the fractional part are implemented with bit operations
only and thus very fast.

C
unsigned short atan16(unsigned short z){
static unsigned short atantab[]=
{ 4, 1026, 2048, 3065, 4077, 5081, 6076, 7059, 8030, 8987, 9928,
10852,11760,12648,13518,14367,15197,16006,16793,17560,18306,19034,
19740,20425,21090,21734,22360,22969,23557,24129,24683,25219};

static unsigned char datantab[]=
{255,255,254,253,251,249,246,243,239,235,231,227,222,217,212,207,
202,197,192,187,182,176,171,166,161,157,152,147,143,138,134,130};

unsigned char zint;
unsigned char zfrac;
zint = z>>11;
zfrac=(z&4095)>>3;
return atantab[zint] + (zfrac*datantab[zint])>>6;

}

Comparison of the previous algorithms

In Table 2.10 find some essential information on the algorithms developed in this section. If you are to
choose an algorithm for a concrete application the following points should be taken into consideration.

• If 7-bit accuracy is sufficient then choose between a Chebyshev polynomial of degree 2 and a 8-bit
lookup table.

– The lookup table is the fastest algorithm and rather easy to implement, but it uses some memory.

– The Chebyshev polynomial requires less memory, but takes longer to evaluate.

• If you need 12-bit accuracy choose between the two other options in Table 2.10 or use Exercises 1
and 3.

– The Chebyshev polynomial of degree 4 in Exercise 3 requires very little storage, but a couple of
16-bit arithmetic operations.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 221

– The improved linear interpolation method in Table 2.10 needs fewer arithmetic operations, but
96 Bytes of additional memory.

– A full 16-bit lookup table is possible and would be very fast, but requires a prohibitive amount
of memory.

• If you need even higher accuracy you want to consider polynomials of higher degree or a lookup table
with quadratic interpolation, see Exercise 4.

Chebyshev, degree 2 table look-up, 8-bit interpolation 1 interpolation 2

absolute error 0.005 0.003 0.00006 0.00001

resolution 7 bit 7 bit 13 bit 12 bit

multiplications 2 (8-bit) 0 1 (16-bit) 1 (8 -bit)

additions 2 (16-bit) 0 1 (32-bit) 1 (16 bit)

memory for lookup 6 Bytes 256 Bytes 128 Bytes 96 Bytes

table look ups 0 1 2 2

Table 2.10: Comparison of algorithms for the arctan–function

2.4.6 Chebyshev approximations

The goal of this section is to present the formulas necessary to determine the values of the optimal coeffi-
cients cn for the approximation by Chebyshev polynomials

f(x) ≈ c0

2
+

N∑
n=1

cn Tn(x)

Determine the coefficient of the Chebyshev polynomials

The Chebyshev polynomials on the interval [−1 , 1] are defined by

Tn(x) = cos(n arccos(x))

Using the trigonometric identity cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) and with α = arccos(x) we
find a recursion formula for the polynomials.

cos(+α+ nα) = cos(α) cos(nα)− sin(α) sin(nα) = xTn(x)− sin(α) sin(nα)

cos(−α+ nα) = cos(−α) cos(nα) + sin(α) sin(nα) = xTn(x) + sin(α) sin(nα)

Tn+1(x) + Tn−1(x) = 2xTn(x)

Tn+1(x) = 2xTn(x)− Tn−1(x)

This leads to

T0(x) = cos(0) = 1

T1(x) = cos(arccos(x)) = x

T2(x) = 2x (x)− 1 = 2x2 − 1

T3(x) = 2x (2x2 − 1) + x = 4x2 − 3x

T4(x) = 2x (4x2 − 3x)− 2x2 + 1 = 8x4 − 8x2 + 1

...

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 222

The above recursive algorithm can be used to write Octave code to compute the coefficients of these Cheby-
shev polynomials.

Chebyshev.m
function pn = Chebyshev(n)
% compute coefficients of the n’th order Chebyshev polynomial of the first kind
pA = [1]; pB = [1 0];

if n == 0
pn = [1];

elseif n == 1;
pn = [1,0];

else
for i=2:n
pn = (2*[pB,0] - [0,0,pA]);
pA = pB; pB = pn;

end%for
end%if

The code below will generate the graphs of the first few Chebyshev polynomials in Figure 2.49.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
1
2
3
4
5

Figure 2.49: Graphs of the first 5 Chebyshev polynomials

nn = 5; x = -1:0.02:1; y = zeros(nn,length(x));
for n = 1:nn
y(n,:) = polyval(Chebyshev(n),x);

end%for
plot(x,y)
legend(’1’,’2’,’3’,’4’,’5’)

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 223

Orthogonality of the Chebyshev polynomials

These polynomials are orthogonal on the interval [−1 , 1] with respect to the integration weight 1/
√

1− x2.

〈Tn(x) , Tm(x)〉 =

∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx

=

∫ 1

−1
cos(n · arccos(x)) cos(m · arccos(x))

1√
1− x2

dx

substitution cosφ = x , − sin(φ)
dφ

dx
= 1 ,

√
1− x2 =

√
1− cos2(φ) = sin(φ)

=

∫ 0

π
cos(nφ) cos(mφ)

− sin(φ)

sin(φ)
dφ

=

∫ π

0
cos(nφ) cos(mφ) dφ = 0 if n 6= m

〈Tn(x) , Tn(x)〉 =

∫ π

0
cos(nφ) cos(nφ) dφ =

π

2
if n ≥ 1

Compute the coefficients

The idea is to use the polynomials Tn(x) and approximate an arbitrary function f(x) in terms of Tn(x).
This is similar to the Fourier series, where the arbitrary function is rewritten in terms of functions cos(nx)
and sin(nx). One can verify that the Chebyshev polynomials give almost the best possible uniform approx-
imation on the interval [−1 , 1] . The result can at most be improved by a constant factor, but the Chebyshev
polynomial readily be determined. As one possible reference consider [Rivl69, Theorem 2.2].

For a function f(x) defined on the interval [−1, 1] compute the coefficients

π

2
cn =

∫ 1

−1
f(x) Tn(x)

1√
1− x2

dx

=

∫ 1

−1
f(x) cos(n · arccos(x))

1√
1− x2

dx

substitution cosφ = x , − sin(φ)
dφ

dx
= 1 ,

√
1− x2 =

√
1− cos2(φ) = sin(φ)

=

∫ 0

π
f(cos(φ)) cos(nφ)

− sin(φ)

sin(φ)
dφ

=

∫ π

0
f(cos(φ)) cos(nφ) dφ

Then the Chebyshev approximation is given by

f(x) ≈ c0

2
+

N∑
n=1

cn Tn(x) =
c0

2
+

N∑
n=1

cn cos(n arccos(x))

A function g(z) defined on an interval [a , b] has to be transformed onto the interval [−1 , 1] by the trans-
formations

z = −1 + 2
x− a
b− a a ≤ x ≤ b

x = a+
1

2
(z + 1) (b− a) =

a+ b

2
+ z

b− a
2

g(z) = f(
a+ b

2
+ z

b− a
2

) − 1 ≤ z ≤ 1

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 224

and then the coefficients for this new function g(z) have to be computed. We find

f(x) = g(z) =
c0

2
+

N∑
n=1

cn Tn(z) =
c0

2
+

N∑
n=1

cn Tn(−1 + 2
x− a
b− a) (2.9)

Octave code

The above results are readily inplemented in Octave for the exemplary function f(x) = arctan(x) on the
interval A = 0 ≤ x ≤ 1 = B .

%% compute the Chebyshev approximation of order n of the function fun
n = 2;
accuracy = 1e-8; % accuracy for the numerical integration
A = 0; % left endpoint
B = 1; % right endpoint
fun = @(x)atan(x); % function to be approximated

The remaining parts of the code remain unchanged if we were to examine another function. First the function
to be integrated over the standard interval [−1 , 1] has to be defined. Then we compute the coefficients using
an integration with quad(). With Chebyshev() we then determine the coefficients of the Chebyshev
approximation.

% redefine function on standard interval [-1,1]
newFun = @(x,A,B)fun(A+0.5*(x+1)*(B-A));

% function to be integrated
intFun = @(p,A,B,k)newFun(cos(p),A,B).*cos(k*p)

c = zeros(n+1,1);
c(1) = quad(@(p)intFun(p,A,B,0),0,pi,accuracy)*1/pi;
for k = 1:n
c(k+1) = quad(@(p)intFun(p,A,B,k),0,pi,accuracy)*2/pi;

end%for

coeff = zeros(n+1,n+1);
for i = 1:n+1;
coeff(i,n-i+2:n+1) = Chebyshev(i-1);

end%for

newPol = coeff’*c

The vector newPol contains the coefficients for the modified function g(z) in the previous section. To
apply the transformation we use equation (2.9) and seek the coefficients pk such that

yi = g(−1 + i
2

n
) = p(xi) = p(A+ i

B −A
n

) =
n∑
k=0

pk x
k
i for i = 0, 1, 2, 3, . . . , n

This can be regarded as a system of n+ 1 linear equations with a Vandermonde matrix.

xn0 xn−1
0 xn−2

0 1

xn1 xn−1
1 xn−2

1 · · · 1

xn2 xn−1
2 xn−2

2 1
...

. . .
...

xnn xn−1
n xn−2

n · · · 1

·

pn

pn−1

pn−2

...

p0

=

y0

y1

y2

...

pn

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 225

This is easily implemented in Octave .

y = polyval(newPol,linspace(-1,1,n+1))’;
F = vander(linspace(A,B,n+1)’);
p = F\y

Then the results can be visualized. A part of the result is shown in Figure 2.45.

x = linspace(A,B,101);
y1 = fun(x);
y2 = polyval(p,x);
figure(2); plot(x,y2-y1)
figure(1); plot(x,y1,x,y2)

2.4.7 List of codes and data files

In the previous section the codes and data files in Table 2.11 were used.

filename function

atanInteger.m function arctan z using integer operations

Chebyshev2.m Chebyshev approximation of degree 2

Lookup8bit.m Approximation by an 8-bit look-up table

LinearInterpol.m Approximation by a piecewise linear interpolation

Chebyshev.m function the determine the coefficients of Tn(x)

ChebyshevApproximation.m script file to determine the Chebyshev approximation

Chebyshev3.m Chebyshev approximation of degree 3, Exercise 1

atan32.c Chebyshev approximation of degree 3, C code for Exercise 2

Chebyshev4.m Chebyshev approximation of degree 4 for 12 bit resolution

Exercise 3

Table 2.11: Codes and data files for section 2.4

2.4.8 Exercises

The exercises

Exercise 2.4–1 Chebyshev polynomial of degree 3
Use the Chebyshev approximation

arctan z ≈ −0.0011722644 + 1.038178669 z − 0.1904775175 z2 − 0.06211012633 z3

= −0.0011722644 + z (1.038178669 + z (−0.1904775175− z 0.06211012633))

with the maximal error approximately 0.001 and a 16-bit micro controller to compute the arctan–function.
Implement these calculations using the following arithmetic operations.

• Addition of 16-bit signed integers leading to a 16-bit integer result

• Multiplication of 16-bit signed integers leading to a 32-bit integer result.

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 226

• Multiplications by 2k to be implemented with arithmetic shifts.

Determine the approximation error of your implementation and its resolution (how many bits?). Complete
Table 2.10 with the information on this algorithm.

Exercise 2.4–2 Chebyshev polynomial of degree 3, C code
Write C–code for a function to compute the y = arctan(z) for 0 ≤ z ≤ 1. Use the algorithm from the
previous Exercise 1. Work with the data type int, i.e. with 32 bit. The header of the function might be
given by

C
// for x=z*2ˆ15 the value of y=2ˆ15 * arctan(z) will be computed
int atan32(int z)

Exercise 2.4–3 12-bit AD converters
Many AD converters have a resolution of 12 bit. The Chebyshev approximation

arctan z ≈ −0.00007717176023065795 + 1.0031357062620350346 z − 0.015262708673125458 z2

−0.34245381909783135 z3 + 0.14017184670506358 z4

shows a maximal error of 0.0001 for 0 ≤ z ≤ 1. Since log2

(
0.0001·4

π

)
≈ −13 this approximation might

allow to keep the 12-resolution of the AD converter.

• Develop an algorithm for a 16-bit micro controller to determine the angle with a 12-bit resolution.

• Count the number of necessary multiplications and additions in your above solution.

• Estimate the memory necessary to achieve the same resolution with a pure lookup table.

• Complete Table 2.10 with the information on this algorithm.

Exercise 2.4–4 Piecewise quadratic interpolation
Use a piecweise quadratic interpolation for the function f(z) = arctan z on the intervall 0 ≤ z ≤ 1 with
32 subintervals of equal length. The interpolation error ist estimated by

|error| ≤ 1

6
M3 h

3

where M3 is the maximal absolute value of the third derivative of the function.
Determine the resolution (in bits) of this interpolation method.

Exercise 2.4–5 Approximation of sin–function
Find the Chebyshev approximation of order 4 of the function y = sin(x) on the interval [0 , π/2]. Use the
results and codes in Section 2.4.6.

(a) Determine the coefficients of the approximating polynomial.

(b) Generate a plot of the difference of the approximating polynomial and the function y = sin(x) .
Estimate the size of the maximal error.

The answers

Exercise 2.4–1 Chebyshev polynomial of degree 3

Chebyshev3.m

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 227

a0 = -0.06211012633; i0 = int32(a0*2ˆ16)
a1 = -0.1904775175; i1 = int16(a1*2ˆ16)
a2 = +1.038178669 ; i2 = int32(a2*2ˆ14)
a3 = -0.0011722644; i3 = int16(a3*2ˆ14)

myatan = @(z)-0.0011722644 +z.*(1.038178669 + z.*(-0.1904775175-z*0.06211012633));

z = 0:0.001:1;
zi = int32(z*2ˆ15);

r1 = int32(zi.*i0); %% 15+16
limits1 = [min(r1) max(r1)]

r2 = i1+int16(bitshift(r1,-15)); %% 16
limits2 = [min(r2) max(r2)]

r3 = int32(zi.*int32(bitshift(r2,-2))); %%16-2+15=29
limits3 = [min(r3) max(r3)]

r4 = bitshift(r3,-15)+i2; %% 29-15 =14
limits4 = [min(r4) max(r4)]

r5 = int32(zi.*int32(r4)); %% 14+15 =29
limits5=[min(r5) max(r5)]

r6 = int16(bitshift(r5,-15))+i3; %% 29-15
limits6 = [min(r4) max(r4)]

res = single(r6)*2ˆ-14;

plot(z,res-atan(z),’r’,z,myatan(z)-atan(z),’b’)
legend(’int32’,’float’)
grid on; legend(’show’)

The graph below shows that the error of approximately 0.001 is largely dominated by the Chebyshev ap-
proximation. Thus using a polynomial of higher degree will improve the accuracy. With this solution we
have 9-bit accuracy.

0 0.2 0.4 0.6 0.8 1
-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

z

di
ffe

re
nc

e

int32
float

Exercise 2.4–2 Chebyshev polynomial of degree 3, C code
One possible solution is

C

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 228

// for x=z*2ˆ15 the value of y=2ˆ15 * arctan(z) will be computed
int atan32(int z){

static int i0 = -4070;
static int i1 = -12483;
static int i2 = 17009;
static int i3 = -19;

int r;
r = i1+((i0*x)>>15);
r = i2+((x*(r>>2))>>15);
r = i3+((x*r)>>15);

return r<<1;
}

A very crude measurement indicated that the above algorithm required approximately 25 CPU cycles to
compute one value.

Exercise 2.4–3 12-bit AD converters

• One possible solution is given by

Chebyshev4.m
a0 = 0.14017184670506358; i0 = int32(a0*2ˆ15)
a1 = -0.34245381909783135; i1 = int16(a1*2ˆ15)
a2 = -0.015262708673125458; i2 = int16(a2*2ˆ15)
a3 = 1.0031357062620350346; i3 = int16(a3*2ˆ14)
a4 = -0.00007717176023065795; i4 = int16(a4*2ˆ15)

myatan = @(x)-0.00007717176023065795 + 1.0031357062620350346*x ...
- 0.015262708673125458*x.ˆ2 - 0.34245381909783135*x.ˆ3 ...
+ 0.14017184670506358*x.ˆ4;

z = 0:0.001:1;
zi = int32(z*2ˆ15);

r1 = int32(zi.*i0); %% 15+16=30
limits1 = [min(r1) max(r1)]

r2 = int16(bitshift(r1,-15))+i1; %% 30-15=15
limits2 = [min(r2) max(r2)]

r3 = int32(zi.*int32(r2)); %%15+15=30
limits3 = [min(r3) max(r3)]

r4 = int16(bitshift(r3,-15))+i2; %% 30-15 =15
limits4 = [min(r4) max(r4)]

r5 = int32(zi.*int32(r4)); %% 15+15 =30
limits5 = [min(r5) max(r5)]

r6 = int16(bitshift(r5,-16))+i3; %% 30-16=14
limits6 = [min(r6) max(r6)]

r7 = int32(zi.*int32(r6)); %% 14+15 =29
limits5 = [min(r7) max(r7)]

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 229

r8 = int16(bitshift(r7,-14))+i4; %% 29-14=15
limits6 = [min(r8) max(r8)]

res = double(r8)*2ˆ-15;

plot(z,res-atan(z),’r’,z,myatan(z)-atan(z),’b’)
legend(’int32’,’float’)
xlabel(’z’); ylabel(’errors’)
grid on; legend(’show’)

bitaccuracy = log2(1.4e-4/pi*4)

leading to the result the on the left in the figure below. The value of bitaccuracy≈ −11.8 shows
that we achieved the desired 12-bit resolution is not fully preserved. The graph also shows that the
maximal error of approximately 0.00027 is dominated by the Chebyshev approximation, but has a
slightly negative slope.

0 0.2 0.4 0.6 0.8 1
-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

z

di
ffe

re
nc

e

int32
float

0 0.2 0.4 0.6 0.8 1
-0.0002

-0.0001

0

0.0001

0.0002

z

di
ffe

re
nc

e
int32
float

By modifying the coefficient for the linear contribution we may correct the slope, leading to the right
part of the figure. Now the bitaccuracy≈ −12.5 is good enough and the difference are clearly
dominated by the Chebyshev approximation.

• The above code shows 4 necessary 16-bit multiplications (for r1, r3, r5 and r7) and also 4 additions
(for r2, r4, r6 and r8).

• For 12-bit resolution we have to store at least 212 = 4096 numbers. Since we have to store 16-bit
numbers we need 213 = 8192 = 8 K bytes of memory. Adding one more bit of resolution would
double the memory requirement.

Exercise 2.4–4 Piecewise quadratic interpolation
First compute M3 = 2 and then

|error| ≤ 1

6
M3 h

3 =
2

6 · 323
≈ 10−5

Then the bit resolution is given by

log2(
4

π
10−5) =

ln(4
π 10−5)

ln 2
≈ −16.2

and thus we find a 16-bit resolution.

Exercise 2.4–5 Approximation of sin–function

SHA1 10-9-20

2.4. COMPUTING ANGLES ON AN EMBEDDED DEVICE 230

(a) The code in Section 2.4.6 can be used with minor modifications. We find

sin(x) ≈ 2.8566 10−2 x4 − 2.0312 10−1 x3 + 1.9516 10−2 x2 + 9.9629 10−1 x+ 1.1389 10−4

(b) The maximal error is approximately 10−4.

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 231

2.5 Analysis of Stock Performance, Value of a Stock Option

In many situation one needs to extract information from a file generated by another code. In this section we
illustrate a flexible method by analyzing the value of a given stock over an extended time. The file IBM.csv
contains data for the stock price of IBM from 1990 through 199919.

2.5.1 Reading the data from the file, using dlmread()

The data retrieved from the internet is stored in a file, whose first few lines are shown below in a file
IBM.csv.

IBM.csv
Date,Open,High,Low,Close,Volume
31-Dec-99,108.671,108.982,106.121,107.365,2870300
30-Dec-99,109.169,109.977,108.049,108.236,3435100
29-Dec-99,109.915,109.977,108.236,108.485,2683300
28-Dec-99,109.044,110.226,108.547,109.293,4083100
27-Dec-99,109.169,109.48,107.614,109.231,3740700
...

The easy way to go is to use the command dlmread() to extract the needed information. In this example
we only want the second column, showing the value of the stock at the opening of each trading day. Find
the result in Figure 2.50.

IBMscriptDLM.m
% read all the data, starting at column 2 and row 2
data = dlmread(’IBM.csv’,’,’,1,1);

indata = data(:,1)’; % use second column only
k = length(data) ;
indata = fliplr(indata);
disp(sprintf(’Number of trading days from 1990 to 1999 is %i’,k))

plot(indata)
xlabel(’days’); ylabel(’value of stock’);
axis([0, k, 0, max(indata)]);
grid on

2.5.2 Reading the data from the file, using formatted reading

Instead of the above short code we can also use formatted reading. We use this simple example to illustrate
the general procedure:

1. open the file for reading

2. read one item of information at a time and store the useful items

3. close the file

Due to the structure of the file the following operations have to be performed:

• open the file for reading
19The results were found at http://finance.yahoo.com trough http://finance.yahoo.com/stock-center/. The package financial of

Octave has functions to read this type of data from the web site, but lately yahoo does not accept the commands. You obtain the
data by selecting your stock, the dates, then use APPLY and download the data. Values of Swiss stock is available on Yahoo too.
Similar information is available at https://www.macrotrends.net/

SHA1 10-9-20

http://finance.yahoo.com
http://finance.yahoo.com/stock-center/
https://www.macrotrends.net/

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 232

• read the title line and ignore it

• allocate memory for all the data to be read

• read a first line

• for each line in the file

– determine the location of the first comma and then only use the trailing string

– read the first number in the string and store it properly

– read the next line

• close the file

• adjust the size of the resulting matrix and rearrange it to have early values first. Then display the
number of trading days and plot the value of the stock. Find the result in Figure 2.50.

IBMscript.m
indata = zeros(1,365*10); % allocate storage for the data

infile = fopen(’IBM.csv’,’rt’); % open the file text for reading
tline = fgetl(infile); % read the title line

k = 0; % a counter
inline = fgetl(infile) % read a line
while ischar(inline) % test for end of input file
counter = find(inline==’,’); % find the first ’,’

% then consider only the rest of the line
newline = inline(counter(1)+1:length(inline));

% read the numbers
A = sscanf(newline,’%f%c%f%c%f%c%f%c%f’);
k = k+1;
indata(k) = A(1); % store only the first number
inline = fgetl(infile); % get the next input line

end
fclose(infile); % close the file

disp(sprintf(’Number of trading days from 1990 to 1999 is %i’,k))

indata = fliplr(indata(1:k)); % reverse the order of the stock values
plot(indata)
xlabel(’days’); ylabel(’value of stock’);
axis([0, k, 0, max(indata)]);
grid on

Another option would be to use the command textread() and then can line by line with a well
constructed format string.

2.5.3 Analysis of the data

Moving averages

The value of the stock has a rather high volatility. To visualize this we might compare the actual value of
the stock with the average value over a few days. The code below achieves just this and the result is shown
in Figure 2.51.

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 233

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

va
lu

e
of

 s
to

ck

days

Figure 2.50: The price of IBM stock from 1990 to 1999

IBMaverage.m
% the array indata contains the value of the stock
k = length(indata);

% find the range of trading days for each year
y1 = 1:253; y2 = 254:506; y3 = 507:760;

% choose the length of the averaging period
avg = 20;

% create the data
avgdata = indata;
for ii = 1:k

avgdata(ii) = mean(indata(max(1,ii-avg):ii));
end%for
% plot results for the third year
plot(y3,indata(y3),y3,avgdata(y3))
grid on
title(’Value of IBM stock and its moving average in 1992’)
xlabel(’Trading day’); ylabel(’Value’)
text(510,15,’moving average over 20 days’)
legend(’data’,’moving average’)

Daily change rates

Using the above data we can compute a daily (per trading day) change rate r by

S(n) = S(0) en r

where r is the change rate per day and S(n) the value of the investment after n days. If one year has N
trading days then the annual change rate can be computed by

eN r − 1 ≈ N r if N r � 1 .

Based of this we can compute the change rate rate by using the starting and final value of the stock

S(n) = S(0) en r =⇒ en r =
S(n)

S(0)
=⇒ r =

1

n
ln
S(n)

S(0)
.

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 234

550 600 650 700 750
12

14

16

18

20

22

24

26

Trading day

V
al

ue

Value of IBM stock and its moving average in 1992

moving average over 20 days

data
moving average

Figure 2.51: The price of IBM stock from 1992 and its average value over 20 days

The code below implements this formula.

Octave
n = length(indata);
rcomp = log(indata(n)/indata(1))/(n-1)
-->
rcomp = 6.0481e-04

This change rate can be compared to the average of the daily change rates, i.e. the average of the
expressions

r(j) = ln

(
S(j)

S(j − 1)

)
.

This will be a set of daily change rates and we may consider their statistical distribution of the values, i.e.
determine mean and standard deviation.

Octave
% mean value and standard deviation of daily change rate
rates = log(indata(2:n)./indata(1:n-1));
rmean = mean(rates)
rstd = std(rates)
-->
rmean = 6.0481e-04
rstd = 0.019396

As one would expect the average of the daily change rates (computed day by day) coincides with the average
daily change rate (computed by using initial and final value only).

To illustrate the distribution of the daily rates rates a histogram can be used, as shown in Figure 2.52(a).

Octave
dr = 0.005; edges = [-inf,-0.1:dr:0.1,inf]; nn = length(edges);
histdata = hist(rates,edges);
figure(1);
bar(edges(2:nn-1)-dr/2,histdata(2:nn-1));
axis([-0.1,0.1,0,400]); grid on
xlabel(’rate’); ylabel(’# of cases’)

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 235

-0.1 -0.05 0 0.05 0.1
0

100

200

300

400

of

 c
as

es

change rate

(a) Histogram

-0.1 -0.05 0 0.05 0.1
0

5

10

15

20

25

change rate

pe
rc

en
ta

ge

Gauss fit
data

(b) As curve with optimal Gauss curve

Figure 2.52: Histogram of daily interest rate of IBM stock

It is possible to approximate the distribution of interest rates by a normal distribution with the mean
value and standard deviation from above. To do this a function gauss() given by

gauss(x) =
1

σ
√

2π
e
−

(x− x̄)2

2σ2

can be defined20 by (the code has to be stored in a file gauss.m)

gauss.m
function res = gauss(x,mean,stddev)
% compute the value of a Gauss function at argument x
% with mean value MEAN and standard deviation STDDEV
res = exp(-1/2*(x - mean).ˆ2/stddevˆ2)*1/(sqrt(2*pi)*stddev);

endfunction

Then this function is used to generate Figure 2.52(b). The result shows the observed data and a Gauss curve
with the same mean and standard deviation.

Octave
figure(2);
y = gauss(edges(2:nn-1),rmean,rstd);
factor = sum(histdata(2:nn-1))*dr;
histnew = histdata(2:nn-1)/factor;
plot(edges(2:nn-1),[y;histnew])
axis([-0.1,0.1,0,max(histnew)]); grid on
xlabel(’change rate’); ylabel(’percentage’)
legend(’Gauss fit’,’data’)

One might use the correlation coefficient of two vectors to obtain a numerical criterion on how similar
the shape of the functions are. For two vectors ~a and~b the correlation coefficient is given by

cosα =
〈~a , ~b〉
‖~a‖ ‖~b‖

=

∑
i ai bi√∑

i a
2
i

√∑
i b

2
i

20On newer versions of Octave one may use normpdf(). In MATLAB this function is unfortunately part of the statistics toolbox,
i.e. extra $$$.

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 236

where α is the angle between the two vectors. If the vectors are generated by discretizing two functions then
a correlation coefficient close to 1 implies that the graphs of the two functions are of similar shape. For the
two functions (resp. vectors) in Figure 2.52 we obtain

Octave
y = gauss((edges(2:nn-2)+edges(3:nn-1))/2,rmean,rstd);
correlation = histdata(2:nn-2)*y’/(norm(histdata(2:nn-2))*norm(y))
-->
correlation = 0.9812

Thus in this example the distribution of the daily change rates is quite close to a normal distribution.

2.5.4 A Monte Carlo Simulation

Since we found an average daily change rate and its standard deviation we can use random numbers to
simulate the behavior of stock values. We generate random numbers for the daily change rates with the
known average value and standard deviation. Then we use these change rates to compute the behavior of
the value of the stock when those change rates are applied. We can even run multiple of those simulations
to extract information on an average performance.

Simulation of one year

We assume that the initial value of the stock is S(0) = 1 and one year has 250 trading days. Then we
generate a vector of random numbers with the mean and standard deviation of the daily change rate of the
above IBM stock. The command randn(1,days) will create normally distributed random numbers with
average 0 and standard deviation 1 . Thus we have to multiply these numbers with the desired standard
deviation and then add the average value. We assume that the value of the stock is given by S(0) = 1 on the
first trading day. For subsequent days we use

S(k) = S(k − 1) · er(k)

to find the value S(k) on the k-th day. Then we plot the values of the stock to arrive at Figure 2.53(a).
Observe that at the (k + 1)-th day the value is given by

S(k + 1) = S(1) · er(1) · er(2) · er(3) · · · · er(k) = S(1) exp(r(1) + r(2) + r(3) + · · ·+ r(k))

and thus we can use the command cumsum() (cumulative summation) to determine the values at all days,
without using a loop.

IBMsimulation.m
days = 250; % number of trading days to be simulated
rates = randn(1,days-1)*rstd + rmean; % daily change rates

%% solution with a loop, slow
% values = ones(1,days); % value of stock
% for k = 2:days
% values(k) = values(k-1)*exp(rates(k-1));
% end

%% solution without a loop, thus fast
values = [1,exp(cumsum(rates))];

plot(values)
xlabel(’trading day’); ylabel(’relative value’); grid on

Observe that repeated runs of the same code will not produce identical results, due to the random nature
of the simulation. Running the script a few times will convince you that the value of the stock can either

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 237

move up or move down. The result of one or multiple runs are shown in Figure 2.53. Observe that most
final results are rather close together, but individual runs may show a large deviation. Thus it is a good idea
to examine the statistical behavior of the final value of the stock.

0 50 100 150 200 250
0.9

1

1.1

1.2

1.3

1.4

re
la

tiv
e

va
lu

e

trading day

(a) a single run

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

trading day
re

la
tiv

e
va

lu
es

(b) mutliple runs

Figure 2.53: Simulation of annual performance of IBM stock

Multiple runs of the simulation

The above simulation can be run many times and the final value of the stock can be regarded as the outcome
of the simulation. If the simulation is run many times the outcome can be drastically different, as illustrated
by Figure 2.53(b). Thus we can run this simulation many times and consider the final value after one year
as the result. We will obtain a probability distribution of values of the stock after one year. This function
can be shown as a histogram. The code below does just this.

• Generate the random data. Observe that we removed another loop from the previous code by applying
the command cumsum() directly to the matrix of all daily change rates. Since we only need the final
values we can even use sum() instead of cumsum(). This will lead to a large speed gain, compared
to the original code with two nested loops.

Octave
days = 250; % number of trading days to be simulated
runs = 1000; % number of trial runs

rates = randn(runs,days-1)*rstd + rmean; % daily change rates
finalvalues = exp(sum(rates,2));

MeanValue = mean(finalvalues)
StandardDeviation = std(finalvalues)
LogMeanValue = mean(log(finalvalues))
LogStandardDeviation = std(log(finalvalues))

One specific run of the above code leads to the numerical values shown below. Be aware that the
numbers change from one run to the next, as they depend on the random simulation.

Octave
MeanValue = 1.2167
StandardDeviation = 0.37752
LogMeanValue = 0.14898
LogStandardDeviation = 0.30962

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 238

• Create the histogram of the final values, as function of the value of the stock. Find the result in
Figure 2.54(a).

Octave
dr = 0.1; edges = [-inf,0:dr:3,inf];
histdata = histc(finalvalues,edges)/runs;

figure(1);
nn = length(edges);
bar(edges(2:nn-1)-dr/2,histdata(2:nn-1));
title(’Histogram of probability’)
xlabel(’value of stock’)
axis([0 3 0 0.15]); grid on

• Create the histogram of the final values, as function of the logarithm of value of the stock. Find the
result in Figure 2.54(b).

Octave
dr = 0.1; edges = [-inf,-1:dr:1,inf];
histdata = histc(log(finalvalues),edges)/runs;

figure(2);
nn = length(edges);
bar(edges(2:nn-1)-dr/2,histdata(2:nn-1));
title(’Histogram of probability’)
xlabel(’logarithm of value of stock’);
axis([-1 1 0 0.15]); grid on

The numerical results for one simulation are shown above and the graphs are given in Figure 2.54 . One
should realize that the logarithm of the final values are given by a normal distribution, whereas the distribu-
tion of the values is not even symmetric. Observe that the shape of this figure changes slightly from run to
run, since the result is based on a Monte Carlo simulation.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

value of stock

Histogram of probability

(a) linear scale

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Histogram of probability

logarithm of value of stock

(b) logarithmic scale

Figure 2.54: Histograms of the final values of IBM stock after one year

If the daily change rate has a mean value of r and a standard deviation of σ then the logarithm of the
values of the stock after N days should be given by a normal distribution with mean value N r and standard

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 239

deviation σ
√
N . Thus the probability density function of the logarithm of the value of the stock is given by

PDF(z) =
1

σ
√
N
√

2π
exp

(
−(z −N r)2

2σ2N

)
.

Thus the probability that lnS(N) is between z and z + ∆z is given by PDF(z) ∆z, as long as ∆z is small.

P(z ≤ lnS(N) ≤ z + ∆z) ≈ PDF(z) ·∆z

With the above numbers r = 6.0481 · 10−4, σ = 0.0194 and N = 250 we obtain

r N = 0.1512 and σ
√
N = 0.3067

The predicted values are very close to the simulation results LogMeanValue = 0.1490 and LogStandardDe-
viation = 0.3096 of the above simulation.

2.5.5 Value of a stock option : Black–Scholes–Merton

The question

Assume that today’s value of IBM stock is S0 = 1. A trader is offering the option to buy this stock one year
from today for the fixed strike price of C = 1.05 . Assume you acquire a few of these options. Your action
taken one year from now will depend on the value S1 of the stock at the end of the year.

• If S1 ≤ C you will not use your right to buy, since it would be cheaper to buy at the stock market.

• If S1 > C you will certainly use the option and buy, as you will make a profit of S1 − C.

This option has some value to you. You can not loose on the option, but you might win, if the actual value
after one year is larger than the strike C.

What is a fair value (price) for this option?

Assumptions

To determine the value of this option the following assumptions can be used:

• The value of the stock is a random process, as simulated by the computations in the previous section.

• The probability for the value S1 to satisfy z ≤ lnS1 ≤ z + ∆z is given by

PDF(z) ·∆z =
1

σ
√
N
√

2π
exp

(
−(z −N r)2

2σ2N

)
·∆z

with r = 6.0481 · 10−4, σ = 0.0194 and N = 250 .

• The fair value p of the option is determined by the condition that the expected value of the payoff
should equal the value of the option.

The answer

The probability for the value S1 of the stock after one year to satisfy lnC ≤ z ≤ lnS1 ≤ z + ∆z for ∆z
small is given by

PDF(z) ·∆z =
1

σ
√
N
√

2π
exp

(
−(z −N r)2

2σ2N

)
·∆z .

The graph of this function is shown in Figure 2.55. This figure has to be compared with the left part in
Figure 2.54.

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 240

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

value of stock S

probability density function of value S

Figure 2.55: Probability density function of final values

With the help of this probability density function we can compute the probability for certain events. To
find the probability that the value of the stock is larger than twice its original value we compute∫ ∞

ln 2
PDF(z) dz =

1

σ
√
N
√

2π

∫ ∞
ln 2

exp

(
−(z −N r)2

2σ2N

)
dz ≈ 0.039 .

Thus there is only a 4% chance to double the value within one year. The integral∫ ∞
ln 1

PDF(z) dz =
1

σ
√
N
√

2π

∫ ∞
ln 1

exp

(
−(z −N r)2

2σ2N

)
dz ≈ 0.69

indicates that there is a 69% chance of the value of the stock to increase. These probabilities have to be
taken into account when estimating the value of the option.

If the value of the stock after one year is given by S1 then the payoff is max{0, S1 − C}.
• If S1 ≤ C then there is no payoff

• If lnC ≤ z ≤ lnS1 ≤ z + ∆z then the payoff is approximately S1 − C = ez − C. Since the
probability for this is given by PDF(z) ·∆z we find

payoff of ez − C with probability PDF(z) ·∆z =
1

σ
√
N
√

2π
exp

(
−(z −N r)2

2σ2N

)
·∆z .

To examine the expected payoff we plot the product of the payoff with the probability density function. The
result is shown in Figure 2.56 . Observe the following:

• You can not expect any payoff if the value of the stock will fall below C = 1.05.

• Values of S1 slightly larger than C are very likely to occur, but the payoff S1 − C will be small.

• Very high values of S1 are unlikely to happen. Thus the large payoff S1 − C is unlikely to occur.

• Most of the return from this option will occur for values of S1 between 1.3 and 2.0 .

All those possible contributions to the payoff have to be taken into account. The possible values for S1

are 0 < S1 < ∞ and thus −∞ < z = lnS1 < ∞ . By adding up, resp. integrating the above payoff we
arrive at an expected value of the payoff (and thus the price of the option) of

p = lim
∆zi→0

 ∞∑
zi=lnC

(ezi − C) PDF(zi) ∆zi

=

∫ ∞
lnC

(ez − C) PDF(z) dz =
1

σ
√
N
√

2π

∫ ∞
lnC

(ez − C) exp

(
−(z −N r)2

2σ2N

)
dz ≈ 0.23887 .

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 241

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
probability * payoff as function of value S

value of stock S

(a) linear scale

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5
probability * payoff as function of ln(S)

logarithm of value of stock S

(b) logarithmic scale

Figure 2.56: Product of payoff with probability density function

Thus the fair value of the option is p ≈ 0.24 for a strike of C = 1.05.

The above computations can be repeated for multiple values of the strike priceC, leading to Figure 2.57 .

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Value of option as function of strike

va
lu

e
of

 o
pt

io
n

strike prize C

Figure 2.57: Value of the option as function of the strike price C

The Octave–code

The result of the previous sections were computed with the help of the following Octave–codes.

• Give the basic data and plot the probability density function. Find the result in Figure 2.55.

Octave
rmean = 6.0481e-4 % mean of the daily change rate
rstd = 0.0194 % standard deviation of the daily change rate
N = 250 % number of trading days in a year
C = 1.05 % strike price
NN = 100;
zval = linspace(log(0.2),log(3),NN);
Prob = gauss(zval,N*rmean,rstd*sqrt(N));
figure(1);

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 242

plot(exp(zval),Prob)
title(’probability density function of value S’); grid on

• Compute the probabilities for the value of the stock to double or at least increase.

Octave
zval = linspace(log(1),log(6),NN);
Prob = gauss(zval,N*rmean,rstd*sqrt(N));
prob1 = trapz(zval,Prob)
zval = linspace(log(2),log(6),NN);
Prob = gauss(zval,N*rmean,rstd*sqrt(N));
prob2 = trapz(zval,Prob)
-->
prob1 = 0.68892
prob2 = 0.038648

The result show that with a probability of 69% the value of the stock will increase and with a proba-
bility of 3.8% the value will at least double.

• Compute the value of the stock option.

Octave
maxVal = 5*C;
zval = linspace(log(C),log(maxVal),NN);
Prob = gauss(zval,N*rmean,rstd*sqrt(N));
payoffProb = (exp(zval)-C).*Prob;

figure(2);
plot(zval,payoffProb)
xlabel(’logarithm of value of stock S’)
title(’probability * payoff as function of ln(S)’); grid on

figure(3);
plot(exp(zval),payoffProb)
xlabel(’value of stock S’)
title(’probability * payoff as function of value S’); grid on
OptionValue = trapz(zval,payoffProb) % use built-in trapezoidal rule
-->
OptionValue = 0.23884

The result states that the option with a strike prize of C = 1.05 has a value of 0.24.

• Now examine different values for the strike price C and plot the resulting values of the option. Find
the result in Figure 2.57.

Octave
NN = 100;
cval = linspace(0.2,3,100);
price = zeros(size(cval));
for k = 1:length(cval)
zval = linspace(log(cval(k)),log(6),NN);
Prob = gauss(zval,N*rmean,rstd*sqrt(N));
payoffProb = (exp(zval)-cval(k)).*Prob;
price(k) = trapz(zval,payoffProb);

end
figure(4);
plot(cval,price)
title(’Value of option as function of strike’)
xlabel(’strike prize C’); ylabel(’value of option’); grid on

SHA1 10-9-20

2.5. ANALYSIS OF STOCK PERFORMANCE, VALUE OF A STOCK OPTION 243

Nobel Price in Economics in 1997

This observation is used as a foundation for the famous Black–Scholes formula to find the value of stock
options. Further effects have to be taken into account, e.g. changing rates and other types of options. The
theory was developed by Fischer Black, Myron Scholes and Robert Merton in 1973. Since then their meth-
ods are used extensively by the financial “industry”. The 1997 Nobel Prize in Economics was awarded to
Merton and Scholes. Fisher Black died in 1995 and thus did not obtain the Nobel prize. Further informa-
tion on the Black–Scholes–Merton method and its applications in finance can be found in many books, e.g.
[Seyd00] or [Wilm98].

2.5.6 List of codes and data files

In the previous sections the codes and data files in Table 2.12 were used.

Script file task to perform

IBMscriptDLM.m read the data and create basic plot

IBMscript.m formatted scanning of the data and create basic plot

IBM.csv data file with the value of IBM stock

IBMaverage.m compute daily interest rates

IBMhistogram.m create histogram with interest rates

IBMsimulation.m simulation for value of stock during one year

IBMsimulationMultiple.m multiple runs of above simulation

IBMsimulationHist.m histogram for multiple runs of above simulation

gauss.m compute the value of a Gauss function

IBMBlackScholes.m find the value of a stock option

Table 2.12: Codes and data files for section 2.5

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 244

2.6 Motion Analysis of a Circular Disk

2.6.1 Description of problem

A circular disk (watch) is submitted to a shock acceleration and thus will start to move. The vertical dis-
placement is measured at several points along the perimeter. The resulting movement should be visualized.
The typical situation at a given time is shown in Figure 2.58.

-15
-10

-5
0

5
10

15

x
-15

-10
-5

0
5

10
15

y

0

0.5

1

1.5

2

2.5

3

z

Figure 2.58: Deformed circle for a given time

2.6.2 Reading the data

The first task is to read all the data files. Each data file contains about 4460 data points. The plan is to
read one out of 5 points and ignore the other measurements. Thus we read only 345 points. On the circle 8
different points were examined.

• First we create matrices big enough to contain all data.

Octave
%% nt number of points to be read
nt = 345;
%% skip number of frames to be ignored before the next image is created
skip = 5;
%% lineskip number of lines to be ignored for the header
lineskip = 1;
%% nt*skip < number of points to be measured
%% Npts number of measurement points on caliber
Npts = 8;

%% define the matrices for the coordinate data of points
x = zeros(Npts+1,nt);
y = zeros(Npts+1,nt);
t = zeros(Npts+1,nt);
h = zeros(Npts+1,nt);

• First we define the horizontal position of each point, given by the x and y coordinates. We copy the
first point to the 9th, to close the circle.

Octave

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 245

x(1,:) = -12.0; %% first line of x
x(2,:) = -8.4;
x(3,:) = 0;
x(4,:) = 8.4;
x(5,:) = 12;
x(6,:) = 8.4;
x(7,:) = 0;
x(8,:) = -8.4;
x(9,:) = -12.0; %% copy of the first line

y(1,:) = 0; %% first line of y
y(2,:) = -8.4;
y(3,:) = -12;
y(4,:) = -8.4;
y(5,:) = 0;
y(6,:) = 8.4;
y(7,:) = 12;
y(8,:) = 8.4;
y(9,:) = 0; %% copy of the first line

• Each of the files cg*a.txt contains two columns of data. The first number indicates the time and
the second the vertical displacement.

cg1a.txt
temps chemin

-4.02E-7 6.66173E-3
1.551E-6 -7.02712E-2
3.504E-6 -5.89382E-2
5.457E-6 1.47049E-2
7.41E-6 9.04202E-3
9.363E-6 2.95391E-2
1.1316E-5 3.40761E-2
1.3269E-5 5.05111E-2
...

The entries on each line are separated by a TAB character. We use the command dlmread() to
read the data files. This allows to skip the first row21, use help dlmread .

ReadDataDLM.m
row = 1;
data = dlmread(’cg1a.txt’,’\t’,1,0);
t(row,1:nt) = data(skip*[1:nt],1);
h(row,1:nt) = data(skip*[1:nt],2);

row = 2;
data = dlmread(’cg10a.txt’,’\t’,1,0);
t(row,1:nt) = data(skip*[1:nt],1);
h(row,1:nt) = data(skip*[1:nt],2);

%%%%% followed by a few similar sections of code

• Another option is to first open the file for reading (fopen()), then read each line by fgets() and
use formatted scaning (sscanf()) to extract the two numbers.

ReadData.m
21With very recent versions of MATLAB this works too.

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 246

row = 1;
fid = fopen(’cg1a.txt’,’r’);
for ii = 1:lineskip
tline = fgets(fid);

end
for ii = 1:nt
for s = 1:skip tline = fgets(fid);end
res = sscanf(tline,’%e %e’);
t(row,ii) = res(1);
h(row,ii) = res(2);

end
fclose(fid);

row = 2;
fid = fopen(’cg10a.txt’,’r’);
for ii = 1:lineskip
tline = fgets(fid);

end
for ii = 1:nt
for s = 1:skip tline = fgets(fid);end
res = sscanf(tline,’%e %e’);
t(row,ii) = res(1);
h(row,ii) = res(2);

end
fclose(fid);

%%%%% followed by a few similar sections of code

• The new last point has to be created as a copy of the first point. This will close the cricle.

Octave
% copy first point to last point
t(9,:) = t(1,:);
h(9,:) = h(1,:);

With the above preparation one can now create the picture in Figure 2.58.

Octave
k = 20;
plot3(x(:,k),y(:,k),h(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’z’);
grid on

2.6.3 Creation of movie

By creating pictures similar to Figure 2.58 for each time slice we can now create a movie and display it
on the screen. The code below does just this with the switch movie=0. If we set movie=1 then the
images are written to the sub-directory pngmovie in a bitmap format (png)22. Then an external command
(mencoder) is used to generate a movie file Circle.avi to be used without Octave or MATLAB. The
command is composed of two strings, for them to fit on one display line. Subsequently the directory is
cleaned up.

22With the current version of Octave (4.0.0) the graphics toolkit qt seems to have a problem generating the PNG files. Thus one
should first switch to another graphics toolkit by graphics toolkit(’fltk’)

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 247

MovieAVI.m
graphics_toolkit(’fltk’) % due to a bug in the QT toolkit with

% Octave, not required for Matlab
movie = 0; %% switch to generate movie 0: no movie, 1: movie generated
cd pngmovie
k = 1;
plot3(x(:,k),y(:,k),h(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -360 80])
grid on
for k = 1:nt

plot3(x(:,k),y(:,k),h(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -360 80])
grid on
drawnow();
if movie
filename = [’movie’,sprintf(’%03i’,k),’.png’];
print(filename,’-dpng’)

end%if
end%for

if movie
c1 = ’mencoder mf://*.png -mf fps=5 -ovc lavc -lavcopts vcodec=mpeg4’;
c2 = ’ -o Circle.avi’;
system([c1,c2]);
system(’rm -f *.png’);

end%if
cd ..

• To generate the movie we may use the program mencoder on a Linux system. To generate WMV
files I used

mencoder mf://*.png -mf fps=5 -ovc lavc -lavcopts vcodec=wmv1 -o movie.avi

and for MPEG files accordingly

mencoder mf://*.png -mf fps=5 -ovc lavc -lavcopts vcodec=mpeg4 -o movie.avi

• Instead of the command mencoder one might use the FFmpeg suite of codes, to be found at the site
http://www.ffmpeg.org/ . A possible call to create a movie with 5 frames per second is given
by

ffmpeg -r 5 -i movie%03d.png -c:v libx264 -r 30 -pix_fmt yuv420p out.mp4

• Similarly the command ffmpeg might be used (www.libav.org)

ffmpeg -i ./*movie%03d.png out.mp4

or

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 248

ffmpeg -r 10 -i ./movie%03d.png -c:v libx264 -r 10 -pix_fmt yuv420p out.mp4

To play the movie you may use any movie player, e.g. vlc or xine.

2.6.4 Decompose the motion into displacement and deformation

The movement of the circle can be decomposed into four different actions:

1. moving the center of the circle up and down

2. rotating the circle about the y axis

3. rotating the circle about the x axis

4. internal deformation of the circle

Using linear regression we want to visualize the above movements and deformation. To determine the
movement and rotations we search for coefficients p1, p2 and p3 such that for any given time t the plane

z(t, x, y) = p1(t) + p2(t) · x+ p3(t) · y

describes the location of the circle a good as possible, in the least square sense. Thus for a given time t we
have the following problem:

• Given:

– location of points (xi , yi) for 1 ≤ i ≤ m
– measured height zi for 1 ≤ i ≤ m

• Search parameters ~p such that p1 · 1 + p2 · xi + p3 · yi is as close as possible to zi . The value of p1

corresponds to the height of the center and p2, p2 show the slopes in x and y direction.

We use linear regression (see Section 2.2) to find the optimal parameters. We introduce a matrix notation.

X =

1 x1 y1

1 x2 y2

1 x3 y3

...

1 xn yn

and ~z =

z1

z2

z3

...

zn

Now we can use the command LinearRegression() to determine the parameters and then create
Figure 2.59. In Figure 2.59(a) find the height as function of time. The down an up movement of the circle
is clearly recognizable. In Figure 2.59(b) the two slopes of the circle in x and y direction are displayed.

regress.m
X = [ones(1,8);x(1:8,1)’;y(1:8,1)’]’;
% nt=345;
par = zeros(3,nt);

for kk = 1:nt
p = LinearRegression(X,h(1:8,kk));
par(:,kk) = p;

end%for

figure(3);

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 249

plot(t(1,:),par(1,:));
grid on; axis([0 0.0036, -300, 50])
xlabel(’time’); ylabel(’height’); grid on

figure(4);
plot(t(1,:),par(2:3,:));
grid on; axis([t(1,1), max(t(1,:)), -10, 10])
xlabel(’time’); ylabel(’slopes’);
legend(’x-slope’,’y-slope’)
axis([0, 0.0036 -10 10])

0 0.001 0.002 0.003
-300

-250

-200

-150

-100

-50

0

50

time

he
ig

ht

(a) height as function of time

0 0.001 0.002 0.003
-10

-5

0

5

10

time

sl
op

es

x-slope
y-slope

(b) the two slopes as function of time

Figure 2.59: Height and slopes of the moving circle

As a next step we create a movie with the movement and rotations of the plane only. First we compute
the position of the planes and then reuse the code from the previous section to generate a movie.

MovieLinear.m
hlinear = X*par;
hlinear(9,:) = hlinear(1,:);
horiginal = h;
hdeform = h-hlinear;

figure(5);
hdisp = hlinear;

movie = 0; %% switch to generate movie
cd pngmovie
k = 1;
plot3(x(:,k),y(:,k),hdisp(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -360 80])
grid on
for k = 1:nt

plot3(x(:,k),y(:,k),hdisp(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -360 80])
grid on
drawnow()

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 250

if movie
filename = [’movie’,sprintf(’%03i’,k),’.png’];
print(filename,’-dpng’)

end%if
end%for

if movie
c1 = ’mencoder mf://*.png -mf fps=25 -ovc lavc -lavcopts vcodec=mpeg4’;
c2 = ’ -o movieLinear.avi’;
system([c1,c2]);
system(’rm -f *.png’);

end%if
cd ..

Then the internal deformations can be displayed too. Since the amplitudes are smaller we have to change
the scaling to be used.

MovieDeform.m
hlinear = X*par;
hlinear(9,:) = hlinear(1,:);
horiginal = h;
hdeform = h-hlinear;

figure(5);
hdisp = hdeform;

movie = 0; %% switch to generate movie
cd pngmovie
k = 1;
plot3(x(:,k),y(:,k),hdisp(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -50 50])
grid on
for k = 1:nt

plot3(x(:,k),y(:,k),hdisp(:,k));
xlabel(’x’); ylabel(’y’); zlabel(’h’);
axis([-14 14 -14 14 -50 50])
grid on
drawnow()
if movie
filename = [’movie’,sprintf(’%03i’,k),’.png’];
print(filename,’-dpng’)

end%if
end%for

if movie
c1 = ’mencoder mf://*.png -mf fps=25 -ovc lavc -lavcopts vcodec=mpeg4’;
c2 = ’ -o movieDeform.avi’;
system([c1,c2]);
system(’rm -f *.png’);

end%if
cd ..

2.6.5 List of codes and data files

In the previous sections the codes and data files in Table 2.13 were used.

SHA1 10-9-20

2.6. MOTION ANALYSIS OF A CIRCULAR DISK 251

Script file task to perform

cg*a.txt data files

ReadDataDLM.m read all data files, using dlmread()

ReadData.m read all data files, using sscanf()

MovieAVI.m display movie and create Circle.avi

regress.m do the linear regression and plot the graphs

MovieLinear.m display and create movie of the linear movements

MovieDeform.m display create movie of the internal deformations

Circle.avi movie of the complete movement

movieLinear.avi movie of the linear movement

movieDeform.avi movie of the deformations

Table 2.13: Codes and data files for section 2.6

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 252

2.7 Analysis of a Vibrating Cord

The diploma thesis of Andrea Schüpbach examined vibrating cord sensors, produced by DIGI SENS AG. A
sample is shown in Figure 2.60. An external force will lead to an increase in tension on a vibrating string
whose frequency is used to determine the force. For further developments DIGI SENS needs to examine the
frequency and quality factor of this mechanical resonance system. An electronic measurement system was
developed and tested. In this section the data analysis for this project will be presented.

Figure 2.60: A vibrating cord sensor produced by DIGI SENS AG

2.7.1 Design of the basic algorithm

The raw signal of a sensor is measured with LabView and the data then written to a file. A typical result is
shown in Figure 2.61. At first the cord is vibrating with a constant amplitude and then the amplitude seems
to converge to zero, exponentially. Thus we find functions of the form

first: y(t) = A cos(ω t) then: y(t) = Ae−α(t−t0) cos(ω t)

To characterize the behavior of the sensor the initial amplitude A and the decay exponent α have to be
determined reliably.

-3

-2.5

-2

-1.5

-1

-0.5

0 10000 20000 30000 40000 50000

s
i
g
n
a
l

data point

Figure 2.61: The signal of a vibrating cord sensor

The essential steps to be taken to arrive at the desired data are:

• Read the data from a file and display.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 253

• Subtract the average value to have the signal oscillate about 0 .

• Take the average of the absolute value to arrive at an amplitude signal.

• Use linear regression of the logarithmic data to determine the decay exponent.

The goal of this section is to obtain code for the above algorithm to be applied to data in a file. The result is
an Octave function automatic.m that will analyze a data set, generate the graphs and display the results.
An example is given by

Octave
[amplitude,factor] = automatic(’m4’)
-->
Slope: -18.3789, Variance of slope: 0.00337408, relative error:0.000183584
amplitude = 0.49640
factor = -0.054410

Thus the body of the function is given by

automatic.m
function [amp,fact] = automatic(filename)

write your code here

end%function

Reading the data

The sensor is examined with the help of a DAQ card and LabView. The result are files with the data below.

m4
waveform [0]
t0 03.10.2007 15:36:19.
delta t 2.080000E-5

time Y[0]
03.10.2007 15:36:19. -1.275252E+0
03.10.2007 15:36:19. -1.294272E+0
03.10.2007 15:36:19. -2.469335E+0
03.10.2007 15:36:19. -1.826837E+0
03.10.2007 15:36:19. -9.730251E-1
03.10.2007 15:36:19. -2.076841E+0
...

The data consists of 5 header lines and then the actual data lines, in this case 50000 lines. Since there are
many data lines the scanning of the data will take time. The same data set will have to be analyzed many
times, to determine the optimal parameters. Thus once the data is read from the file (e.g. from m4) a new
binary file (e.g. m4.mat) is generated. On subsequent calls of this function the binary file will be read,
leading to sizable time savings23.

• We use the fact that the sampling rate is 48 kHz.

• If a file with binary data exist, read it with the help of the command load().

• Otherwise use the tools from Section 1.2.8 to read and scan the data file. After reading generate the
file with the binary data.

• Generate a graph with the raw data for visual inspection.

23On this authors PC the time was cut from 12 seconds to 1 second.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 254

Readm4.m
%% script file to read one data set
filename = ’m4’;
dt = 1/48000; %% set the sampling frequency
Nmax = 50000; %% create arrays large enough to contain all data
x = zeros (Nmax, 1) ; y = x;
%% read the binary file, if it exists
%% otherwise read the original file and write binary file
if (exist([filename,’.mat’],’file’)==2)
eval([’load ’,filename,’.mat’])

else
inFile = fopen(filename ,’rt’) ; %% read the information from the file
for k = 1:5
inLine = fgetl(inFile);

end%for
k = 1;
for j = 1:Nmax
inLine = fgetl(inFile);
counter = find(inLine==’E’);
y(j) = sscanf(inLine(counter-9:length(inLine)) ,’%f’);

end%for
fclose(inFile) ;
eval([’save -mat ’,filename,’.mat y’])

end%if

figure(1);
plot(y) %% plot the raw data
xlabel(’dada point’); ylabel(’signal’); grid on

Determine the amplitude as function of time

The result of the above code is shown in Figure 2.61. Now we aim for the amplitude as a function of time
and first subtract the average value of the result. Thus we arrive at oscillations about 0. Then we take the
absolute value of the result. With the measurements we sample a function y = abs(sin(ω t)) at equidistant
times, as shown in Figure 2.62. This figure indicates that the mean value of the sampled amplitudes should
be equal to the average height h of the function sin(t) on the interval [0, π], i.e.

h =
1

π

∫ π

0
sin(t) dt =

cos(t)

π

π

y=0
=

2

π

Thus the average value of a larger sample with constant amplitude has to be multiplied by π/2 to obtain the
correct amplitude. Since the instrument has to be calibrated we might as well ignore the factor π/2. One
has to be careful though. The cords are vibrating with frequencies of 14-18 kHz and the sampling frequency
is only 48 kHz. Thus we only find about 3 points in one period. This may cause serious discretization
problems. By using 100 points the algorithm proved to be robust. A first implementation of the above idea
is given by

Octave
y2 = abs(y-mean(y)); % subtract average value
FilterLength = 100+1; % average over some points
t0 = cputime();
y3 = zeros(Nmax-FilterLength,1);
for k = 1:Nmax-FilterLength
y3(k) = mean(y2(k:k+FilterLength));

end%for
tt = cputime-t0

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 255

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Figure 2.62: A function y = abs(sin(ω t)) and a sampling

leading to an excessive computation time of 35 seconds. The Octave command conv(), short for convolu-
tion, leads to a much faster implementation with a computation time of less than one tenth of a second. The
algorithm used in conv() is based on FFT.

Octave
y2 = abs(y-mean(y)); % subtract average value
FilterLength = 100+1; % average over some points
Filter = ones(FilterLength,1)/FilterLength;
y3 = conv(Filter,y2(1:end-FilterLength+1))’;
y3 = y3(FilterLength:end);
N = length(y3);

The results are shown in Figure 2.63(a), generated by

Octave
figure(2);
t = linspace(0,(N-1)*dt,N)’;
plot(t,log(y3)); grid on
xlabel(’time t’); ylabel(’log of amplitude’)

In Figure 2.63(a) we clearly recognize the constant amplitude in the first sector and then a straight line
segment. This is caused by

A = A0 e
−α t =⇒ lnA = lnA0 − α t

The wild variations on the right part in Figure 2.63(a) are caused by the almost 0 values. The resolution of
the involved instruments do not allow to determine small amplitudes reliably. They will have to be ignored.

Compute the initial amplitude and the decay exponent

As full amplitude A0 we use the average of the first 200 values. Then we choose an upper and a lower
cutoff value.

• Determine the first data point below the upper cutoff value.

• Determine the first data point below the lower cutoff value.

• Examine only data points between the above two points.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 256

Octave
amplitude = mean(y3(1:200));
topcut = 0.8; lowcut = 0.4; %% choose the cut levels on top and bottom
Nlow = find(y3<topcut*amplitude,1);
Nhigh = find(y3<lowcut*amplitude,1);

y4 = log(y3(Nlow:Nhigh));
N = length(y4);
t = linspace(0,(N-1)*dt,N)’;

On this reduced data set we use linear regression (see Section 2.2) to determine the slope of the straight line
and the estimated standard deviation of the slope.

Octave
%% run the linear regression
F = ones(N,2); F(:,2) = t;
[p,y_var,r,p_var] = LinearRegression(F,y4’);
yFit = F*p;

figure(3);
plot(t,y4,t,yFit) % display the real data and the regression line
xlabel(’time t’); ylabel(’log of amplitude’); grid on

fprintf(’Slope: %g, Variance of slope: %g, relative error:%g\n’,...
p(2), sqrt(p_var(2)), -sqrt(p_var(2))/p(2));

factor = 1/p(2);

The numerical result and Figure 2.63(b) clearly indicate that we have one exponential function on the
decaying section of the signal.

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1 1.2

l
o
g

o
f

a
m
p
l
i
t
u
d
e

time t

(a) log of the amplitude

-1.8

-1.6

-1.4

-1.2

-1

-0.8

0 0.0050.010.0150.020.0250.030.0350.04

l
o
g

o
f

a
m
p
l
i
t
u
d
e

time t

(b) result of linear regression

Figure 2.63: The logarithm of the amplitude and the regression result for the straight line section

Based on the above results the algorithm was implemented in LabView and graphs of the amplitude
and quality factor as function of the frequency are generated on screen.

2.7.2 Analyzing one data set

The above basic algorithm is used to analyze one data set for a single measurement. For each frequency
multiple measurements should be made and analyzed, to estimate the variance of the results. These mea-
surements have to be repeated for many different frequencies and a usefull graph has to be generated, to be

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 257

included in reports on the development of new sensors. A possible result is given in Figure 2.64. Graphs of
this type could not be generated directly by Octave24.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 14500 15000 15500 16000 16500 17000 17500 18000
 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

A
m

p
lit

u
d
e

Q
-f

a
c
to

r

Frequency (Hz)

Amplitude
Q-factor

Figure 2.64: Amplitude and Q-factor as function of frequency, including error

We expect the following features for the final graphics:

• For each frequency the average value of all the measurements is shown and error lines at a distance of
one standard deviation are drawn.

• The labeled axis for the amplitude is shown on the left edge of the graph.

• The labeled axis for the Q-factor is shown on the right edge of the graph.

• The scales shall not change from one data set to another. Thus it is easier to compare two different
graphs.

• The graphics should be generated in a format that can be used by most text processing software. We
choose PNG. The resolution and size of this bitmap format have to be well chosen, since rescaling
bitmaps is a very bad idea.

• A simpler graph without the error estimates should be generated too.

• Create a graph with the temperature as a function of the frequency.

The LabView program generates data files in a specified format, shown in the example below. The
header lines contain information on the total number of measurements and the number of repetitions for one
fixed frequency.

24Up to date versions of Octave have the command plotyy() and can now not generate graphs with two different vertical axis.
Thus one of the reasons to use an external program disappeared.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 258

Elektro22.data
01.12.2007 12:13
42 Messungen
22 Wiederholungen

Amplitude Frequenz Q-Faktor Strom Temperatur

5.684363 14571.520000 2676.159581 0.000000 24.750000
5.685096 14572.430000 2675.312131 0.000000 24.750000
5.684854 14573.010000 2677.640868 0.000000 24.750000
5.684326 14573.550000 2678.034266 0.000000 24.750000
5.684079 14573.900000 2677.439599 0.000000 24.750000
5.684086 14574.140000 2679.226273 0.000000 24.750000
...

The Octave code to be written has to:

• Open the file with the measured data for reading and open a data file gnu.dat for writing the data
to be used by Gnuplot , a powerful program to generate graphs.

• Read all the data for one frequency f .

• Compute the average amplitude A and estimate the variance ∆A.

• Compute the average Q-factor Q and estimate the variance ∆Q.

• Write one data line with the data to be displayed, i.e. write f , A, A−∆A,A+ ∆A, Q, Q−∆Q and
Q+ ∆Q.

• Within Octave a system call to Gnuplot has to generate the graphs.

A sample call is shown below.

Octave
[freq,freqS,amp] = WriteData(’Elektro22.data’);
-->
mean STDEV frequency 3.804698e+00, maximal STDEV frequency 6.416919e+01
mean STDEV amplitude 5.145861e-03, maximal STDEV amplitude 1.269707e-02
mean STDEV Q-factor 4.76711, maximal STDEV Q-factor 31.0231
mimimal temperature 24.8455, maximal temperature 42.1364

If a data file gnu.dat contains the data in the above format Gnuplot can generate Figure 2.64 with the
commands below. For most of the lines one can guess the effect of the command. Otherwise reading the
manual of Gnuplot might be necessary, or consult the web page http://www.gnuplot.info/ .

• The line set terminal allows to chose the type of output format and the size of the resulting
graphics.

• Set output sets the name of the output file.

• The labels for the different axis have to be set.

• The range for the two vertical scales have to be set with set yrange and set y2range .

• Finally one plot command will use different columns in the data file gnu.dat to create the 6 different
graphs in one image.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 259

AmpQ.gnu
set terminal png large size 800,600
set output ’AmpQ2.png’
set y2tics border
set xlabel "Frequency (Hz)"
set ylabel "Amplitude"
set y2label "Q-factor"
set grid
set xrange [14500:18000]
set yrange [4:7]
set y2range [2000:3500]
plot ’gnu.dat’ using 1:2 with points lt 1 title ’Amplitude’ axes x1y1,\

’gnu.dat’ using 1:3 with lines lt 1 notitle axes x1y1,\
’gnu.dat’ using 1:4 with lines lt 1 notitle axes x1y1,\
’gnu.dat’ using 1:5 with points lt 2 title ’Q-factor’ axes x1y2,\
’gnu.dat’ using 1:6 with lines lt 2 notitle axes x1y2,\
’gnu.dat’ using 1:7 with lines lt 2 notitle axes x1y2

The Octave file WriteData.m fullfills the above requirements25. The tools used are again found
in Section 1.2.8. The last line of code uses a system call to use Gnuplot and the above command file
AmpQ.gnu to generate the graphic files in the current directory.

WriteData.m
function [freq,freqS,amp,ampS,quali,qualiS,curr,currS,temp,tempS]...

= WriteData(filename)
% function to write data for the DigiSens sensor
%
% WriteData(filename)
% [freq,freqS,amp,ampS,quali,qualiS,curr,currS,temp,tempS] = WriteData(filename)
%
% when used without return arguments WriteData(filename) will analyze data
% in filename and then write to the new file ’gnu.dat’. Then a system call
% ’gnuplot AmpQ.gnu’ is made to generate graphs in the files
% AmpQ.png AmpQ2.png and Temp.png
%
% when used with return arguments the consolidated data will be returned
% and may be used to generate graphs, e.g.
% [freq,freqS,amp] = WriteData(’test1.dat’);
% plot(freq,amp)

if ((nargin !=1))
error(’usage: give filename in WriteData(filename)’);

end

calibrationFactor = 11.2; % factor for amplitudes, ideal value is 1.0
calibrationFactor = 1.0;

infile = fopen(filename,’rt’);

tline = fgetl(infile); % dump top line
tline = fgetl(infile); % read number of measurements
meas = sscanf(tline,’%i’);
tline = fgetl(infile); % read number of repetitions
rep = sscanf(tline,’%i’);

25On Win* system the last line might have to be replaced by system(’pgnuplot AmpQ.gnu’);

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 260

freq = zeros(meas,1); freqS=freq; freqT=zeros(rep,1);
curr = freq; currS = freq; currT = freqT;
quali = freq; qualiS=freq; qualiT = freqT;
amp = freq; ampS = freq; ampT = freqT; temp = freq;

for k = 1:8; % read the headerlines
tline = fgetl(infile);

end%for

for im = 1:meas;
for ir = 1:rep
tline = fgetl(infile);
t = sscanf(tline,’%g %g %g %g %g’);
ampT(ir) = calibrationFactor*t(1);
freqT(ir) = t(2);
qualiT(ir) = t(3);
currT(ir) = t(4);
tempT(ir) = t(5);

end%for
amp(im) = mean(ampT); ampS(im) = sqrt(var(ampT));
freq(im) = mean(freqT); freqS(im) = sqrt(var(freqT));
quali(im) = mean(qualiT); qualiS(im) = sqrt(var(qualiT));
curr(im) = mean(currT); currS(im) = sqrt(var(currT));
temp(im) = mean(tempT); tempS(im) = sqrt(var(tempT));

end%for
fclose(infile);

printf(
’mean STDEV frequency %3e, maximal STDEV frequency %3e\n’,mean(freqS),max(freqS));
printf(
’mean STDEV amplitude %3e, maximal STDEV amplitude %3e\n’,mean(ampS),max(ampS));
printf(
’mean STDEV Q-factor %3g, maximal STDEV Q-factor %3g\n’,mean(qualiS),max(qualiS));
printf(
’mimimal temperature %3g, maximal temperature %3g\n’,min(temp),max(temp))

outfile = fopen(’gnu.dat’,"wt");
fprintf(outfile,’# Freq Amp amp-STDEV amp+STDEV Q Q-STDEV Q+STDEV temp\n’);
for im = 1:meas;
fprintf(outfile,"%g %g %g %g %g %g %g %g\n",...

freq(im),amp(im),amp(im)-ampS(im),amp(im)+ampS(im),...
quali(im),quali(im)-qualiS(im),quali(im)+qualiS(im),temp(im));

end%for
fclose(outfile);

system(’gnuplot AmpQ.gnu’);
end%function

With very similar tools the results in Figure 2.65 are generated. The file AmpQ.gnu will create all three
graphs in this section.

2.7.3 Analyzing multiple data sets

To compare different sensors or the influence of external parameters it is necessary to display the results of
multiple measurements in one graph. As example consider the Figures 2.66 and 2.67. They are created by

Octave

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 261

 4

 4.5

 5

 5.5

 6

 6.5

 7

 14500 15000 15500 16000 16500 17000 17500 18000
 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

A
m

p
lit

u
d
e

Q
-f

a
c
to

r

Frequency [Hz]

Amplitude
Q-factor

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 14500 15000 15500 16000 16500 17000 17500 18000

T
e

m
p
e

ra
tu

re
 [

C
]

Frequency [Hz]

Figure 2.65: Amplitude, Q-factor and temperature as function of frequency

WriteDataAll(’Elektro’,[1:5],’.data’)
-->
estimated temperature dependence of amplitude: -0.047083 um/C
estimated temperature dependence of Q-factor: -10.0248 /C

In this section we will examine the code carefully. The documentation of this command is contained at
the top of the function file WriteDataAll.m .

WriteDataAll.m
function WriteDataAll(basename,numbers,ext)

% function to analyze data for a series of Digi Sens sensor
%
% WriteDataAll(basename,numbers,ext)
%
% will analyze data given in files and then generate graphs
% and files AmpAll.png and QAll.png
% It will also display the estimated dependencies of amplitude
% and Q-factor on the temperature
%
% sample calls:
% WriteDataAll(’Elektro",[1:5],’.data’)
% WriteDataAll(’Elektro",[1, 2, 4, 5],’.data’)

The the code in WriteDataAll() uses some special tricks to generate the graphs and some lines of
code of require comments. You might want to read the comments shown after the code.

WriteDataAll.m

if ((nargin ˜=3))
error(’usage: give filenames in WriteDataAll(basename,numbers,ext)’);

end

%calibrationFactor=11.2; % factor for amplitudes, ideal value is 1.0
calibrationFactor = 1.0;

freqA = []; ampA = []; qualiA = []; tempA = [];
cmd1 = [’plot(’]; cmd2 = cmd1; cmdLegend = ’legend(’;
for sensor = 1:length(numbers)
filename = [basename,num2str(numbers(sensor)),ext];
infile = fopen(filename,’rt’);

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 262

15 15.5 16 16.5 17 17.5 18
4

4.5

5

5.5

6

6.5

7

Frequency [kHz]

A
m

pl
itu

de

1
2
4
5

(a) Amplitude

15 15.5 16 16.5 17 17.5 18
2000

2200

2400

2600

2800

3000

3200

3400

Frequency [kHz]

Q
-f

ac
to

r

1
2
4
5

(b) Q-factor

Figure 2.66: Results for multiple measurements

tline = fgetl(infile); % dump top line
tline = fgetl(infile); % read number of measurements
meas = sscanf(tline,’%i’);
tline = fgetl(infile); % read number of repetitions
rep = sscanf(tline,’%i’);

freq = zeros(meas,1); freqS = freq; freqT = zeros(rep,1);
curr = freq; currS = freq; currT = freqT;
quali = freq; qualiS = freq; qualiT = freqT;
amp = freq; ampS = freq; ampT = freqT; temp = freq;
for k = 1:8; % read the headerlines
tline = fgetl(infile);

end%for

for im = 1:meas;
for ir = 1:rep
tline = fgetl(infile);
t = sscanf(tline,’%g %g %g %g %g’);
ampT(ir) = calibrationFactor*t(1);
freqT(ir) = t(2);
qualiT(ir) = t(3);
currT(ir) = t(4);
tempT(ir) = t(5);

end%for % rep
amp(im) = mean(ampT); ampS(im) = sqrt(var(ampT));
freq(im) = mean(freqT); freqS(im) = sqrt(var(freqT));
quali(im)= mean(qualiT);qualiS(im)= sqrt(var(qualiT));
curr(im) = mean(currT); currS(im) = sqrt(var(currT));
temp(im) = mean(tempT); tempS(im) = sqrt(var(tempT));

end%for % meas
freqA = [freqA;freq]; ampA = [ampA;amp];
qualiA = [qualiA;quali]; tempA = [tempA;temp];
fclose(infile);

key = num2str(numbers(sensor));
freqn = [’freq’,key,’=freq/1000;’]; eval(freqn);

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 263

ampn = [’amp’,key,’=amp;’]; eval(ampn);
qualin = [’quali’,key,’=quali;’];eval(qualin);
cmd1 = [cmd1,’freq’,key,’,amp’, key,’,’];
cmd2 = [cmd2,’freq’,key,’,quali’,key,’,’];
cmdLegend = [cmdLegend,char(39),key,char(39),’,’];

end%for % loop over all files

cmdLegend = [cmdLegend(1:end-1),’)’];
cmd1 = [cmd1(1:end-1),’);’];
cmd2 = [cmd2(1:end-1),’);’];

figure(1); clf;
eval(cmd1)
grid(’on’)
axis([14500 18000 4 7]);
xlabel(’Frequency [kHz]’); ylabel(’Amplitude’)
eval(cmdLegend)
print(’AmpAll.png’,’-dpng’);

figure(2); clf;
eval(cmd2);
grid(’on’)
axis([14500 18000 2000 3500]);
xlabel(’Frequency [kHz]’); ylabel(’Q-factor’)
eval(cmdLegend)
print(’QAll.png’,’-dpng’);

NN = length(freqA);
F = ones(NN,3);
F(:,1) = freqA;F(:,2)=tempA;
[p,y_var,r,p_var] = LinearRegression(F,ampA);
display(sprintf(’estimated temperature dependence of amplitude: %g um/C\n’,p(2)))
[p,y_var,r,p_var] = LinearRegression(F,qualiA);
display(sprintf(’estimated temperature dependence of Q-factor: %g /C\n’,p(2)))

figure(3); clf; axis();
plot3(freqA/1000,tempA,ampA,’+’)
xlabel(’frequency [kHz]’); ylabel(’Temperature’); zlabel(’Amplitude’)

• At first empty matrices are created to contain the data for all frequencies, amplitudes, quality factors
and temperatures.

Octave
freqA = []; ampA = []; qualiA = []; tempA = [];

• When the function is called by WriteDataAll(’Elektro’,[1,3,5],’.data’) the data
files Elektro1.data, Elektro3.data and Elektro5.data have to be analyzed. The code
uses a loop of the form

Octave
for sensor = 1:length(numbers)
...

endfor

to read each of the requested files and constructs the file names within the loop by

Octave

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 264

filename = [basename,num2str(numbers(sensor)),ext];

• Each data file is scanned using the tools from Section 1.2.8. Once the data is read named variables
will be generated. As example consider the case key=’3’. Then the commands

Octave
key = num2str(numbers(sensor));
freqn = [’freq’,key,’=freq/1000;’]; eval(freqn);

will generate the string ’freq3=freq/1000;’ and then evaluate this command. The variable
freq3 contains the frequencies from the data file Elektro3.data .

• The plot command to generate Figure 2.66(a) is constructed step by step. Examine the patches of
code.

Octave
cmd1 = [’plot(’];
for sensor = 1:length(numbers) % lop over all data files
key = num2str(numbers(sensor));
cmd1 = [cmd1,’freq’,key,’,amp’, key,’,’];
cmdLegend = [cmdLegend,char(39),key,char(39),’,’];

end%for
cmd1 = [cmd1(1:end-1),’);’];
eval(cmd1)

If the function is called by WriteDataAll(’Elektro’,[1 3 5],’.data’) then the string
cmd1 will have the final value

plot(freq1,amp1,freq3,amp3,freq5,amp5);

and thus eval(cmd1) will generate the graphics with standard Octave commands. With the help of
grid, axis(), legend(), xlabel(), ylabel() the appearance of the graphics is modified.

• Finally a call of print(’AmpAll.png’ will generate the graphics in the PNG format. With recent
versions of Octave the resolution may be given by print(’AmpAll.png’,’-S800,600’); .

• When comparing different measurements one realizes that the amplitude can not depend on the fre-
quency only, but the temperature might be important too. This is verified by Figure 2.67, generated
by

Octave
figure(3); clf; axis()
plot3(freqA/1000,tempA,ampA,’+’)
xlabel(’frequency [kHz]’); ylabel(’Temperature’); zlabel(’Amplitude’)

• By rotating Figure 2.67 one might come up with the idea that all measured points are approximately
on a plane, i.e. the amplitudeA depends on the frequency f and the temperature T by a linear function

A(f, T) = cf f + cT T + c0

The optimal values for the coefficients can be determined by linear regression.

Octave

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 265

NN = length(freqA);
F = ones(NN,3);
F(:,1) = freqA;F(:,2)=tempA;
[p,y_var,r,p_var] = LinearRegression(F,ampA);
fprintf(’estimated temperature dependence of amplitude: %g um/C\n’,p(2))

As a result we find that the amplitude A decreases by 0.047 µm per degree of temperature increase.

• A similar computation shows that the Q-factor is diminished by 10 units per degree of temperature
increase.

Temperature
frequency [kHz]18 17.517 16.516 15.515 14.5

42403836343230
4.5

5

5.5

A
m

pl
itu

de 6

6.5

7

Figure 2.67: Amplitude as function of frequency and temperature

2.7.4 Calibration of the device

The electronic device to be calibrated with the help of a vibrometer, which can measure absolute amplitudes
Aa of the vibrating cord. The electronic device built by Andrea Schüpbach lead to a voltage signal with
amplitude Ae. Using linear regression an optimal choice of the calibration parameter α such that

Aa = αAe

was determined and then built into the Labview code. The device now used by DIGI SENS yields amplitudes
in micro meters.

2.7.5 List of codes and data files

In the previous section the codes in Table 2.14 were used.

SHA1 10-9-20

2.7. ANALYSIS OF A VIBRATING CORD 266

filename function

automatic.m function file to examine test data

m4 sample data file

Readm4.m script file to read the raw data

WriteData.m function file to analyse one data set

AmpQ.gnu command file for Gnuplot

WriteDataAll.m function file to analyse multiple data sets

Elektro*.data sample data files

Table 2.14: Codes and data files for section 2.7

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 267

2.8 An Example for Fourier Series

A beam is clamped on both sides. Strike the beam with a hammer and measure the acceleration of the
hammer and the acceleration of one point of the bar. Analyze the collected data.

2.8.1 Reading the data

To read the collected data we first examine the content of the file.

SC1007.TXT
LECROYLT364L,73
Segments,1,SegmentSize,10002
Segment,TrigTime,TimeSinceSegment1
#1,03-Jun-2002 15:28:33,0
Time,Ampl
-0.0060034,0.001875
-0.0059934,0.001875
-0.0059834,0.001875
-0.0059734,0.001875
-0.0059634,-0.00125
...

• Since the data is given in a comma separated value format we can use the command dlmread() to
read and display the data. A possible result is shown in Figure 2.68.

ReadDataDLM.m
filename1 = ’SC1001.TXT’;
indata = dlmread(filename1,’,’,5,0); % read data, starting row 6
k = length(indata);
disp(sprintf(’Number of datapoints is %i’,k))
timedataIn = indata(:,1); ampdataIn = indata(:,2);

TimeIn = timedataIn(k)-timedataIn(1)
FreqIn = 1/(timedataIn(2)-timedataIn(1))
figure(1);
plot(timedataIn,ampdataIn)
title(’Amplitude of input’); grid on

dom = 1070:1170; % choose the good domain by zooming in
figure(3);
plot(timedataIn(dom),ampdataIn(dom))
title(’Amplitude of input’); grid on

%%%% similar code to read the acceleration of a point on the vibrating bar

• If you want to avoid dlmread() one may read line by line and scan for the desired values. Proceed
as follows

– give the name of the files to be read

– create an matrix of zeros large enough to store all data to be read

– open the file to be read

– read 5 lines, then ignore them

– for each of the following lines

* read a string with the line

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 268

* extract the first number (time), the comma and the second number (amplitude)

* store time and amplitude in a vector

– close the file and display the number of data points read

ReadData.m
filename1 = ’SC1001.TXT’;
indata = zeros(2,10007); % allocate storage for the data

infile = fopen(filename1,’r’); % open the file for reading
for k = 1:5
tline = fgetl(infile); % read 5 lines of text

end

k = 0; % a counter
inline = fgetl(infile); % read a line
while ischar(inline) % test for end of input file
A = sscanf(inline,’%f%c%f’); % read the two numbers
k = k+1;
indata(1,k) = A(1); % store only the time
indata(2,k) = A(3); % store only the amplitude
inline = fgetl(infile); % get the next input line

end
fclose(infile); % close the file

disp(sprintf(’Number of datapoints is %i’,k))

Once the information is available to Octave the basic data has to be extracted and displayed

– store the time and amplitudes in separate vectors

– determine the total time of the measurement and the sampling frequency

– create a graph of the amplitude as function of time for a graphical verification. A possible result
is shown in Figure 2.68.

– to examine the behavior of the driving stroke by the hammer one might enlarge the section where
the excitation does not vanish.

Octave
timedataIn = indata(1,1:k);
ampdataIn = indata(2,1:k);
TimeIn = timedataIn(k)-timedataIn(1)
FreqIn = 1/(timedataIn(2)-timedataIn(1))

figure(1)
plot(timedataIn,ampdataIn)
title(’Amplitude of input’); grid on
xlabel(’time’); ylabel(’amplitude’)

figure(2)
dom = 1070:1170;
plot(timedataIn(dom),ampdataIn(dom))
title(’Amplitude of input’); grid on
xlabel(’time’); ylabel(’amplitude’)

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 269

-0.02 0 0.02 0.04 0.06 0.08 0.1
-0.2

0

0.2

0.4

0.6

0.8

1

time

am
pl

itu
de

Amplitude of input

(a) the complete time domain

-0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008
-0.2

0

0.2

0.4

0.6

0.8

1

time

am
pl

itu
de

Amplitude of input

(b) zoomed into the strike area

Figure 2.68: Acceleration of the hammer

2.8.2 Further information

• Time of contact
The result in Figure 2.68(b) shows that the time of contact can be computed. We have to choose a

threshold for accelerations. If the measured acceleration is above this limit we decide that contact
occurs. In this example we chose 0.05 as threshold.

Octave
contact = ampdataIn>0.05; % find all points with acceleration above the

% threshold of 0.05
ContactTimes = sum(contact) % compute the number of timepoints above treshold
timeOfContact = sum(contact)/FreqIn % time of contact
-->
ContactTimes = 48
timeOfContact = 4.8000e-04

Thus we find that the hammer contacted the bar for 0.48 msec .

• Initial speed of hammer
Since the signal is proportional to the acceleration a(t) of the hammer we can compute the difference
of the velocity of the hammer before and after contact by

v2 − v1 =

∫ t2

t1

a(t) dt

With Octave we can use two slightly different codes, leading to very similar results.

– The first version uses all points with an acceleration larger than the above specified threshold
of 0.05.

– The second version integrates over the time domain specified in Figure 2.68(b).

Octave
speed1 = trapz(timedataIn,ampdataIn.*contact)
speed2 = trapz(timedataIn(dom),ampdataIn(dom)) % dom is defined in ReadDataDLM
-->
speed1 = 2.2515e-04
speed2 = 2.2812e-04

The resulting number is not equal to the actual speed, since we do not know the scale factor between
the signal and the acceleration. The device would have to be calibrated to gain this information.

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 270

2.8.3 Using FFT, Fast Fourier Transform

The data file with the acceleration of the point on the bar has to be read in a similar fashion. To analyze the
data we proceed as follows:

• Decide on the number of data points to be analyzed. It should be a power of 2 , we use 2N2 points.
Thus N2 decides on the artificial period T of the signal. The periodicity is introduced by the Fourier
analysis. With the period T we also choose the base frequency 1/T . Due to the Nyquist effect
(aliasing) we will at best be able to analyze frequencies up to 2N2−1/T .

• Choose the number Ndisp of frequencies to be displayed. We will create a graph with frequencies
up to Ndisp/T .

• Apply the FFT (Fast Fourier Transform) to the data.

• Plotting the absolute value of the coefficients as function of the corresponding frequencies will give a
spectrum of the signal. The results are shown in Figure 2.69 .

Fourier.m
N2 = 12; % analyze 2ˆN2 points
Ndisp = 200; % display the first Ndisp frequency contributions

tdata = timedataIn(1:2ˆN2);
adata = ampdataIn(1:2ˆN2);
PeriodIn = timedataIn(2ˆN2)-timedataIn(1)
frequencies = linspace(1,Ndisp,Ndisp)/PeriodIn;

fftIn = fft(adata);
figure(1);
plot(frequencies,abs(fftIn(2:Ndisp+1)))
title(’spectrum of input amplitude’); grid on

tdata = timedataOut(1:2ˆN2);
adata = ampdataOut(1:2ˆN2);
PeriodOut = timedataOut(2ˆN2)-timedataOut(1)
fftOut = fft(adata);

figure(2);
plot(frequencies,abs(fftOut(2:Ndisp+1)))
title(’spectrum of output amplitude’); grid on

The results in Figure 2.69 show that

• the input has no significant contribution for frequencies beyond 3000 Hz .

• the spectrum of the output has some significant peaks. These might correspond to eigenmodes of the
vibrating beam.

2.8.4 Moving spectrum

Instead of analyzing the signal over the full time span we may also consider the spectrum on shorter sections
of time. We proceed as follows:

• Examine slices of 211 = 2048 data points, thus 0.1 sec at different starting times. Here we choose
starting times from 0 to 0.5 sec in steps of 0.1 sec . The starting time in the code below is chosen by
setting the variable level. The value of level tells Octave at which point to start.

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 271

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

Frequency [Hz]

A
m

pl
itu

de

Spectrum of input signal

(a) spectra of hammer acceleration

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Frequency [Hz]

A
m

pl
itu

de

Spectrum of output signal

(b) spectra of beam acceleration

Figure 2.69: Spectra of the accelerations of hammer and bar

• The graphs of the above 6 computations are shown in Figure 2.70 . Observe that the scales vary
from one picture to the next. Obviously the spectrum changes its shape as function of time, but some
features persist.

SpectrumSlice.m
% set level before calling this script, e.g. by level=100
level = 100;
N2 = 11; % analyze 2ˆN2 points
Ndisp = 50; % display the first Ndisp contributions

PeriodIn = timedataIn(2ˆN2)-timedataIn(1);
frequencies = linspace(1,Ndisp,Ndisp)/PeriodIn;

adata = ampdataOut(level:level+2ˆN2-1);
fftOut = fft(adata);
spectrum = abs(fftOut(2:Ndisp+1));

figure(1);
plot(frequencies,spectrum)
xlabel(’frequency’); ylabel(’amplitude’)

Another option would be to consider even more starting times and generate a 3D–graph. The code
below26 does just this. The result in Figure 2.71 allows to discuss the behavior of the amplitudes as functions
of time and frequency.

MovingFourier.m
N2 = 11; % analyze 2ˆN2 points
Ndisp = 50; % display the first Ndisp contributions

%levels = 1:250:5000;
levels = 1:200:8000;

spectrum = zeros(length(levels),Ndisp);
PeriodIn = timedataIn(2ˆN2)-timedataIn(1);
frequencies = linspace(1,Ndisp,Ndisp)/PeriodIn;

26Recently your author learned about the command specgram() which applies a similar procedure.

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 272

0 500 1000 1500 2000 2500
0

50

100

150

200

0 500 1000 1500 2000 2500
0

50

100

150

200

250

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

Figure 2.70: Spectra at different times

for kl = 1:length(levels)
adata = ampdataOut(levels(kl):levels(kl)+2ˆN2-1);
fftOut = fft(adata);
spectrum(kl,:) = abs(fftOut(2:Ndisp+1));

end%for
figure(3);
mesh(frequencies,levels/FreqIn*1000,spectrum)
xlabel(’frequency [Hz]’); ylabel(’time [ms]’); zlabel(’amplitude’)
title(’spectrum as function of starting time’);
view(35,25)

2.8.5 Transfer function

If we consider the acceleration of the hammer as input and the acceleration of the point on the bar as output
we can examine the transfer function.

Octave
figure(3);
plot(frequencies,abs(fftOut(2:Ndisp+1))./abs(fftIn(2:Ndisp+1)))
title(’Transfer Function’)
xlabel(’Frequency’); ylabel(’Output/Input’); grid on

Expect the result to be highly unreliable for frequencies above 2500 Hz . This is based on the fact that the
amplitude of input and output are small and thus minor deviations can have a drastic influence on the result
of the division. Thus the large values of the transfer function for the highest frequencies in the left part of
Figure 2.72 should not be taken too seriously. The right part of the figure examines only smaller frequencies.
This result might be useful. It is generated by the code below.

Octave
nn = sum(frequencies <2500);
plot(frequencies(1:nn),abs(fftOut(2:nn+1))./abs(fftIn(2:nn+1)))
title(’transfer function’)
xlabel(’Frequency’); ylabel(’Output/Input’); grid on

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 273

0

50

100

am
pl

itu
de 150

200

250

time [ms]

80
60

40
20

0

1000 1500 2000 2500

500

frequency [Hz]

0

spectrum as function of starting time

Figure 2.71: Spectra at different times as 3D graph

0 1000 2000 3000 4000 5000
0

20

40

60

80

Frequency [Hz]

O
ut

pu
t/I

np
ut

Transfer function

(a) full frequency domain

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Frequency [Hz]

O
ut

pu
t/I

np
ut

Transfer function

(b) smaller frequency domain

Figure 2.72: Transfer function for the acceleration of hammer and bar

SHA1 10-9-20

2.8. AN EXAMPLE FOR FOURIER SERIES 274

2.8.6 List of codes and data files

In the previous section the codes and data files in Table 2.15 were used.

filename function

ReadDataDLM.m read the basic data from files, short version

ReadData.m read the basic data from files, long version

Fourier.m determine the spectra and the transfer function

SpectrumSlice.m find the spectrum over subsection of the time interval

MovingFourier.m create 3d graph of spectrum

SC1001.TXT first data file with amplitude of hammer

SC2001.TXT first data file with amplitude of point on bar

SC1002.TXT second data file with amplitude of hammer

SC2002.TXT second data file with amplitude of point on bar

SC1003.TXT third data file with amplitude of hammer

SC2003.TXT third data file with amplitude of point on bar

SC1007.TXT fourth data file with amplitude of hammer

SC2007.TXT fourth data file with amplitude of point on bar

Table 2.15: Codes and data files for section 2.8

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 275

2.9 Reading Information from the Screen and Spline Interpolation

In this section we:

• First examine how to read coordinate information from a MATLAB/Octave graphics window.

• Then we show to how read data from the any section of the screen with the help of mouse clicks. This
only works with Octave on a Linux system.

• Then we examine how to read data from an Octave graphics window with the help of the mouse. This
should work with Octave and MATLAB on any operations system.

2.9.1 Reading form an Octave/MATLAB graphics window by ginput()

With the command ginput() you can read information from an Octave or MATLAB graphics window.
With the code below we

• open a graphics window and fix the axis.

• display some information for the user

• use the left mouse button to collect positions and display the corresponding points.

• exit the loop with the last point, marked by the right mouse button.

GetData.m
figure(1); % write to the first graphic window
clf
axislimits = [0 2 0 1]; % x values from 0 to 2 and y values from 0 to 1
axis(axislimits) % fixed axis for the graphs
x = []; y = []; % initialise the empty matrix of values

% show messages for the user
disp(’Use the left mouse button to pick points.’)
disp(’Use the right mouse button to pick the last point.’)
button = 1; % boolean variable to indicate the last point
while button == 1 % while loop, picking up the points.

[xi,yi,button] = ginput(1); % get coodinates of one point
x = [x,xi]; y = [y,yi];
plot(x,y,’ro’) % plot all points
axis(axislimits); % fix the axis

end
plot(x,y,’ro-’)
xlabel(’x’); ylabel(’y’)

The command ginput() should work with Octave and MATLAB on any platform.

2.9.2 Create xinput() to replace ginput()

With recent versions of Octave the command ginput(), to be used below, is now compatible with
MATLAB. As a consequence a very useful feature is lost: one can not read to screen coordinates any more,
but only coordinates within the active graphics window. Since Octave is an open source project we can use
the old code of the commands and keep this feature. If the instruction in the sections below do not allow you
to read from the screen, then use the following steps to save the situation (might not work on Win* systems).

• Assure that you have copies of the files xinput.m and grab.cc in the current directory.

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 276

• Compile the code grab.cc using the instructions in the file, i.e. use a shell and run
mkoctfile -L/usr/X11R6/lib -lX11 -I/usr/X11R6/include/ grab.cc
With this command the C++ file grab.cc is compiled and the binary file grab.oct is generated.
This file is then loaded by Octave when calling grab(). With newer versions of Octave calling
mkoctfile grab.cc does the same job. If you desire to do, you can also examine the source
code.

• Now you can use the command xinput() instead of ginput() to use the previously available
functionality.

• With the files created above the commands grab() and xinput() will be available when working
in this directory. To make this feature generally available you have to copy the files xinput.m
and grab.oct location in the path of Octave . This author uses a directory ∼/octave/site
and then uses the command addpath (genpath (’∼/octave/site’)); in the startup file
∼/.octavrerc to make the directory known to Octave . See also Section 1.1.1 (page 8).

The above is a good illustration of the advantages of Open Source software. On Linux systems the
independent program g3data might be useful for the same purpose. It does not directly read from the
screen, can work with many formats for graphics.

2.9.3 Reading an LED data sheet with Octave

In Figure 2.73 you find data for an LED (Light Emitting Diode). We will closely examine the intensity of
the emitted light as a function of the angle. For this we want to read the data into Octave27. The command
xinput() allows to read the screen coordinates of any point on the screen, even in the window covered
by other applications. Thus we can launch an PDF reader (e.g. evince) on a command line or through
the GUI of the operating system to display the file NSHU550ALEDwide.pdf. Locate the page shown in
Figure 2.73. Then we read the data of the left part in the graph in the lower right corner.

• The first click determines the location of x = 0 and y = 0 .

• The second click determines the location of x = 90 and y = 1 .

• Subsequent clicks with the left mouse button specify the points to be collected.

• A click with the right button will terminate the data collection, where this last location will not be
stored.

• Display the result. A possible answer is shown in Figure 2.74(a).

LEDread.m
more off
% show messages for the user
disp(’Left mouse button picks points.’)
disp(’Right mouse button to quit.’)
pause(2); % give the user some time to get the graph in the foreground
[xi,yi] = xinput([0 90 0 1]) % read the points
figure(1);
plot(xi,yi);
grid on; axis(’normal’);
xlabel(’angle’); ylabel(’intensity’);

Using the data collected above we want to generate the polar plot of the intensity as a function of the
angle. Thus we have to transform the data. Find the result in Figure 2.74(b).

Octave
27With MATLAB this is unfortunately not possible, and Octave on Win?? systems seems to be problematic too.

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 277

Figure 2.73: Data sheet for an LED

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 278

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

in
te

n
s
it
y

angle

(a) the intensity as function of the angle

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

(b) polar coordinates

Figure 2.74: Light intensity data for an LED

figure(2);
polar(pi/2-xi/180*pi,yi)
axis([0 0.5 0 1],’equal’)

In section 2.2.5 (page 151) the above information is used as input for linear regression to determine the
intensity as a function of the angle.

With very similar code we can try to read the information from the polar plot in Figure 2.73.

• Click on the corner with angle 0◦ and radius 1 .

• Click on the corner 90◦ and radius 1 .

• Collect the (x, y) coordinates for the LED by clicking on the points along the polar section of the
graph.

• Transform the (x, y) information into angles and intensities.

• Plot the result. The graph should be similar to Figure 2.74(a).

LEDreadPolar.m
more off
% show messages for the user
disp(’Left mouse button picks points.’)
disp(’Right mouse button to quit.’)
disp(’first click on the corner r=1 at angle 90’)
disp(’then click on the corner r=1 at angle 0’)
pause(2); % give the user some time to get the graph in the foreground
[xi,yi] = xinput([0 1 0 1]); % read the points
figure(1);
xi = 1-xi;
plot(xi,yi);

al = pi/2-atan2(yi,xi);
Intensity = sqrt(xi.ˆ2 + yi.ˆ2);

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 279

figure(2);
plot(al*180/pi,Intensity),
grid on
axis(’normal’);

2.9.4 Interpolation of data points

The aim of this section is to develop code to collect the coordinates of a few data points with the mouse
as input device. We only read points in graphics window generated by Octave . Then the points should be
visualized. We will use different type of interpolation to construct a curve connecting the points:

• Spline interpolation. This will lead to a smooth curve. With the help of a numerical integration, we
determine the area between this curve and the horizontal axis.

• Piecewise linear interpolation. The function is tabulated at a regular set of grid points. Using the
representation we compute and visualize the derivative of the function.

Getting the data, using the mouse as input device

The code below is organized as follows:

1. Initialize the graphics window and number and coordinates of the points to be collected.

2. Show a message to the user with the information on how to proceed.

3. Use the command ginput() (graphical input) to obtain the coordinates of the points to be used.
Plot the data while it is collected.

4. Store the data in vector with the x and y components of the points

The code is shown on page 275 in a file GetData.m . Run this command in Octave or MATLAB and you
will find two vectors xi and yi containing the coordinates of the points. If the data is generated by different
methods, this section of the code has to be adapted.

Spline Interpolation

MATLAB and Octave provide the command spline() to compute the interpolating spline polynomial for
a given set of points.

SplineInterpolation.m
% Interpolate with a spline curve and finer spacing.
% the code in GetData.m must be run first
n = length(x);
t = 1:n; % integers from 1 to n
ts = 1: .2: n; % from 1 to n, stepsize 0.2
xys = spline(t,[x;y],ts); % do the spline interpolation
xs = xys(1,:); ys = xys(2,:); % extract the components

% Plot the interpolated curve.
figure(1); % plot in the first graphics window
plot(xs,ys,x,y,’*-’);
xlabel(’x’); ylabel(’y’)
grid on

figure(2); % write to second window
% Plot the two components of the spline curve separately show the labels
plot([1:length(xs)],xs,’g-’,[1:length(ys)],ys,’b-’)

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 280

legend(’x values’,’y values’)
xlabel(’numbering’); ylabel(’values’)
grid on

After having computed many points on the curve we now attempt to compute the integral of the function,
i.e. for a ≤ x ≤ b we try to determine

F (x) =

∫ x

a
f(s) ds

Based on Figure 2.75 we use a trapezoidal integration rule, i.e.∫ x5

x0

f(x) dx ≈ (x1 − x0)
y0 + y1

2
+ (x2 − x1)

y1 + y2

2
+ (x3 − x2)

y2 + y3

2
+ (x4 − x3)

y3 + y4

2

Based on this idea we can integrate step by step, adding the area of the new rectangle at each step. This is
implemented in the script file Integration.m shown below.

-

6

�
��

x0

y0

��
��
�

x1

y1

�
��

��

x2

y2

HH
HHH

HH

x3

y3

x4

y4

Figure 2.75: Trapezoidal integration

Integration.m
% use the data generated by GetData and SplineInterpolation
integral = zeros(size(xs)); % create vector of correct size

% perform a numerical integration by adding the contributions
% use a trapezoidal integration
for k = 2:length(xs)

integral(k) = integral(k-1) + (xs(k)-xs(k-1))*(ys(k-1)+ys(k))/2;
endfor
figure(3);
axis(axislimits)
plot(xs,ys,";function;",xs,integral,";integral;")

The identical result can be obtained by the command cumtrapz(), short for cummulative trapezoidal
rule.

integral = cumtrapz (xs,ys);

Piecewise linear interpolation

Since the data points were collected with the help of the mouse, the values of x are not necessarily sorted. If
y is supposed to be a explicit function of x the graph may not ‘swing back’. This requires that the values of x
and y be renumbered properly, as illustrated in Figure 2.76. With the sorted values we then call the function
interp1() to determine the values of the piecewise linear interpolating function at a set of regularly
spaced grid points. A plot is easily generated.

LinearInterpolation.m

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 281

original data points

sorted data points

Figure 2.76: Data points in original order and sorted

% Interpolate with a piecewise linear curve
% GetData must be run first
nx = 51; % number of grid points
xlin = linspace(min(x),max(x),nx); % uniformly distributed points
% sort x and y values, based on the order of the x values
xysort = sortrows([x;y]’,1);

% compute the values of y at the given points xlin
ylin = interp1(xysort(:,1),xysort(:,2),xlin);

% Plot the interpolated curve.
figure(3);
plot(x,y,’*’, xlin,ylin);
legend(’given points’,’interpolation’)
grid on

% compute the derivatives at the midpoints
dy = diff(ylin)./diff(xlin);
% compute the midpoints of the intervals
xmid = xlin(2:length(xlin))-diff(xlin)/2;
hold on
plot(xmid,dy,’r’)
legend(’given points’,’interpolation’,’derivative’)
hold off

A finite difference approximation was used above to find a numerical derivative of the given function.

2.9.5 List of codes and data files

In the previous section the codes and data files in Table 2.16 were used. The codes should be run in the
given order.

SHA1 10-9-20

2.9. READING INFORMATION FROM THE SCREEN AND SPLINE INTERPOLATION 282

filename function

LEDread.m read the LED data from screen, generate plot

LEDreadPolar.m read the LED data from polar plot

NSHU550ALED.pdf Data sheet for an LED

GetData.m read the basic data from screen using mouse

SplineInterpolation.m perform a spline interpolation and show the results

as graph of the two components and as one curve

Integration.m apply a trapezoidal integration rule and

show the function and its integral

LinearInterpolation.m perform a piecewise linear interpolation and show the results

as graph of the function and its derivative

xinput.m script file as replacement for ginput.m, (Octave only)

grab.cc C++ source for the command grab(), (Octave only)

Table 2.16: Codes and data files for section 2.9

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 283

2.10 Intersection of Circles and Spheres, GPS

In this section we build up some of the Mathematics used for the the Global Positioning System (GPS). It
turns aot the the problem of finding intersection points of spheres is one of the essential tools used for the
GPS, see [Thomp98].

• We start with the geometric problem of find the two intersection points of two circles in the plane.
This can be used to determine the position of a robot in a plane, if the distence to two fixed points is
known.

• A MATLAB/Octave function is written to determine the two intersection points.

• Similar ideas are used to determine the intersection points of three spheres in space and an application
in robotics is mentioned.

• Then the problem of approximation the common intersection point of many circles in the plane is
examined. The system of over-determined quadratic equations is replaced by a linear least square
problem.

• The identical algorithm can be used to search for the intersection point of many spheres in space.

• By adding the additional dimension time one can use the same idea to determine the position if
information of a few GPS satellites is available.

The following examples will show you how to implement the mathematical operations with MATLAB or
Octave . We start with a geometric problem, solved by algebraic methods.

2.10.1 Intersection of two circles

As can be seen in Figure 2.77 the two points of intersection (if they exist) of two circles determine a straight
line. To compute those points of intersection we may first determine the equation of this straight line and
then intersect with one of the circles. The code below shows how this idea can be implemented.

x

y

Figure 2.77: Intersection of two circles

A circle with center at ~xm = (x1 , y1)T and radius r1 corresponds to the solution of the equation

‖~x− ~xm‖2 = (x− x1)2 + (y − y1)2 = r2
1

and a possible parametrization of this circle is given by(
x(t)

y(t)

)
=

(
x1

y1

)
+ r1

(
cos(t)

sin(t)

)
for 0 ≤ t ≤ 2π

First choose the parameters for the first circle

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 284

x1m = 2; y1m = 3; % coordinates of the center
r1 = 1.5; % radius

then create the graph.

t = linspace(0,2*pi,51); % values of all angles, 51 steps
x1 = x1m+r1*cos(t); % x coordinates of all points
y1 = y1m+r1*sin(t); % y coordinates of all points
plot(x1,y1); % create the plot
axis([0,5,0,5],"equal") % choose a domain

A second circle is plotted using similar code.

x2m = 4; y2m = 2; % coordinates of the center
r2 = 2; % radius
x2 = x2m+r2*cos(t); % x coordinates of all points
y2 = y2m+r2*sin(t); % y coordinates of all points
plot(x1,y1,x2,y2); % create the plot with both circles

For two given circles we try to solve for the points of intersection and arrive at the system of quadratic
equations

x2 − 2xx1 + x2
1 + y2 − 2 y y1 + y2

1 = r2
1

x2 − 2xx2 + x2
2 + y2 − 2 y y2 + y2

2 = r2
2

Subtracting the two equations we find the equation for a straight line on which both points of intersection
have to be.

−2x (x1 − x2) + x2
1 − x2

2 − 2 y (y1 − y2) + y2
1 − y2

2 = r2
1 − r2

2

By choosing x = 0 we find the point

~xp =

(
xp

yp

)
=

(
0

r21−r22−y21+y22−x21+x22
−2 (y1−y2)

)

and

~v =

(
v1

v2

)
=

(
y1 − y2

−x1 + x2

)
is a vector pointing in the direction of the straight line. Thus

~x(t) = ~xp + t ~v with t ∈ R

is a parametrization of this straight line.

Octave
xp = [0; (-r1ˆ2+r2ˆ2+x1mˆ2-x2mˆ2+y1mˆ2-y2mˆ2)/(2*(y1m-y2m))];
v = [y1m-y2m; -x1m+x2m];

Then use this parametrization in the equation for the first circle to find

r2
1 = ‖~x(t)− ~xm‖2 = 〈~x(t)− ~xm , ~x(t)− ~xm〉

= 〈t ~v + ~xp − ~xm , t ~v + ~xp − ~xm〉
= ‖~v‖2 t2 + 2 〈~v , ~xp − ~xm〉 t+ ‖~xp − ~xm‖2

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 285

This is a quadratic equation for the unknown parameter t with the two solutions

t1,2 =
−b±

√
b2 − 4 a c

2 a
=
−2 〈~v , ~xp − ~xm〉 ±

√
D

2 ‖~v‖2

where the discriminant D is given by

D = 4 (〈~v , ~xp − ~xm〉)2 − 4 ‖~v‖2 ‖~xp − ~xm‖2

Octave
a = v’*v;
b = 2*v’*(xp-[x1m;y1m]);
c = norm(xp-[x1m;y1m])ˆ2-r1ˆ2;
D = bˆ2-4*a*c; % discriminant

% compute the two solutions
t1 = (-b+sqrt(D))/(2*a);
t2 = (-b-sqrt(D))/(2*a);

Then the two points of intersection are

~xp + t1 ~v and ~xp + t2 ~v

Octave
p1 = xp + t1*v
p2 = xp + t2*v

If the discriminant D < 0 is negative, then there are no points of intersection.

With the above algorithm and resulting codes we have all building blocks to determine the intersection
points of two general circles in a plane.

2.10.2 A function to determine the intersection points of two circles

All the above computation can be put in one function file IntersectCircles.m

IntersectCircles.m
function res = IntersectCircles(x1m,y1m,r1,x2m,y2m,r2)
% draw the graph of two circles and find the intersection points

t = linspace(0,2*pi,51); % values of all angles, 51 steps

x1 = x1m+r1*cos(t); % x coordinates of all points
y1 = y1m+r1*sin(t); % y coordinates of all points
x2 = x2m+r2*cos(t); % x coordinates of all points
y2 = y2m+r2*sin(t); % y coordinates of all points
plot(x1,y1,x2,y2); % create the plot with both circles
axis equal

% find the parameters for the straight line
xp = [0; (-r1ˆ2+r2ˆ2+x1mˆ2-x2mˆ2+y1mˆ2-y2mˆ2)/(2*(y1m-y2m))];
v = [y1m-y2m;-x1m+x2m;];
% determine coefficients of the quadratic equation
a = v’*v; b = 2*v’*(xp-[x1m;y1m]); c = norm(xp-[x1m;y1m])ˆ2-r1ˆ2;
D = bˆ2-4*a*c; % discriminant
% compute the two solutions
t1 = (-b+sqrt(D))/(2*a);
t2 = (-b-sqrt(D))/(2*a);

res = [xp + t1*v,xp + t2*v];

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 286

Then one single Octave command will draw the circles and determine the intersection points.

Octave
IntersectionPoints = IntersectCircles(2,3,1.5,4,2,2)
-->
InterPoints = 3.2368 2.0632

3.8487 1.5013

2.10.3 Intersection of three spheres

When the three pairs of double beams in Figure 2.78 are moving the central point will move too. Its position
is determined by the fact, that the distances of the points of attachment have known values. To determine the
position of the central point in the lower part of the section as function of the position of the three guiding
beams in the upper part we have to determine the intersection point of three spheres in space. A robot of
this type was constructed by Sebastien Perroud in 2004, to be used as a pick and place robot. At the CSEM
Sebastien did develop the concept and the results are PoketDelta and MicroDelta robots.

Figure 2.78: A Delta Robot

To determine the points of intersection we use the following geometric facts.

• The intersection of two spheres is typically a circle, which lies in a plane.

• The intersection of two of the above planes determines a straight line.

• With the help of this line and one of the spheres we can determine the points of intersection of the
three spheres.

The code below shows how this idea can be implemented.

To find the intersection points of three spheres the following set of quadratic equations have to be solved
for x, y and z.

(x− x1)2 + (y − y1)2 + (z − z1)2 = r2
1

(x− x2)2 + (y − y2)2 + (z − z2)2 = r2
2

(x− x3)2 + (y − y3)2 + (z − z3)2 = r2
3

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 287

By subtracting these equations we find a linear system of two equations for three unknowns.

−2 (x1 − x2) x −2 (y1 − y2) y −2 (z1 − z2) z = r2
1 − x2

1 − y2
1 − z2

1 − r2
2 + x2

2 + y2
2 + z2

2

−2 (x2 − x3) x −2 (y2 − y3) y −2 (z2 − z3) z = r2
2 − x2

2 − y2
2 − z2

2 − r2
3 + x2

3 + y2
3 + z2

3

Using matrix notation we find

−2

[
x1 − x2 y1 − y2 z1 − z2

x2 − x3 y2 − y3 z2 − z3

]
·

x

y

z

 =

(
r2

1 − x2
1 − y2

1 − z2
1 − r2

2 + x2
2 + y2

2 + z2
2

r2
2 − x2

2 − y2
2 − z2

2 − r2
3 + x2

3 + y2
3 + z2

3

)

or equivalently

2

[
~M2 − ~M1

~M3 − ~M2

]
~x =

(
r2

1 − ‖ ~M1‖2 − r2
2 + ‖ ~M2‖2

r2
2 − ‖ ~M2‖2 − r2

3 + ‖ ~M3‖2

)
where

~Mi = (xi , yi , zi)

With the definitions for A and ~b we obtain an inhomogeneous system of two linear equations for three
unknowns.

A · ~x = ~b

The general solution of this system can be parametrized with the help of a particular solution ~xp and the
solution ~v of the homogeneous problem A~v = ~0.

~xp = A\~b and ~v = ker(A)

All solutions of the linear system are of the form

~x(t) = ~xp + t ~v

and this expression can be used with the equation of the first sphere to find a quadratic equation for the
parameter t ∈ R.

‖~x− ~M1‖2 − r2
1 = 0

‖t~v + ~xp − ~M1‖2 − r2
1 = 0

t2 ‖~v‖2 + t 2 〈~v , ~xp − ~M1〉+ ‖~xp − ~M1‖2 − r2
1 = 0

a t2 + b t+ c = 0

t1,2 =
−b±

√
b2 − 4 a c

2 a

where ~M1 = (x1 , y1 , z1)T . The two intersection points are then given by

~xp + t1 ~v and ~xp + t2 ~v

This algorithm can be implemented in Octave or MATLAB.

2.10.4 Intersection of multiple circles

In Section 2.10.1 we observed that the intersection points of two circles are characterized by a system of
quadratic equations

x2 − 2xx1 + x2
1 + y2 − 2 y y1 + y2

1 = r2
1

x2 − 2xx2 + x2
2 + y2 − 2 y y2 + y2

2 = r2
2

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 288

Subtraction these two leads to one linear equation

2x (x2 − x1) + (x2
1 − x2

2) + 2 y (y2 − y1) + (y2
1 − y2

2) = r2
1 − r2

2

or
2 (x2 − x1)x+ 2 (y2 − y1) y = (r2

1 − r2
2)− (x2

1 − x2
2)− (y2

1 − y2
2)

If the intersection points of more than two circles are examined, then we have multiple of these equa-
tions. For N circles with centers at (xi, yi) and radii ri for i = 1, 2, 3, . . . , N we have

2 (xj − xi)x+ 2 (yj − yi) y = (r2
i − r2

j)− (x2
i − x2

j)− (y2
i − y2

j) for 1 ≤ i 6= j ≤ N (2.10)

It is obvious that for N > 3 we have too many equations to determine the two unknown coordinates (x, y)
of the point of intersection. This is mirrored by the fact that in general N circles do not have a unique point
of intersection.

number of circles 2 3 4 5 N

number of equations 1 3 6 10 1
2 N (N − 1)

Thus it seems that we have 1
2 N (N − 1) equations, but this is not the full truth. Many equations are linearly

dependent. The difference generated by the intersections of the pair (1, i) of circles and by the pair (1, j)
is identical to the equation generated by the pair (i, j). Consequently we have only N − 1 independent
equations. This confirms that three circles with a unique point of intersection lead to two equations for the
two unknowns of the position of the point of intersection. The implementation below uses the pairs (1, 2),
(2, 3), (3, 4),. . . (N − 1, N)

Thus we have usually an over-determined system of N − 1 linear equations of the type (2.10) and this
can be writen using a matrix M ∈ R(N−1)×2

M

(
x

y

)
= ~b ∈ RN−1

When solving this over-determined system with the backslash operator \ Octave/MATLAB will determine
the least square solution, i.e. the norm of the residual vector ~r

~r = M

(
x

y

)
−~b

will be minimized.

• If the given circles happen to have a unique point of intersection, it will be determined by MATLAB/Octave .

• If there is not exact point of intersection, an approximation is generated.

• Even if there is no intersection point at all, the algorithm will return a result. It is the best possible
result in the above least square sense.

• A major advantage of the above algorithm is that a linear regression problem is used, instead of a
nonlinear system of equations.

As a first example examine the three circles with center at the origin, radius 2.3, center at (3, 3), ra-
dius 2.2 and center at (0, 3), radius 1.7. The approximate intersection point is at (1.175, 1.900). Find the
resulting graphics in Figure 2.79. Since the three straight lines have an exact point of intersection, the norm
of the residual vector ~r is zero, but this does not imply the we have an exact point of intersection for the tree
circles.

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 289

-2 0 2 4 6

-2

0

2

4

x

y

Figure 2.79: Approximate intersection point of three circles

% intersect three circles
centers = [0,0; 3,3; 0 3];
radii = [2.3;2.2;1.7];

% generate the plots
angle = linspace(0,2*pi,200); xr = cos(angle); yr = sin(angle);
figure(1); clf
hold on
for ii = 1:length(radii)
plot(centers(ii,1)+radii(ii)*xr,centers(ii,2)+radii(ii)*yr)

end%for
hold off

% construct the overdetermined linear system
N = length(radii);
M = zeros(N-1,2); b = zeros(N-1,1);

for ii = 1:N-1
M(ii,:) = 2*(centers(ii,:)-centers(ii+1,:));
b(ii) = radii(ii+1)ˆ2-radii(ii)ˆ2-sum(centers(ii+1,:).ˆ2)+sum(centers(ii,:).ˆ2);

end%for
xy = M\b
residum = norm(M*xy-b)

hold on
plot(xy(1),xy(2),’or’) % mark the point of intersection in red
hold off
axis equal
xlabel(’x’); ylabel(’y’)

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 290

The above code can be reused to examine possible points of intersection of more circles.

circle center radius

1 (0, 0) 5

2 (8, 0) 5

3 (4, 0) 3

4 (3, 3) 1

5 (4.6062 , 3.35) 0.6

Replace the first section in the code above by the data of these five circles.

% a set of four circles
centers = [0,0;8,0;4,0;3,3];
radii = [5;5;3;1];
% add a fifth circle
c5 = [4,3] + 0.7*[cos(pi/6),sin(pi/6)];
centers = [centers;c5]; radii = [radii;0.6];

The approximation for the point of intersection is (x, y) ≈ (4.0013 , 3.0028) and clearly visible in Fig-
ure 2.80(a). But these five circles have no common point of intersection, illustrated by the zoom into the
critical area in Figure 2.80(b). The length of the residual vector is ‖~r‖ ≈ 0.18. If the fifth circle is dropped
from the list of circles, then the exact point of intersection (4 , 3) is computed.

0 5 10

-6

-4

-2

0

2

4

6

x

y

(a) global situation

3.95 4 4.05 4.1

2.95

3

3.05

3.1

x

y

(b) zoomed into critical area

Figure 2.80: Intersection of five circles

2.10.5 Intersection of multiple spheres

The problem of intersecting multiple spheres is very similar to the above question. The only additional
aspect is the third coordinate z. For two spheres we have the quadratic equations

x2 − 2xx1 + x2
1 + y2 − 2 y y1 + y2

1 + z2 − 2 z z1 + z2
1 = r2

1

x2 − 2xx2 + x2
2 + y2 − 2 y y2 + y2

2 + z2 − 2 z z2 + z2
2 = r2

2

Subtraction these two leads to one linear equation

2x (x2 − x1) + (x2
1 − x2

2) + 2 y (y2 − y1) + (y2
1 − y2

2) + 2 z (z2 − z1) + (z2
1 − z2

2) = r2
1 − r2

2

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 291

or

2 (x2 − x1)x+ 2 (y2 − y1) y + 2 (z2 − z1) z = (r2
1 − r2

2)− (x2
1 − x2

2)− (y2
1 − y2

2)− (z2
1 − z2

2)

If the intersection points of more than two spheres are examined we have multiple of these equations. For
spheres with centers at (xi, yi, zi) and radii ri for i = 1, 2, 3, . . . , N we have for 1 ≤ i 6= j ≤ N

2 (xj − xi)x+ 2 (yj − yi) y + 2 (zj − zi) z = (r2
i − r2

j)− (x2
i − x2

j)− (y2
i − y2

j)− (z2
i − z2

j) (2.11)

Thus the problem of intersection spheres in space is very similar to the problem of intersecting circles in the
plane. To have a unique point of intersection we need at least 4 spheres, but we can use information of more
and examine the corresponding least square problem.

The implementation of the algorithm is very similar to the code shown in the previous Section 2.10.4.

2.10.6 GPS

The context and some of the Mathematics of the global positioning system (GPS) is explained in the very
nice article [Thomp98]. The basic facts are:

• Each satellite sends accurate information on its own position and the time at which the signal was
sent.

• The GPS receiver has information from N satellites and uses its own clock to determine the current
distance ri to the satellite by multiplying the measured travel time by the speed of light c.

• The (relatively inaccurate) clock of the GPS receiver might be off by ∆T , leading to a fixed error of
D = c∆T for the distances to each of the satellites.

With the above each satellite leads to a quadratic equation for the position (x, y, z) of the receiver.

(x− xi)2 + (y − yi)2 + (z − zi)2 = (ri −D)2

x2 − 2xxi + x2
i + y2 − 2 y yi + y2

i + z2 − 2 z zi + z2
i = r2

i − 2 riD +D2

Subtracting two of these equations leads to

2 (xj−xi)x+2 (yj−yi) y+2 (zj−zi) z−2 (rj−ri)D = (r2
i−r2

j)−(x2
i−x2

j)−(y2
i−y2

j)−(z2
i−z2

j) . (2.12)

This is one linear equation for the four unknowns z, y, z and D. With the information of at least 5 satellites
we can determine the current position and the offset ∆T = D

c of the clock of the GPS receiver. Thus the
accuracy of the clock in the GPS receiver does not have to be outstanding.

The implementation of the algorithm is again very similar to the code shown in Section 2.10.4.

2.10.7 List of codes and data files

In the previous section the codes in Table 2.17 were used.

filename function

twocircles.m script file to determine intersection points

IntersectCircles.m function file to compute intersection points

Table 2.17: Codes and data files for section 2.10

SHA1 10-9-20

2.10. INTERSECTION OF CIRCLES AND SPHERES, GPS 292

2.10.8 Exercises

Exercise 2.10–1 Write a function IntersectSpheres() in Octave or MATLAB to determine the inter-
section points of three spheres.

The answers

Exercise 2.10–1

IntersectSpheres.m
function res = IntersectSpheres(M1,r1,M2,r2,M3,r3)
% find the intersection points of three spheres
% Mi is a row vector with the three components of the center of the i-th circle
% ri is the radius of the i-th sphere

% create the matrix and vector for the linear system
A = 2*[M2-M1;M3-M2];
b = [r1ˆ2-norm(M1)ˆ2-r2ˆ2+norm(M2)ˆ2;r2ˆ2-norm(M2)ˆ2-r3ˆ2+norm(M3)ˆ2];

% determine a particular solution xp and the homogeneous solution v
xp = A\b
v = null(A)

% determine coefficients of the quadratic equation
a = v’*v;
b = 2*v’*(xp-M1’);
c = norm(xp-M1’)ˆ2-r1ˆ2;

% solve the quadratic equation
D = bˆ2-4*a*c; % discriminant
if (D<0)
sprintf(’no intersection points’)
res = [];

else
% compute the two solutions
t1 = (-b+sqrt(D))/(2*a);
t2 = (-b-sqrt(D))/(2*a);
res = [xp + t1*v,xp + t2*v];

end

As a simple test run the following commands

Octave
M1 = [3 -0.1 0]; r1=3;
M2 = [0 3 0]; r2=3;
M3 = [0 0.35 4]; r3=4;
IntersectSpheres(M1,r1,M2,r2,M3,r3)

with the result

Octave
2.4652e+00 1.7077e-03
2.3841e+00 3.9699e-05
1.5948e+00 1.5339e-02

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 293

2.11 Scanning a 3–D Object with a Laser

A solid is put on a plate and then scanned with a laser from a given angle. A CCD camera is placed straight
above the object and is recording the laser spot on the solid. With this information one can determine the
height of the solid at these points. This should lead to a 3–D picture of the solid. The aim is to show this
solid in a graphic. The laser scan is performed according to the following scheme:

• For a fixed x position of the laser, move it stepwise in the y direction and detect the resulting x position
of the laser spot on the solid. Compute the height z of the solid at this spot. Store the values of x, y
and z.

• Advance the laser in the x direction by a fixed step size and repeat the above procedure.

Since some sections of the solid is shaded, i.e. not visible by the laser, the object is then rotated by 90◦ and
rescanned. The two scans have to be combined.

2.11.1 Reading the data

The first task is to read the numbers in those files and store them in matrices. The code below does just this
for the x values. Similar code will read the other matrices. The comments describe the goal for each line of
code.

ReadData.m
% read each of the three data files
x = load(’Xmatnew1.txt’); y = load(’Ymatnew1.txt’); z = load(’Zmatnew1.txt’);
[nstep,npix] = size(x);

figure(1);
mesh(x,y,z);
view(50,30); xlabel(’x’); ylabel(’y’); zlabel(’z’);

% read the rotated data
xR = load(’Xmatnew2.txt’); yR = load(’Ymatnew2.txt’); zR = load(’Zmatnew2.txt’);

As a result each row in the matrices x, y and z contains the values of the coordinates along one line in
x direction, where the value of y is fixed. A sample is shown in Figure 2.81, generated by the code below.

Octave
kk = 175; plot(x(:,kk),z(:,kk))
xlabel(’x’); ylabel(’z’);

In Figure 2.82 find a visualization of this fact. Obviously the x values will not be uniformly spaced. It
is in fact this nonuniform distribution of points that allows to compute the height of the solid.

With the commands mesh(x(1:25,1:30)) and mesh(y(1:25,1:30)) we obtain the results in
Figure 2.83. This figure shows that the y values are very regularly spaced, while the x coordinate of the
laser spot varies, due to the changing height of the solid, as illustrated in Figure 2.82.

The command mesh(x,y,z) will create Figure 2.84, a first try of a picture of the solid. On the left
in this figure the traces of the shadow lines are clearly visible. In this section the shape of the solid is not
correctly represented, the laser beam can not ”see” this part of the solid. Thus appropriate measures have to
be taken. We will scan the same object from a different angle and then try to merge the two pictures.

2.11.2 Display on a regular mesh

For subsequent calculations it is advantageous to compute the (measured) height on a regular grid. To
achieve this goal we

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 294

0

0.5

1

1.5

2

2.5

0 5 10 15 20

z

x

Figure 2.81: Cross section in x direction

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

Figure 2.82: Location of laser spot, varied in x direction

(a) x values (b) y values

Figure 2.83: Values of the measured coordinates

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 295

0

5

10

15

20

x

0
2

4
6

8
10

12
14

y

0

0.5

1

1.5

2

2.5

z

Figure 2.84: 3–D scan of solid from one direction

1. choose the number of grid points in either direction.

2. along each line in x direction (see Figure 2.81) we compute the height with the help of a piecewise
linear interpolation. The command interp1() will perform this operation.

3. The above process has to be applied to each line in x direction.

Octave
nx = 200; % number of grid points in x direction
xmin = 0.5; % minimal and maximal value of x
xmax = 16;
xlin = linspace(xmin,xmax,nx);
zlin = zeros(nx,npix);

for k = 1:npix
xt = x(:,k)’; % values of x and z in this row
zt = z(:,k)’;
aa = sortrows([xt;zt]’,1); % sort with the x values as criterion
xt = aa(:,1);
xt = xt+(1:length(xt))’*1e-8; % add a minimal slope to prevent identical values
zt = aa(:,2);
t = interp1(xt,zt,xlin); % perform a linear interpolation
zlin(:,k) = t’; % store the result in the matrix

end%for

xlin = xlin’*ones(1,npix); % create the uniformly spaced x and y values
ylin = ones(1,nx)’*y(1,:);

% plot the interpolated data
figure(2);
mesh(xlin,ylin,zlin)

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 296

xlabel(’x’); ylabel(’y’); zlabel(’z’);

As the next task we try to decide which points are on a shadow line in the plot. For the given data we
know that the angle of the laser beam is α = 30◦ = π/6 and thus the slope of the shadow is given by
tanα = 0.5 . With a comparison operator we determine all points where the slope deviates less than 0.1
from the ideal value of 0.5 . The plot generated by the code below represents the shadowed area.

Octave
dx = xlin(2,1)-xlin(1,1); dz = diff(zlin);

tip = abs(dz./dx-0.5)<0.1; % mark the shadowed area
tip(nx,1:npix) = zeros(1,npix); % no shadows on last row
figure(3);
mesh(xlin,ylin,1.0*tip)
xlabel(’x’); ylabel(’y’); zlabel(’shadow’);

2.11.3 Rescan from a different direction and rotate the second result onto the first result

0

5

10

15

20

x

-5

0

5

10

15

20

y

0

0.5

1

1.5

2

2.5

z

r
o
t
a
t
e
d

Figure 2.85: 3–D scan of solid from a second direction

Now the solid is rotated by 90◦ on the mounting plate and a second scan generates independent results,
shown in Figure 2.85. The result has to be compared with Figure 2.84. The shadows are now falling in a
different direction. The goal is to combine the two pictures by the following algorithm:

1. Rotate the second graph, such that the two pictures should coincide.

2. If a point in Figure 2.84 is in a shadowed area, replace the height by the result form Figure 2.85.

3. Plot the new, combined picture.

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 297

With the affine mapping (
x

y

)
7→
(

+y + x0 − y0

−x+ x0 + y0

)
the direction of the two axis will be interchanged and since(

x0

y0

)
7→
(

+y0 + x0 − y0

−x0 + x0 + y0

)
=

(
x0

y0

)

we have a rotation about the fixed point (x0, y0)T . Thus the code below will create the picture of the solid
in the original direction, but the laser will now throw its shadows into another direction.

Octave
x0 = 10.508; y0 = 5.897;
xn = +yR -y0+x0;
yn = -xR +x0+y0;

figure(4);
mesh(xn,yn,zR)
xlabel(’x’); ylabel(’y’); zlabel(’z rotated’);

The next task is to compute the height of the ”new” solid at the regular grid points of the first scan.
This leads to an interpolation problem for a function of two variables. The algorithm is rather elaborate,
implemented as griddata(). Then we use the matrix tip to construct the combined height.

• If tip=0 then (1-tip) * A + tip * B = A and the first value is used.

• If tip=1 then (1-tip) * A + tip * B = B and the second value is used.

The result is shown in Figure 2.86.

Octave
zInt = griddata(xn,yn,zR,xlin,ylin,’nearest’);
znew = (1-tip).*zlin + tip.*zInt;

figure(5);
mesh(xlin,ylin,znew)
xlabel(’x’); ylabel(’y’); zlabel(’z combined’); view(50,60)

2.11.4 List of codes and data files

In the previous sections the codes and data files in Table 2.18 were used. The following sequence of com-
mands in Octave or MATLAB should reproduce the results in this section. Use ReadData.m to read all
data files and generate a first plot. Then use UniformMesh.m to examine the solid on a uniform mesh and
determine the shadow areas. Finally the two scans are combined with the help of RotateShape.m.

SHA1 10-9-20

2.11. SCANNING A 3–D OBJECT WITH A LASER 298

Figure 2.86: Combination of the two scans

filename function

ReadData.m read the basic data from files, including plot

UniformMesh.m interpolate on a uniform mesh, determine shadow

RotatedShape.m rotate the second scan and combine the two graphs

?newmat1.txt data for the first scan

?newmat2.txt data for the second scan

Table 2.18: Codes and data files for section 2.11

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 299

2.12 Transfer function, Bode and Nyquist plots

For control applications the behavior of many systems can be described by their transfer function. Bode
and Nyquist plots are tools often used in connection with transfer functions. In this section we show how to
create those plots

• with code of our own

• using a MATLAB toolbox

• the commands provided by Octave

2.12.1 Create the Bode and Nyquist plots of a system

Consider the transfer function

G (s) =
4 + 4.8 s

5.5 + 17.5 s+ 14.5 s2 + 3.5 s3 + s4

By writting a script function and storing it in a file mytf.m

Matlab
function res = mytf(s);
res = (4+4.8*s)./(5.5+17.5*s+14.5*s.ˆ2 + 3.5*s.ˆ3 + s.ˆ4);

we can then compute the result G(2) by calling mytf(2), with the result 0.0954 . Since the function file
uses element wise operations we may compute the values of the function for multiple arguments by passing
a vector as argument to a single call of the function, e.g.

Matlab
mytf([0 1 2 3 4 5])
.
ans = 0.7273 0.2095 0.0954 0.0505 0.0295 0.0184

By using the above code we can compute the values of this transfer function along the positive imaginary
axis and then generate the plot. We choose to examine the domain 10−2 ≤ ω ≤ 105. The code below will
generate one half of the Nyquist plot of this transfer function, as shown in Figure 2.87.

Matlab
% generate the Nyquist plot of a transfer function
w = logspace(-2,5,200);
z = mytf(i*w);
plot(z)
grid on; axis equal

A very similar call will generate the Bode plots of G(s).

Matlab
% generate the Bode plots of a transfer function
semilogx(w,20*log10(abs(z)))
semilogx(w,angle(z)*180/pi)

2.12.2 Create the Bode and Nyquist plots of a system with the MATLAB–toolbox

The built-in command nyquist() in MATLAB will generate Figure 2.88 . This function needs the coef-
ficients or the numerator and denominator polynomial as arguments. The frequency domain will be chosen
automatically. Similarly the command bode() will create the Bode plots in Figure 2.89. Unfortunately
both commands are part of a toolbox of MATLAB and thus have to be purchased separately. Consult the
on-line help for more information.

Matlab

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 300

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−300

−250

−200

−150

−100

−50

0

Figure 2.87: Nyquist and Bode plots of the system, programmed with MATLAB

num = [4.8 4];
denum = [1 3.5 14.5 17.5 5.5];
nyquist(num,denum);
bode(num,denum);

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 2.88: Nyquist plot of the system, with control toolbox of MATLAB

2.12.3 Create the Bode and Nyquist plots of a system with Octave commands

The Octave Forge package control of Octave provides a set of commands for control theory, including
Bode and Nyqist plots. The code below leads to the Figures 2.90 and 2.91. You may want to consult the
online help on the commands tf(), bode() and nyquist().

Octave

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 301

Bode Diagram

Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)

M
a
g
n
it
u
d
e
 (

d
B

)

−150

−100

−50

0

10
−1

10
0

10
1

10
2

−270

−180

−90

0

Figure 2.89: Bode plots of the system, with control toolbox of MATLAB

mysys = tf([4.8 4],[1 3.5 14.5 17.5 5.5]);
figure(1); bode(mysys);
figure(2); nyquist(mysys);

2.12.4 Eliminate artificial phase jumps in the argument

In Figure 2.91 the argument jumps by 360◦. This does not create a problem for this figure, but might be
troublesome in another application. Thus we seek to eliminate this artificial jump in the phase. The function
fixangles() does take a vector of angle values as argument an returns the adjusted angles, such that no
2π jumps appear. The used algorithm is rather elementary:

• Start out with no correction k=0 . Take the known angles (angles) and the compute the difference
between subsequent angles by da=diff(angles) .

• For each step in the angles determine what number of 2π–steps is closest to the actual change in the
angle. This is done by the command k -= round(da(i)/(2*pi)) . For most steps the values
of k will not change.

• Then add the correct numbers of steps to the angle by res(i+1)+=k*2*pi .

fixangles.m
function res = fixangles(angles)
%% res = fixangles(angles) eliminates the 2*pi jumps in a vector of angle values

n = length(angles);
res = angles;
k = 0;
da = diff(angles);
for i = 1:n-1;

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 302

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.2 0 0.2 0.4 0.6

Im
(

G
(j

w
)

)

Re(G(jw))

Nyquist plot from u1 to y1, w (rad/s) in [1.000000e-02, 1.000000e+02]

+w
-w

Figure 2.90: Nyquist plot of the system, created by Octave

Figure 2.91: Bode plots of the system, created by Octave

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 303

k -= round(da(i)/(2*pi));
res(i+1) + = k*2*pi;

end

The code below is an elementary test of the function fixangle() .

Octave
mysys = tf([4.8 4],[1 3.5 14.5 17.5 5.5]);

[mag,phase,w] = bode(mysys);

semilogx(w,phase/180*pi)
hold on
phase2 = fixangles(phase/180*pi);
semilogx(w,phase2)
hold off

2.12.5 The commands for control theory

Octave has a sizable number of commands to operate on control systems. The documentation should be
included with the distribution. It is also available through this authors home page. An abbreviated list of
commands is shown below.

• tf() build system data structure from transfer function format data

• Find the description of bode() and nyquist() above

• sysout() print out a system data structure in desired format

As an elementary example we determine the pole of the above transfer function.

Octave
mysys = tf([4.8 4],[1 3.5 14.5 17.5 5.5]);
sysout(mysys,’zp’)
.

Input(s) 1: u_1

Output(s): 1: y_1

zero-pole form:
4.8 (s + 0.8333)

(s + 0.5) (s + 1) (s + 1 - 3.162i) (s + 1 + 3.162i)

The result shows that the system is in fact stable, since all poles (zeros of the denominator) have negative
real part.

There are some demos of the specialized commands, all documented in the section OCST demos of
the Octave Forge documentation. Below find a noncomplete list of demos.

• DEMOcontrol or controldemo Launch the demos

• bddemo Block Diagram Manipulations demo

• rldemo Root Locus demo

• frdemo Frequency Response demo

• moddemo Model Manipulations demo

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 304

36 Example : As an example we consider a feedback system where the individal transfer functions are
given by

K(s) =
s+ 1

s
and P (s) =

1

s+ 2

- - P (s) - -

K(s) �

6

U(s) +
−

Y (s)

Standard results for transfer functions imply that the transfer function for this feedback system is given by

T (s) =
P (s)

1 +K(s)G(s)
=

1
s+2

1 + s+1
s

1
s+2

=
s

s2 + 3 s+ 1

The command feedback will combine the given systems P and K to a new system. Then sys2tf()
and sys2zp() will determine the transfer function and its zeros and poles for the feedback system.

Octave
nump = 1; denp = [1 2];
P = tf(nump,denp,0,"plant input","plant output");

numk = [1 1]; denk = [1 0];
K = tf(numk, denk,0,"controller input","controller output");

FeedbackSys = feedback(P,K);

[num,den] = sys2tf(FeedbackSys)
[z,p] = sys2zp(FeedbackSys)

The results of the above code are given by

Octave
num = 1 0
den = 1 3 1

z = 0
p = -2.61803 -0.38197

This confirms the numerator and denominator of the transfer function T (s) and its poles p1,2 = 1
2 (−3 ±√

32 − 4) at p1 ≈ −2.6 and p2 ≈ −0.38 . ♦

37 Example : A very similar example is examined in the demo bddemo -> Design Examples. We
use the same functions for G(s) and K(s) as in the previous example.

- - K(s) - P (s) - -

�

6

U(s) +
−

Y (s)

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 305

Some algebraic operations lead to the transfer function of this feed back system

Y (s) = K(s)P (s) (U(s)− Y (s))

(1 +K(s)P (s)) Y (s) = K(s)P (s) U(s)

Y (s) =
K(s)P (s)

1 +K(s)P (s)
U(s)

=
s+1
s2+2 s

1 + s+1
s2+2 s

U(s) =
s+ 1

s2 + 3 s+ 1
U(s)

Detailed explanations of the code below are beyond the scope of these notes.

Octave
%% step 1: create systems P and K
nump = 1; denp = [1 2];
P = tf(nump,denp,0,"plant input","plant output");

numk = [1 1]; denk = [1 0];
K = tf(numk, denk,0,"controller input","controller output");

%% step 2: group P and K together
PK = sysgroup(P,K);

%% step 3: create a summing junction
%% Step 3a: duplicate controller input: (input 2 of PK)
PK = sysdup(PK,[],2);

%% step 3b: scale input 3 by -1
PK = sysscale(PK,[],diag([1, 1, -1]));

%% step 4: connect outputs to respective inputs
%%Step 4: connect:
%% y(t) (output 1) to the negative sum junction (input 3)
%% u(t) (output 2) to plant input (input 1)
%% and prune extraneous inputs/outputs (retain input 2, output 1)
out_connect = [1, 2]
in_connect = [3, 1]
PK0 = sysconnect(PK,out_connect,in_connect);

%% step 5: prune the desired i/o connections
PK0 = sysprune(PK0,1,2);
[num,den] = sys2tf(PK0)
[z,p] = sys2zp(PK0)

You find the source code of the above, and other demos, in the file bddemo.m on yous system as part
of the Octave distribution. ♦

2.12.6 A root locus problem

Examine one given system

Now we examine the location of the poles of the feedback system. First define numerator and denominator
of the system and create the Nyquist plot. Then the system is converted to the MATLAB form and the poles
of the transfer function are located. The result implies that the open loop system is stable.

• Define numerator and denominator of the transfer function with the help of the coefficient of the
polynomials.

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 306

• The command nyquist() will then create a Nyquist plot of the system with the given transfer
function.

• With tf() the polynomial coefficients are converted to a MATLAB objet of the type transfer function.

• With pole() the poles of the above transfer function are computed.

Octave
num = [4.8 4];
denum = [1 3.5 14.5 17.5 5.5];
figure(1);
mysys = tf(num,denum);
nyquist(mysys);
[z,p] = sys2zp(mysys);
p

The result should be Figure 2.88 and the poles are given by

Octave
-1.0000 + 3.1623i
-1.0000 - 3.1623i
-1.0000
-0.5000

With Octave the command sys2zp() determines to zeros and poles of the transfer function. Since all real
parts of the poles are negative we conclude that the open loop system is stable.

Consult the on-line help for information on the commands nyquist(), tf() and sys2zp().
For MATLAB the command [z,p]=sys2zp(mysys) has to be replaced by pole(mysys).

A parameter dependent system

Next generate all the values of the amplification factors for different values of the parameter k. The Nyquist
plot in Figure 2.88 implies that the feedback system should be stable for the amplification factor −1.3 <
k < 5. With a loop construct the transfer function of the closed loop system and compute the poles. They
are stored in the variable poles, sorted by their real part.

- - G (s) - -

k �

6
+
−

• Create a vector with 50 equidistant values of the parameter k between −1.3 and 5.

• A variable poles is created, with the correct size to store all poles of the systems for all parameter
values. It is initialized with zeros.

• Then for each value of the parameter k the following commands are executed:

– With backsys=tf(kvalues(j),1); the feedback part of the system is created. The am-
plification factor given by kvalues(j). Then with FeedbackSys=feedback(mysys,backsys);
the feedback system is computed.

– Using sys2zp() all poles of the system are computed and then stored in poles .

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 307

Octave
num = [4.8 4]; denum = [1 3.5 14.5 17.5 5.5]; mysys=tf(num,denum);
kvalues = linspace(-1.3,5,50);

for j = 1:length(kvalues)
backsys = tf(kvalues(j),1);
FeedbackSys = feedback(mysys,backsys);
[z,p] = sys2zp(FeedbackSys);
poles(j,:) = p’;

endfor

Now create a graph with all the poles marked. Figure 2.92 shows that all poles are in the in the left half
plane for values of −1.3 ≤ k ≤ 5 and thus the closed loop system will be stable.

Octave
rr = real(poles);
ri = imag(poles);
figure(2);
grid on
axis([-3,1,-4,4])
plot(rr,ri,’b+’);
title(’All poles’); xlabel(’Real’); ylabel(’Imaginary’)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Im
ag

in
ar

y

Real

All poles

Figure 2.92: Pole location of the closed loop system

2.12.7 List of codes and data files

In the previous section the codes in Table 2.19 were used.

SHA1 10-9-20

2.12. TRANSFER FUNCTION, BODE AND NYQUIST PLOTS 308

filename function

fixangles.m function file to eliminate artificial phase jumps

mybode.m a modified version of the command bode()

mybodeTest.m a test for the above modification

feedbackdemo1.m an elementary demo for the OCST commands

feedbackdemo2.m a second elementary demo for the OCST commands

rootlocus.m script file to compute pole locations

Table 2.19: Codes and data files for section 2.12

SHA1 10-9-20

2.13. PLANED TOPICS 309

2.13 Planed Topics

• Rewrite the section on Transfer Functions, Bode and Nyquist

• Integrate the image processing with Fourier from Fourier lecture notes: Zielfilm.

• Use the playrec code spectrum analyser.m to modify a graph.

• Filter design, using a heart beat analysis by Josef Götte, well done by Annie Zoss. A filter design
interface might be nice.

• Present PCA, using my notes in Correlation.tex, [GlovJenkDone11]

• Finite difference methods to solve BVP and IBVP, use lecture notes from Numerical Methods. Makes
extensive use of sparse matrices. Use the command toeplitz() to generate matrices for periodic
boundary conditions.

• Sparse matrix operations, use LinearSystems.tex and the test provided in that directory.

• Present my solution of KdV, using the conservation law

• Add an index with the keywords. DONE

• Terminal interaction by input(), menue(), yes or no(), kbhit()

• GUI using inputdlg(), uicontrol(), demo uicontrol.m

• dlmread() might be extremely slow on large data files, see
/Projects/Miracor/CSP LDAP/Dec13/OCCLUDED. Use awk to write better file with the
numerical data only.

SHA1 10-9-20

Bibliography

[AbraSteg] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, 1972.

[Bevi69] P. R. Bevington. Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill,
New York, 1969.

[BiraBrei99] A. Biran and M. Breiner. Matlab 5 für Ingenieure. Systematische und praktische Einführung.
Addison–Wesley, 3rd edition, 1999.

[GandHreb95] W. Gander and J. Hřebı́ček. Solving Problems in Scientific Computing Using Maple and
MATLAB. Springer–Verlag, Berlin, second edition, 1995.

[GlovJenkDone11] D. M. Glover, W. J. Jenkins, and S. C. Doney. Modeling Methods for Marine Science.
Camebridge University Press, 2011.

[Grif01] D. F. Griffiths. An Introduction to Matlab. University of Dundee, 2001.

[HairNorsWann08] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Non-
stiff Problems. Springer Series in Computational Mathematics. Springer Berlin Heidelberg, second
edition, 1993. third printing 2008.

[HansLitt98] D. Hanselmann and B. Littlefield. Mastering Matlab 5. Prentice Hall, 1998.

[Hans11] J. S. Hansen. GNU Octave. Packy Publishing, Bimingham, 2011.

[Hind93] A. C. Hindmarsh and K. Radhakrishnan. Description and Use of LSODE, the Livermore Solver
for Ordinary Differential Equations. NASA, 1993.

[Hock05] R. Hocking. Methods and Applications of Linear Models: Regression and the Analysis of Vari-
ance. Wiley Series in Probability and Statistics. Wiley, 2005.

[HuntLipsRose14] B. R. Hunt, R. L. Lipsman, and J. M. Rosenberg. A Guide to MATLAB: For Beginners
and Experienced Users. Cambridge University Press, New York, NY, USA, third edition, 2014.

[MoleVanLoan03] C. Moler and C. van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review, 45(1), 2003.

[MontPeckVini12] D. Montgomery, E. Peck, and G. Vining. Introduction to Linear Regression Analysis.
Wiley Series in Probability and Statistics. Wiley, 2012.

[DLMF15] NIST. NIST Digital Library of Mathematical Functions, 2015.

[Quat10] A. Quateroni, F. Saleri, and P. Gervasio. Scientific Computing with MATLAB and Octave.
Springer, third edition, 2010.

[Rivl69] T. J. Rivlin. An Introduction to the Approximation of Functions. Blaisdell Publishing Company,
1969. reprinted by Dover.

310

BIBLIOGRAPHY 311

[Seyd00] R. Seydel. Einführung in die numerische Berechnung von Finanz–Derivaten. Springer, 2000.

[www:sha] A. Stahel. Web page. web.ti.bfh.ch/˜sha1.

[Stah16] A. Stahel. Statistics with Matlab/Octave. supporting notes, BFH-TI, 2016.

[Stah99] W. A. Stahel. Statistische Datenanalyse. Vieweg, 2. auflage edition, 1999.

[Stew13] I. Stewart. Seventeen Equations that Changed the World. Profile Books Limited, 2013.

[Thomp98] R. B. Thompson. Global positioning system: The mathematics of gps receivers. Mathematics
Magazine, 71(4):260–269, 1998.

[Wilm98] P. Wilmott. Derivatives, the Theory and Practice of Financial Engineering. John Wiley&Sons,
1998.

SHA1 10-9-20

List of Figures

1.1 The Octave GUI . 9
1.2 Screenshot of a working CLI Octave setup . 10
1.3 Graph of the function | cos(x)| . 22
1.4 Elementary plot of a function . 31
1.5 Probability of needles to penetrate, or to break . 32
1.6 Probability distribution of needles to break before penetration 33
1.7 Histogram of random numbers with mean 2 and standard deviation 0.5 42
1.8 Graph of the Bessel function J0(x) and its derivative . 43
1.9 Fuel consumption for a hybrid car . 58
1.10 Performance of linear system solver . 63
1.11 Graph of the polynomial 1 + 2x+ 3x3 . 69
1.12 Graph of a function h = f(x, y), with contour lines . 76
1.13 1/x and a polynomial approximation of degree two . 78
1.14 Elementary graphs of functions . 80
1.15 Two graphs without and with some decorations . 83
1.16 Tick marks, grid lines and a figure in a figure . 84
1.17 A graphics of specific size and with special tick marks . 85
1.18 Histogram of the values of the sin–function . 89
1.19 A spiral curve in space . 90
1.20 The surface z = exp(−x2 − y2) . 91
1.21 The contour lines of the function z = exp(−x2 − 0.3 y2) 92
1.22 Two modifications of the above surface and contour plot 93
1.23 Surface and contour plots, without visible lines . 93
1.24 A general 3D surface . 94
1.25 A vector field . 95
1.26 Magnetic fields with either both currents positive or opposite sign 97
1.27 Wallace and Gromit, original and with an averaging filter applied 100
1.28 Wallace and Gromit, as grayscale and R, G and B images 100
1.29 A grayscale and BW picture and edge detection . 102
1.30 Apply a low pass filter to an image, based on FFT . 102
1.31 Original image of Lenna, and with a lowpass filter by FFT 103
1.32 A few objects, for edge detection . 104
1.33 Intensity along a horizontal line through the objects . 105
1.34 Sobel edge detection . 107
1.35 Result of a Sobel edge detection . 108
1.36 Edge detection, using a different filter . 109
1.37 Some solutions of the logistic differential equation . 112
1.38 One solution and the vector field for the Volterra-Lotka problem 114
1.39 Vector field and a solution for a spring-mass problem . 116
1.40 Solution for the diode circuit with Runge-Kutta, fixed step and adaptive 125

312

LIST OF FIGURES 313

2.1 Cumulative trapezoidal integration of sin(x) . 131
2.2 Error of trapezoidal and Simpsons integration method . 132
2.3 Circular conductor for which the magnetic field has to be computed 134
2.4 Magnetic field along the central axis . 136
2.5 Magnetic field along the central axis, Helmholtz configuration 137
2.6 Magnetic field along the x axis . 138
2.7 Magnetic vector field in a plane, actual length and normalized 140
2.8 Magnetic field for two coils in the Helmholtz configuration 141
2.9 Relative changes of Hz in the plane y = 0 . 142
2.10 Level curves for the relative changes of Hz at levels 0.001, 0.002, 0.005 and 0.01 143
2.11 Regression of a straight line . 145
2.12 Regression of a parabola . 147
2.13 Regressions with the fitted data and the 95% confidence bands 151
2.14 Intensity of light as function of the angle . 152
2.15 Intensity of light as function of the angle and a first regression curve 152
2.16 Intensity of light as function of the angle and regression with an even function 155
2.17 Documentation of the command LinearRegression() 159
2.18 Code for the command LinearRegression() . 161
2.19 A magnetic linear motor . 162
2.20 Force as function of length of coils, for 5 different diameters 162
2.21 Level curves for force as function of length and diameter of coil 164
2.22 Computations with simplified function . 164
2.23 A slightly rotated direction sensor . 165
2.24 Measured data and the fitted circle . 166
2.25 The surface of a ball and the level curves . 170
2.26 A data set for a two spring force distance system and two models 173
2.27 Optimal values for the two spring system . 174
2.28 Least square approximation of a damped oscillation . 177
2.29 Nonlinear least square approximation with fsolve() . 178
2.30 Data points and the optimal fit by a logistic function . 179
2.31 Data points and the optimal fit by an arctan function . 181
2.32 Data points and the optimal fit by a Tikhonov regularization 183
2.33 Raw data and two failed attempts of nonlinear regression 184
2.34 Regression by a straight line and an exponentially decaying trigonometric function 185
2.35 The optimal fit, using nonlinear regression . 186
2.36 A straight line with minimal distance from a set of given points 193
2.37 Code for RegressionConstraint() . 196
2.38 Some points with optimal vertical and orthogonal distance fit 197
2.39 A cloud of points, almost on a plane . 198
2.40 Two photographs of (almost) straight lines . 199
2.41 Some points and best fit ellipses, parallel to axes and general orientation 202
2.42 Some random points and a best fit ellipses, parallel to axes and general 206
2.43 The angle α as function of x and y . 212
2.44 The eight sectors used to compute tanα = y

x . 213
2.45 Comparison of errors for a Chebyshev approximation and its integer implementation 216
2.46 The difference for a tabulated approximation of the arctan–function 217
2.47 Linear interpolation of a function . 217
2.48 The errors for a piecewise linear approximation of the arctan–function 219
2.49 Graphs of the first 5 Chebyshev polynomials . 222
2.50 The price of IBM stock from 1990 to 1999 . 233
2.51 The price of IBM stock from 1992 and its average value over 20 days 234

SHA1 10-9-20

LIST OF FIGURES 314

2.52 Histogram of daily interest rate of IBM stock . 235
2.53 Simulation of annual performance of IBM stock . 237
2.54 Histograms of the final values of IBM stock after one year 238
2.55 Probability density function of final values . 240
2.56 Product of payoff with probability density function . 241
2.57 Value of the option as function of the strike price C . 241
2.58 Deformed circle for a given time . 244
2.59 Height and slopes of the moving circle . 249
2.60 A vibrating cord sensor produced by DIGI SENS AG . 252
2.61 The signal of a vibrating cord sensor . 252
2.62 A function y = abs(sin(ω t)) and a sampling . 255
2.63 The logarithm of the amplitude and the regression result for the straight line section 256
2.64 Amplitude and Q-factor as function of frequency, including error 257
2.65 Amplitude, Q-factor and temperature as function of frequency 261
2.66 Results for multiple measurements . 262
2.67 Amplitude as function of frequency and temperature . 265
2.68 Acceleration of the hammer . 269
2.69 Spectra of the accelerations of hammer and bar . 271
2.70 Spectra at different times . 272
2.71 Spectra at different times as 3D graph . 273
2.72 Transfer function for the acceleration of hammer and bar 273
2.73 Data sheet for an LED . 277
2.74 Light intensity data for an LED . 278
2.75 Trapezoidal integration . 280
2.76 Data points in original order and sorted . 281
2.77 Intersection of two circles . 283
2.78 A Delta Robot . 286
2.79 Approximate intersection point of three circles . 289
2.80 Intersection of five circles . 290
2.81 Cross section in x direction . 294
2.82 Location of laser spot, varied in x direction . 294
2.83 Values of the measured coordinates . 294
2.84 3–D scan of solid from one direction . 295
2.85 3–D scan of solid from a second direction . 296
2.86 Combination of the two scans . 298
2.87 Nyquist and Bode plots of the system, programmed with MATLAB 300
2.88 Nyquist plot of the system, with control toolbox of MATLAB 300
2.89 Bode plots of the system, with control toolbox of MATLAB 301
2.90 Nyquist plot of the system, created by Octave . 302
2.91 Bode plots of the system, created by Octave . 302
2.92 Pole location of the closed loop system . 307

SHA1 10-9-20

List of Tables

1.1 Basic system commands . 17
1.2 Integer data types and their ranges . 37
1.3 Formatted output and input commands . 46
1.4 Some output and input conversion templates . 46
1.5 Reading and writing with files . 55
1.6 Commands to solve equations and optimization . 60
1.7 Generating 2D plots . 81
1.8 the print() command and its options . 86
1.9 Generating 3D plots . 90
1.10 Image commands . 99
1.11 Octave commands in odepkg to solve ordinary differential equations 121
1.12 Additional commands in the ODE package . 121
1.13 Codes and data files for section 1.6 . 126

2.1 Integration commands in Octave . 133
2.2 Comparison of the integration commands in Octave . 134
2.3 Codes and data files for section 2.1 . 143
2.4 Commands for linear regression . 158
2.5 Commands for nonlinear regression . 158
2.6 Examples for linear and nonlinear regression . 175
2.7 Estimated and exact values of the parameters . 177
2.8 Codes and data files for section 2.2 . 187
2.9 Codes and data files for section 2.3 . 207
2.10 Comparison of algorithms for the arctan–function . 221
2.11 Codes and data files for section 2.4 . 225
2.12 Codes and data files for section 2.5 . 243
2.13 Codes and data files for section 2.6 . 251
2.14 Codes and data files for section 2.7 . 266
2.15 Codes and data files for section 2.8 . 274
2.16 Codes and data files for section 2.9 . 282
2.17 Codes and data files for section 2.10 . 291
2.18 Codes and data files for section 2.11 . 298
2.19 Codes and data files for section 2.12 . 308

315

Index

.octaverc, 11
\, 25, 60, 61

AbsTol, 122
arctan, 212
arctan2, 212
arithmetic operations, 209
atan2, 41
average, moving, 232
axes, 84
axis, 81–84, 88, 96

backslash operator, 25, 60, 61
bar, 81, 88, 234, 237, 238
bash, 88
basis functions, 154
Biot-Savart, 134
bitshift, 215
Black–Scholes–Merton, 239
bode, 299, 300
Bode plot, 299, 300
break, 52
breakpoint, 28
broadcasting, 26
bsxfun, 26
bwmorph, 101

C++, 116
Canny edge detector, 101
caxis, 90
cell array, 39
char, 38, 48
character, 38
Chebyshev approximation, 214, 215, 221
chol, 67
Cholesky factorization, 67, 68
clabel, 92
clf, 81, 82
CLI, 10
colorbar, 81, 92
colormap, 99, 101, 199
command line, 28
command line interface, CLI, 10
commenting code, 36

complex numbers, 37
complied code, 116
computer, 14
condition number, 153
confidence interval, 147
continue, 52
contour, 90, 92, 95, 142, 170
contourf, 90, 92
control package, 300
control statement, 50
conv, 99, 108, 255
conv2, 99, 108
convert, 87
convolution, 105, 108, 255
correlation coefficient, 235
cputime, 27, 103, 254
cumsum, 236, 237
cumtrapz, 130, 280

daily change reate, 233
data files, 55
data type

integer, 37
numeric, 36

data types
basic, 36

datenum, 57
datevec, 57
dbcont, 28
dbquit, 28
dbstop, 28
debugging, 28
demo, 18, 50
diff, 296
DIGI SENS, 252
disp, 36, 46, 232, 268
dlmread, 55, 56, 169, 231, 245, 267
dlmwrite, 55, 56
doc, 18
double, 37
double precision, 36, 37
drawnow, 246

edge, 99, 101, 107

316

INDEX 317

detection, 104
element wise operations, 24
Emacs, 10
eps, 36, 86
epstopdf, 88
equation

linear, 25, 60
nonlinear, 69
solving, 60

eval, 253, 261, 264
example, 18
exist, 253
expfit, 157
expm, 45
external programm call, 258

fclose, 55, 58, 232, 245, 253, 259, 261, 268
feedback, 304
ffmpeg, 247
fft, 102, 270, 271
fft2, 99, 102, 103
fgetl, 55, 58, 232, 253, 259, 261, 268
fgets, 245
fig, 86
figure, 79, 81
find, 54, 253
fixangles, 301
fliplr, 232
fltk, 79
fminbnd, 76
fmins, 75, 76
fminunc, 174
fopen, 55, 58, 232, 245, 253, 259, 261, 268
for loop, 50
formatted scanning, 231
formatting, 46
Fourier, 270
Fourier series, 267
fprintf, 46
fscanf, 46
fsolve, 70–72, 157, 177, 180, 182
fsolveNewton, 73
fspecial, 99, 101
function

anonymous, 133
built-in, 41
conversion, 48
exponential, 42
file, 29
logarithmic, 42
nested, 30

random, 42
special, 43
trigonometric, 41

fzero, 70

g3data, 276
gauss, 235
gca, 84, 85
gcf, 87
gedit, 10
get, 84, 85
getrusage, 15
ginput, 275
global, 30
gls, 157
gnuplot, 79, 258
GPS, 283, 291
grab.cc, 276
gradient, 95
graphical user interface, GUI, 8
graphics toolkit, 79
graphics toolkit, 79
gray2ind, 98, 99
grid, 81, 82, 84, 91

minor, 84
griddata, 297
Griffiths, David, 7
GUI, Octave, 8

Helmholtz coil, 135, 140
help, 18
hist, 42, 81, 88, 234
histc, 237, 238
histogram, 88
hold, 79, 81, 114
Horner schema, 214

if ... else ... endif, 52
if ... elseif ... else ... endif, 52
if ... then, 51
ifft2, 99, 103
im2bw, 101
image, 99
image processing, 98
ImageMagick, 87
imagesc, 99, 199
imfilter, 99, 101
imfinfo, 99
imformats, 98, 99
imread, 99, 199
imresize, 99
imrotate, 99

SHA1 10-9-20

INDEX 318

imshear, 99
imshow, 99
imsmooth, 99
imwrite, 99, 103
ind2gray, 98, 99
ind2rgb, 98
int16, 37, 210
int2str, 48
int32, 37
int64, 37
int8, 37, 210
integration, 130

cumulative trapezoidal, 130
Simpson, 131
trapezoidal, 130, 280

interp1, 280, 295
interpolation, 279

linear, 295
piecewise linear, 217, 279, 280
spline, 279

IntersectCircles, 285
intersection of circles, 283
intersection of spheres, 286
IntersectSpheres, 292
inv, 25
isieee, 15
ismac, 15
IsOctave, 17
ispc, 15
isunix, 15

keyborad, 28

label, 84
Labview, 252
leasqr, 157, 175, 176, 179, 181, 183
LED light, 151
legend, 80–82
Lenna, 102
level curve, 142
line, 84
line fit, geometric, 193
line style, 80
linear system

over determined, 26, 63
under determined, 63

LinearRegression, 148, 150, 157, 159, 163, 166, 171,
172, 174, 184, 195, 200, 201, 204, 248,
256, 261

linspace, 20
list, 39
load, 55, 293

logistic equation, 111
logistic function, 178
loglog, 81
logm, 45
logspace, 20
look up table, 216
lookfor, 18
loops, 50
lscov, 157
lsode, 111, 113, 114
lsode options, 116
lsqcurvefit, 157, 180, 182, 187
lsqnonlin, 157, 187
lsqnonneg, 157
lu, 62
LU factorization, 62

magnetic field, 96, 134
mass spring system, damped, 114
mat2str, 49
Matlab, 20
matrix

exponential, 45
N-d, 41
sparse, 67

mean, 232–234, 237, 254
mencoder, 246, 247, 250
mesh, 90–92, 94
meshc, 90, 92, 95
meshgrid, 90–92, 96
mex file, 118
micro controller, 209
Monte Carlo simulation, 236
motor, linear, 162
movie, 246, 249

Nelder-Mead algorithm, 75
Newton’s algorithm, 72, 73
nlinfit, 157
nlparci, 157, 180, 187
noise, 103
nonlin curvefit, 187
nonlin residmin, 187
normpdf, 235
notepad++, 10
null, 25, 65
num2str, 49, 261, 263
nyquist, 299, 300
Nyquist plot, 299, 300

oct file, 117
Octave Forge, 7, 12, 19

SHA1 10-9-20

INDEX 319

octaverc, 11
ODE, 111
ode23, 120, 121
ode2r, 121
ode45, 120, 121
odeget, 122
odeset, 122
ols, 157
ones, 20
open source, 18
openvar, 9
operating system, 14
operation

element wise, 44
optimization, 75
ordinary differential equation, 111
orth, 65
output, formatted, 46

package
compile, 12
install, 12
load, 12

paperposition, 85
papersize, 85
path, 11
PDF, 82
pdf, 86
peaks, 95
pendulum equation, 114
permutation matrix, 62
phase jump, 301
pkg, 12
plot, 31, 79–81, 84
plot color, 80
plot3, 89, 90, 246, 249
plotyy, 81
png, 86
point style, 80
point wise operations, 24
polar, 276
polyfit, 157
polyval, 69
preallocation, 22
print, 79, 81, 82, 86
printf, 46
printFigureToPdf, 88
profile, 27

QR factorization, 154, 155, 193
qt, 79
quad, 133

quiver, 90, 95, 96, 113, 114, 139

rand, 42
randn, 42, 103, 198, 237
random numbers, 42
realmax, 36
realmin, 36
regexp, 48
regress, 157
regression, 144

ellipse, 201, 202
linear, 66, 145, 146, 248
linear, weighted, 156
nonlinear, 175, 177, 183
straight line, 145
with constraint, 193

RegressionConstraint, 195, 196, 198, 200
regularization, 182
RelTol, 122
rescaling, 153
reshape, 170
rgb2gray, 98, 99, 102, 199
rgb2ind, 99
roots, 69

save, 55
scanning with a laser, 293
scanning, formatted, 47
script file, 28, 29
search path, 11
selecting elements, 53
semilogx, 81, 299
semilogy, 81, 82
set, 84
shading, 92
shell, 88
sigmoid function, 178
simpson, 131
single, 37
single precision, 37
Sobel, 107
sortrows, 280
sparse, 68
spdiags, 68
specgram, 271
spectrum, 271

moving, 270
spline, 279
sprintf, 46, 232
sqrtm, 45
squeeze, 41
sscanf, 46, 55, 58, 232, 245, 253, 259, 261, 268

SHA1 10-9-20

INDEX 320

startup file, 11, 16
startup.m, 16
std, 234, 237
stock performance, 231
string, 38
strread, 55, 59
structure, 39
Students’s t-distributiuon, 149
subplot, 81, 83
sum, 235
surf, 90, 92
surface, 91
surfc, 90, 92
switch, 53
sys2tf, 304
sys2zp, 304
sysconnect, 305
sysdup, 305
sysgroup, 305
sysprune, 305
sysscale, 305
system, 16, 87, 88, 246, 249, 259

test, 49
text, 81, 82, 84
textread, 55, 56, 59
textscan, 48
tf, 303–305
tic, 24, 27
tick marks, 85
Tikhonov regularization, 182
time of contact, 269
title, 80, 82, 84
toascii, 48
toc, 24, 27
tolerance, 122

absolute, 116, 122
relative, 116, 122

transfer function, 272, 299
trapezoidal rule, 23
trapz, 24, 130, 269
triangular matrix, 62
type, 49
typeinfo, 36

uint16, 37
uint32, 37
uint64, 37
uint8, 37
uname, 14
unix, 17
Unix commands, 16

until loop, 50

variable
editor, 9
global, 30
local, 30

variance
of dependent variable, 149
of parameters, 147

vector field, 95, 96
vectorized code, 21–23, 104, 105
ver, 14, 15
version, 14, 15
view, 89–91
vlc, 248
Volterra-Lotka, 112

which, 18, 49
while loop, 50
whos, 37
wiki, 8

xfig, 86
xine, 248
xinput, 275, 276
xlabel, 81, 82, 91
xlim, 81, 84
xtick, 84, 85
xticklabel, 85

ylabel, 81, 82, 91
ylim, 84
ytick, 84

zeros, 20
zeros of polynomials, 69
zlabel, 81

SHA1 10-9-20

	Foreword
	Contents
	Introduction to Octave
	Starting up Octave or MATLAB and First Steps
	Starting up Octave
	Packages for Octave
	Information about the operating system and the version of Octave
	Starting up MATLAB
	Calling the operating system and using basic Unix commands
	How to find out whether you are working with MATLAB or Octave
	Where and how to get help
	Vectors and matrices
	Broadcasting
	Timing of code and using a profiler
	Debugging your code
	Command line, script files and function files
	Local and global variables, nested functions
	Elementary graphics
	A breaking needle ploblem
	Exercises

	Programming with Octave
	Displaying results and commenting code
	Basic data types
	Structured data types and arrays of matrices
	Built-in functions
	Working with source code
	Loops and other control statements
	Conditions and selecting elements
	Reading from and writing data to files

	Solving Equations
	Systems of linear equations
	Zeros of polynomials
	Nonlinear equations
	Optimization

	Basic Graphics
	2-D plots
	Printing figures to files
	Generating histograms
	Generating 3-D graphics
	Generating vector fields

	Basic Image Processing
	First steps with images
	Image processing and vectorization, edge detection
	SVD

	Ordinary Differential Equations
	Using lsode() to solve systems of ordinary differential equations
	Options of lsode
	Using C++ code to speed up computations
	Determine the period of a Volterra-Lotka solution
	The commands ode23() and ode45()
	Codes from lecture notes by this author
	List of files
	Exercises

	Applications of Octave
	Numerical Integration and Magnetic Fields
	Basic integration methods
	Comparison of integration commands in Octave
	From Biot–Savart to magnetic fields
	Field along the central axis and the Helmholtz configuration
	Field in the plane of the conductor
	Field in the xz–plane
	The Helmholtz configuration
	List of codes and data files

	Linear and Nonlinear Regression
	Linear regression for a straight line
	General linear regression, matrix notation
	Estimation of the variance of parameters, confidence intervals
	Estimation of variance of the dependent variable
	Example 1: Intensity of light of an LED depending on the angle of observation
	QR factorization and linear regression
	Weighted linear regression
	More commands for regression with Octave or MATLAB
	Code for the function LinearRegression()
	Example 2: Performance of a linear motor
	Example 3: Calibration of an orientation sensor
	Example 4: Analysis of a sphere using an AFM
	Example 5: A force sensor with two springs
	Nonlinear Regression, Introduction and a First Example
	Nonlinear Regression with a Logistic Function
	Nonlinear Regression with an arctan Function
	Approximation by a Tikhonov Regularization
	A Real World Nonlinear Regression Problem
	New Functions lsqcurvefit and lsqnonlin
	List of codes and data files
	Exercises

	Regression with Constraints
	Example 1: Geometric line fit
	An algorithm for minimization problems with constraints
	Example 1: continued
	Detect the best plane through a cloud of points
	Identification of a straight line in a digital image
	Example 2: Fit an ellipse through some given points in the plane
	List of codes and data files
	Exercises

	Computing Angles on an Embedded Device
	Arithmetic operations on a micro controller
	Computing the angle based on xy information
	Error analysis of arctan–function
	Clever evaluation of arctan–function
	Implementations of the arctan–function on micro controllers
	Chebyshev approximations
	List of codes and data files
	Exercises

	Analysis of Stock Performance, Value of a Stock Option
	Reading the data from the file, using dlmread()
	Reading the data from the file, using formatted reading
	Analysis of the data
	A Monte Carlo Simulation
	Value of a stock option : Black–Scholes–Merton
	List of codes and data files

	Motion Analysis of a Circular Disk
	Description of problem
	Reading the data
	Creation of movie
	Decompose the motion into displacement and deformation
	List of codes and data files

	Analysis of a Vibrating Cord
	Design of the basic algorithm
	Analyzing one data set
	Analyzing multiple data sets
	Calibration of the device
	List of codes and data files

	An Example for Fourier Series
	Reading the data
	Further information
	Using FFT, Fast Fourier Transform
	Moving spectrum
	Transfer function
	List of codes and data files

	Reading Information from the Screen and Spline Interpolation
	Reading form an Octave/MATLAB graphics window by ginput()
	Create xinput() to replace ginput()
	Reading an LED data sheet with Octave
	Interpolation of data points
	List of codes and data files

	Intersection of Circles and Spheres, GPS
	Intersection of two circles
	A function to determine the intersection points of two circles
	Intersection of three spheres
	Intersection of multiple circles
	Intersection of multiple spheres
	GPS
	List of codes and data files
	Exercises

	Scanning a 3–D Object with a Laser
	Reading the data
	Display on a regular mesh
	Rescan from a different direction and rotate the second result onto the first result
	List of codes and data files

	Transfer function, Bode and Nyquist plots
	Create the Bode and Nyquist plots of a system
	Create the Bode and Nyquist plots of a system with the MATLAB–toolbox
	Create the Bode and Nyquist plots of a system with Octave commands
	Eliminate artificial phase jumps in the argument
	The commands for control theory
	A root locus problem
	List of codes and data files

	Planed Topics

	Appendices
	Bibliography
	List of Figures
	List of Tables
	Index

