Worksheet for Bode Plots and System Identification

Andreas Stahel, Pierre-André Chevalier, Phoebe Hoidn

Version of 26. Oktober 2015

The files for this lab session are on the home page staff.ti.bfh.ch/sha1. Use the link Octave Information on the left, then find files for the local Octave/MATLAB sessions at the bottom of the page. Use the information in the subdirectory F2/Bode. The necessary information and documentation is given in the paper Bode Plots and System Identification.

Plots

The main goal is to generate the desired plots listed in Section 3. Use the presented examples in Section 2 as helping guide.

- 1 Read and understand Section 1
- 2 Work carefully through the graphics commands in Section 2. You should learn to generate linear plot, and plots with logarithmic scales.
- 3 Read and understand the first part of Section 3, it explains the data contained in file Transfer1.txt. Then start Octave or MATLAB.
- 4 Use the code in Section 3.1 to read the data into MATLAB or Octave.
- 5 Generate the plot of the amplitude as function of the frequency. Use the results from Section 2
- 6 Generate the plot of the phase as function of the frequency. Use the results from Section 2
- 7 Generate the Bode plot for the amplitudes. Use the results from Section 2

System Identification

In this section the method to identify the system are explained step by step. You are expected to carry out those steps.

- 1 Read the first part of Section 4 to understand why a quadratic function should appear.
- 2 Verify that the system parameters U, α and ω_0 are determined, once the coefficients a_0 , a_1 and a_2 of the parabola are known.
- 3 Verify with the help of a graph that the parabola shows up.
- 4 Construct the matrix **F** for the linear regression in Octave or MATLAB.
- 5 Apply the command LinearRegression() and verify graphically that the results are correct.
- 6 Use the numerical values of a_i to determine ω_0 and α . Then determine the ratios of $\frac{\gamma}{m}$ and $\frac{k}{m}$ for the spring mass system in the introduction.