
FEMoctave, Finite Element Algorithms in Octave

Andreas Stahel, Bern University of Applied Sciences

Version 2.0.3 of 27th August 2021

©Andreas Stahel, 2021
“FEMoctave” by Andreas Stahel, BFH, Biel, Switzerland is licensed under a Creative Commons Attribution-ShareAlike
3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
You are free: to copy, distribute, transmit the work, to adapt the work and to make commercial use of the work. Under the
following conditions: You must attribute the work to the original author (but not in any way that suggests that the author
endorses you or your use of the work). Attribute this work as follows:
Andreas Stahel: FEMoctave, FEM algorithms in Octave.
If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license
to this one.

http://creativecommons.org/licenses/by-sa/3.0/

1

Contents 1

1 Introduction 4

2 The Problems to be Examined 5
2.1 The domain Ω ⊂ R2 and its boundary Γ = ∂Ω = Γ1 ∪ Γ2 . 5
2.2 The general elliptic problem . 5
2.3 The symmetric elliptic problem . 6
2.4 The symmetric eigenvalue problem . 6
2.5 The general parabolic problem . 6
2.6 The symmetric parabolic problem . 6
2.7 The hyperbolic problem . 7

3 Illustrative Examples 7
3.1 Solving elliptic problems, static heat equation . 7

3.1.1 A symmetric problem . 7
3.1.2 Laplace equation in cylindrical coordinates . 8
3.1.3 Diffusion on an L-shaped domain . 9
3.1.4 A diffusion convection problem . 10

3.2 Solving eigenvalue problems . 11
3.3 Solving parabolic problems, dynamic heat equation . 12
3.4 Solving hyperbolic problems, wave equations . 15
3.5 Solving plane stress problems (later) . 15

4 The Commands of FEMoctave 17
4.1 Commands for meshes: creation, evaluation, modification, integration 17

4.1.1 Structure of a mesh . 17
4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect() 18
4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle() 19
4.1.4 Converting a mesh of order 1 or order 2: MeshUpgrade() and MeshQuad2Linear() 21
4.1.5 Use delaunay() to create a mesh: Delaunay2Mesh() 22
4.1.6 Display results on meshes, FEMtrimesh() and FEMtrisurf() 22
4.1.7 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient() 23
4.1.8 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP() 24
4.1.9 Integrate a function over the domain: FEMIntegrate() 24
4.1.10 Evaluation at arbitrary points or along lines, integration along curves: FEMgriddata() 25

4.2 How to define functions . 26
4.2.1 Functions for static problems . 27
4.2.2 Functions for dynamic problems . 28

4.3 Solving elliptic problems . 28
4.3.1 Symmetric elliptic problems: BVP2Dsym() . 28
4.3.2 General elliptic problems: BVP2D() . 29

4.4 Solving eigenvalue problems: BVP2Deig() . 30
4.5 Solving parabolic problems: IBVP2D() and IBVP2Dsym() 31
4.6 Solving hyperbolic problems: I2BVP2D() . 32
4.7 Internal commands in FEMoctave . 33

4.7.1 Linear elements: FEMEquation() and FEMEquationM() 33
4.7.2 Quadratic elements: FEMEquationQuad() and FEMEquationQuadM() 33
4.7.3 Effect of right hand side for dynamic problems: FEMInterpolWeight() 34
4.7.4 Effect of the Dirichlet values: FEMInterpolBoundaryWeight() 34

SHA 27-8-21

2

4.8 Commands from Octave-Forge packages . 35
4.9 External programs . 35

5 Tools for Didactical Purposes 35
5.1 Observe the convergence of the error as h→ 0 . 35
5.2 Some Element Stiffness Matrices . 37

5.2.1 Element contributions for equilateral triangles . 37
5.2.2 From FEM to a finite difference approximation . 40

5.3 Behavior of a FEM solution within triangular elements . 43
5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix 45

6 The Mathematics of the Algorithms 47
6.1 Classical solutions and weak solutions . 47
6.2 Transformation, interpolation and Gauss integration . 49

6.2.1 Transformation of coordinates and integration over a general triangle 49
6.2.2 Gauss integration on the standard triangle with 3 Gauss points 51
6.2.3 Gauss integration on the standard triangle with 7 Gauss points 51

6.3 Construction of first order elements . 52
6.3.1 Linear interpolation on a triangle . 53
6.3.2 Integration of f φ . 54
6.3.3 Integration of b0 uφ . 55
6.3.4 Integration of a∇u · ∇φ . 55
6.3.5 Integration of u~b · ∇φ . 56
6.3.6 Integration over boundary segments . 57

6.4 Construction of second order elements . 58
6.4.1 The basis functions for a second order element and quadratic interpolation 59
6.4.2 Determine values at the Gauss points and apply Gauss integration 61
6.4.3 Integration of f φ . 61
6.4.4 Integration of b0 uφ . 62
6.4.5 Transformation of the gradient to the standard triangle 62
6.4.6 Partial derivatives at the nodes and second order partial derivatives 65
6.4.7 Integration of u~b · ∇φ . 67
6.4.8 Integration of a∇u · ∇φ . 68
6.4.9 Integration over boundary segments . 69

6.5 Convergence of the approximate solutions uh to the exact solution u 72
6.6 Dynamic problems . 72

6.6.1 Dynamic problems of the heat equation type . 73
6.6.2 Dynamic problems of the wave equation type . 74

6.7 Inverse power iteration or eigs() to determine small eigenvalues of positive definite matrices . 76

7 Examples, Examples, Examples 77
7.1 An animated wave . 77
7.2 An elliptic problem with radial symmetry, superconvergence 77
7.3 An example with limited regularity . 81
7.4 A potential flow problem . 83
7.5 A minimal surface problem . 86
7.6 Computing a capacitance . 87

7.6.1 State the problem . 87
7.6.2 Create the mesh and solve the BVP . 88

SHA 27-8-21

3

7.6.3 Compute the capacitance . 90
7.7 Torsion of beams, Prandtl stress function . 90

7.7.1 The setup with warp function and Prandtl stress function 91
7.7.2 On a disk with radius R . 93
7.7.3 On a square . 94
7.7.4 On a rectangle . 94

Bibliography 96

List of Figures 96

List of Tables 97

Index 98

There is no such thing as “the perfect notes” and improvements are always possible. I welcome feedback and
constructive criticism. Please let me know if you use/like/dislike the lecture notes. Please send your observations
and remarks to Andreas.Stahel@gmx.com .

SHA 27-8-21

mailto:Andreas.Stahel@gmx.com

1 INTRODUCTION 4

1 Introduction

• Goals of this project:

– Provide support material for teaching FEM. The material provided might help other instructors to
explain or illustrate the methods and effects of finite element algorithms.

– Use Octave to implement first and second order triangular elements in 2D for scalar boundary value
problems. This leads to the Octave package FEMoctave.

– Provide examples on how to solve steady state and dynamic heat equations and the wave equation, all
part of FEMoctave.

• Tools provided by this project:

– Find this document on the internet at web.sha1.bfh.science/FEMoctave/FEMdoc.pdf and the complete
Octave package at web.sha1.bfh.science/FEMoctave2.0.1.tgz. The source code, demos and examples
for FEMoctave is also available in the directory web.sha1.bfh.science/FEMoctave.

– Documentation and codes are also on GitHub at https://github.com/AndreasStahel/FEMoctave and
with Octave you should be able to install it by calling
pkg install https://github.com/AndreasStahel/FEMoctave/archive/v2.0.3.tar.gz

– I work exclusively with Unix systems, but it is possible to use the package on other systems by
modifying the Makefile.

– The only external program used in FEMoctave is triangle, an excellent mesh generator. The
source code is included and find more information at www.cs.cmu.edu/˜quake/triangle.html.

This is not:

• an introduction to Octave (or MATLAB). Users are assumed to be familiar with the basics of using Octave .
If this is not the case, may I use the occasion for a shameless add for my lectures notes with an introduction
to Octave: web.sha1.bfh.science/Labs/PWF/Documentation/OctaveAtBFH.pdf.

• an introduction to FEM algorithms. The basic concept is not explained here, but many details are spelled
out. I use some of the results in a class Numerical Methods for biomedical engineers at the University of
Bern. There the main ideas of FEM is explained. Find the lecture notes for this class on my web site at
web.sha1.bfh.science/NumMethods/NumMethods.pdf.

The structure of this document:

1 Introduction: a self reference.

2 The Problems to be Examined: for each type of problem one example is presented. This is a good starting
point to find out what type of problems are examined in these notes.

3 Illustrative Examples: a few examples are are worked out, code and results shown. Read this section if
you want to start working with FEMoctave.

4 The Commands of FEMoctave: all commands of FEMoctave are briefly explained and some documen-
tation is provided. This is comparable to a manual.

5 Tools for Didactical Purposes: some results and illustrations that might be useful when teaching FEM are
presented.

6 The Mathematics of the Algorithms: the mathematics of the FEM algorithms is spelled out. A matrix
formulation is used wherever possible.

7 Examples, Examples, Examples: as the title says.

SHA 27-8-21

https://web.sha1.bfh.science/FEMoctave/FEMdoc.pdf
https://web.sha1.bfh.science/FEMoctave2.0.1.tgz
https://web.sha1.bfh.science/FEMoctave
https://github.com/AndreasStahel/FEMoctave
https://www.cs.cmu.edu/~quake/triangle.html
https://web.sha1.bfh.science/Labs/PWF/Documentation/OctaveAtBFH.pdf
https://web.sha1.bfh.science/NumMethods/NumMethods.pdf

2 THE PROBLEMS TO BE EXAMINED 5

2 The Problems to be Examined

This section consists of a brief list all types of problems that can be solved with this software. A list of the
necessary commands is given in Table 1 on page 7. The instruction on how to use the commands are given in
Section 4. Some typical examples are worked out in Section 3.

2.1 The domain Ω ⊂ R2 and its boundary Γ = ∂Ω = Γ1 ∪ Γ2

Throughout this presentation work with bounded domains Ω ⊂ R2 with two disjoints section Γ1 and Γ2 of the
boundary Γ = ∂Ω.

• On the section Γ1 a Dirichlet boundary condition is applied, i.e. u(x, y) = g1(x, y) for a known function g1.

• On the section Γ2 a Neumann or Robin boundary Dirichlet condition is applied, i.e. the outer normal
derivative of u equals g2 + g3 u for a known functions g2 and g3.

In the example shown in Figure 1 the solution satisfies u = +3 on the circular part Γ1 and ∂
∂yu = −1 along

the x–axis. The solution u(x, y) solves ∆u = ∇ · ∇u = div gradu = 0 and minimizes the functional

F (u) =

∫∫
Ω

1

2
‖∇u‖2 dA−

∫
Γ2

u ds

amongst all functions u which satisfy u(x, y) = +3 on Γ1.

-2 -1 0 1 2

0

0.5

1

1.5

2

x

y

Γ
1

Γ
2

2
1.5

1
y 0.5

0 -2

3

3.5

4

u

4.5

5

5.5

2
1

0
x-1

Figure 1: A semidisk as domain in R2 and a solution of a BVP

2.2 The general elliptic problem

Let Ω ⊂ R2 be a bounded domain with a nice boundary Γ, consisting of two disjoint sections Γ1 and Γ2. For
given functions a, b0,~b, f and gi we seek a solution of the second order boundary value problem (BVP)

−∇ · (a∇u− u~b) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

~n · (a∇u− u~b) = g2 + g3 u for (x, y) ∈ Γ2

. (1)

It is assumed that there is a unique solution u. Consult your book on the theory of PDEs to determine whether
the BVP has in fact a unique solution. Examples of this type of equation are given in Section 3.1.4.

SHA 27-8-21

2 THE PROBLEMS TO BE EXAMINED 6

2.3 The symmetric elliptic problem

If there is no convection contribution~b in (1) one ends up with a self-adjoint problem.

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

. (2)

The resulting matrix A will be symmetric and if a > 0, b0 ≥ 0 and Γ1 6= Ø or b0 > 0, then the BVP has a unique
solution and the resulting matrix is strictly positive definite.

Using Calculus of Variations one can show that solving (2) is equivalent to minimizing the functional F
below among all functions u vanishing on Γ1.

F (u) =

∫∫
Ω

1

2
a 〈∇u,∇u〉+

1

2
b0 u

2 − f u dA−
∫

Γ2

g2 u+
1

2
g3 u

2 ds .

Examples of this type are given in Sections 3.1.1, 3.1.2, 3.1.3 and 7.3.

2.4 The symmetric eigenvalue problem

For given functions a, b0, f and g3 seek values of λ and nontrivial solutions u of the eigenvalue problem below.

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

(3)

An example of this type is given in Section 3.2.

2.5 The general parabolic problem

If all functions depend on time t and the spacial variables x and y consider the general dynamic heat equation.

ρ ∂
∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u− u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0

(4)

This is an Initial Boundary Value Problem (IBVP). Mathematicians call this a parabolic problem, engineers think
of dynamic heat equations. An example is shown in Sections 3.3.

2.6 The symmetric parabolic problem

Consider the symmetric situation of (4) to find the symmetric parabolic problem below.

ρ ∂
∂t u−∇ · (a∇u) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

a ∂∇u
∂n = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0}

(5)

If u(x, y) and λ are solutions of the eigenvalue problem (3) with g1 = g2 = 0 then the dynamic problem (5)
is solved by e−λt u(x, y).

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 7

2.7 The hyperbolic problem

Examine an IBVP of hyperbolic type, with the wave equation ü = ∆u as the typical example.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u+ u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

(6)

Examples are shown in Sections 3.4 and 7.1.

command type of problem section

BVP2Dsym() solve a symmetric elliptic BVP 4.3.1

BVP2D() solve a general elliptic BVP 4.3.2

BVP2Deig() solve a symmetric elliptic eigenvalue problem 4.4

IBVP2D() solve a parabolic IBVP 4.5

IBVP2Dsym() solve a symmetric parabolic IBVP 4.5

I2BVP2D() solve a hyperbolic IBVP 4.6

Table 1: Commands to solve PDEs and IBVPs

3 Illustrative Examples

Solving a BVP (Boundary Value Problem) or an IBVP (Initial Boundary Value Problem) with the FEM usually
involves three steps:

1. Generate the mesh to be used for the problem.

2. Define the functions describing the problem and then apply the finite element algorithm to generate an
approximate solution.

3. Visualize and analyze the obtained solution.

For all three steps FEMoctave provides the tools and the following examples illustrate the procedures.

3.1 Solving elliptic problems, static heat equation

3.1.1 A symmetric problem

On a rectangle Ω = [0, 1]× [0, 2] with Dirichlet boundary Γ1 at x = 0 and at y = 0 and thus Neumann boundary
Γ2 at x = 1 and at y = 2 seek a solution of

−∆u = 0.25 for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

∂ u
∂n = 0 for (x, y) ∈ Γ2

.

The solution is computed and displayed with the help of three commands.

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 8

• Divide the x and y axis in subintervalls of length 0.1 and generate the resulting rectangular mesh using
CreateMeshRect(). Use the options ...,-1,-2,-1,-2) to indicate the boundary conditions at
the four edges in order lower, upper, left and right. In this example use the order Dirichlet, Neumann,
Dirichlet, Neumann.

• Use BVP2Dsym() with constant coefficients to generate and solve the system of linear equation by the
FEM.

• Use FEMtrimesh() to display the solution.

LaplaceRectangle.m
FEMmesh = CreateMeshRect([0:0.1:1],[0:0.1:2],-1,-2,-1,-2);
%%FEMmesh = MeshUpgrade(FEMmesh); %% uncomment to use quadratic elements

u = BVP2Dsym(FEMmesh,1,0,0.25,0,0,0);

figure(1)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u);
xlabel(’x’); ylabel(’y’);

Find the result in Figure 2. The above code is using linear elements. To use quadratic elements uncomment the
line with the command MeshUpgrade().

y
x

0

0.02

2

0.04

0.06

0.08

0.1

0.12

1.5
1

1
0.8

0.6
0.40.5

0.20 0

Figure 2: Solution of −∆u = 0.25 on a rectangle

3.1.2 Laplace equation in cylindrical coordinates

The Laplace operator in cylindrical coordinates is given by

∆u =
∂2 u

∂x2
+
∂2 u

∂y2
+
∂2 u

∂z2
=

1

ρ

∂

∂ρ

(
ρ
∂ u

∂ρ

)
+

1

ρ2

∂2 u

∂θ2
+
∂2 u

∂z2
.

Assuming that the solution is independent on the angle θ, then the Laplace equation −∆u(ρ, z) + b0(ρ, z) =
f(ρ, z) is given by

− ∂

∂ρ

(
ρ
∂ u

∂ρ

)
− ∂

∂z

(
ρ
∂ u

∂z

)
+ ρ b0(ρ, z) = ρ f(ρ, z) .

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 9

Thus it is in the form of equation (2), with x = ρ and y = z. As an example consider b0(ρ, z) = 10 and
f(ρ, z) = 2 z . If the domain Ω to be examined is given by 0 ≤ ρ ≤ 2 and −1 ≤ z ≤ 2 and the boundary
conditions are

∂ u(0, z)

∂ρ
= 0 symmetry for −1 < z < 2

ρ
∂ u(2, z)

∂ρ
= −1 flux out of domain for −1 < z < 2

u(ρ,−1) = u(ρ, 2) = 0 given value for 0 < ρ < 2 .

Since the coefficient functions in (2) are not constants define these functions in Octave and then use BVP2Dsym()
to solve the problem. Observe that both Neumann boundary conditions are described by the same function
g2(ρ, z) = −ρ

2 , since g2(0, z) = 0 and g2(2, z) = −1. The code is shown below and find the result in Figure 3.

LaplaceCylindrical.m
FEMmesh = CreateMeshRect(linspace(0,2,20),linspace(-1,2,30),-1,-1,-2,-2);
%%FEMmesh = MeshUpgrade(FEMmesh); %% uncomment to use quadratic elements

function res = f(rz) res = rz(:,1)*2.*rz(:,2); endfunction
function res = b0(rz) res = 10*rz(:,1); endfunction
function res = a(rz) res = rz(:,1); endfunction
function res = g2(rz) res = -1*rz(:,1)/2; endfunction

u = BVP2Dsym(FEMmesh,’a’,’b0’,’f’,0,’g2’,0);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u);
xlabel(’rho’); ylabel(’z’);

z ρ

-0.4
-0.3

2

-0.2
-0.1

1.5

0
0.1
0.2
0.3

1
0.5

2
1.5

0.4

10
-0.5 0.5

-1 0

Figure 3: Solution of Lapalce equation in cylindrical coordinates

3.1.3 Diffusion on an L-shaped domain

Examine a BVP on an L-shaped domain, as created in Section 4.1. The equation to be solved is

−∆u = 1 for (x, y) ∈ Ω
∂ u
∂n = −2u for (x, y) ∈ Γ

.

For this problem there is no Dirichlet condition and it is solved in three steps.

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 10

• Generate the L-shaped domain with the help of CreateMeshTriangle().

• Solve the equations with BVP2Dsym().

• Display the result with FEMtrimesh().

• The code below uses linear elements. Uncommenting the line with MeshUpgrade() will solve the same
problem using second order elements.

Find the code below and the result in Figure 4.

DiffusionLshape.m
nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
FEMmesh = CreateMeshTriangle(’Ldomain’,nodes,0.02);
%%FEMmesh = MeshUpgrade(FEMmesh); %% uncomment to use quadratic elements

u = BVP2Dsym(FEMmesh,1,0,1,0,0,-2);

figure(1);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u);
xlabel(’x’); ylabel(’y’); view(-30,30)

y
x

0.1

0.15

0.2

0.25

0.3

0.35

1
0.5

1

0.4

0
0.5-0.5 0

-0.5-1 -1

Figure 4: Solution of a diffusion problem on a L-shaped domain

3.1.4 A diffusion convection problem

Examine a steady state heat problem on the square Ω = [0, 2] × [0, 2] with constant heating (f(x, y) = +0.1)
and a strong convection in x direction (bx(x, y) = 10) and a weaker convection in y direction (by(x, y) = 5) we
end up with the PDE

−∆u+ 10
∂ u

∂x
+ 5

∂ u

∂y
= 0.1 .

The temperature on all of the boundary vanishes. This is a problem of type (1). Solve the BVP with the code
below and find the resulting level curves of the temperature in Figure 5.

DiffusionConvection.m

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 11

FEMmesh = CreateMeshRect(linspace(0,2,51),linspace(0,2,51),-1,-1,-1,-1);
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);

figure(1)
tricontour(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u,10);
colorbar()
xlabel(’x’); ylabel(’y’); grid on

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

0.002

0.004

0.006

0.008

0.01

0.012

Figure 5: Solution of a diffusion convection problem

The above code uses elements of order 1. To use elements of order 2 on a similar mesh one can first generate
a mesh with linear elements and then use MeshUpgrade() to generate a finer mesh with elements of order 2.
Since the command tricontour() can not work with second order element one has to convert the mesh back
to linear elements, but with the identical nodes, i.e. use MeshQuad2Linear().

DiffusionConvection.m
FEMmesh = CreateMeshRect(linspace(0,2,26),linspace(0,2,26),-1,-1,-1,-1);
FEMmesh = MeshUpgrade(FEMmesh); %% make a mesh with elements of order 2
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);
FEMmesh = MeshQuad2Linear(FEMmesh); %% convert to identical mesh with linear elements

figure(1)
tricontour(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u,10);
colorbar()
xlabel(’x’); ylabel(’y’); grid on

3.2 Solving eigenvalue problems

As a first eigenvalue problem compute the eigenvalues and eigenfunctions of the Laplace operator on the unit
disc with Dirichlet boundary conditions, i.e. determine a scalar λ and nontrivial function u such that

−∆u = λu on unit disc

and u has to vanish on the boundary. The goal is to compute the first four eigenvalues and display the fourth
eigenfunction. Proceed in three steps.

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 12

• Use CreateTriangleMesh() to generate the mesh on the unit disc.

• Use BVP2Deig() with constant coefficients to generate and solve the eigensystem.

• Use FEMtrimesh() to display the fourth eigenfunction. Find the result in Figure 6.

• To use second order element, use MeshUpgrade().

The computed eigenvalues are
√
λ1 ≈ 2.4075,

√
λ2 =

√
λ3 ≈ 3.8319 and

√
λ4 ≈ 5.1300. These values coincide

nicely with the first zeros of the Bessel functions J0(r), J1(r) and J2(r), the values of the exact problem.

EigenvaluesDisc.m
%% create a disc with mesh
xM = 0; yM = 0; R = 1; N = 160;
alpha = linspace(0,N/(N+1)*2*pi,N)’;
xy = [xM+R*cos(alpha),yM+R*sin(alpha),-ones(size(alpha))];

FEMmesh = CreateMeshTriangle(’circle’,xy,0.0005);
%%FEMmesh = MeshUpgrade(FEMmesh);

%%%%%%% solve the eigenvalue problem, show the eigenvalues
%%[la,ve] = BVP2Deig(FEMmesh,1,0,1,0,4);
[la,ve,errorbound] = BVP2Deig(FEMmesh,1,0,1,0,4);
eigenvalues = la
errorbound

exact_values = [fsolve(@(x)besselj(0,x),2.3),...
fsolve(@(x)besselj(1,x),3.8),...
fsolve(@(x)besselj(2,x),5)].ˆ2

figure(1);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),ve(:,4));
xlabel(’x’); ylabel(’y’);

The result shows the first 4 eigenvalues and their corresponding error bounds. The error bounds of 10−28 for the
first eigenvalue is not to be taken too seriously, it just means accurate up to machine precision as eigenvalue of the
global stiffness matrix. Observe that these are the eigenvalues of the FEM approximation to the boundary value
problem. They are close to the eigenvalues of the continuous problem, i.e. the zeros of the Bessel functions.

Octave
eigenvalues = 5.7857

14.6959
14.6961
26.4169

errorbound = 2.5479e-12 1.6604e-28
2.9179e-12 7.0763e-16
3.2020e-12 7.2782e-15
3.5589e-12 2.3726e-28

exact_values = 5.7832 14.6820 26.3746

3.3 Solving parabolic problems, dynamic heat equation

As an example solve the dynamic heat equation
∂ u

∂t
−∆u+ 10

∂ u

∂x
+ 5

∂ u

∂y
= 0.1 for 0 < x, y < 2

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 13

1
0.5

0
y -0.5

-1 -1

-1.5

-1

-0.5

0

0.5

1

1.5

x

1

0
0.5

-0.5

Figure 6: The fourth eigenfunction of ∆u = λu on a disc

with zero Dirichlet boundary conditions and the initial temperature

u(0, x, y) = u0(x, y) = 0.005x (2− x)2 y (2− y) .

The solution is computed at 7 equally spaced times ti between 0 and 0.1. In-between 10 steps are taken, but the
solution is not returned. Find the result of the code below in Figure 7. At time 0 the maximal value is attained
at (x, y) = (2

3 , 1). The convection term +10 ∂ u
∂x + 5 ∂ u

∂y then moves the point of maximal temperature to the
upper right section of the square. For large times t the solution will converge to the one shown in Figure 5 in
Section 3.1.4.

HeatDynamic.m
%% generate the mesh
FEMmesh = CreateMeshRect(linspace(0,2,31),linspace(0,2,31),-1,-1,-1,-1);
x = FEMmesh.nodes(:,1);y = FEMmesh.nodes(:,2);
%% setup and solve the initial boundary value problem
m=1; a=1; b0=0; bx=10; by=5; f=0.1; gD=0; gN1=0; gN2=0;
t0=0; tend=0.1 ; steps = [6,10];
u0 = zeros(length(FEMmesh.nodes),1);
u0 = 0.005*(2-x).ˆ2.*x.*y.*(2-y);
[u_dyn,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,f,gD,gN1,gN2,u0,t0,tend,steps);
%% show the animation on screen
u_max = max(u_dyn(:));
for t_ii = 1:length(t)
figure(2); FEMtrimesh(FEMmesh.elem,x,y,u_dyn(:,t_ii))
xlabel(’x’); ylabel(’y’); caxis([0,u_max]); axis([0 2 0 2 0 u_max]); drawnow();
figure(3); tricontour(FEMmesh.elem,x,y,u_dyn(:,t_ii),linspace(0,0.99*u_max,11))
xlabel(’x’); ylabel(’y’); caxis([0,u_max]); drawnow();
pause(1)

endfor

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 14

2
1.5

1
y 0.5

0 0

0

0.002

0.004

0.006

0.008

0.01

0.012

1.5
2

1
x0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x

y

2
1.5

1
y 0.5

0 0

0

0.002

0.004

0.006

0.008

0.01

0.012

1.5
2

1
x0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x

y

y
x

0

0.002

0.004

0.006

0.008

0.01

2
1.5 2

1.51

0.012

10.5 0.5
0 0 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x

y

2
1.5

1
y 0.5

0 0

0

0.002

0.004

0.006

0.008

0.01

0.012

2
1.5

1
x0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x

y

Figure 7: Solution of a dynamic heat equation

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 15

3.4 Solving hyperbolic problems, wave equations

As an example solve the wave equation

∂2 u

∂t2
−∆u = 0 for x2 + y2 < 6

with zero Dirichlet boundary conditions, the initial displacement

u(0, x, y) = u0(x, y) = 0.1 exp(−(x− 1)2 − y2) (R2 − x2 − y2)/R2

and zero initial velocity v0 = 0. This assures compatible initial values, i.e. the boundary condition is satisfied.
The solution is computed at 15 equally spaced times ti between 0 and 7. In-between 30 steps are taken, but the
solution is not returned. The solution is returned at 15 times, leading to Figure 8. This initial hump is traveling
towards to boundary of the circle with speed 1, where it is reflected. Another example is shown in Section 7.1.

WaveDynamic.m
%% generate a circle
alpha = linspace(0,2*pi,101)’; alpha = alpha(1:end-1); R = 6;
xy = [R*cos(alpha),R*sin(alpha),-ones(size(alpha))];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle(’Circle’,xy,0.03);

else %% quadratic elements
FEMmesh = CreateMeshTriangle(’Circle’,xy,4*0.03);
FEMmesh = MeshUpgrade(FEMmesh);

endif

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
v0 = zeros(size(x));
u0 = 0.1*exp(-1*((x-1).ˆ2+y.ˆ2)); u0 = u0.*(Rˆ2-x.ˆ2-y.ˆ2)/Rˆ2;
%% setup and solve the initial boundary value problem
m=1; d=0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=7 ; steps=[14,30];
tic();
[u_dyn,t] = I2BVP2D(FEMmesh,m,d,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);
toc()

figure(1) %% show the animation on screen
for t_ii = 1:length(t)
FEMtrimesh(FEMmesh.elem,x,y,u_dyn(:,t_ii))
xlabel(’x’); ylabel(’y’); axis([-R R -R R -0.05 0.05])
caxis([-0.05 0.05]); text(4,-2,0.04,sprintf(’t=%2.1f’,t(t_ii)))
drawnow(); pause(0.3)

endfor
-->
Elapsed time is 0.93231 seconds.

3.5 Solving plane stress problems (later)

SHA 27-8-21

3 ILLUSTRATIVE EXAMPLES 16

Figure 8: Solution of a wave equation

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 17

4 The Commands of FEMoctave

In this section find the documentation for the commands provided by FEMoctave.

4.1 Commands for meshes: creation, evaluation, modification, integration

4.1.1 Structure of a mesh

The main information of a mesh, as shown in Section 6.1 is given by the position of the nodes (points), the
corresponding triangles and the boundary edges. A mesh consists of

Nn nodes, with their (x, y) coordinates,

Ne elements, with 3 (or 6) nodes forming one triangle,

Nb boundary edges, with 2 (or 3) nodes forming one edge.

In FEMoctave this information is stored as a structure with an arbitrary name, but the elements of the structure
require specific names, as shown in Table 2. The first 6 of these elements can be modified by the user and contain
all the necessary information on the mesh to be used.

• nodes: this Nn× 2 matrix contains the coordinates (xi, yi) of the nodes numbered by 1 ≤ i ≤ Nn. The
entries are real numbers.

• nodesT: this Nn vector of integers contains the information of the type of nodes. If the entry in row i
equals 0 then node i is a DOF, i.e. the value of the solution is not prescribed. If the entry in row i equals 1
then node i is a Dirichlet node and the value of the solution is determined by the given function.

• elem: this Ne× 3 matrix of integers contains in each row the numbers of three nodes forming one linear
element (triangle). The triangles have a positive orientation. For second order elements it is a Ne × 6
matrix of integers.

• elemT: types of elements is not used yet.

• edges: this Nb×2 or Nb×3 matrix of integers contains in each row the numbers of two (or three) nodes
forming a boundary edge.

• edgesT: this Nb vector of integers contains the information of the type of edges. If the entry in row i
equals −1 then edge i is part of the Dirichlet boundary, i.e. the value of the solution is prescribed. If the
entry in row i equals −2 then edge i is part of the Neumann boundary, i.e. the value of the solution is not
yet known.

All other elements of a mesh structure can be derived or computed from the above data.

• elemArea: this vector of real numbers contains the area of the individual triangles.

• GP: this matrix of reals contains the coordinates of all Gauss points for the numerical integration. There
are 3 (or 7) Gauss points for each triangle.

• GPT: this vector of integer contains the type for each Gauss point. Currently not used.

• nDOF: this integer gives the total number of degrees of freedom (DOF) for the system to be solved.

• node2DOF: This vector gives for each node the number of the corresponding DOF. If the number equals
0 then it is a Dirichlet node.

The commands CreateMeshRect() and CreateMeshTriangle() create all elements in this structure.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 18

Name Size Information

nodes Nn× 2 coordinates of nodes

nodesT Nn× 1 type of nodes, either 0 (free) or 1 (fixed)

Ne× 3 for first order elements

Ne× 6 for second order elements

elem list of nodes that make up the triangles

elemT Ne× 1 type of elements

edges Nb× 2 list of nodes that make up the boundary edges

edgesT Nb× 1 type of boundary edge, Dirichlet or Neumann

elemArea Ne× 1 area of the triangles

GP coordinates of the Gauss integration points

3 ·Ne× 2 for first order elements

7 ·Ne× 2 for second order elements

GPT (3 or 7) ·Ne× 1 type of the Gauss integration points

nDOF 1× 1 total number of DOF of the system

node2DOF Nn× 1 renumbering from nodes to DOF

Table 2: Elements of a mesh structure

4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect()

With the command CreateMeshRect(x,y,Blow,Bup,Bleft,Bright) you can create a mesh on a
rectangle. The function takes 6 input arguments.

• The ordered vectors x and y contain the x and y coordinates of the mesh to be generated.

• The variables Blow, Bup, Bleft and Bright indicate the boundary condition on the corresponding
edges. If the index is -1 then the edge is part of the Dirichlet boundary Γ1 and thus the value of the function
is prescribed. If the index is -2 then the edge is part of the Neumann boundary Γ2 and thus information
about the outer normal derivative is known, but not the value of the solution.

Examples of the usage are given in Sections 3.1.1 and 3.1.2.

CreateMeshRect()
Mesh = CreateMeshRect(X,Y,BLOW,BUP,BLEFT,BRIGHT)

Create a mesh on a rectangle with nodes at (x_i,y_j)

parameters:

* X,Y are the vectors containing the coodinates of the mesh
nodes to be generated.

* BLOW, BUP, BLEFT, BRIGHT indicate the type of boundary
condition at lower, upper, left and right edge of the rectangle
B* = -1: Dirichlet boundary condition
B* = -2: Neumann or Robin boundary condition

return value

* MESH is a a structure with the information about the mesh.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 19

The mesh consists of n_e linear elements, n_n nodes and n_ed edges.

* MESH.ELEM n_e by 3 matrix with the numbers of the nodes
forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes

* MESH.NODEST n_n vector with the type of nodes (not used)

* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*3 vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector of integer, mapping nodes to DOF

Sample call:
Mesh = CreateMeshRect(linspace(0,1,10),linspace(-1,2,20),-1,-1,-2,-2)

will create a mesh with 200 nodes and 0<=x<=1, -1<=y<=+2

With CreateMeshRect() one can only generate meshes with elements of order 1. With the help of
MeshUpgrade() (Section 4.1.4) you can upgrade to the same mesh with elements or order 2.

4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle()

With the command CreateMeshTriangle(name,xy,area) you can create a mesh with the outer borders
given in xy. The function takes 3 or 4 input arguments.

• The string ’name’ is the file name to be used to store the information.

• The matrix xy contains the edge points of the domain and the information on the boundary conditions.

• area is the typical are of the triangles to be used.

• The optional argument options can specify more flags to the external call of the program triangle.

The mesh can then be read by calling Mesh = ReadMeshTriangle(’name.1’). Examples of the usage
are given in Sections 3.1.3 and 3.2.

CreateMeshTriangle()
Mesh = CreateMeshTriangle(NAME,XY,AREA,OPTIONS)

Generate files with a mesh with linear elements using the extenal code triangle

parameters:

* NAME the base filename: the file NAME.poly will be generated
then triangle will generate files NAME.1.* with the mesh

* XY vector containing the coordinates of the nodes forming the
outer boundary. The last given node will be connected to the
first given node to create a closed curve. Currently no holes
can be generated.
The format for XY is [x1,y1,b1;x2,y2,b2;...;xn,yn,bn] where

* xi x-coordinate of node i

* yi y-coordinate of node i

* bi boundary marker for segment from node i to node i+1

* bi=-1 Dirichlet boundary condition

* bi=-2 Neumann or Robin boundary condition

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 20

* AREA the typical area of he individual triangles to be used

* OPTIONS additional options to be used when calling triangle
the options "pa" and the area will be added automatically
Default options are "q" resp. "qpa"
to suppress the verbose information use "Q"

The information on the mesh generated is written to files and
returned in the structure MESH, if specified

* The information can then be read and used by
Mesh = ReadMeshTriangle(’NAME.1’);

* MESH is a a structure with the information about the mesh.
The mesh consists of n_e elements, n_n nodes and n_ed edges.

* MESH.ELEM n_e by 3 matrix with the numbers of the nodes
forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes

* MESH.NODEST n_n vector with the type of nodes (not used)

* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*3 vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector of integer, mapping nodes to DOF

Sample call:
CreateMeshTriangle(’Test’,[0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
Mesh = ReadMeshTriangle(’Test.1’);
will create a mesh with 0<=x<=1, -1<=y<=+2
and a typical area of 0.01 for each triangle

Once the mesh is generated it can be used by calling the function ReadMeshTriangle(). This function
can also be used to read meshes generated by direct call of the external program triangle. This allows to use
all features of triangle and not only the very restricted setup used by CreateMeshTriangle(). To find
more about the features of triangle use the web page www.cs.cmu.edu/˜quake/triangle.html or compile and
install the code and then run triangle -h to examine the built-in help.

ReadMeshTriangle()
FEMMESH = ReadMeshTriangle(NAME.1)

read a mesh generated by CreateMeshTriangle(NAME)

parameter: NAME.1 the filename

return value: FEMMESH the mesh stored in NAME

Sample call:
CreateMeshTriangle(’Test’,[0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
Mesh = ReadMeshTriangle(’Test.1’);

will create a mesh with 0<=x<=1, -1<=y<=+2
and a typical area of 0.01 for each triangle

Find an example in Section 7.6.

SHA 27-8-21

https://www.cs.cmu.edu/~quake/triangle.html

4 THE COMMANDS OF FEMOCTAVE 21

4.1.4 Converting a mesh of order 1 or order 2: MeshUpgrade() and MeshQuad2Linear()

Given a mesh MeshLin with first order elements one can generate the same mesh with elements of order 2 by
the command MeshUpgrade. The numbering of the nodes of the linear elements is preserved in the mesh with
the quadratic elements. The new nodes are placed at the midpoints of the edges of the triangles.

MeshUpgrade()
MeshQuad = MeshUpgrade(MeshLin)

convert a mesh MESHLIN of order 1 to a mesh MESHQUAD of order 2
parameter: MESHLIN the input mesh of order 1
return value: MESHQUAD the output mesh of order 2

As example generate a mesh with elements of order 1 on the rectangle 0 ≤ x, y ≤ 2 with Dirichlet condition
on three edges and a Neumann condition on the upper edge at y = 2. In Figure 9 find the mesh with the types of
nodes indicated and the numbering of the resulting degrees of freedom.

N = 3;
FEMmesh1 = CreateMeshRect(linspace(0,2,N+1),linspace(0,2,N+1),-1,-2,-1,-1);
FEMmeshQ = MeshUpgrade(FEMmesh1);

-1 0 -1 0 -1 0 -1 0

-1 0 1 1 1 2 -1 0

-1 0 1 3 1 4 -1 0

-1 0 -2 5 -2 6 -1 0

(a) linear elements

-1 0 -1 0 -1 0 -1 0

-1 0 1 1 1 2 -1 0

-1 0 1 3 1 4 -1 0

-1 0 -2 5 -2 6 -1 0

1 7

-1 0 1 8 1 9

-1 0

1 10

1 11 1 12

-1 0

1 13

1 14 -1 0

-1 0

1 15

-1 0 1 16 1 17

1 18

1 19 1 20

1 21

1 22 -1 0

-2 23

-1 0 1 24 1 25

-2 26

1 27 1 28

-2 29

1 30 -1 0

(b) quadratic elements

Figure 9: The same mesh with linear or quadratic elements. The types of the nodes are marked in green. Dirichlet
nodes are marked by −1, Neumann nodes by −2 and interiour nodes by +1. The numbering of the resulting
degrees of freedom is shown in blue. For Dirichlet nodes a DOF of 0 is used.

Using MeshQuad2Linear() one can convert a mesh of order 2 into a mesh of order 1. The nodes will
remain unchanged, but there will be a factor of 4 more elements. With this function one can compare results
based on first or second order elements, using exactly the same degrees of freedom.

MeshQuad2Linear()
MESHLIN = MeshQuad2LinearUpgrade(MESHQUAD)

convert a mesh MESHQUAD of order 2 to a mesh MESHLIN of order 1
parameter: MESHQUAD the input mesh of order 2
return value: MESHLIN the output mesh of order 1

An example is shown in Section 3.1.4.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 22

4.1.5 Use delaunay() to create a mesh: Delaunay2Mesh()

It is possible to use the Octave command delaunay() to generate a triangulation of a convex domain and then
Delaunay2Mesh() to generate a mesh to be used by FEMoctave.

• The generated mesh consists of elements of order one Use MeshUpgrade() to work with elements of
order two.

• At first all boundary points are marked as Dirichlet points. Change the type description in the mesh if you
want Neumann points.

Delaunay2Mesh()
FEMMESH = Delaunay2Mesh(TRI,X,Y)

generate a mesh with elements of order 1, using a Delaunay triangulation

parameters:

* TRI the Delaunay triangulation

* X,Y the coodinates of the points

return value

* FEMMESH is the mesh to be used by FEMoctave

Observe that the quality of the mesh might be very poor, e.g. triangles with very small angles. As example
have a look at the upper edge of the mesh in Figure 10. For almost all cases triangle will generate meshes of
better quality. To generate the domain and the solution in Figure 10 use the code below.

TestDelaunay.m
[x,y] = meshgrid(linspace(-1,1,20)); x = x(:); y = y(:);
ind = find(y<1-0.5*x+0.001); x = x(ind); y = y(ind);
ind = find(x+y>-0.001); x = x(ind); y = y(ind);

tri = delaunay(x,y);

figure(1)
triplot(tri,x,y);
hold on; plot(x,y,’*’); hold off
xlabel(’x’); ylabel(’y’);

FEMmesh = Delaunay2Mesh(tri,x,y);
FEMmesh = MeshUpgrade(FEMmesh);

u = BVP2Dsym(FEMmesh,1,0,4,0,0,0);

figure(2)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1), FEMmesh.nodes(:,2),u)
xlabel(’x’); ylabel(’y’); view([100,45])

4.1.6 Display results on meshes, FEMtrimesh() and FEMtrisurf()

To display the results of the computations two elementary wrappers around trimesh() and trisurf() are
provided.1

1It is obviously possible to improve the wrappers, as non of the advanced features of trimesh() is passed through. If you want to
use those, have a look at the elementary code in the FEMtri* functions and copy the necessary lines in to your code.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 23

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

-1

-0.5

0
x

0.50

0.1

y
-0.5 0

-1 10.5 1

0.2

0.3

0.4

Figure 10: A mesh generated by a Delaunay triangulation and the solution of a BVP

• With FEMtrimesh() display a function u as a 3D mesh. If no values for u are provided, the 2D mesh is
displayed.

• With FEMsurf() display a function u as a 3D surface. The syntax is identical to FEMtrimesh().

Both function accept meshes with linear or quadratic elements. For quadratic elements the 6 nodes in each
element are connected by straight lines, i.e. as if a second order triangle would be composed of 4 first order
triangles.

FEMtrimesh()
FEMtrimesh (TRI, X, Y, U)

display a solution U on a triangular mesh

parameters:

* TRI is the triangulation of the domain
if TRI has three columns a mesh with linear elements is used
if TRI has six columns a mesh with quadratic elements is used

* X, Y coordinates of the nodes in the mesh

* U values of the function to be displayed
if U is not given, then the mesh is displayed in 2D

4.1.7 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient()

Given the values u of a function at the nodes, the two components of the gradient can be computed with the
function FEMEvaluateGradient().

FEMEvaluateGradient()
[UX,UY] = FEMEvaluateGradient(MESH,U)

evaluate the gradient of the function u at the nodes

parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of the function at the node

return value

* UX x component of the gradient of u

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 24

* UY y component of the gradient of u

the values of the gradient are determined on each element
at the nodes the average of the gradient of the element is used

The gradient is determined on each of the elements, using either linear or quadratic interpolation. Then at each
node the average of the values of the gradient of the neighboring triangles is returned. This is different from the
results generated by FEMgriddata(). Examples are given in Sections 5.1, 7.2, 7.3, 7.4 and 7.7. Due to using
broadcasting in the Octave code (bsxfun()) the code is fast! This function could be used (or is that abused?)
to evaluate derivatives of functions given on an irregular grid!

4.1.8 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP()

Given the values u of a function at the nodes, the values of u and its gradient can be computed at the Gauss
points by calling FEMEvaluateGP(). For first order elements a piecewise linear interpolation is used, thus
the gradients will be constant on each triangular element. For second order elements a quadratic interpolation is
used.

FEMEvaluateGP()
[UGP,GRADUGP] = FEMEvaluateGP(MESH,U)

evaluate the function and gradient at the Gauss points

parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of at the nodes

return values

* UGP values of u at the Gauss points

* GRADUGP matrix with the values of the gradients in the columns

Examples are given in Sections 7.5 and 7.7.

4.1.9 Integrate a function over the domain: FEMIntegrate()

Given a function name, the values of a function at the nodes or at the Gauss points one can integrate this function
over the domain given by the mesh. There are different methods used, all based on the Gauss integration presented
in Section 6.2.2.

• If a function name is specified, then this function will be evaluated at the Gauss points and then integrated.

• If a scalar value is given, then the function is assumed to be constant.

• If a column vector is given with as many components as nodes in the mesh, then an element wise interpo-
lation is used to obtain the values at the Gauss points. The function FEMEvaluateGP() is used.

• If a column vector is given with as many components as Gauss points in the mesh, then these are used as
values at the Gauss points.

FEMIntegrate()
INTEGRAL = FEMIntegrate(MESH,U)

integrate a function u over the domain given in Mesh

parameters:

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 25

* MESH is the mesh describing the domain and the boundary types

* U the function to be integrated
can be given as function name to be evaluated or as scalar
value, or as a vector with the values at the nodes or the Gauss points.

return value

* INTGERAL the numerical approximation of the integral

As a simple example integrate the function u(x, y) = x y3 over the unit square 0 ≤ x, y ≤ 1. The exact
integral equals 1

8 , but you have to subtract to see the difference to the numerical evaluation with the Gauss points.
This is not unusual, since the Gauss integration leads to very accurate approximations, if the function is smooth.

N = 40; Mesh = CreateMeshRect(linspace(0,1,N),linspace(0,1,N),-2,-2,-2,-2);
function res = f_int(xy)
res = xy(:,1).*xy(:,2).ˆ3;

endfunction

integral1 = FEMIntegrate(Mesh,’f_int’) % using the function name
uGP = feval(’f_int’,Mesh.GP);
integral2 = FEMIntegrate(Mesh,uGP) % using the values at the Gauss points
-->
integral1 = 0.12500
integral2 = 0.12500

To determine the area of a domain Ω ⊂ R2 one can integrate the constant 1 over the domain. More examples
are given in Sections 5.1, 7.5 and 7.7.

4.1.10 Evaluation at arbitrary points or along lines, integration along curves: FEMgriddata()

Given a function by the values at the nodes of a mesh use the command FEMgriddata() to evaluate the
function at arbitrary points.

• The value of the function and the partial derivatives can be evaluated.

• Depending on the mesh provided either a piecewise linear or pieceweise quadratic interpolation is used.

• If a point (xi, yi) is on the edge of a triangle is a a matter of rounding which of the neighboring triangles is
used for the interpolation.

• If a point (xi, yi) is not in a triangle, then NaN is returned.

• The evaluation is very fast, even for large numbers of elements and interpolation points.

• Evaluation along arbitrary curves is possible, and fast. Then use trapz() to integrate along those curves.

FEMgriddata()
[UI,UXI,UYI] = FEMgriddata(MESH,U,XI,YI)

evaluate the function (and gradient) at given points by interpolation

parameters:

* MESH is the mesh describing the domain
If MESH consists of linear elements, piecewise linear interpolation is used.
If MESH consists of quadtartic elements, piecewise quadratic interpolation is used.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 26

* U vector with the values of the function at the nodes

* XI, YI coodinates of the points where the function is evaluated

return values:

* UI values of the interpolated function u

* UXI x component of the gradient of u

* UYI y component of the gradient of u

The values of the function and the gradient are determined on each element by
a piecewise linear or quadratic interpolation.
If a point is not inside the mesh NaN is returned.

This function is similar to FEMEvaluateGradient(), but allows to evaluate at arbitrary points. At the
nodes the value of the gradient in one of the triangles is returned. As a consequence the results generated by
FEMEvaluateGradient() look smoother on occasion.

The code below evaluates a function on an L-shaped domain on a rectangular grid. Find the result in Fig-
ure 11.

nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
Mesh = CreateMeshTriangle(’Ldomain’,nodes,0.002);
x = Mesh.nodes(:,1); y = Mesh.nodes(:,2);

function res = f_int2(xy)
res = sin(pi*xy(:,1)).ˆ2.*xy(:,2)+1;

endfunction

u = feval(’f_int2’,Mesh.nodes);

N = 51; [xi,yi] = meshgrid(linspace(-1,1,N));

tic();
ui3 = FEMgriddata(Mesh,u,xi,yi);
toc()

figure(1)
mesh(xi,yi,ui3)
xlabel(’x’); ylabel(’y’); zlabel(’u’)
-->
Elapsed time is 0.0075829 seconds.

Examples are given in Sections 5.3, 7.2, 7.4 and 7.6.

4.2 How to define functions

There are three basic techniques to define functions in Octave to be used with FEMoctave.

• If the function is a constant you can simply use this scalar as input argument.

• You may provide the function name of the function to be called to compute the values of the function.
Observe that the function has to be vectorized2. The function can be implemented as a name.m Octave
function or as dynamically linked function name.oct, written in C++.

2Function on the boundary are actually called for one point at a time, but this might change. Thus it is advisable to write all functions
vectorized.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 27

1
0.5

0
y -0.5

-1 -1

0

0.5

1u

1.5

2

x

1
0.5

0
-0.5

Figure 11: A function evaluated on a uniform grid

• You can provide a vector of the correct size with all the values of the function at the Gauss integration
points of the mesh.

Section 3 contains many examples or you may examine the examples below.

4.2.1 Functions for static problems

The functions BVP2D(), BVP2Dsym() and BVP2Deig() accept the coefficient functions as input parameters.
These functions accept (currently) one parameter, a matrix with two columns. The first (resp. second) column
contains the x (resp. y) coordinates of the points at which the function is to be evaluated.

As a first example consider the function f(x, y) = 7. There are three options:

1. Pass the constant 7 as scalar to the FEMoctave function. This is the preferred approach.

2. Define a function

Octave
function res = ff(xy)
res = 7*ones(size(yz)(1),1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

3. Determine the vector of the correct size by

Octave
ffVec = 7 * ones(size(mesh.GP)(1),1);

and then pass the vector ffVec to the FEMoctave function.

For the second example function
f(x, y) = 7 + 2x

the option constant is not available. There are two equally valid methods.

1. Define a function

Octave

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 28

function res = ff(xy)
res = 7 + 2*xy(:,1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

2. Deterime the vector of the correct size by

Octave
ffVec= 7 * = 7 + 2*xy(:,1);

and then pass the vector ffVec to the FEMoctave function.

To implement the function
f(x, y) = J0(r) = J0(

√
x2 + y2)

to be passed to the FEMoctave command use

Octave
function y = f(xy)
y = besselj(0,sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2));

endfunction

With this definition pass the string ’f’ to the FEMoctave function. Alternatively you can first compute the
column vector fVec of this function at the Gauss points of the mesh by

Octave
fVec = f(mesh.GP);

and then pass the vector fVec to the FEMoctave function.

4.2.2 Functions for dynamic problems

The only additional feature is time t.

4.3 Solving elliptic problems

The first few commands shown in Table 1 can be used to solve elliptic problem on a bounded domain Ω ⊂ R2.

4.3.1 Symmetric elliptic problems: BVP2Dsym()

Equations given in the form of (2)

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

may be solved by

Octave
u = BVP2Dsym(mesh,a,b0,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors. The
return value u is a vector with the values of the solution at the nodes.

BVP2Dsym()

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 29

U = BVP2Dsym(MESH,A,B0,F,GD,GN1,GN2)

Solve a symmetric, elliptic boundary value problem

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0 and F may also be given as vectors with the
values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

Find examples in Sections 3.1.1, 3.1.2, 3.1.3, 7.3, 7.4 and 7.5.

4.3.2 General elliptic problems: BVP2D()

Equations given in the form of (1)

−∇ · (a∇u− u~b) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

~n · (a∇u− u~b) = g2 + g3 u for (x, y) ∈ Γ2

may be solved by

Octave
u = BVP2D(mesh,a,b0,bx,by,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors. The
expressions bx and by denote the two components of the convection vector~b. The return value u is a vector with
the values of the solution at the nodes. Find an example in Section 3.1.4.

BVP2D()
U = BVP2D(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

Solve an elliptic boundary value problem

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 30

4.4 Solving eigenvalue problems: BVP2Deig()

To solve an eigenvalue problem of the form (3)

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

may be solved by

Octave
[Eval,Evec,errorbound] = BVP2Deig(mesh,a,b0,f,gN2,nVec,tol);

where the coefficient functions can be given as described in Section 4.2.1, as constants, strings or vectors.

• The function can be called with one (Eval) or two ([Eval,Evev]) return arguments. A possible third
return argument ([Eval,Evec,errorbound]) is of limited use, since with FEMoctave2 eigs() is
used, instead of an inverse power iteration.

– The first return value Eval is a column vector containing the estimated values of the eigenvalues λi.

– If the second return value Evec is asked for, then a matrix will be returned. Each column contains
the values of a normalized eigenfunction at the nodes.

– The third return argument errorbound will return a matrix with two columns, containing infor-
mation on the error bound of the eigenvalues. Observe the the error of the eigenvalue computation
is given, not the error of the overall FEM problem. The error of the FEM discretization has to be
estimated by other tools. Some mathematical details are given in Section 6.7.

* The first column contains a conservative error estimate. The actual error of the eigenvalue is
guaranteed to be smaller.

* The second column contains a more aggressive error estimate. Under most circumstances the
estimate is valid. For highly clustered eigenvalues the error is overestimated.. There are cir-
cumstances when the error of the largest eigenvalues is underestimated. If the error is extremely
small, the estimate might indicate an even smaller error. Keep in mind the the error is always
larger than machine accuracy permits.

• The integer parameter nVec indicated the number of smallest eigenvalues to be be computed.

• The parameter tol will lead to the iteration stopping if the relative change from one step to the next is
smaller than tol. If the parameter is not given, then a default value of 10−5 is used.

An example of an eigenvalue problem is given in Section 3.2.

BVP2Deig()
[EVAL,EVEC,ERRORBOUND] = BVP2Deig(MESH,A,B0,W,GN2,NVEC)

determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP

-div(a*grad u)+ b0*u = Eval*w*u in domain
u = 0 on Dirichlet boundary

n*(a*grad u) = gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,W,GN2 are the coefficients and functions describing the PDE.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 31

Any constant function can be given by its scalar value.
The functions A,B0 and W may also be given as vectors with the
values of the function at the Gauss points.

* NVEC is the number of smallest eigenvalues to be computed

return values:

* EVAL is the vector with the eigenvalues

* EVEC is the matrix with the eigenvectors as columns

* ERORBOUND is a matrix with error bound of the eigenvalues

4.5 Solving parabolic problems: IBVP2D() and IBVP2Dsym()

To solve an initial boundary value problem (IBVP) of the form (4)

ρ ∂
∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u− u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0

use the command IBVP2D(). Find an example in Section 3.3 and a description of the algorithm in Section 6.6.1.

IBVP2D()
[U,T] = IBVP2D(MESH,M,A,B0,BX,BY,F,GD,GN1,GN2,U0,T0,TEND,STEPS)

Solve an initial boundary value problem

m*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

parameters:

* MESH is the mesh describing the domain and the boundary types

* M,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE. Any constant function can be given by its scalar value.
The functions M,A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0 is the initial value, can be given as a constant, function
name or as vector with the values at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.
If STEPS = n, then n Crank Nicolson steps are taken and the results returned.
If STEPS = [n,nint], then n*nint Crank Nicolson steps are taken and
(n+1) results returned.

return values

* U is a matrix with n+1 columns with the values of the solution
at the nodes at different times T

* T is the vector with the values of the times at which the
solutions are returned.

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 32

If there is no convection term ~b = ~0, then the resulting matrix A is symmetric and (most often) positive
definite. Thus one can use a Cholesky factorization for the time stepper. This is (or should be) faster. The
structure of IBVP2Dsym() is almost identical to IBVP2D().

IBVP2Dsym()
IBVP2Dsym(MESH,M,A,B0,F,GD,GN1,GN2,U0,T0,TEND,STEPS)

Solve a symmetric initial boundary value problem

m*d/dt u - div(a*grad u) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

...

4.6 Solving hyperbolic problems: I2BVP2D()

Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u− u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

To solve this wave type equation use the command I2BVP2D(). Find an example in Section 7.1 and a descrip-
tion of the algorithm in Section 6.6.2.

I2BVP2D()
[U,T] = I2BVP2D(MESH,M,D,A,B0,BX,BY,F,GD,GN1,GN2,U0,V0,T0,TEND,STEPS)

Solve an initial boundary value problem

m*dˆ2/dtˆ2 u + 2*d*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

d/dt u(t0) = v0 initial velocity

parameters:

* MESH is the mesh describing the domain and the boundary types

* M,D,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions M,D,A,B0,BX,BY and F may also be given as
vectors with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0,V0 are the initial value and velocity, can be given as a constant,
function name or as vector with the values at the nodes

* T0, TEND are the initial and final times

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 33

* STEPS is a vector with one or two positive integers.
If STEPS = n, then n steps are taken and the results returned.
If STEPS = [n,nint], then n*nint steps are taken and (n+1 results returned.

return values

* U is a matrix with n+1 columns with the values of the solution
at the nodes at different times T

* T is the vector with the values of the times at which the
solutions are returned.

4.7 Internal commands in FEMoctave

4.7.1 Linear elements: FEMEquation() and FEMEquationM()

This is the fundamental function that transforms a BVP to a system of linear equations. First order triangular
elements are used. To speed it up it is written in C++, leading to the file FEMEquation.oct.

FEMEquation()
[A,B,N2D] = FEMEquation(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 1

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 1 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

* N2D is a vectors used to match nodes to degrees of freedom
n2d(k)= 0 indicates that node k is a Dirichlet node n2d(k)=nn indicates
that the value of the solution at node k is given by u(nn)

FEMEquationM.m is a simplified version, but written as an Octave script. Thus the code is easier to read
and understand. The convection terms are not available in FEMEquationM.m.

4.7.2 Quadratic elements: FEMEquationQuad() and FEMEquationQuadM()

This is the fundamental function that transforms a BVP to a system of linear equations. Second order triangular
elements are used. To speed it up it is written in C++.

FEMEquationQuad()
[A,B,N2D] = FEMEquationQuad(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 2

SHA 27-8-21

4 THE COMMANDS OF FEMOCTAVE 34

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 2 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

* N2D is a vectors used to match nodes to degrees of freedom
n2d(k)= 0 indicates that node k is a Dirichlet node n2d(k)=nn indicates
that the value of the solution at node k is given by u(nn)

FEMEquationQuadM.m is a simplified version, but written as an Octave script. Thus the code is easier to
read and understand. The convection terms are not available in FEMEquationQuadM.m.

4.7.3 Effect of right hand side for dynamic problems: FEMInterpolWeight()

For the time stepping in parabolic and hyperbolic problems many systems of linear equations have to be solved
using the RHS f(t, x, y) for different values of the time t. Thus a function to keep track of the influence of f
is useful, FEMInterpolWeight(). This function returns a sparse matrix wMat such that the RHS of the
system to be solved is given by wMat ~f .

FEMInterpolWeight()
WMAT = FEMInterpolWeight(FEMMESH,WFUNC)

create the matrix to determine the contribution of w*f to a IBVP or BVP
the contribution of w*f is the determined by wMat*f, where f is the
vector with the values at the "free" nodes

-div(a*grad u)+ b0*u = w*f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* WFUNC is the weight function w
It may be given as a function name, a vector with the values
at the Gauss points or as a scalar value

return value

* WMAT is the sparse weight matrix

4.7.4 Effect of the Dirichlet values: FEMInterpolBoundaryWeight()

If the same system has to be solved for many different Dirichlet values gD on the boundary, one can generate the
equation once and the only recompute the changes for different gD.

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 35

FEMInterpolBoundaryWeight()
WMAT = FEMInterpolBoundaryWeight(FEMMESH,A,B0)

create the matrix to determine the contribution of gD to a IBVP or BVP
the contribution of gD is the determined by wMat*gD, where gD is
the vector with the values at the Dirichlet nodes

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* FEMMESH is the mesh describing the domain and the boundary types.

* A,B0 are the coefficients and functions describing the PDE.

return value:

* WMAT is the sparse weight matrix

4.8 Commands from Octave-Forge packages

This packages uses standard Octave commands and some commands from other Octave-Forge packages. Find a
list of the Octave-Forge commands and the corresponding packages in Table 3.

Command Package Description

GramSchmidt() Linear Algebra used for eigenvalue problem (not any more)

tricontour() Plot show level curves for functions on a mesh

Table 3: Commands from Octave-Forge packages

4.9 External programs

To construct the meshes FEMoctave also uses two external programs.

• Triangle to generate a good mesh. The source code is given in FEMoctave. Find documation on the web
page www.cs.cmu.edu/˜quake/triangle.html.

• CuthillMcKee to obtain a good numbering. Not necessary any more, since the sparse factorizations do a
better job.

5 Tools for Didactical Purposes

In this section a few effects of FEM are illustrated. This could be useful to teach classes on FEM.

5.1 Observe the convergence of the error as h→ 0

Consider the unit square Ω = [0, 1]× [0, 1]. One can verify the function ue(x, y) = sin(x) · sin(y) is solution of

−∇ · ∇u = −2 sin(x) · sin(y) for 0 ≤ x, y ≤ 1
∂ u(x,1)
∂y = − sin(x) · cos(1) for 0 ≤ x ≤ 1 and y = 1

u(x, y) = ue(x, y) on the other sections of the boundary

.

SHA 27-8-21

https://www.cs.cmu.edu/~quake/triangle.html

5 TOOLS FOR DIDACTICAL PURPOSES 36

Let h > 0 be the typical length of a side of a triangle. For first order elements 1
2 h is used, such that the compu-

tational effort is comparable to second order elements. Nonuniform meshes are used, to avoid superconvergence.
By choosing different values of h one should observe smaller errors for smaller values of h. The error is mea-
sured by computing the L2 norms of the difference of the exact and approximate solutions, for the values of the
functions and its partial derivative with respect to y. These are the expressions used in the general convergence
estimates stated in Section 6.5. A double logarithmic plot leads to Figure 12.

• For linear elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 2 and thus
conclude that the error is proportional to h2.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y)− ue(x, y)) is approximately 1 and thus

conclude that the error of the gradient is proportional to h.

• For quadratic elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 3 and thus
conclude that the error is proportional to h3.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y)− ue(x, y)) is approximately 2 and thus

conclude that the error of the gradient is proportional to h2.

These observations confirm the theoretical error estimates in Section 6.5 on page 72. It is rather obvious from
Figure 12 that second order elements generate more accurate solutions for a comparable computational effort.

-2.5 -2 -1.5 -1 -0.5
-10

-8

-6

-4

-2

0

lo
g 10

(d
iff

er
en

ce
)

log
10

(h)

linear, u-u
e

linear, d/dy (u-u
e
)

quad, u-u
e

quad, d/dy (u-u
e
)

Figure 12: Convergence results for linear and quadratic elements

TestConvergence.m

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 37

a = 1; b0 = 0; gN2 = 0;

function res = u_exact(xy) res = sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = f(xy) res = 2*sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = u_y(xy) res = sin(xy(:,1)).*cos(xy(:,2)); endfunction

N = 6; Npow = 6; % use N = 6 and Npow = 6 for final run
for ii = 1:Npow
Ni = N*2ˆ(ii-1)+1; h(ii) = 1/(Ni-1); area = 0.5/(Ni-1)ˆ2;
FEMmesh = CreateMeshTriangle(’TestConvergence’,[0 0 -1; 1 0 -1; 1 1 -2;0 1 -1],4*area);
FEMmesh = MeshUpgrade(FEMmesh); FEMmeshLin = MeshQuad2Linear(FEMmesh);
disp(sprintf("\nDOF = %i and %i",FEMmesh.nDOF,FEMmeshLin.nDOF))
%%% solve with first order elements
u = BVP2Dsym(FEMmeshLin,a,b0,’f’,’u_exact’,’u_y’,gN2);
Difference(ii) = sqrt(FEMIntegrate(FEMmeshLin,(u-u_exact(FEMmeshLin.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmeshLin,u);
DifferenceUy(ii) = sqrt(FEMIntegrate(FEMmesh,(uy-u_y(FEMmesh.nodes)).ˆ2));
%%% now for second order elements
u = BVP2Dsym(FEMmesh,a,b0,’f’,’u_exact’,’u_y’,gN2);
DifferenceQ(ii) = sqrt(FEMIntegrate(FEMmesh,(u-u_exact(FEMmesh.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
DifferenceUyQ(ii) = sqrt(FEMIntegrate(FEMmesh,(uy-u_y(FEMmesh.nodes)).ˆ2));

endfor
figure(1)
plot(log10(h),log10(Difference),’+-’,log10(h),log10(DifferenceUy),’+-’,

log10(h),log10(DifferenceQ),’+-’,log10(h),log10(DifferenceUyQ),’+-’)
xlabel(’log_{10}(h)’); ylabel(’log_{10}(difference)’)
legend(’linear, u-u_e’,’linear, d/dy (u-u_e)’,

’quad, u-u_e’,’quad, d/dy (u-u_e)’,’location’,’southeast’)
xlim([-2.5,-0.5])

5.2 Some Element Stiffness Matrices

5.2.1 Element contributions for equilateral triangles

Generate the trivial mesh consisting of a single equilateral triangle with the help of GenerateMeshTriangle.
The code in CreateTriangle.m generates the mesh and Figure 13.

CreateTriangle.m
%% corners of an equilateral triangle
corners = 1*[0,0,-2;1,0,-2;0.5,sqrt(3)/2,-2];
mm = CreateMeshTriangle(’one_triangle’,corners,max(corners(:).ˆ2))

plot([mm.nodes(:,1);mm.nodes(1,1)],[mm.nodes(:,2);mm.nodes(1,2)],’o-r’,
mm.GP(:,1),mm.GP(:,2),’b*’)

xlabel(’x’); ylabel(’y’); title(’triangle, with Gauss points’); axis equal

For the PDE −∆u = 1 generate the element stiffness matrix A and the element vector ~f with he help of the
commands FEMEquation() or FEMEquationM().

[A2,f2] = FEMEquationM(mm,1,0,1,0,0); %% using the script
[A,f] = FEMEquation (mm,1,0,0,0,1,0,0,0); %% using compiled code
Element_Matrix = full(A)
Element_Vector = f
-->

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 38

A =

√
3

6


+2 −1 −1

−1 +2 −1

−1 −1 +2


~b =

√
3

4 · 3


−1

−1

−1

 =
area of triangle

3


−1

−1

−1


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
triangle, with Gauss points

y

x

1 2

3

Figure 13: An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix

Element_Matrix = 0.57735 -0.28868 -0.28868
-0.28868 0.57735 -0.28868
-0.28868 -0.28868 0.57735

Element_Vector = -0.14434
-0.14434
-0.14434

This result corresponds to the exact result for the element stiffness matrix in Figure 13.

Using the same idea one can examine the contributions of the different term to the element stiffness matrix.
As example consider the term caused by b0 u = 1u in the PDE.

B = FEMEquation(mm,0,1,0,0,0,0,0,0);
B = full(B)
-->
B = 0.072169 0.036084 0.036084

0.036084 0.072169 0.036084
0.036084 0.036084 0.072169

The result confirms

B =
area of triangle

12


2 1 1

1 2 1

1 1 2

 .

Examine a mesh consisting of equilateral triangle, as shown in Figure 14. Then examine the linear equation
corresponding to an interior point at (xi, yi).

• The node is corner of 6 triangles, thus the coefficient ai,i of the global stiffness matrix consists of 6 contri-
butions found on the diagonal in the element stiffness matrix A in Figure 13, i.e. ai,i = 6 +2

2
√

3
= 6√

3
.

• If a node at (xj , yj) shares two triangles with (xi, yi) then the entry ai,j in the global stiffness matrix
consists of 2 contributions found off the diagonal in the element stiffness matrix A in Figure 13, i.e.
ai,j = 2 −1

2
√

3
= −1√

3
.

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 39

-2 -1 0 1 2

-2

-1

0

1

2

Figure 14: Uniform meshes consisting of equilateral triangles

• If the function f in −∇2u = f is constant, then there will be 6 contributions from the six neigh-
boring triangle. If the length of one side of a triangle equals h, then the area is

√
3

4 h2. Thus find

bi = 6
area of triangle

3 (−f) = −
√

3
2 h2 f .

As a result find the equation for the node at (xi, yi).

1

h2

 6√
3
u(xi, yi)−

1√
3

∑
neigbours

u(xj , yj)

 = +

√
3

2
f

1

h2

6u(xi, yi)−
∑

neigbours
u(xj , yj)

 = +
3

2
f

This is somewhat similar to a finite difference approximation. For each row of the global stiffness matrix the
entry on the diagonal and 6 more will be different from 0.

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic
elements for the PDE −∆u = 1. The triangular, equilateral element and the matrix are shown in Figure 15. The
vector is given by

~b =

√
3

4 · 3



0

0

0

−1

−1

−1


=

area of triangle
3



0

0

0

−1

−1

−1


For the global stiffness matrix for a very regular mesh in Figure 14 on each row of the matrix the entry on the
diagonal and 12 more will be different from 0. If the mesh is not as regular even 19 entries on each row might be
different from zero.

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 40

A =

√
3

18



6 1 1 0 −4 −4

1 6 1 −4 0 −4

1 1 6 −4 −4 0

0 −4 −4 24 −8 −8

−4 0 −4 −8 24 −8

−4 −4 0 −8 −8 24


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

triangle, with Gauss points

1 2

3

45

6

Figure 15: An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix

5.2.2 From FEM to a finite difference approximation

Generate the trivial mesh consisting of a single equilateral triangle with the help of GenerateMeshTriangle.
The code in CreateTriangle.m generates the mesh and Figure 16. For the PDE −∆u = 1 generate the
element stiffness matrix A and the element vector~b by using FEMEquation or FEMEquationM.

CreateTriangle.m
%% corners of a right triangle
corners = 1*[0,0,-2;1,0,-2;0,1,-2];
CreateMeshTriangle(’one_triangle’,corners,max(corners(:).ˆ2))
mm = ReadMeshTriangle(’one_triangle.1’);
[A,f] = FEMEquation(mm,1,0,0,0,1,0,0,0); %% using compiled code
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = 1.00000 -0.50000 -0.50000

-0.50000 0.50000 0.00000
-0.50000 0.00000 0.50000

Element_Vector = -0.16667
-0.16667
-0.16667

Based on elements of the above type there is a connection of FEM to the finite difference method. Generate
a rectangular grid, shown in Figure 17. Examine the PDE −∆u = π with Neumann boundary conditions. Use
the command FEMEquation to generate the matrix A and the vector~b, then the linear equation A ~u+~b has to
be solved. The code displays the equation at node 5.

x = [-1,0,1];
FEMmesh = CreateMeshRect(x,x,-2,-2,-2,-2)
figure(1); clf
ShowMesh(FEMmesh.nodes,FEMmesh.elem)
xlabel(’x’); ylabel(’y’)
axis(1.2*[-1,1,-1,1]*max(x))
hold on
for kk = 1:length(FEMmesh.nodes)

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 41

A =


+1 −0.5 −0.5

−0.5 +1 0

−0.5 0 +1

 , ~b =
1

6


−1

−1

−1



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

triangle, with Gauss points

Figure 16: A right triangle, the Gauss integration points and the element stiffness matrix

-2 -1 0 1 2
-2

-1

0

1

2

(a) a section

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

y

1 2 3

4 5 6

7 8 9

(b) a small section, numbered

Figure 17: Uniform meshes consisting of rectangular triangles

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 42

text(FEMmesh.nodes(kk,1)+0.02,FEMmesh.nodes(kk,2)-0.07,num2str(kk),’color’,[1 0 0])
endfor
hold off

a=1; b0=bx=by= 0; f=pi;
[A,b] = FEMEquation(FEMmesh,a,b0,bx,by,f,0,0,0);
A5 = full(A(5,:))
b5 = b(5)
-->
A5 = 0 -1 0 -1 4 -1 0 -1 0
b5 = -3.1416

The results imply that the equation to be solved is

−u2 − u4 + 4u5 − u6 − u8 = π .

Running the code again with x = [1,0,1]/2 will not change A, but lead to b5 = −π 4. Thus for a width h
of the triangles the equation to be solved is

−u(x− h, y)− u(x, y − h) + 4u(x, y)− u(x+ h, y)− u(x, y + h)

h2
= f(x, y) .

This is the usual finite difference approximation of −∆u = f .

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic
elements for the PDE −∆u = 1. The element and the matrix are shown in Figure 18. The vector is given by

A =
1

6



6 1 1 0 −4 −4

1 3 0 0 0 −4

1 0 3 0 −4 0

0 0 0 16 −8 −8

−4 0 −4 −8 16 0

−4 −4 0 −8 0 16


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

triangle, with Gauss points

y

x

1 2

3

45

6

Figure 18: A right angle triangle, the Gauss integration points and the element stiffness matrix

~b =
1

2 · 3



0

0

0

−1

−1

−1


=

area of triangle
3



0

0

0

−1

−1

−1


.

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 43

5.3 Behavior of a FEM solution within triangular elements

To examine the behavior of a solution within each of the triangular elements use the boundary value problem

−∆u = − exp(y) for (x, y) ∈ Ω

u(x, y) = exp(y) for (x, y) ∈ Γ
.

on the domain Ω displayed in Figure 19(a). The exact solution is given by u(x, y) = exp(y), shown in Fig-
ure 19(b). The problem is solved twice:

1. using 32 triangular elements of order 1.

2. using 8 triangular elements of order 2.

The nodes used coincide for the two approaches, i.e four triangles in Figure 19(a) for the linear elements corre-
spond to one of the eight triangles for the quadratic elements.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

y

x
(a) the mesh (b) the solution

Figure 19: The mesh and the solution for a BVP

Figure 20(a) shows the difference of the computed solution with first order elements to the exact solution.
Within each of the 32 elements the difference is not too far from a quadratic function. Figure 20(b) shows the
values of the partial derivative ∂ u

∂y . It is clearly visible that the gradient is constant within each triangle, and not
continuous across element borders.

Figure 21(a) shows the difference of the computed solution with second order elements to the exact solution.
The error is considerably smaller than for linear elements, using identical degrees of freedom. Within each of the 8
elements the difference does not show a simple structure. Figure 21(b) shows the values of the partial derivative
∂ u
∂y . It is clearly visible that the gradient is not constant within the triangles. By a careful visual inspection one
has to accept that the gradient is not continuous across element borders, but the jumps are considerably smaller
than for linear elements. Figure 22 shows the errors for the partial derivative ∂ u

∂y and confirms this observation.

FEMInsideElement.m
Linear = 0; N = 2;
Mesh = CreateMeshTriangle(’test’,[0 0 -1;1 0 -1;1 2 -1; 0 1 -1],1/Nˆ2);
Mesh = MeshUpgrade(Mesh);
if Linear Mesh = MeshQuad2Linear(Mesh); endif

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 44

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 20: Difference to the exact solution and values of ∂ u∂y , using a first order mesh

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 21: Difference to the exact solution and values of ∂ u∂y , using a second order mesh

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 45

(a) using linear elements (b) using quadratic elements

Figure 22: Difference of the approximate values of ∂ u∂y to the exact values

x = Mesh.nodes(:,1); y = Mesh.nodes(:,2);
Ngrid = 100; [xi,yi] = meshgrid(linspace(0,1,Ngrid),linspace(0,2,Ngrid));

figure(1)
FEMtrimesh(Mesh.elem,x,y); axis equal

function res = u_exact(xy) res = +exp(xy(:,2)); endfunction
function res = f(xy) res = -exp(xy(:,2)); endfunction

u_ex = reshape(u_exact([xi(:),yi(:)]),Ngrid,Ngrid);
u = BVP2Dsym(Mesh,1,0,’f’,’u_exact’,0,0);
[ui,uxi,uyi] = FEMgriddata(Mesh,u,xi,yi);

figure(2)
FEMtrimesh(Mesh.elem,x,y,u)
hold on
plot3(xi,yi,ui,’g.’)
hold off
xlabel(’x’); ylabel(’y’); title(’u’); view([-60 25])

figure(3)
mesh(xi,yi,uyi)
xlabel(’x’); ylabel(’y’); title(’u_y’)

figure(4)
mesh(xi,yi,uyi-u_ex)
xlabel(’x’); ylabel(’y’); title(’difference of u_y’); view([-110, 30])

5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix

Let Ω ⊂ R2 be a domain with a triangular mesh with many triangles. There is a connection between

N = number of nodes and T = number of triangles.

SHA 27-8-21

5 TOOLS FOR DIDACTICAL PURPOSES 46

Examine the typical mesh on the right and consider only trian-
gles and nodes inside the mesh, as the contributions by the bor-
ders are considerably smaller for large meshes.

• each triangle has three corners

• each (internal) corner is touched by 6 triangles

• each triangle has 3 midpoints of edges and each of the
midpoints is shared by 2 triangles ������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

• For first order elements the nodes are the corners of the triangles.

N ≈ 1

6
T 3 =

1

2
T

Thus the number N of nodes is approximately half the number T of triangles.

• For second order elements the nodes are the corners of the triangles and the midpoints of the edges. Each
midpoint is shared by two triangles.

N ≈ 1

2
T +

3

2
T = 2T

Thus the number N of nodes is approximately twice the number T of triangles.

The above implies that the number of degrees of freedom to solve a problem with second order elements with a
typical diameter h of the triangles is approximately equal to using linear element on triangles with diameter h/2.

The above estimates also allow to estimate how many entries in the sparse matrix resulting from an FEM
algorithm will be different from zero.

• For linear elements each node typically touches 6 triangles and each of the involved corners is shared by
two triangles. Thus there might be 6 + 1 = 7 nonzero entries in each row of the matrix.

• For second order triangles distinguish between corners and midpoints.

– Each corner touches typically six triangles and thus expect up to 6 × 3 + 1 = 19 nonzero entries in
the corresponding row of the matrix.

– Each midpoint touches two triangles and two of the corner points are shared. Thus expect up to
2 + 2× 3 + 1 = 9 nonzero entries in the corresponding row of the matrix.

The midpoints outnumber the corners by a factor of three. Thus expect an average of 3·9+19
4 = 11.5

nonzero entries in each row of the matrix.

This points to about a factor of 11.5
7 ≈ 1.6 more nonzero entries in the matrix for quadratic elements for the same

number of degrees of freedom. This implies that the computational effort is larger, the effective effect depends
on the linear solver used.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 47

6 The Mathematics of the Algorithms

In this section the mathematical background for the FEM method applied to the problems in Section 2 is ex-
plained. Most of the theory is used to solve the second order elliptic boundary value problem (1). The expla-
nations are certainly not complete but should provide enough information to ease the understanding of the code.
For in-depth coverage consult one of the many books on FEM and/or numerical analysis. The starting point for
this presentaion are the lecture notes [Stah08]. Find a list of books on FEM in [Stah08, §0].

6.1 Classical solutions and weak solutions

A function u = u(x, y) is called a classical solution of the the BVP (1) iff it is twice differentiable and

−∇ · (a∇u− u~b) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

~n · (a∇u− u~b) = g2 + g3 u for (x, y) ∈ Γ2

.

Multiply this equation with a smooth function φ, vanishing on Γ1, and integrate over the domain Ω to arrive at

0 = −∇ · (a∇u− u~b) + b0 u− f

0 =

∫∫
Ω

φ
(
−∇ · (a∇u− u~b) + b0 u− f

)
dA

=

∫∫
Ω

∇φ · (a∇u− u~b) + φ (b0 u− f) dA−
∫

Γ
φ
(
a∇u− u~b

)
· ~n ds

=

∫∫
Ω

∇φ · (a∇u− u~b) + φ (b0 u− f) dA−
∫

Γ2

φ (g2 + g3 u) ds . (7)

If a function u satisfies (7) it is called a weak solution of the above BVP. If there is no convection term (~b = ~0)
and some sign conditions for a and b0 are satisfied, the above is equivalent to minimizing the functional

F (u) =

∫∫
Ω

1

2
a (∇u)2 +

1

2
b0 u

2 + f · u dA−
∫

Γ2

g2 u+
1

2
g3 u

2 ds

among all functions u satisfying the boundary condition u = g1 on Γ1. Figure 23 shows connections between
classical solutions, weak solutions and the resulting system of (linear) equations for the finite element approach.
The left branch in Figure 23 illustrates the usage of minimization and calculus of variations in the context of FEM
algorithms.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 48

function u is a classical solution

∇ (a∇u) = f in Ω

u = 0 on ∂Ω

��
��

��
�
��

�
��*

Calculus of Variations

function u is minimizer of

F (u) =
∫∫
Ω

1
2 a (∇u)2 + f · u dA

u = 0 on ∂Ω

H
HHHH

HHH
HHHHj

multiply by φ and integrate

-

∂ F
∂u = 0

function u is a weak solution∫∫
Ω

a∇u · ∇φ+ f φ dA = 0

for all φ vanishing on ∂Ω

?

discretize

vector ~u ∈ RN is minimizer of

F (~u) = 1
2 〈A ~u , ~u〉+ 〈W ~f , ~u〉

?

discretize

vector ~u ∈ RN satisfies

〈A ~u , ~φ〉+ 〈W ~f , ~φ〉 = 0

for all vectors ~φ ∈ RN

?

~u ∈ RN satisfies A ~u+ W ~f = ~0

?

~u ∈ RN satisfies A ~u+ W ~f = ~0FEM

Figure 23: Classical and weak solutions, minimizers and FEM

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 49

In the above equation integrals over the domain Ω ⊂ R2 have to be computed.
To discretize this process use a triangularization of the domain, using grid points
(xi, yi) ∈ Ω, 1 ≤ i ≤ n. On each triangle Tk we replace the function u by
polynomials of degree 1 (or 2). These polynomials are completely determined
by their values at the three corners of the triangle (or corners and midpoints).
Integrals over the full domain Ω are split up into integrals over each triangle and
then a summation ∫∫

Ω

. . . dA =
∑
k

∫∫
Tk

. . . dA .

The gradients of u and φ are replaced by the gradients of the piecewise polyno-
mials. At the end each contribution is to be written in the form∫∫

Tk

. . . dA = 〈Ak~uk , ~φk〉+ 〈Wk
~fk , ~φk〉 ,

where Ak is the element stiffness matrix.
The above integral will be rewritten, leading to the condition

〈A~u+ W ~f , ~φ〉 = 0 for all ~φ ∈ RN .

This condition is satisfied if ~u solves the linear system A~u = −W ~f . The matrix A is called global stiffness
matrix. It is this system of linear equations that will be solved to obtain an approximate solution of the boundary
value problem (1).

6.2 Transformation, interpolation and Gauss integration

From the above it is obvious that integration over general triangles is important for the development of FEM
algorithms. It turns out to be convenient to find integration methods for a standard triangle and then consider the
general triangle by coordinate transformations.

6.2.1 Transformation of coordinates and integration over a general triangle

All of the necesssary integrals for the FEM method are integrals over general triangles E. These can be written
as images of a standard triangle in a (ξ, ν)–plane, according to Figure 24. The transformation is given by

- ξ

6

ν

@
@
@
@
@
@
@

Ωt1 t2

t3
t4t5
t6

j(
ξ

ν

)
7→

(
x

y

)

- x

6

y

��
��

��
�1

�
�
�
�
�
�
�
�
���J
J
J
J
J
J
J

E

ξ

ν

(x1, y1)

(x2, y2)

(x3, y3)

t
t

t
tt

t

Figure 24: Transformation of standard triangle to general triangle

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 50

(
x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ ν

(
x3 − x1

y3 − y1

)

=

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+ T ·

(
ξ

ν

)

where

T =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
.

By using 0 < ξ, ν < 1 with ξ + ν < 1 the standard triangle Ω is mapped onto the general triangle E ⊂ R2. If
the coordinates (x, y) are given find the values of (ξ, ν) with the help of(

ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.

If a function f(x, y) is to be integrated over the triangle E use the transformation∫∫
E

f dA =

∫∫
Ω

f (~x (ξ, ν))

∣∣∣∣det

(
∂ (x, y)

∂ (ξ, ν)

)∣∣∣∣ dξ dν = |det(T)|
∫ 1

0

(∫ ν

0
f (~x (ξ, ν)) dξ

)
dν . (8)

The Jaccobi determinant is given by∣∣∣∣det

(
∂ (x, y)

∂ (u, v)

)∣∣∣∣ = |det(T)| = |(x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)|

If the orientation of the triangle is positive, then det(T) will be positive. Since the area of the standard triangle
Ω equals 1

2 we find

area of E =
1

2
|detT| .

For an efficient numerical integration over the standard triangle Ω choose integration points ~gj ∈ Ω and
corresponding weights wj for j = 1, 2, . . . ,m and then work with the values of the function at those points, i.e.∫∫

Ω

f(~ξ) dA ≈
m∑
j=1

wj f(~gj) . (9)

The integration points and weights have to be chosen, such that the approximation error is as small as possible.
Required are two essential conditions for the integration method:

• If a sample point is used in a Gauss integration, then all other points obtainable by permuting the three
corners of the triangle must appear and with identical weight.

• All sample points must be inside the triangle (or on the triangle boundary) and all weights must be positive.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 51

-
ξ

6ν

@
@
@
@
@
@
@
@
@
@@�

�
�
�
��

HHH
HHH

HHH
HH

A
A
A
A
A
A
A
A
A
AA

r1 r2
r 3

r r

r

Figure 25: Gauss integration of order 2 on the standard triangle, using 3 integration points

6.2.2 Gauss integration on the standard triangle with 3 Gauss points

In Figure 25 consider the three points at ~g1 = 1
2 (λ, λ), ~g2 = (1 − λ, λ/2) and ~g1 = (λ/2, 1 − λ). Find optimal

values for the parameters λ and w such that polynomials of degree as high as possible are integrated exactly by∫∫
∆

f dA ≈ w (f(~g1) + f(~g2) + f(~g3)) .

To determine the optimal values determine a solution of a nonlinear system of 2 equations for the unknowns
λ and w. Require that ξk for 0 ≤ k ≤ 2 be integrated exactly. This leads to the solution λ = 1/3 and the weight
w = 1/6 . This approximate integration yields the exact results for polynomials f up to degree 2 . Thus for a
single triangle with diameter h, i.e. an area of the order h2, the integration error for smooth functions is of the
order h3 · h2 = h5. When dividing a large domain in sub-triangles of size h this leads to a total integration error
of the order h3.

The Gauss points and weights are given by

G =


1/6 1/6

2/3 1/6

1/2 2/3

 and w =
1

6
.

For a general triangle the Gauss points are located at

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+ T ·GT .

This integration scheme will be used for linear elements.3

6.2.3 Gauss integration on the standard triangle with 7 Gauss points

As a second method use the points g1 = (λ1, λ1) and g4 = (λ2, λ2) along the diagonal ξ = ν. Similarly use two
more points along each connecting straight line from a corner of the triangle to the midpoint of the opposite edge.
This leads to a total of 6 integration points where groups of 3 have the same weight. Finally add the midpoint with
weight w3. This is illustrated in Figure 26. The result is a 7× 2 matrix G containing in each row the coordinates
of one integration point ~gj and a vector ~w with the corresponding integration weights. To determine the optimal

3One might be temped to add the center of the triangle as a fourth point, but the resulting weight will be negative. This would lead to
stiffness matrices that are not positive definite.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 52

-
ξ

6ν

@
@
@
@
@
@
@
@
@
@@�

�
�
�
��

HHH
HHH

HHH
HH

A
A
A
A
A
A
A
A
A
AA

r1 r 2

r 3

r4r5
r6

r 7

Figure 26: Gauss integration of order 5 on the standard triangle, using 7 integration points

values solve a nonlinear system of 5 equations for the unknowns λ1, λ2, w1, w2 and w3. Require that ξk for
0 ≤ k ≤ 5 be integrated exactly. Find details in [Stah08]. Pick a solution of the resulting nonlinear system with
0 < λ1 < λ2 < 1 (points inside the triangle) and positive weights w1, w2 and w3.

This approximate integration yields the exact results for polynomials f up to degree 5 . Thus for one triangle
with diameter h and an area of the order h2 the integration error for smooth functions is of the order h6 ·h2 = h8.
When dividing a large domain in sub-triangles of size h this leads to a total integration error of the order h6. For
most problems this error will be considerably smaller than the approximation error of the FEM method and it is
reasonably safe to ignore the error and thus from now on it is assumed that the integrations yield exact results.

The optimal choice of Gauss points and integration weights is given by4

G =



λ1/2 λ1/2

1− λ1 λ1/2

λ1/2 1− λ1

λ2/2 λ2/2

1− λ2 λ2/2

λ2/2 1− λ2

1/3 1/3


≈



0.101287 0.101287

0.797427 0.101287

0.101287 0.797427

0.470142 0.470142

0.059716 0.470142

0.470142 0.059716

0.333333 0.333333


and ~w =



w1

w1

w1

w2

w2

w2

w3


≈



0.0629696

0.0629696

0.0629696

0.0661971

0.0661971

0.0661971

0.1125000


.

Using the transformation results in this section compute the coordinates XG for the Gauss integration in a general
triangle by

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+ T ·GT . (10)

This notation is used to compute the Gauss points for a given triangulation of the domain, i.e. for the mesh.

6.3 Construction of first order elements

Assume that the function u is linear on each triangle Tk, thus determined by the values at the three corners. Then
all integrals in expression (7) have to be examined. For the linear elements use the integration with 3 Gauss nodes
in the triangle, as described in Section 6.2.2. All contributions in (7)

0 =

∫∫
Ω

∇φ · (a∇u− u~b) + φ (b0 u− f) dA−
∫

Γ2

φ (g2 + g3 u) ds

4The exact values are λ1 = (12 − 2
√

15)/21, λ2 = (12 + 2
√

15)/21, w1 = (155 −
√

15)/2400, w4 = (155 +
√

15)/2400 and
w7 = 9/80.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 53

have to be transformed into
0 = 〈~φ , A~u+ W ~f〉 . (11)

By integration over one triangle E find

∫∫
E

∇φ · (a∇u− u~b) + φ (b0 u− f) dA ≈ 〈


φ1

φ2

φ3

 , AE


u1

u2

u3

〉+ 〈


φ1

φ2

φ3

 , WE
~fE〉 .

The matrix AE is the element stiffness matrix and WE
~fE the corresponding vector. These entries have to

be added in the correct rows and columns of the global stiffness matrix. For this examine the local and global
numbering of nodes in Figure 27. In each triangle the three corners are numbered by 1,2 and 3, but in the global
mesh (consisting of many triangles) they are numbered by i,k and j. Thus the entries in the element stiffness
matrix AE have to be added to rows/columns i,k and j in the global stiffness matrix A.

2 k

3
j

1
i

local ←→ global

triangle ←→ mesh

1 ←→ i

2 ←→ k

3 ←→ j

Figure 27: Local and global numbering of nodes

AE =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 −→ A = A +



col i col j col k
. . .

...
...

...

row i · · · a11 · · · a13 · · · · · · a12 · · ·
...

. . .
...

...

row j · · · a31 · · · a33 · · · · · · a32 · · ·
...

...
. . .

...

row k · · · a21 · · · a23 · · · · · · a22 · · ·
...

...
...

. . .


Similar procedures have to be appplied to the vectors.

6.3.1 Linear interpolation on a triangle

If the values of the function φ(x, y) at the three corners are given by φ1, φ2 and φ3 then the values φ(~gi) are given
by

φ(~g1) =
2

3
φ1 +

1

6
φ2 +

1

6
φ3

φ(~g2) =
1

6
φ1 +

2

3
φ2 +

1

6
φ3

φ(~g3) =
1

6
φ1 +

1

6
φ2 +

2

3
φ3

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 54

or using a matrix notation 
φ(~g1)

φ(~g3)

φ(~g3)

 =
1

6


4 1 1

1 4 1

1 1 4




φ1

φ2

φ3

 = M ~φ .

This interpolation of the values from the nodes of the triangle to the Gauss points ~gi is independent of shape and
size of the triangle.

For second order elements the construction of this interpolation matrix is performed using the basis functions
(see Section 6.4.1). For the linear case use the simpler basis functions

~Φ(ξ, ν) =


Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

 =


1− ξ − ν

ξ

ν


and a linear interpolation of a function given at the nodes is given by

f(ξ, ν) =
3∑
i=1

fi Φi(ξ, ν) .

Since

∂

∂ξ
~Φ(ξ, ν) =


−1

1

0

 and
∂

∂ν
~Φ(ξ, ν) =


−1

0

1


observe that the gradient does not depend on the position within the triangle.

6.3.2 Integration of f φ

Examine different methods to give the function f : either by providing the values at the Gauss points, or by using
the values at the nodes.

• If the values of the function f at the Gauss points ~gi are denoted by fi then this integral is approximated by∫∫
E

f φ dA ≈ w 2 area(E) (f1 φ(~g1) + f2 φ(~g2) + f3 φ(~g3))

=
2 area(E)

6
〈M ~φ , ~f〉 =

area(E)
3

〈~φ , MT ~f〉 .

Thus find one contribution to (11).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss
points by a linear interpolation. Then integrate as above, leading to the approximation∫∫

E

f φ dA ≈ 2 area(E)
6

〈M ~φ , M ~f〉 =
area(E)

3
〈~φ , MTM ~f〉 .

The matrix

MTM =
1

36


18 9 9

9 18 9

9 9 18

 =
1

4


2 1 1

1 2 1

1 1 2


is independent on the shape and size of the element (triangle). Thus find one contribution to (11).

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 55

6.3.3 Integration of b0 uφ

Since the values of the functions u and φ are known at the nodes interpolate both functions and then use the
values of the function b0(x, y) at the Gauss nodes to find∫∫

E

b0 uφ dA ≈ w 2 area(E)
3∑
i=1

b0(~gi)u(~gi)φ(~g1)

=
2 area(E)

6
〈M ~φ , diag(~b)M ~u〉 =

area(E)
3

〈~φ , MT diag(~b0)M ~u〉 ,

where

diag~b0 =


b0(~g1) 0 0

0 b0(~g2) 0

0 0 b0(~g3)

 .
If b0(x, y) happens to be a constant, then the above may be simplified to

∫∫
E

b0 uφ dA ≈ b0
area(E)

12
〈~φ ,


2 1 1

1 2 1

1 1 2

 ~u〉 .
Thus find another contribution to (11).

6.3.4 Integration of a∇u · ∇φ

Since the functions u and φ are linear on each triangle, we use the fact that the gradients are constant on each
triangle. The gradient may be determined with the help of a normal vector of the plane passing through the three
points 

x1

y1

u1

 ,


x2

y2

u2

 and


x3

y3

u3

 .

A normal vector ~n is given by the vector product

~n =


x2 − x1

y2 − y1

u2 − u1

×


x3 − x1

y3 − y1

u3 − u1

 =


+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

+(x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1)

 .

The third component of this vector equals twice the oriented5 area of the triangle. To obtain the gradient in the
first two components the vector has to be normalized, such that the third component equals −1. Find

∇u =

(
d u
∂x
d u
∂y

)
=

−1

2 area(E)

(
+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)

−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

)
.

This formula can be written in the form

∇u =
−1

2 area(E)

[
(y3 − y2) (y1 − y3) (y2 − y1)

(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1

u2

u3

 =
−1

2 area(E)
G ·


u1

u2

u3

 . (12)

5Quietly is assumed that the third component of ~n is positive. Since only the square of the gradient is used the influence of this
ignorance will disappear. Generate meshes with triangles with a positive orientation also allow to assure n3 > 0.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 56

and thus

〈∇φ , ∇u〉 =
1

4 area(E)2 〈G


φ1

φ2

φ3

 , G


u1

u2

u3

〉 =
1

4 area(E)2 〈


φ1

φ2

φ3

 , GT ·G


u1

u2

u3

〉 .
If ai are the values of the function a(x, y) at the Gauss points ~gi find

∫∫
E

a∇φ · ∇u dA ≈ a1 + a2 + a3

12 area(E)
〈


φ1

φ2

φ3

 , GT ·G


u1

u2

u3

〉 .
As an exercise one can verify that the matrix GT ·G is symmetric and positive semi-definite. The expression
vanishes for constant vectors, i.e. for vanishing gradients.

6.3.5 Integration of u~b · ∇φ

Since the gradient of φ is constant on each of the triangles use

(
φx

φy

)
= ∇φ =

−1

2 area(E)
G ·


φ1

φ2

φ3

 =
−1

2 area(E)

[
Gx

Gy

]
·


φ1

φ2

φ3

 ,

where
Gx =

[
y3 − y2 y1 − y3 y2 − y1

]
and Gy =

[
x2 − x3 x3 − x1 x1 − x2

]
.

Let b1,i be the values of the first component of~b at the Gauss nodes and find∫∫
E

u b1 φx dA ≈ area(E)
3

3∑
i=1

u(~gi) b1,i φx,i

=
−area(E)

3 · 2 area(E)
〈


Gx

Gx

Gx




φ1

φ2

φ3

 ,


b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

〉

=
−1

6
〈


φ1

φ2

φ3

 ,
[
GT
x GT

x GT
x

]
b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

〉

=
−1

6
〈


φ1

φ2

φ3

 ,


b1,1(y3 − y2) b1,2(y3 − y2) b1,3(y3 − y2)

b1,1(y1 − y3) b1,2(y1 − y3) b1,3(y1 − y3)

b1,1(y2 − y1) b1,2(y2 − y1) b1,3(y2 − y1)

M


u1

u2

u3

〉 .
If the values of the second component of~b at the Gauss nodes are given by b2,i find by similar computations∫∫

E

u b2 φy dA ≈ −area(E)
3

3∑
i=1

u(~gi) b2,i φy,i

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 57

=
−1

6
〈


φ1

φ2

φ3

 ,


b2,1(x2 − x3) b2,2(x2 − x3) b2,3(x2 − x3)

b2,1(x3 − x1) b2,2(x3 − x1) b2,3(x3 − x1)

b2,1(x1 − x2) b2,2(x1 − x2) b2,3(x1 − x2)

M


u1

u2

u3

〉 .
This leads to two more contributions to (11).

6.3.6 Integration over boundary segments

In expression (7) compute integrals over the boundary∫
Γ2

φ (g2 + g3 u) ds .

For triangular domains the boundary consists of straight line segments. Replace the integral by a sum of line
integrals and use a Gauss integration. Based on the two endpoints ~x1 and ~x2 use the values at the two Gauss
integration points6

~p1 = 1
2 (~x1 + ~x2)− 1

2
√

3
(~x2 − ~x1)

~p2 = 1
2 (~x1 + ~x2) + 1

2
√

3
(~x2 − ~x1) .

Polynomials up to degree 3 are integrated exactly, thus the error is proportional to h4. By linear interpolation
between the points ~x1 and ~x2 find the values of the function u at the Gauss points to be

u(~p1) = (1− α)u1 + αu2

u(~p2) = αu1 + (1− α)u2

or (
u(~p1)

u(~p2)

)
=

[
(1− α) α

α (1− α)

] (
u1

u2

)
,

where α = 1−1/
√

3
2 ≈ 0.211325. Using the length L =

√
(x2 − x1)2 + (y2 − y1)2 this leads to the approxima-

tions∫
φ g2 ds ≈

L

2
〈

[
(1− α) α

α (1− α)

](
φ1

φ2

)
,

(
g2(~p1)

g2(~p2)

)
〉

=
L

2
〈

(
φ1

φ2

)
,

[
(1− α) α

α (1− α)

] (
g2(~p1)

g2(~p2)

)
〉

∫
φ g3 u ds ≈

L

2
〈

[
(1− α) α

α (1− α)

] (
φ1

φ2

)
,

[
g3(~p1) 0

0 g3(~p2)

] [
(1− α) α

α (1− α)

] (
u1

u2

)
〉

6To derive the formula integrate 1, t, t2 and t3 over the interval [−1, 1].∫ +1

−1
f(t) dt = w1 f(−ξ) + w1 f(+ξ)∫ +1

−1
1 dt = 2 = w1 1 + w1 1 =⇒ w1 = 1∫ +1

−1
t dt = 0 = −w1 ξ + w1 ξ = 0∫ +1

−1
t2 dt = 2

3
= +w1 ξ

2 + w1 ξ
2 =⇒ ξ =

√
1/3∫ +1

−1
t3 dt = 0 = −w1 ξ

3 + w1 ξ
3 = 0

Thus t4 is not integrated exactly and the error is proportional to h4.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 58

=
L

2
〈

(
φ1

φ2

)
,

[
(1− α) α

α (1− α)

] [
(1− α) g3(~p1) α g3(~p1)

α g3(~p2) (1− α) g3(~p2)

] (
u1

u2

)
〉

=
L

2
〈

(
φ1

φ2

)
,

[
(1− α)2 g3(~p1) + α2 g3(~p2) (1− α)α (g3(~p1) + g3(~p2))

(1− α)α (g3(~p1) + g3(~p2)) α2 g3(~p1) + (1− α)2 g3(~p2)

] (
u1

u2

)
〉 .

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the
second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the
function to be integrated is a polynomial of degree 3, or less. If h is the typical length of an edge then the error
is of the order h5 for one line segment and thus of order h4 for the total boundary. This boundary integration is
used for first order elements.

The second expression is of the form∫
φ g3 u ds ≈ 〈~φ,B ~u〉 = 〈

(
φ2

φ2

)
,

[
b11 b12

b21 b22

] (
u1

u2

)
〉

and its effect on the linear system A ~u + W ~f = ~0 to be solved depends on nodes being on the Dirichlet part of
the boundary.

• If u1 and u2 are both free, i.e. not on the Dirichlet section, then all entries of the matrix B have to be added
to the global stiffness matrix A.

• If u1 and u2 are on the Dirichlet section, then nothing has to be added to A and ~f .

• If u1 is free and u2 is on the Dirichlet section, then only the first expression

b11 u1 + b12 u2 = b11 u1 + b12 d2

has to be added. d2 is the Dirichlet value at the position of u2. Then b11 has to be taken into account in A
and b12 d2 has to be added to W ~f .

• If u2 is free and u1 is on the Dirichlet section, then only the second expression b21 u1 + b22 u2 = b21 d1 +
b22 u2 has to be added. d1 is the Dirichlet value at the position of u1. Then b22 has to be taken into account
in A and b12 d1 has to be added to W ~f .

6.4 Construction of second order elements

In this section the construction of the element stiffness matrix and vector for triangular elements or order 2 is
examined. The ideas are very similar to Section 6.3 for linear basis functions, but using a bit more mathematics
is required. Again all contributions in (7)

0 =

∫∫
Ω

∇φ · (a∇u− u~b) + φ (b0 u− f) dA−
∫

Γ2

φ (g2 + g3 u) ds

have to be transformed into
0 = 〈~φ , A~u+ W ~f〉 .

For second order element a general quadratic function is used on each of the triangles in the mesh. There are 6
linearly independent polynomials of degree 2 or less, namely 1, x, y, x2, y2 and x · y.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 59

6.4.1 The basis functions for a second order element and quadratic interpolation

Examine the standard triangle Ω in Figure 24 with the values of a function f(ξ, ν) at the corners and at the
midpoints of the edges. Use the numbering as shown in Figure 24. The paramaters ξ and ν at the nodes are given
by Table 4. Construct polynomials φi(ξ, ν) of degree 2, such that

Φi(ξj , νj) = δi,j =

{
1 if i = j

0 if i 6= j

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials
are given by

node i 1 2 3 4 5 6

ξi 0 1 0 1
2 0 1

2

νi 0 0 1 1
2

1
2 0

Table 4: Coordinates of the nodes in the standard triangle

~Φ(ξ, ν) =



Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

Φ4(ξ, ν)

Φ5(ξ, ν)

Φ6(ξ, ν)


=



(1− ξ − ν) (1− 2 ξ − 2 ν)

ξ (2 ξ − 1)

ν (2 ν − 1)

4 ξ ν

4 ν (1− ξ − ν)

4 ξ (1− ξ − ν)


(13)

and find their graphs in Figure 28.
Any quadratic polynomial f on the standard triangle Ω can be written as linear combination of the basis

functions by using

f(ξ, ν) =

6∑
i=1

fi Φi(ξ, ν) . (14)

This is the formula to apply a quadratic interpolation on the triangle, using the values fi of the function at the
nodes. To use this interpolation for a given point (x, y) in the triangle E in Figure 24 determine the correct values
of the parameters ξ and ν, i.e. solve(

x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ ν

(
x3 − x1

y3 − y1

)
.

This is equivalent to the linear system

T

(
ξ

ν

)
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] (
ξ

ν

)
=

(
x− x1

y − y1

)
.

Since the 2× 2 matrix T is invertible find(
ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 60

0

1

ξ

0

1

1

ν

0

(a) Φ1(ξ, ν) = (1− ξ − ν) (1− 2 ξ − 2 ν)

0

1

ξ

0

1

1

ν

0

(b) Φ2(ξ, ν) = ξ (2 ξ − 1)

0

1

ξ

0

1

1

ν

0

(c) Φ3(ξ, ν) = ν (2 ν − 1)

0

1

ξ

0

1

1

ν

0

(d) Φ4(ξ, ν) = 4 ξ ν

ξ

0

0

1

1

1

ν

0

(e) Φ5(ξ, ν) = 4 ν (1− ξ − ν)

0

1

ξ

0

1

1

ν

0

(f) Φ6(ξ, ν) = 4 ξ (1− ξ − ν)

Figure 28: Basis functions for second order triangular elements

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 61

6.4.2 Determine values at the Gauss points and apply Gauss integration

Use equation (10) to determine the coordinates of the seven Gauss points. Then a function to be integrated can
be evaluated at these Gauss points. Computing the values of the basis functions Φi(ξ, ν) at the Gauss points ~gj
by mj,i = Φi(~gj) find

f(~gj) =
6∑
i=1

fi Φi(~gj) =
6∑
i=1

mj,i fi

or using a matrix notation
f(~g1)

f(~g2)
...

f(~g7)

 =


m1,1 m1,2 · · · m1,6

m2,1 m2,2 · · · m2,6

...
...

. . .
...

m7,1 m7,2 · · · m7,6

 ·


f1

f2

...

f6

 = M · ~f

≈



+0.474353 −0.080769 −0.080769 0.041036 0.323074 0.323074

−0.080769 +0.474353 −0.080769 0.323074 0.041036 0.323074

−0.080769 −0.080769 +0.474353 0.323074 0.323074 0.041036

−0.052584 −0.028075 −0.028075 0.884134 0.112300 0.112300

−0.028075 −0.052584 −0.028075 0.112300 0.884134 0.112300

−0.028075 −0.028075 −0.052584 0.112300 0.112300 0.884134

−0.111111 −0.111111 −0.111111 0.444444 0.444444 0.444444





f1

f2

f3

f4

f5

f6


The Gauss integration can be written in the form∫∫

Ω

f(ξ, ν) dA ≈
7∑
j=1

wj f(~gj) = 〈~w , M · ~f〉 .

To integrate over the general triangle E use the transformation (8), i.e.∫∫
E

f dA =

∫∫
Ω

f (~x (ξ, ν))

∣∣∣∣det

(
∂ (x, y)

∂ (ξ, ν)

)∣∣∣∣ dξ dν ≈ |detT| 〈~w , M · ~f〉 .

Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.4.3 Integration of f φ

The test function φ is given by its values ~φ at the nodes, i.e. the corners of the triangle and the midpoints of the
sides. Examine different methods to give the function f : either by providing the values at the Gauss points, or by
using the values at the nodes.

• If the values of the function f at the Gauss points ~gi are denoted by fi then this integral is approximated by∫∫
E

f φ dA ≈ | det(T)|
7∑
j=1

wj fj φ(gj) = | det(T)| 〈diag(~w)~f , M ~φ〉

= | det(T)| 〈MT diag(~w)~f , ~φ〉 ,

Thus find one contribution to (11).

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 62

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss
points by a quadratic interpolation. Then integrate as above, leading to the approximation∫∫

E

f φ dA ≈ |det(T)| 〈diag(~w)M~f , M ~φ〉 = | det(T)| 〈MT diag(~w)M~f , ~φ〉 .

The matrices MT diag(~w) and MT diag(~w)M are independent on the triangle E.

6.4.4 Integration of b0 uφ

Since the values of the functions u and φ are known at the nodes use an interpolation and then the function
b0(x, y) at the Gauss nodes to find∫∫

E

b0 uφ dA ≈ | det(T)|
7∑
j=1

wj b0(gj) u(gj)φ(gj) = |det(T)| 〈diag(~w) diag(~b0)M ~u , M ~φ〉

= |det(T)| 〈MT diag(~w) diag(~b0)M ~u , ~φ〉 ,

where diag(~b0) = diag(b0(~g1), b0(~g2), b0(~g3), . . . , b0(~g7)).

6.4.5 Transformation of the gradient to the standard triangle

To examine the contributions containing ∇u or ∇φ requires considerably more tools than the ones used in Sec-
tion 6.3.4 for linear elements. For linear elements the gradients are constant on each of the triangles. For quadratic
elements the gradients are linear functions and thus not constant. First examine how the gradient behave under
the transformation to the standard triangle, only then use the above integration methods.

According to Section 6.2.1 the coordinates (ξ, ν) of the standard triangle are connected to the global coordi-
nates (x, y) by(

x

y

)
=

(
x1

y1

)
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+ T ·

(
ξ

ν

)
or equivalently(

ξ

ν

)
= T−1 ·

(
x− x1

y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1

y − y1

)
.

If a function f(x, y) is given on the general triangle E can pull it back to the standard triangle by

g(ξ, ν) = f(x(ξ, ν) , y(ξ, ν))

and then compute the gradient of g(ξ, ν) with respect to its independent variables ξ and ν. The result will depend
on the partial derivatives of f with respect to x and y. The standard chain rule implies

∂

∂ξ
g(ξ, ν) =

∂

∂ξ
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ξ
+
∂ f(x, y)

∂y

∂ y

∂ξ

=
∂ f(x, y)

∂x
(x2 − x1) +

∂ f(x, y)

∂y
(y2 − y1)

∂

∂ν
g(ξ, ν) =

∂

∂ν
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ν
+
∂ f(x, y)

∂y

∂ y

∂ν

=
∂ f(x, y)

∂x
(x3 − x1) +

∂ f(x, y)

∂y
(y3 − y1) .

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 63

This can be written with the help of matrices in the form(
∂ g
∂ξ
∂ g
∂ν

)
=

[
(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)

]
·

(
∂ f
∂x
∂ f
∂y

)
= TT ·

(
∂ f
∂x
∂ f
∂y

)

or equivalently (
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T . (15)

This implies(
∂ f

∂x
,
∂ f

∂y

)
=

(
∂ g

∂ξ
,
∂ g

∂ν

)
·T−1 =

1

detT

(
∂ g

∂ξ
,
∂ g

∂ν

)
·

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]

or by transposition (
∂ f
∂x
∂ f
∂y

)
=

1

detT

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

] (
∂ g
∂ξ
∂ g
∂ν

)
.

Let g be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e.

g(ξ, ν) =
6∑
i=1

gi Φi(ξ, ν)

where the basis function Φi(ξ, ν) are given by (13). Then its gradient with respect to ξ and ν can be determined
with the help of elementary partial derivatives applied to the expressions in (13). The result is

grad ~Φ =



−3 + 4 ξ + 4 ν −3 + 4 ξ + 4 ν

4 ξ − 1 0

0 4 ν − 1

4 ν 4 ξ

−4 ν 4− 4 ξ − 8 ν

4− 8 ξ − 4 ν −4 ξ


=
[
~Φξ(ξ, ν) ~Φν(ξ, ν)

]
. (16)

Thus find on the standard triangle Ω(
∂ g

∂ξ
,
∂ g

∂ν

)
= (g1, g2, g3, g4, g5, g6) ·

[
~Φξ(ξ, ν) ~Φν(ξ, ν)

]
= ~gT ·

[
~Φξ(ξ, ν) ~Φν(ξ, ν)

]
.

If the function ϕ(x, y) is given on the general triangle E as linear combination of the basis functions on E
find

ϕ(x, y) =

6∑
i=1

ϕi Φi(ξ(x, y) , ν(x, y)) .

Now combine the results in this section to find(
∂ ϕ

∂x
,
∂ ϕ

∂y

)
=

(
∂ ϕ

∂ξ
,
∂ ϕ

∂ν

)
·T−1 = ~ϕT ·

[
~Φξ

~Φν

]
·T−1

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 64

or by transposition(
∂ ϕ
∂x
∂ ϕ
∂y

)
=
(
T−1

)T · [~ΦT
ξ

~ΦT
ν

]
· ~ϕ =

1

det(T)

[
+y3 − y1 −y2 + y1

−x3 + x1 +x2 − x1

]
·

[
~ΦT
ξ

~ΦT
ν

]
· ~ϕ

and the same identities can be spelled out for the two components independently

∂ ϕ

∂x
=

1

det(T)

[
(+y3 − y1) ~ΦT

ξ + (−y2 + y1) ~ΦT
ν

]
· ~ϕ ,

∂ ϕ

∂y
=

1

det(T)

[
(−x3 + x1) ~ΦT

ξ + (+x2 − x1) ~ΦT
ν

]
· ~ϕ .

For the numerical integration use the values of the gradients at the Gauss integration points ~gj = (ξj , νj).
The values of the function ϕ at the Gauss points can be computed with the help of the interpolation matrix M by

ϕ(~g1)

ϕ(~g2)
...

ϕ(~g7)

 = M ·


ϕ1

ϕ2

...

ϕ6

 .

Similarly we define the interpolation matrices for the partial derivatives. Using

Mξ =


−3 + 4 ξ1 + 4 ν1 4 ξ1 − 1 0 4 ν1 −4 ν1 4− 8 ξ1 − 4 ν1

−3 + 4 ξ2 + 4 ν2 4 ξ2 − 1 0 4 ν2 −4 ν2 4− 8 ξ2 − 4 ν2

...
...

−3 + 4 ξ7 + 4 ν7 4 ξ7 − 1 0 4 ν7 −4 ν7 4− 8 ξ7 − 4 ν7



≈



−2.18971 −0.59485 0.00000 0.40515 −0.40515 2.78456

0.59485 2.18971 0.00000 0.40515 −0.40515 −2.78456

0.59485 −0.59485 0.00000 3.18971 −3.18971 0.00000

0.76114 0.88057 0.00000 1.88057 −1.88057 −1.64170

−0.88057 −0.76114 0.00000 1.88057 −1.88057 1.64170

−0.88057 0.88057 0.00000 0.23886 −0.23886 0.00000

−0.33333 0.33333 0.00000 1.33333 −1.33333 0.00000


find 

ϕξ(~g1)

ϕξ(~g2)
...

ϕξ(~g7)

 = Mξ ·


ϕ1

ϕ2

...

ϕ6

 .

Similarly write

Mν =


−3 + 4 ξ1 + 4 ν1 0 4 ν1 − 1 4 ξ1 4− 4 ξ1 − 8 ν1 −4 ξ1

−3 + 4 ξ2 + 4 ν2 0 4 ν2 − 1 4 ξ2 4− 4 ξ2 − 8 ν2 −4 ξ2

...
...

−3 + 4 ξ7 + 4 ν7 0 4 ν7 − 1 4 ξ7 4− 4 ξ7 − 8 ν7 −4 ξ7


SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 65

≈



−2.18971 0.00000 −0.59485 0.40515 2.78456 −0.40515

0.59485 0.00000 −0.59485 3.18971 0.00000 −3.18971

0.59485 0.00000 2.18971 0.40515 −2.78456 −0.40515

0.76114 0.00000 0.88057 1.88057 −1.64170 −1.88057

−0.88057 0.00000 0.88057 0.23886 0.00000 −0.23886

−0.88057 0.00000 −0.76114 1.88057 1.64170 −1.88057

−0.33333 0.00000 0.33333 1.33333 0.00000 −1.33333


and 

ϕν(~g1)

ϕν(~g2)
...

ϕν(~g7)

 = Mν ·


ϕ1

ϕ2

...

ϕ6

 .

The matrices Mξ and Mν allow to compute the values of the partial derivatives at the Gauss points in the standard
triangle Ω and they are independent on the general triangle E.

Combining the above two computations use the notation

~xi =

(
x1

y1

)
+ T ·

(
ξi

νi

)
for i = 1, 2, 3, . . . , 7

and find for the first component ϕx = ∂ ϕ
∂x of the gradient at the Gauss points

ϕx(~x1)

ϕx(~x2)
...

ϕx(~x7)

 =
1

det(T)

[
(+y3 − y1)MT

ξ + (−y2 + y1)MT
ν

]
· ~φ

and for the second component of the gradient
ϕy(~x1)

ϕy(~x2)
...

ϕy(~x7)

 =
1

det(T)

[
(−x3 + x1)MT

ξ + (+x2 − x1)MT
ν

]
· ~φ .

The above results for Mξ and Mν can be coded in Octave and then used to compute the element stiffness matrix.

6.4.6 Partial derivatives at the nodes and second order partial derivatives

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω
use the formulas for the partial derivatives of the basis functions in expression (16) to find them at the nodes,

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 66

given by the (ξ, ν) coordinates in Table 4.

ϕξ(ξ1, ν1)

ϕξ(ξ2, ν2)

ϕξ(ξ3, ν3)

ϕξ(ξ4, ν4)

ϕξ(ξ5, ν5)

ϕξ(ξ6, ν6)


=



−3 1 1 1 −1 −1

−1 3 −1 1 −1 1

0 0 0 0 0 0

0 0 4 2 2 0

0 0 −4 −2 −2 0

4 −4 0 −2 2 0





ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6


= Nξ



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6


and 

ϕν(ξ1, ν1)

ϕν(ξ2, ν2)

ϕν(ξ3, ν3)

ϕν(ξ4, ν4)

ϕν(ξ5, ν5)

ϕν(ξ6, ν6)


=



−3 1 1 1 −1 −1

0 0 0 0 0 0

−1 −1 3 1 1 −1

0 4 0 2 0 2

4 0 −4 −2 0 2

0 −4 0 −2 0 −2





ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6


= Nν



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6


Now use the transformation formula again to determine the gradient of a function on the general triangle

ϕ(x, y) =
6∑
i=1

ϕi Φi(ξ(x, y), ν(x, y))

at the nodes (xi, yi) in the general triangle E.
ϕx(x1, y1)

ϕx(x2, y2)
...

ϕx(x6, y6)

 =
1

det(T)

[
(+y3 − y1)NT

ξ + (−y2 + y1)NT
ν

]
· ~ϕ ,


ϕy(x1, y1)

ϕy(x2, y2)
...

ϕy(x6, y6)

 =
1

det(T)

[
(−x3 + x1)NT

ξ + (+x2 − x1)NT
ν

]
· ~ϕ .

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle
used for the interpolation and a node is typically member of more than one triangle.

To determine values of second partial derivatives use equation (15), i.e. for g(ξ, ν) = f(x(ξ, ν), y(ξ, ν))(
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T

and apply it to the partial derivatives ∂ f
∂x = fx and ∂ f

∂y = fy, or use the cain rule repeatedly.
(
∂ fx
∂x

,
∂ fx
∂y

)
·T(

∂ fy
∂x

,
∂ fy
∂y

)
·T

 =


∂ fx(x(ξ, ν), y(ξ, ν))

∂ξ
,
∂ fx(x(ξ, ν), y(ξ, ν))

∂ν
∂ fy(x(ξ, ν), y(ξ, ν))

∂ξ
,
∂ fy(x(ξ, ν), y(ξ, ν))

∂ν


SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 67

=

[
∂
∂ξ T

−T

(
gξ

gν

)
, ∂∂ν T

−T

(
gξ

gν

)]
[
fxx fxy

fyx fyy

]
·T = T−T ·

[
gξξ gξν

gνξ gνν

]
[
fxx fxy

fyx fyy

]
= T−T ·

[
gξξ gξν

gνξ gνν

]
·T−1

This leads to[
fxx fxy

fyx fyy

]
=

1

det(T)2

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

]
·

[
gξξ gξν

gνξ gνν

]
·

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]

The second order partial derivatives of polynomials of degree 2 are constants. Thus find the constant matrix (use
equation (16))

[
~Φξξ , ~Φξν , ~Φνν

]
=



4 4 4

4 0 0

0 0 4

0 4 0

0 −4 −8

−8 −4 0


.

Combine the above results to determine the constant Hessian matrix for the function

ϕ(x, y) =

g∑
i=1

ϕi Φ(ξ(x, y), ν(x, y)) .

Thus all second order partial derivates are computed by[
ϕxx ϕxy

ϕxy ϕyy

]
= T−T · 〈~ϕ ,

[
~Φξξ

~Φξν

~Φξν
~Φνν

]
〉 ·T−1 = T−T ·

[
〈~ϕ , ~Φξξ〉 〈~ϕ , ~Φξν〉
〈~ϕ , ~Φξν〉 〈~ϕ , ~Φνν〉

]
·T−1 .

6.4.7 Integration of u~b · ∇φ

The vector function~b(~x) has to be evaluated at the Gauss integration points ~gj . Then the integration of∫∫
E

u~b ∇φ dA =

∫∫
E

u b1
∂ φ

∂x
dA+

∫∫
E

u b2
∂ φ

∂y
dA

is replaced by a weighted summation. Use the vectors

−→
wb1=


w1 b1(~g1)

w2 b1(~g2)
...

w7 b1(~g7)

 and
−→
wb2=


w1 b2(~g1)

w2 b2(~g2)
...

w7 b2(~g7)

 .

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 68

and the results of the previous sections to find∫∫
E

u b1
∂ φ

∂x
dA =

1

detT

∫∫
E

u b1 ((y3 − y1)φξ + (−y2 + y1)φν) dA

≈ | detT|
detT

〈diag(
−→
wb1) ·M · ~u , (y3 − y1)Mξ · ~φ+ (−y2 + y1)Mν · ~φ〉

=
| detT|
detT

〈
(
(y3 − y1)MT

ξ + (−y2 + y1)MT
ν

)
· diag(

−→
wb1) ·M · ~u , ~φ〉

and similarly∫∫
E

u b2
∂ φ

∂y
dA =

1

detT

∫∫
E

u b2 ((−x3 + x1)φξ + (x2 − x1)φν) dA

≈ | detT|
detT

〈diag(
−→
wb2) ·M · ~u , (−x3 + x1)Mξ · ~φ+ (x2 − x1)Mν · ~φ〉

=
| detT|
detT

〈
(
(−x3 + x1)MT

ξ + (x2 − x1)MT
ν

)
· diag(

−→
wb2) ·M · ~u , ~φ〉 .

6.4.8 Integration of a∇u · ∇φ

The function a∇u · ∇φ = a (∂ u∂x
∂ φ
∂x + ∂ u

∂y
∂ φ
∂y) has to be evaluated at the Gauss integration points ~gj , then

multiplied by the Gauss weights wi and added up. Use the vector

−→
wa=


w1 a(~x(~g1))

w2 a(~x(~g2))
...

w7 a(~x(~g7))

 .

and for the integration over the general triangle E use the transformation formula (8) to obtain∫∫
E

a
∂ u(~x)

∂x

∂ φ(~x)

∂x
dA = |detT|

∫∫
Ω

a(~x(ξ, ν))
∂ u(~x(ξ, ν))

∂x

∂ φ(~x(ξ, ν))

∂x
dξ dν

≈ |detT|
(detT)2

〈Ax · ~u , ~φ〉 =
1

| detT|
〈Ax · ~u , ~φ〉

where

Ax =
[

(+y3 − y1)Mξ + (−y2 + y1)Mν

]T
· diag(

−→
wa) ·

[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]
.

Similarly determine∫∫
E

a
∂ u(~x)

∂y

∂ φ(~x)

∂y
dA = |detT|

∫∫
Ω

a(~x(ξ, ν))
∂ u(~x(ξ, ν))

∂y

∂ φ(~x(ξ, ν))

∂y
dξ dν

≈ |detT|
(detT)2

〈Ay · ~u , ~φ〉 =
1

|detT|
〈Ay · ~u , ~φ〉

where

Ay =
[

(−x3 + x1)Mξ + (+x2 − x1)Mν

]T
· diag(

−→
wa) ·

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]
.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 69

Now put all the above computations into one single formula, leading to∫∫
E

a ∇u · ∇φ dA ≈ 1

| detT|
〈(Ax + Ay) · ~u , ~φ〉 .

This has to be added to the global stiffness matrix and the vector.

6.4.9 Integration over boundary segments

In expression (7) integrals over the boundary are required.∫
Γ2

φ (g2 + g3 u) ds

For triangular domains the boundary consists of straight line segments. Thusreplace the integral by a sum of line
integrals and use a Gauss integration. Based on the two endpoints ~x1 and ~x3 and the midpoint ~x2 = 1

2 (~x1 + ~x3)
use the values at three Gauss integration points. Based on7

∫ h/2

−h/2
f(x) dx ≈ h

18

(
5 f(−

√
3

2
√

5
h) + 8 f(0) + 5 f(

√
3

2
√

5
h)

)

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h7. To evaluate
a function at the Gauss points

~p1 = 1
2 (~x1 + ~x3)−

√
3

2
√

5
(~x3 − ~x1)

~p2 = ~x2 = 1
2 (~x1 + ~x3)

~p3 = 1
2 (~x1 + ~x3) +

√
3

2
√

5
(~x3 − ~x1)

use a quadratic interpolation of a function with f− = f(−h/2), f0 = f(0) and f+ = f(+h/2). Since8

f(x) = f0 +
f+ − f−

h
x+ 2

f− − 2 f0 + f+

h2
x2

7To derive the 3 point Gauss integration scheme use∫ +1

−1
f(t) dt = w1 f(−ξ) + w0 f(0) + w1 f(+ξ)∫ +1

−1
1 dt = 2 = w1 1 + w0 1 + w1 1∫ +1

−1
t dt = 0 = −w1 ξ + w0 0 + w1 ξ = 0∫ +1

−1
t2 dt = 2

3
= +w1 ξ

2 + w1 ξ
2∫ +1

−1
t3 dt = 0 = −w1 ξ

3 + w1 ξ
3 = 0∫ +1

−1
t4 dt = 2

5
= +w1 ξ

4 + w1 ξ
4∫ +1

−1
t5 dt = 0 = −w1 ξ

5 + w1 ξ
5 = 0

Thus t6 is not integrated exactly and the error is proportional to h6. The system to be solved is
w0 + 2w1 = 2

2w1 ξ
2 = 2

3

2w1 ξ
4 = 2

5

=⇒ ξ2 =
3

5
, w1 =

5

9
, w0 =

8

9
.

8To verify use f(0) = f0 and

f(±h/2) = f0 ±
f+ − f−

h

h

2
+ 2

f− − 2 f0 + f+
h2

h2

4
= f0 ±

1

2
(f+ − f−) +

1

2
(f− − 2 f0 + f+) .

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 70

the quadratic interpolation result at ±αh is

f(±αh) = f0 ± (f+ − f−)α+ 2 (f− − 2 f0 + f+)α2

where α =
√

3
2
√

5
. If a function u is given at the two endpoints by u1 and u3 and at the midpoint by u2 obtain

u(~p1)

u(~p2)

u(~p3)

 =


+α+ 2α2 1− 4α2 −α+ 2α2

0 1 0

−α+ 2α2 1− 4α2 +α+ 2α2




u1

u2

u3



= MB


u1

u2

u3

 ≈


+0.68730 0.4 −0.08730

0 1 0

−0.08730 0.4 +0.68730




u1

u2

u3


With the length L =

√
(x3 − x1)2 + (y3 − y1)2 of the segment this leads to the approximations

∫
edge

φ g2 ds ≈
L

18
〈MB


φ1

φ2

φ3

 ,


5 g2(~p1)

8 g2(~p2)

5 g2(~p3)

〉 =
L

18
〈


φ1

φ2

φ3

 , MT
B


5 g2(~p1)

8 g2(~p2)

5 g2(~p3)

〉
∫

edge
φ g3 u ds ≈

L

18
〈MB


φ1

φ2

φ3

 ,


5 g3(~p1) 0 0

0 8 g3(~p2) 0

0 0 5 g3(~p3)

 MB


u1

u2

u3

〉

=
L

18
〈


φ1

φ2

φ3

 , MT
B


5 g3(~p1) 0 0

0 8 g3(~p2) 0

0 0 5 g3(~p3)

 MB


u1

u2

u3

〉 .
The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the
second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the
function to be integrated is a polynomial of degree 5, or less. If h is the typical length of an edge then the error
is of the order h7 for one line segment and thus of order h6 for the total boundary. This boundary integration is
used for the second order elements.

The second expression is of the form

∫
φ g3 u ds ≈ 〈~φ,B ~u〉 = 〈


φ2

φ2

φ3

 ,


b11 b12 b13

b21 b22 b23

b31 b32 b33




u1

u2

u3

〉
and its effect on the linear system A ~u + W ~f = ~0 to be solved depends on nodes being on the Dirichlet part of
the boundary.

• If u1 and u3 are both free, i.e. not on the Dirichlet section, then u2 is free too. All entries of the matrix B
have to be added to the global stiffness matrix A.

• If u1 and u3 are on the Dirichlet section, then nothing has to be added to A and ~f .

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 71

• If u1 and u2 are free and u3 is on the Dirichlet section, then only the first two expressions

b11 u1 + b12 u2 + b13 u3 = b11 u1 + b12 u2 + b13 d3

b21 u1 + b22 u2 + b23 u3 = b21 u1 + b22 u2 + b23 d3

have to be added. d3 is the Dirichlet value at the position of u3. b13 g3 and b23 d3 have to be added to W ~f ,
the other expression to A.

• If u2 and u3 are free and u1 is on the Dirichlet section, then only the second and third expressions

b21 u1 + b22 u2 + b23 u3 = b21 d1 + b22 u2 + b23 u3

b31 u1 + b32 u2 + b33 u3 = b31 d1 + b32 u2 + b33 u3

have to be added. d1 is the Dirichlet value at the position of u1. b21 g1 and b31 d1 have to be added to W ~f ,
the other expression to A.

• If u1 and u3 are free, then u2 has to be free too, since it is the midpoint of a Neumann section of the
boundary.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 72

6.5 Convergence of the approximate solutions uh to the exact solution u

A key feature of a good FEM algorithm is a rapid convergence. As the diameter h of the triangles converge to 0,
the approximate solution uh(x, y) should converge to the exact solution u(x, y). The statements below are correct
for very smooth exact solutions and “nice” domains. Find a more information in books on the mathematical
background of FEM, e.g. [AxelBark84] or consult [Stah08].

It is convenient to state the approximation results using two norms on the function space L2(Ω) and the
Sobolev space V = H1(Ω) = W 1,2(Ω). The norms are given by

‖u‖22 =

∫∫
Ω

u2(x, y) dA

‖u‖2V =

∫∫
Ω

u2(x, y) + ‖∇u(x, y)‖2 dA .

The results assume that the meshes are well defined, e.g. satisfy a minimal angle condition.

• If the solutions uh are generated by first order, triangular elements, i.e. piecewise linear functions, then

‖uh − u‖V ≤ C h and ‖uh − u‖2 ≤ C1 h
2

for some constants C and C1 independent on h. A short fomulation is

– uh converges to u with an error proportional to h2 as h→ 0.

– ∇uh converges to∇u with an error proportional to h as h→ 0.

• If the solutions uh are generated by second order, triangular elements, i.e. piecewise quadratic functions,
then

‖uh − u‖V ≤ C h2 and ‖uh − u‖2 ≤ C1 h
3

for some constants C and C1 independent on h. A short fomulation is

– uh converges to u with an error proportional to h3 as h→ 0.

– ∇uh converges to ∇u with an error proportional to h2 as h→ 0.

Observe that the convergence results are about the integral of differences, and not point-wise estimates. In
addition the exact solution u is assumed to be smooth. Thus one has to be careful when using the estimates for
problems of the type in Section 7.3.

6.6 Dynamic problems

The are two distinct classes of dynamic problems:

• Parabolic problems with the heat equation u̇ = ∇2u as the typical example.

• Hyperbolic problems with the wave equation ü = ∇2u as the typical example.

For both types the following will present unconditionally stable, consistent time stepping algorithms.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 73

6.6.1 Dynamic problems of the heat equation type

Examine an IBVP (4) of parabolic type.

ρ ∂
∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u− u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0. Solve
the static problem with nonhomogeneous boundary conditions.

−∇ · (a∇uB − uB~b) + b0 uB = 0 for (x, y, t) ∈ Ω

uB = g1 for (x, y) ∈ Γ1

~n · (a∇uB + uB~b) = g2 + g3 uB for (x, y, t) ∈ Γ2

(17)

Then the new function v(x, y, t) = u(x, y, t)− uB(x, y) is a solution of an initial boundary value problem with
no constant boundary contributions, i.e. g1 = g2 = 0.

ρ ∂
∂t v −∇ · (a∇u− v~b) + b0 v = f for (x, y, t) ∈ Ω× (0, T]

v = 0 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇v + v~b) = g3 v for (x, y, t) ∈ Γ2 × (0, T]

v = u0 − uB on Ω at t = 0

This equation is transformed to a system of ordinary differential equations.

W
d

dt
~v(t) + A~v(t) = ~f(t) with ~v(0) = ~v0 . (18)

The implementation assumes that the coefficient functions ρ, a, b0,~b and gi depend on (x, y), while f may depend
on time t and the position (x, y). Then use a Crank–Nicolson9 approximation to advance the solution from time t
to t+ ∆t.

W
~v(t+ ∆t)− ~v(t)

∆t
= −A ~v(t+ ∆t) + ~v(t)

2
+ ~f(t+ ∆t/2)(

W +
∆t

2
A

)
~v(t+ ∆t) = +

(
W − ∆t

2
A

)
~v(t) + ∆t ~f(t+ ∆t/2)

For each time step such a system has to be solved. Observe that the matrix on the left does not change as time
advances. Using an sparsity preserving LU factorization of the matrix on the left, these systems can be solved
efficiently. The matrices P and Q are permutation matrices with P−1 = PT . A substantial amount of time has
to be used to perform the LU factorization, but then the time stepping is fast.

P
(
W + ∆t

2 A
)
Q = LU LU factorization(

W + ∆t
2 A

)
~v = ~b system to be solved

P
(
W + ∆t

2 A
)
Q Q−1 ~v = P~b

LU Q−1 ~v = P~b

~v = Q (U\(L\(P~b))) in the Octave code

9This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 74

With the computed ~v(t) then find the solution ~u(t) = ~v(t) + ~uB of the original problem.

If the matrix A is symmetric and positive definite one can use Cholesky factorization with row and column
permutations to preserve the sparsity, as much as possible. This should be faster than a LU factorization. but it is not!

QT
(
W + ∆t

2 A
)
Q = RT R Cholesky factorization(

W + ∆t
2 A

)
~v = ~b system to be solved

QT
(
W + ∆t

2 A
)
Q QT ~v = QT ~b

RT R QT ~v = QT ~b

~v = Q (R\(RT \(QT ~b))) in the Octave code

The Octave manual claims that a lower Cholesky factorization is often faster.

QT
(
W + ∆t

2 A
)
Q = LLT lower Cholesky factorization(

W + ∆t
2 A

)
~v = ~b system to be solved

QT
(
W + ∆t

2 A
)
Q QT ~v = QT ~b

LLT QT ~v = QT ~b

~v = Q (LT \(L\(QT ~b))) in the Octave code

6.6.2 Dynamic problems of the wave equation type

Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2
u+ 2α ∂

∂t u−∇ · (a∇u− u~b) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇u− u~b) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0, us-
ing (17). Then the new function v(x, y, t) = u(x, y, t) − uB(x, y) is a solution of an initial boundary value
problem with no constant boundary contributions, i.e. g1 = g2 = 0.

ρ ∂2

∂t2
v + 2α ∂

∂t v(t)−∇ · (a∇u− v~b) + b0 v = f for (x, y, t) ∈ Ω× (0, T]

v = 0 for (x, y, t) ∈ Γ1 × (0, T]

~n · (a∇v − v~b) = g3 v for (x, y, t) ∈ Γ2 × (0, T]

v = u0 − uB on Ω at t = 0
∂
∂t v = v0 on Ω at t = 0

This equation is transformed to a system of ordinary differential equations.

W
d2

dt2
~v(t) + 2D

d

dt
~v(t) + A~v(t) = ~f(t) with ~v(0) = ~u0 − ~uB ,

d

dt
~v(0) = ~v0 (19)

The implementation assumes that the coefficient functions ρ, α, a, b0, ~b and gi depend on (x, y), while f may
depend on time t and the position (x, y). Then use an implicit approximation10 to advance the solution from

10This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 75

time t−∆t and t to t+ ∆t.

W
d2

dt2
~v(t) = −2D

d

dt
~v(t)−A~v(t) + ~f(t)

W
~v(t−∆t)− 2~v(t) + ~v(t+ ∆t)

(∆t)2
= −2D

~v(t+ ∆t)− ~v(t−∆t)

2 ∆t
−

−A ~v(t−∆t) + 2~v(t) + ~v(t+ ∆t)

4
+ ~f(t)(

+W + ∆tD +
(∆t)2

4
A

)
~v(t+ ∆t) = −

(
W −∆tD +

(∆t)2

4
A

)
~v(t−∆t) +

+

(
2W − (∆t)2

2
A

)
~v(t) + (∆t)2 ~f(t)

This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time
advances. Thus use again a sparsity preserving LU factorization for the time stepping. The above scheme is
unconditionally stable, at least for constant coefficients11.

• To construct the solution at the initial time ∆t use the initial value u0 and initial velocity v0 and a scheme
with the same order of consistency. with respect to time. An explicit scheme for the first step leads to

d

dt
~v(0) = ~v0 ≈

~v(∆t)− ~v(−∆t)

2 ∆t
=⇒ ~v(−∆t) ≈ ~v(∆t)− 2 ∆t ~v0

W
d2

dt2
~v(t) = −2D

d

dt
~v(t)−A~v(t) + ~f(t)

W
~v(t−∆t)− 2~v(t) + ~v(t+ ∆t)

(∆t)2
= −2D

~v(t+ ∆t)− ~v(t−∆t)

2 ∆t
−A~v(t) + ~f(t)

(W + ∆tD)~v(t+ ∆t) = −(W −∆tD)~v(t−∆t) + 2W~v(t) + (∆t)2 (−A~v(t) + ~f(t))

(W + ∆tD)~v(∆t) = −(W −∆tD) (~v(∆t)− 2 ∆t~v0) +

+2W (~u0 − ~uB) + (∆t)2 (−A (~u0 − uB) + ~f(0))

2W~v(∆t) = +2 (W −∆tD) ∆t ~v0 +

+2W (~u0 − ~uB) + (∆t)2 (−A (~u0 − ~uB) + ~f(0))

W~v(∆t) = (W −∆tD) ∆t ~v0 +

+W (~u0 − ~uB) +
1

2
(∆t)2 (−A (~u0 − ~uB) + ~f(0)) .

This is currently implemented. The conditional stability for this single step should not cause a major
problem.

• One could also use ~v(−∆t) ≈ ~v(∆t)− 2 ∆2~v0 in the implicit scheme at t = 0.(
+W + ∆tD +

(∆t)2

4
A

)
~v(t+ ∆t) = −

(
W −∆tD +

(∆t)2

4
A

)
~v(t−∆t) +

+

(
2W − (∆t)2

2
A

)
~v(t) + (∆t)2 ~f(t)(

+W + ∆tD +
(∆t)2

4
A

)
~v(∆t) = −

(
W −∆tD +

(∆t)2

4
A

)
(~v(∆t)− 2 ∆t~v0) +

11I have a proof in WaveStability.tex.

SHA 27-8-21

6 THE MATHEMATICS OF THE ALGORITHMS 76

+

(
2W − (∆t)2

2
A

)
~v(0) + (∆t)2 ~f(0)(

+2W + 2
(∆t)2

4
A

)
~v(∆t) = +2 ∆t

(
W −∆tD +

(∆t)2

4
A

)
~v0 +

+

(
2W − (∆t)2

2
A

)
~v(0) + (∆t)2 ~f(0)

This initial step requires solving a new system of linear equations. If there is no damping term (D = 0) it
is the same system as for the time stepping, thus should be used.

6.7 Inverse power iteration or eigs() to determine small eigenvalues of positive definite ma-
trices

The algorithm to solve the generalized eigenvalue problem

A ~x = λB ~x

for given, positive definite matrices A and B is based on inverse power iteration. A small number of the smallest
eigenvalues can be estimated with reasonable efficiency. This algorithm imposes some restrictions though:

• Both matrices A and B have to be symmetric and strictly positive definite.

• Only very few eigenvalues and eigenvectors should be computed. The convergence rate for too many
eigenvalues is unacceptable.

• There are obvious improvements possible, but I hope for an Octave implementation of the command
eigs(). This is the case now, thus I use eigs(). Thus some of the notes on eigenvalues do not
apply any more.

The algorithm is presented in [GoluVanLoan96] and some more details are worked out in [VarFEM], available
at web.sha1.bfh.science/fem/VarFEM/VarFEM.pdf.

To determine the first m eigenvalues proceed as follows.

• Create an n×m matrix V0 with the initial vectors ~vj,0 as its columns.

• repeat until desired precision is reached

– solve the matrix equation A ·Vk = B ·Vk−1 or Vk = A−1 ·B ·Vk−1

– ortho-normalize the columns of Vk, using a generalized Gram-Schmidt algorithm. The resulting
columns of Vk are orthonormal with respect to the scalar product 〈~x , B~y〉.

• for j = 1, 2 . . .m compute βj = 〈V(:, j) , A ·V(:, j)〉. Then βj should be good approximations to the
eigenvalues.

The error estimates are based on results in [Demm97]. For a normalized, approximate eigenvector ~vi and the
corresponding approximate eigenvalue βi compute the residual ~r = A~vi − βiB~vi. Then the estimates

min
λj∈σ(A)

|βi − λj | ≤
√
〈~r , B−1~r〉 and |βi − λj | ≤

〈~r , B−1~r〉
gap

(20)

are valid. The denominator gap measures the distance to the next eigenvalue.

gap = min{|βi − λj | : λj ∈ σ(A), j 6= i} .

Without the exact values of the eigenvalues λi there is no way to compute gap exactly. Thus use the approxi-
mate values. Expect the error estimate to have its problems at multiple eigenvalues. For the largest, computed
eigenvalue one can not estimate gap reliably, since no information on the next eigenvalue is available.

SHA 27-8-21

https://web.sha1.bfh.science/fem/VarFEM/VarFEM.pdf

7 EXAMPLES, EXAMPLES, EXAMPLES 77

7 Examples, Examples, Examples

7.1 An animated wave

With a narrow Gauss bell around (x, y) ≈ (1, 0) as initial value and zero initial velocity observe the waves
traveling away from the initial location and the different types of reflections at the boundaries. Figure 29 shows
the final status.

WaveAnimation.m
if 0 %% linear elements
FEMmesh = CreateMeshRect(linspace(0,pi,101),linspace(-pi,pi,101),-1,-2,-2,-2);

else %% quadratic elements
FEMmesh = CreateMeshRect(linspace(0,pi,51),linspace(-pi,pi,51),-1,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh);

endif
x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);

m=1; alpha=0.0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=3 ; steps = [150,10];

u0 = exp(-25*((x-1).ˆ2+(y-0).ˆ2));
v0 = zeros(length(FEMmesh.nodes),1);
[u_dyn,t] = I2BVP2D(FEMmesh,m,alpha,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);

figure(1) % show animation
for t_ii = 1:length(t)
FEMtrimesh(FEMmesh.elem,x,y,u_dyn(:,t_ii))
axis([0 pi -pi pi -0.2 0.4]); xlabel(’x’); ylabel(’y’)
drawnow();

endfor

7.2 An elliptic problem with radial symmetry, superconvergence

The Bessel function
u(x, y) = f(x, y) = J0(

√
x2 + y2)

is a solution of the BVP
−∆u+ u = 2 f for 0 < x, y < 1

u = f for (1, y) and (x, 1)
∂ u
∂n = 0 for (0, y) and (x, 0)

.

A solution is shown in Figure 30. This BVP is solved by two slightly different approaches, and then the difference
to the known exact solution displayed in Figure 31. In both cases first a mesh with linear element is generated,
then upgraded to a mesh with quadratic elements, using MeshUpgrade(). Then a mesh with identical nodes
and DOF with linear elements is generated by MeshQuad2Linear().

1. On a uniform mesh generated by CreateMeshRect, leading to 400 degrees of freedom. The result in
Figure 31(a) shows the effect of super-convergence. Caused by the extremely regular structure of the grid
points the differences are smaller than can reasonably be expected.

2. On a non-uniform mesh generated by CreateMeshTriangle, leading to 432 degrees of freedom. Thus
one expects to obtain similar accuracy. The result in Figure 31(b) confirms this.

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 78

Figure 29: Traveling waves on a rectangle

x y

0.5

0.6

0.7

0.8

0.9

0.2
1

0.8
0

exact solution

0.4 0.6

1

0.6 0.4
0.8 0.2

1 0

Figure 30: The radial Bessel function as solution of a BVP

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 79

N = 10; Triangle = 1
if Triangle
FEMmesh = CreateMeshTriangle(’test1’,[0 0 -2;1 0 -1; 1 1 -1; 0 1 -2],0.75/Nˆ2);
FEMmesh = MeshUpgrade(FEMmesh);
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFTri = [FEMmesh.nDOF, FEMmesh1.nDOF]

else
FEMmesh = CreateMeshRect(linspace(0,1,N+1),linspace(0,1,N+1),-2,-1,-2,-1);
FEMmesh = MeshUpgrade(FEMmesh);
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFRect = [FEMmesh.nDOF, FEMmesh1.nDOF]

endif

x y

-3e-06

-2e-06

0 1

-1e-06

0

1e-06

2e-06

0.8

error, quadratic elements

0.2
0.4 0.6

3e-06

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-4e-06

-2e-06

0

2e-06

0
0.2

1
0.8

error, quadratic elements

4e-06

0.4 0.6

6e-06

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 31: Difference to the exact solution of a BVP

To generate Figure 32 the command FEMgriddata() is used to evaluate the functions on a much finer grid
(not recomputing, just evaluation) and then display the difference between the approximate and exact solution.
This figure illustrates that the effect of superconvergence does not provide additional accuracy one can reliably
count on.

The gradient of this solution u can be determined using ∂
∂r J0(r) = −J1(r) and(

∂ u
∂x
∂ u
∂y

)
=

(
cosφ

sinφ

)
∂ u

∂r
+

(
− sinφ

cosφ

)
∂ u

∂φ
= −

(
cosφ

sinφ

)
J1(r) .

Using the above FEM results compare the true partial derivative ∂ u
∂x with the one obtained by FEM with second

order elements. Find the result in Figure 33. Observe the structure of the difference for the uniform mesh.
The above can be repeated using first order elements, leading to Figure 34. The size of the elements was set

such that the same number of degrees of freedom are used. Observe that superconvergence strikes again. In this
case I have a solid argument for the structural difference along the border.

Find more information on superconvergence in [Zien13, §15.2] or a short demo in [Stah08, §6.8.2].

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 80

(a) uniform grid (b) nonumiform grid

Figure 32: Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid.

x y

-0.0006

-0.0004

0 1

-0.0002

0

0.0002

0.0004

error u
x
, quadratic elements

0.2
0.4

0.8
0.6

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-0.0006

-0.0004

0 1

-0.0002

0

0.0002

0.0004

0.2

error u
x
, quadratic elements

0.4
0.8

0.6
0.6 0.4

0.8 0.2
1 0

(b) nonumiform grid

Figure 33: Difference of ∂ u∂x to the exact solution, using second order elements

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 81

x y

-0.015

-0.01

-0.005

0 1
0.2 0.8

0

0.005

0.01

0.4 0.6

error u
x
, linear elements

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-0.015

-0.01

-0.005

0

0.005

0.2 0.8
1

error u
x
, linear elements

0
0.4 0.6

0.01

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 34: Difference of ∂ u∂x to the exact solution, using first order elements

7.3 An example with limited regularity

Let Ω ∈ R2 be the unit square −1 < x, y < 1, with the fourth quadrant (x > 0, y < 0) cut out. For some of the
calculations identify (x, y) ∈ R2 with z = x+ i y ∈ C. Examine the functions

w(z) = z2/3 =
(
r eiφ

)2/3
= r2/3 eiφ 2/3 = r2/3 (cos(φ 2/3) + i sin(φ 2/3))

u(z) = r2/3 sin(φ 2/3)

u(x, y) = (x2 + y2)1/3 sin(
2

3
atan2(y, x))

This function satisfies −∆u = 0 and u(t, 0) = u(0,−t) = 0 for t > 0. Since ∂
∂r u = 2

3 r
−1/3 sin(2

3 φ) and
∂
∂φ u = 2

3 r
2/3 cos(2

3 φ) the partial derivatives of this function have a singularity at the origin. Compute

‖∇u‖2 = |∂ u
∂r
|2 + |1

r

∂ u

∂φ
|2 =

4

9
r−2/3 +

4

9

1

r2
cos2(

2

3
φ)∫∫

Ω

‖∇u‖2 dA =
4

9

∫ 1

0

(∫ 3π/2

0
r−2/3 + r−2 cos2(

2

3
φ) dφ

)
r dr

=
4

9

∫ 1

0

(
3π

2
r−2/3 + r−2 3π

4

)
r dr =

2π

3

∫ 1

0
r1/3 dr +

π

3

∫ 1

0

1

r
dr = ∞

to observe that the gradient is not bounded in the L2 sense. Thus the standard error estimates based on Céa’s
Lemma do not apply. Expect approximation and convergence problems close to the origin. This is confirmed by
the code below and the resulting Figure 35. This example illustrates that non-convex domains with sharp corners
might cause convergence problems.

SingularDisc.m
x_p = [0;1;1;-1;-1;0]; y_p = [0;0;1;1;-1;-1];

FEMmesh = CreateMeshTriangle("circle34",[x_p,y_p,-ones(size(x_p))], 0.01);
FEMmesh = MeshUpgrade(FEMmesh);

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 82

function res = gD(xy)
phi = mod(atan2(xy(:,2),xy(:,1)),2*pi);
res = (xy(:,1).ˆ2+ xy(:,2).ˆ2).ˆ(1/3).*sin(2/3*phi);

endfunction

u = BVP2Dsym(FEMmesh,1,0,0,’gD’,0,0);
figure(1);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u);
xlabel("x"); ylabel("y"); title(’FEM solution’); view([30,30])

u_exact = gD(FEMmesh.nodes);
figure(2);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),-u+u_exact);
xlabel("x"); ylabel("y"); title(’Error of FEM solution’); view([30,30])

y
x

1
0

0.2
0.4
0.6

0.5
-1 0

FEM solution

-0.5

0.8

-0.50

1
1.2

0.5 -1

1.4

1

y
x

0

0.002

0.004

1
0.5

-1 0

Error of FEM solution

-0.5

0.006

-0.50

0.008

0.01

0.5 -1

0.012

1

Figure 35: A solution with singular partial derivatives at the origin

The gradient in Cartesian coordinates can be determined.(
∂ u
∂x
∂ u
∂y

)
=

(
cosφ

sinφ

)
∂ u

∂r
+

(
− sinφ

cosφ

)
∂ u

∂φ

=

(
cosφ

sinφ

)
2

3
r−1/3 sin(φ 2/3) +

(
− sinφ

cosφ

)
2

3
r+2/3 cos(φ 2/3)

The gradient of this solution can be examined, leading to Figure 36. It is clearly visible that the FEM solution is
not accurate where the gradient has a singularity.

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(3);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),ux);
xlabel("x"); ylabel("y"); title(’FEM solution, u_x’); view([30,30])

figure(4);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),uy);
xlabel("x"); ylabel("y"); title(’FEM solution, u_y’); view([30,30])

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 83

figure(5);
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),sqrt(ux.ˆ2+uy.ˆ2));
xlabel("x"); ylabel("y"); title(’FEM solution, norm of gradient’); view([30,30])

y
x

1
-2

-1.5

-1

-0.5

0.5
-1 0

-0.5

FEM solution, u
x

-0.50

0

0.5 -1

0.5

1

y
x

0

0.5

1

1
0.5

-1 0

FEM solution, norm of gradient

-0.5

1.5

-0.50

2

0.5 -1

2.5

1

Figure 36: A solution with singular partial derivatives, graphs of ∂ u∂x and ‖∇u‖

7.4 A potential flow problem

Consider a laminar flow between two plates with an obstacle between the two plates. Assume that the situation
is independent on one of the spatial variables and consider a cross section only shown in Figure 37. The goal is
to find the velocity field ~v of the fluid.

-

6

@
@@

-
-
-
-
-
-
-

-
-
-
-
-
-
-

Φ = 1 Φ = 0

Figure 37: Fluid flow between two plates, the setup

This problem is solved by introducing a velocity potential Φ(x, y). The velocity vector ~v is then given by

~v =

(
vx

vy

)
= −

(
∂ Φ
∂x
∂ Φ
∂y

)
.

The flow is assumed to be uniform far away from the obstacle. Thus set the potential to Φ = 1 (resp. Φ = 0) at
the left (resp. right) end of the plates. Since the fluid can not flow through the boundaries of the plates use that
the normal component of the velocity has to vanish at the upper and lower boundary. The differential equation to
be satisfied by Φ is

∆Φ = div (grad Φ) = 0

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 84

In Figure 38 the resulting flow is visualized. Observe the unrealistic velocities at the corners of the domain. The
model of laminar flow is not appropriate in this situation. Selecting a finer mesh is no solution to this problem.
Mathematically the effect is related to the effect illustrated in Section 7.3.

0 1 2 3 4 5

0

0.5

1

1.5

2

y

x

(a) vector field of velocities

0 1 2 3 4 5
0

0.5

1

1.5

2

y

x

(b) velocity contours

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

ho
riz

on
ta

l v
el

oc
ity

x

(c) horizontal speed profile along y = 0.25

2
1.5

1
y 0.5

0 0

0

0.1

0.2

v=
|g

ra
d

u|

0.3

0.4

0.5

5
4

3

x
2

1

(d) velocity

Figure 38: Velocity field of a ideal fluid, full view and details

The results are generated by the code below.

PotentialFlow.m
%% define the domain
xy =[0 0 -2;5 0 -1;5 2 -2;3 2 -2;3 0.5 -2;2 0.5 -2;1 2 -2;0 2 -1];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,xy,0.003);

else %% quadratic elements
FEMmesh = CreateMeshTriangle(’PotentialFlow’,xy,4*0.003);
FEMmesh = MeshUpgrade(FEMmesh);

endif

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = gD(xy) res = 1-xy(:,1)/5; endfunction
u = BVP2Dsym(FEMmesh,1,0,0,’gD’,0,0);

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 85

figure(1)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u)
xlabel(’x’); ylabel(’y’); zlabel(’potential’)

[xx,yy] = meshgrid(linspace(0,5-0.01,25),linspace(0,2-0.01,21));
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u, xx, yy);

figure(2)
quiver(xx,yy,ux_int,uy_int)
xlabel(’x’); ylabel(’y’);
hold on; plot([xy(:,1);0],[xy(:,2);0],’k’); hold off; axis equal

xx = linspace(0,5,101); yy = 0.25*ones(101,1);
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u,xx,yy);
figure(3)
plot(xx,ux_int)
xlabel(’x’); ylabel(’horizontal velocity’); ylim([0 0.5])

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(4)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),sqrt(ux.ˆ2+ uy.ˆ2))
xlabel(’x’); ylabel(’y’); zlabel(’v=|grad u|’); zlim([0 0.5])

figure(5)
if size(FEMmesh.elem,2)==6 FEMmesh = MeshQuad2Linear(FEMmesh); endif
tricontour(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),sqrt(ux.ˆ2+ uy.ˆ2),21)
xlabel(’x’); ylabel(’y’); zlabel(’| grad u|’)
hold on; plot([xy(:,1);0],[xy(:,2);0],’k’); hold off
xlim([0 5]); ylim([0 2]); axis equal

By integrating the horizontal velocities along vertical cuts observe the flux conservation, i.e whats coming in
on the left has to flow through the canal and leave on the right.

flux at inlet x = 0.0 ≈ 0.18337

flux in middle x = 2.5 ≈ 0.18328

flux at outlet x = 5.0 ≈ 0.18333

Selecting a finer mesh or using quadratic elements will make the differences smaller.

yy = linspace(0,2); xx = zeros(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_inlet_ = trapz(yy,vx)
yy = linspace(0,0.5); xx = 2.5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux,xx,yy); Flux_middle = trapz(yy,vx)
yy = linspace(0,2); xx = 5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_outlet = trapz(yy,vx)

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 86

7.5 A minimal surface problem

Let u(x, y) be the hight of a surface above the border of a 2-dimensional domain Ω is given by a function g(x, y).
Then the function u representing the surface of minimal with has to solve a nonlinear PDE.

div(
1√

1 + | gradu|2
gradu) = 0 in domain Ω

u = g on Γ = ∂Ω

This software is not directly capable of solving non linear problems, but a simple iteration will lead to an

y
x

0

0.2

1

0.4

z

0.6

0.8

1

0.5
0.5 1

0
0-0.5 -0.5

-1 -1

Figure 39: A minimal surface

approximation of the solution.

• start with an initial solution u0(x, y) = 0

• repeat until the change in solution is small enough

– compute the coefficient function

a(x, y) =
1√

1 + |∇u(x, y)|2

– Solve the boundary value problem

div(a(x, y) gradu) = 0 in domain Ω

u = g on Γ = ∂Ω

The code below implements this algorithm for a square Ω and leads to the result in Figure 39. While iterating the
area of each surface is determined by integrating

area =

∫∫
Ω

√
1 + |∇u|2 dA

and the average difference of subsequent solutions is computed.

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 87

MinimalSurface.m
xy = [1,0,-1;0,1,-1;-1,0,-1;0,-1,-1];
FEMmesh = CreateMeshTriangle("square",xy,0.01);
%FEMmesh = MeshUpgrade(FEMmesh);

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2); elem = FEMmesh.elem;
function res = BC(xy)
res = abs(xy(:,1));

endfunction

u = BVP2Dsym(FEMmesh,1,0,0,’BC’,0,0);
difference = zeros(5,1); area = difference;
for ii = 1:5
[˜,grad] = FEMEvaluateGP(FEMmesh,u);
coeff = sqrt(1+grad(:,1).ˆ2+ grad(:,2).ˆ2);
area(ii) = FEMIntegrate(FEMmesh,coeff);
u_new = BVP2Dsym(FEMmesh,coeff,0,0,’BC’,0,0);
difference(ii) = mean(abs(u_new-u));
u = u_new;

endfor

Area_Difference = [area,difference]

figure(1)
FEMtrisurf(elem,x,y,u)
xlabel(’x’); ylabel(’y’); zlabel(’z’)
-->
Area_Difference = 2.30454229746 0.00271116350

2.30609424101 0.00030136719
2.30586894444 0.00003705316
2.30589632291 0.00000508928
2.30589260378 0.00000078521

7.6 Computing a capacitance

7.6.1 State the problem

Examine a circular plate capacitance as shown in Figure 40. Based on the radial symmetry one should be able to
consider a two dimensional section only for the computations.

x

y

1 3

45

6

89

2

7

Figure 40: The capacitance and the section used for the modeling

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 88

Consider the voltage u as unknown. On the upper conductor assume u = 1 and on the lower conductor
u = −1. Based on the symmetry consider a section only and use u = 0 in the plane centered between the
conductors. Use the Laplace operator in cylindrical coordinates. Thus the following boundary value problem has
to be solved.

div(x gradu(x, y)) = 0 in domain

u(x, 0) = 0 along edge y = 0

u(x, y) = 1 along edges of upper conductor
∂
∂n u(x, y) = 0 on remaining boundary

(21)

Assume that the domain is embedded in the rectangle 0 ≤ x ≤ R and 0 ≤ y ≤ H . The lower edge of the
conductor is at y = h and 0 ≤ x ≤ r. If h � r expect the gradient of u to be 1/h between the plates and zero
away from the plates. Thus

flux =

∫∫
disk

~n · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx ≈ 2π

∫ r

0
x

1

h
dx =

π r2

h
.

Because the electric field will not be homogeneous around the boundaries of the disk expect deviations from the
result of an idealized circular disk. With the divergence theorem and a physical argument one can verify that
the flux trough the midplane is proportional to the capacitance. By applying the following steps compute the
capacitance by analyzing the solution of a boundary value problem.

1. Create a mesh for the domain in question.

2. Define parameters and boundary conditions.

3. Solve the partial differential equation and visualize the solution.

4. Compute the flux through the midplane as an integral to determine the capacitance.

7.6.2 Create the mesh and solve the BVP

According to Figure 40 create a mesh with the following data.

h = 0.2 distance between midplane and lower edge of capacitance

r = 1.0 radius of disk of the capacitance

H = 0.5 height of the enclosing rectangle

R = 2.5 radius of the enclosing rectangle

As input for the mesh generating code triangle (see [www:triangle]) use

• the coordinates of the corner points, numbered according to Figure 40

• a list of all the connecting edges and the type of boundary conditions to be used

• information of the desired area of the triangles to be generated

Then use two different sizes of the triangles since a finer mesh between the plates is required, expecting large
variations in the solution. The file capacitance.poly provides this information. The numbering of the
nodes is visible in Figure 40. With the above use the program triangle to generate a mesh.

triangle -pqa capacitance.poly

The mesh consists of 2189 nodes, forming 4036 triangles.
To solve the BVP (21)one needs a definition of the coefficient function and the Dirichlet boundary function.

Then set up and solve the system of linear equations. This leads to a system for 1937 unknowns. Now generate a
plot of the voltage u(x, y) and its level curves. Find the results in Figure 43.

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 89

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Figure 41: A mesh on the domain

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

radius r

heig
ht z

Figure 42: The contour lines of the resulting voltage

0
0.2
0.4

vo
lta

ge 0.6
0.8

1

0.5
0.40

0.3

height z
radius r

0.5
1

1.5
0.2

0.12
02.5

(a) the voltage

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5

6

radius r

u z

(b) vertical field along horizontal axis

Figure 43: Voltage plot and electric field between the plates of the capacitance

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 90

7.6.3 Compute the capacitance

It remains to compute the flux through the midplane. For this first compute the gradient of the voltage u along
the line y = 0. Find the plot of the normal component in Figure 43. The graph confirms that between the plates
the gradient is approximately 1/h = 1/0.2 = 5 and vanishes away from the plate. Then a simple trapezoidal rule
is used to determine the flux accross the midplane with the integral.

flux =

∫∫
disk

~n · gradu dA = 2π

∫ R

0
x
∂ u

∂y
dx

For the selected values of h, H , r and R obtain a factor of 1.5 between result of the boundary value problem and
the idealized approximation π r2/h. Thus the simple formula is not a good approximation, the distance h is too
large compared to the radius r.

Capacitance.m
FEMmesh = ReadMeshTriangle(’capacitance.1’);
x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
figure(1)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2))

function res = a(xy)
res = xy(:,1);

endfunction

function res = Volt(xy)
res = xy(:,2)>0.1;

endfunction

u = BVP2Dsym(FEMmesh,’a’,0,0,’Volt’,0,0);
figure(2)
FEMtrimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u);
view([38,48]); xlabel(’radius r’); ylabel(’height z’); zlabel(’voltage’)

figure(3)
tricontour(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),u,21);
xlabel(’radius r’); ylabel(’height z’);

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
xi = linspace(0,2.5,101)’; yi = zeros(101,1);
uy_i = FEMgriddata(FEMmesh,uy,xi,yi);

figure(4)
plot(xi,uy_i)
xlabel(’radius r’); ylabel(’u_z’);
ylim([-1,6])

Integral = [2*pi*trapz(xi,xi.*uy_i), pi*1ˆ2/0.2]
-->
Integral = 23.782 15.708

7.7 Torsion of beams, Prandtl stress function

Examine the torsion of a shaft with constant cross section. Based on a few assumtions determine the deformation
of the shaft under torsion. The problem is presented in [VarFEM] and more detailed in [Sout73, §12].

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 91

T

z

y

x

- x

6

y

�
�
�
�
�
�
�

�
�
�
�
�
�
�
� (x, y)

(x+ u1, y + u2)

θ

β

Figure 44: Torsion of a shaft

7.7.1 The setup with warp function and Prandtl stress function

Consider a vertical shaft with constant cross section. The centers of gravity of the cross section are along the
z axis and the bottom of the shaft is fixed. The top surface is twisted by a total torque T . The situation of a
circular cross section is shown in Figure 44. There is no exact specification of the forces and twisting moments
applied to the two ends. Based on Saint-Venant principle (see [Sout73, §5.6]) assume that the stress distribution
in the cross sections does not depend on z, except very close to the two ends. The twisting leads to a rotation of
each cross section by an angle β where β = z · α. The constant α is a measure of the change of angle per unit
length of the shaft. Its value α has to be determined, using the moment T . Based on this determine the horizontal
displacements for small angles β by the right part of Figure 44 and a linear approximation

u1(x, y) = r cos(β + θ)− r cos(θ) ≈ −β r sin θ = −y β = −y z α
u2(x, y) = r sin(β + θ)− r sin(θ) ≈ +β r cos θ = +xβ = +x z α

.

It is assumed that the vertical displacement is independent of z and given by a warping function φ(x, y). This
leads to the displacements

u1 = −y z α , u2 = x z α , u3 = αφ(x, y)

and thus the strain components

εxx = εyy = εzz = εxy = 0 , εxz = −1

2
α y +

1

2
α
∂ φ

∂x
, εyz =

1

2
αx+

1

2
α
∂ φ

∂y
.

Using Hooke’s law find the stress components

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y +

∂ φ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ φ

∂y
) .

The problem is neither plane stress (τxz 6= 0, τyz 6= 0) nor plane strain (φ 6= 0). Using the stresses determine the
horizontal forces and the torsion along a hypothetical horizontal cross section. Since the origin is the center of
gravity of the cross section Ω the first moments vanish and

T =

∫∫
Ω

x τyz − y τyz dA =
E α

2 (1 + ν)

∫∫
Ω

x (x+
∂ φ

∂y
)− y (−y +

∂ φ

∂x
) dA

=
E α

2 (1 + ν)

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA =

E α

1 + ν
J .

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 92

Using the torsional rigidity J with

J =

∫∫
Ω

x2 + y2 + x
∂ φ

∂y
− y ∂ φ

∂x
dA

determine the constant α by

α =
2 (1 + ν)

J E
T

and thus for a shaft of height H the total change of angle β as

β = H · α =
2 (1 + ν)

J E
H · T .

The only difficult part is to determine the function φ, then J is determined by an integration.

The above computations allow to compute the energy E in one cross section Ω by

E =

∫∫
Ω

σxz τxz + σyz τyz dA =
E α2

4 (1 + ν)

∫∫
Ω

(−y +
∂ φ

∂x
)2 + (x+

∂ φ

∂y
)2 dA

=
E α2

4 (1 + ν)

∫∫
Ω

(
∂ φ

∂x
)2 + (

∂ φ

∂y
)2 − 2 y

∂ φ

∂x
+ 2x

∂ φ

∂y
+ x2 + y2 dA .

The warp function φ has to minimize this expression. Using calculus of variations (e.g. [VarFEM]) one can show
that φ has to solve the boundary value problem

div (∇φ) = ∆φ = 0 in the cross section Ω

~n · ∇φ =

(
y

−x

)
· ~n on the boundary ∂Ω

. (22)

Since the stress components are given by

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y +

∂ φ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ φ

∂y
)

the boundary condition can be written as (
τxz

τyz

)
· ~n = 0 .

This equation implies that there is no stress on the lateral surface of the shaft. This condition is consistent with
the mechanical setup.

The Prandtl stress funktion χ is characterized by

∂χ

∂y
= −y +

∂φ

∂x
=

2 (1 + ν)

E α
τxz and − ∂χ

∂x
= x+

∂φ

∂y
=

2 (1 + ν)

E α
τyz .

By differentiating the above equations by y (resp. x) and subtracting and using ∂
∂x

∂ φ
∂y = ∂

∂y
∂ φ
∂x find

∆χ =
∂2χ

∂x2
+
∂2χ

∂y2
= −2 .

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 93

To determine the boundary conditions for χ assume that there are no external forces on the boundary.(
τxz

τyz

)
· ~n = 0 =⇒

(
∂ χ
∂y

−∂ χ
∂x

)
· ~n = ∇χ · ~t = 0 ,

where ~t is a tangential vector of the boundary curve. Assuming that there are no holes12, this implies that one can
work with χ = 0 on the boundary Γ. Thus the Pandtl stress function is a solution of the boundary value problem

−∆χ = 2 in Ω

χ = 0 on Γ
. (23)

The torsional rigidity is determined by

J =

∫∫
Ω

x2 + y2 + x (−∂ χ
∂x
− x)− y (+

∂ χ

∂y
+ y) dA = −

∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA

For ductile materials the von Mises stress indicates the possible fractures in the material. In this case it is given
by

σvM =

√
3

2
(τ2
xz + τ2

yz) =
E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2
‖∇χ‖ .

7.7.2 On a disk with radius R

On a disk with radius R the solution is given by χ(x, y) = 1
2 (R2 − x2 − y2). Thus the nonzero stresses are

τxz = +
E α

2 (1 + ν)

∂ χ

∂y
= − E α

2 (1 + ν)
y and τyz = − E α

2 (1 + ν)

∂ χ

∂x
= +

E α

2 (1 + ν)
x .

The BVP (22) for the warp function φ is

div (∇φ) = ∆φ = 0 in the cross section Ω

~n · ∇φ = 1√
x2+y2

(
y

−x

)
·

(
x

y

)
= 0 on the boundary ∂Ω

with the unique solution φ(x, y) = 0, i.e. no warping. The torsional rigidity is given by

J =

∫∫
Ω

x2 + y2 dA = 2π

∫
0
r2 r dr =

π

2
R4

and the von Mises stress is given by

σvM =
E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2

√
x2 + y2 =

E α

2 (1 + ν)

√
3

2
r .

12This restriction can be removed.

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 94

7.7.3 On a square

To stiffness of a square cross section with a circular cross section examine a square with the same area as a
circle with radius R = 1. Thus the length of a side is

√
π ≈ 1.77. The code below solves the boundary value

problem (23) and then computes the torsional rigidity by integrating

J = −
∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA .

The numerical result of J ≈ 1.39 has to be compared to the result of J = π
2 ≈ 1.57 for the disk with Radius 1.

Thus the square cross section leads to less torsional rigidity. Then examine the von Mises stress by plotting

f(x, y) =

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 = ‖∇χ‖ .

Find the result in Figure 45(a). The maximal value of ≈ 1.20 is larger than the maximal value 1 for the disk.
Thus for the same twisting angle the square is exposed to a larger von Mises stress.

TorsionSquare.m
N = 10;
l = sqrt(pi)/2; al = 1; %% al = sqrt(2); % use this for the rectangle
Mesh = CreateMeshTriangle(’Torsion’,
[-al*l -1/al*l -1; al*l -1/al*l -1; al*l 1/al*l -1; -al*l 1/al*l -1],pi/2/Nˆ2);
Mesh = MeshUpgrade(Mesh);

chi = BVP2Dsym(Mesh,1,0,2,0,0,0);

[chiGP,gradChi] = FEMEvaluateGP(Mesh,chi);
xGP = Mesh.GP(:,1); yGP = Mesh.GP(:,2);
f = xGP.*gradChi(:,1) + yGP.*gradChi(:,2);
J = FEMIntegrate(Mesh,-f)

[chi_x,chi_y] = FEMEvaluateGradient(Mesh,chi);

figure(1)
FEMtrisurf(Mesh.elem,Mesh.nodes(:,1),Mesh.nodes(:,2),sqrt(chi_x.ˆ2 + chi_y.ˆ2))
xlabel(’x’); ylabel(’y’);
-->
J = 1.3873

7.7.4 On a rectangle

The above can be repeated for a rectangle with the same are but a ratio of 2 for the length of the sides. The value
of J ≈ 1.13 indicates that the rectangle is even softer and the maximal von Mises stress of ≈ 1.16 is slightly
smaller than for the square cross section.

SHA 27-8-21

7 EXAMPLES, EXAMPLES, EXAMPLES 95

1
0.5

0
y -0.5

-1 -1

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1
0.5

0
x-0.5

(a) on a square

1
0.5

0
y -0.5

-1 -1.5

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1.510.50
x-0.5-1

(b) on a rectangle

Figure 45: The von Mises stress caused by torsion of a bar with square or rectangular cross section

SHA 27-8-21

LIST OF FIGURES 96

Bibliography

[AxelBark84] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Values Problems. Academic
Press, 1984.

[Demm97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[GoluVanLoan96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third
edition, 1996.

[www:triangle] J. R. Shewchuk. https://www.cs.cmu.edu/˜quake/triangle.html.

[Sout73] R. W. Soutas-Little. Elasticity. Prentice–Hall, 1973.

[VarFEM] A. Stahel. Calculus of Variations and Finite Elements. Lecture Notes used at HTA Biel, 2000.

[Stah08] A. Stahel. Numerical Methods. lecture notes, BFH-TI, 2008.

[Zien13] O. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element Method: Its Basis and Fundamentals.
Butterworth-Heinemann, 7 edition, 2013.

List of Figures

1 A semidisk as domain in R2 and a solution of a BVP . 5
2 Solution of −∆u = 0.25 on a rectangle . 8
3 Solution of Lapalce equation in cylindrical coordinates . 9
4 Solution of a diffusion problem on a L-shaped domain . 10
5 Solution of a diffusion convection problem . 11
6 The fourth eigenfunction of ∆u = λu on a disc . 13
7 Solution of a dynamic heat equation . 14
8 Solution of a wave equation . 16
9 The same mesh with linear or quadratic elements . 21
10 A mesh generated by a Delaunay triangulation and the solution of a BVP 23
11 A function evaluated on a uniform grid . 27
12 Convergence results for linear and quadratic elements . 36
13 An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix . . . 38
14 Uniform meshes consisting of equilateral triangles . 39
15 An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix . 40
16 A right triangle, the Gauss integration points and the element stiffness matrix 41
17 Uniform meshes consisting of rectangular triangles . 41
18 A right angle triangle, the Gauss integration points and the element stiffness matrix 42
19 The mesh and the solution for a BVP . 43
20 Difference to the exact solution and values of ∂ u∂y , using a first order mesh 44
21 Difference to the exact solution and values of ∂ u∂y , using a second order mesh 44
22 Difference of the approximate values of ∂ u∂y to the exact values 45
23 Classical and weak solutions, minimizers and FEM . 48
24 Transformation of standard triangle to general triangle . 49
25 Gauss integration of order 2 on the standard triangle, using 3 integration points 51
26 Gauss integration of order 5 on the standard triangle, using 7 integration points 52
27 Local and global numbering of nodes . 53
28 Basis functions for second order triangular elements . 60

SHA 27-8-21

LIST OF TABLES 97

29 Traveling waves on a rectangle . 78
30 The radial Bessel function as solution of a BVP . 78
31 Difference to the exact solution of a BVP . 79
32 Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid. 80
33 Difference of ∂ u∂x to the exact solution, using second order elements 80
34 Difference of ∂ u∂x to the exact solution, using first order elements 81
35 A solution with singular partial derivatives at the origin . 82
36 A solution with singular partial derivatives, graphs of ∂ u∂x and ‖∇u‖ 83
37 Fluid flow between two plates, the setup . 83
38 Velocity field of a ideal fluid, full view and details . 84
39 A minimal surface . 86
40 The capacitance and the section used for the modeling . 87
41 A mesh on the domain . 89
42 The contour lines of the resulting voltage . 89
43 Voltage plot and electric field between the plates of the capacitance 89
44 Torsion of a shaft . 91
45 The von Mises stress caused by torsion of a bar with square or rectangular cross section 95

List of Tables

1 Commands to solve PDEs and IBVPs . 7
2 Elements of a mesh structure . 18
3 Commands from Octave-Forge packages . 35
4 Coordinates of the nodes in the standard triangle . 59

SHA 27-8-21

Index
basis function, 59
BVP, 7

boundary value problem, 5
eigenvalue, 6
elliptic, 5
symmetric, 6

BVP2D(), 9, 10, 29
BVP2Deig(), 30
BVP2Dsym(), 7, 8, 11, 28

convection, 10
convergence, 35
Crank–Nicolson, 73
CreateMeshRect(), 18
CreateMeshTriangle(), 19

Delaunay, 22
Delaunay2Mesh(), 22

eigenvalue, 11
element stiffness matrix, 53

FEMEquation(), 33, 37
FEMEquationM(), 33, 37
FEMEquationQuad(), 33
FEMEquationQuadM(), 33
FEMEvaluateGP(), 24
FEMEvaluateGradient(), 23, 82
FEMgriddata(), 25, 79
FEMIntegrate(), 24
FEMInterpolBoundaryWeight(), 34
FEMInterpolWeight(), 34
FEMtrimesh(), 22
FEMtrisurf(), 22

heat equation, 6, 10, 12, 72, 73

I2BVP2D(), 15, 32, 77
IBVP, 7

hyperbolic, 7, 32, 74
parabolic, 6, 31, 73

IBVP2D(), 13, 31
IBVP2Dsym(), 31

Jaccobi determinant, 50

MeshQuad2Linear(), 11, 21
MeshUpgrade(), 11, 21
minimal surface, 86

potential flow, 83
Prandtl stress function, 92

ReadMeshTriangle(), 19, 20

singular problem, 81
solution

classical, 47, 48
weak, 47, 48

stiffness matrix
element, 49
global, 49

superconvergence, 36, 77

torsional rigidity, 92
triangle, 4, 19, 20, 35, 88

von Mises stress, 93

wave equation, 15, 72, 74

98

	Contents
	Introduction
	The Problems to be Examined
	The domain R2 and its boundary == 12
	The general elliptic problem
	The symmetric elliptic problem
	The symmetric eigenvalue problem
	The general parabolic problem
	The symmetric parabolic problem
	The hyperbolic problem

	Illustrative Examples
	Solving elliptic problems, static heat equation
	A symmetric problem
	Laplace equation in cylindrical coordinates
	Diffusion on an L-shaped domain
	A diffusion convection problem

	Solving eigenvalue problems
	Solving parabolic problems, dynamic heat equation
	Solving hyperbolic problems, wave equations
	Solving plane stress problems (later)

	The Commands of FEMoctave
	Commands for meshes: creation, evaluation, modification, integration
	Structure of a mesh
	Create a uniform mesh on a rectangle: CreateMeshRect()
	Using triangle: CreateMeshTriangle() and ReadMeshTriangle()
	Converting a mesh of order 1 or order 2: MeshUpgrade() and MeshQuad2Linear()
	Use delaunay() to create a mesh: Delaunay2Mesh()
	Display results on meshes, FEMtrimesh() and FEMtrisurf()
	Evaluate the gradient of a function at the nodes: FEMEvaluateGradient()
	Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP()
	Integrate a function over the domain: FEMIntegrate()
	Evaluation at arbitrary points or along lines, integration along curves: FEMgriddata()

	How to define functions
	Functions for static problems
	Functions for dynamic problems

	Solving elliptic problems
	Symmetric elliptic problems: BVP2Dsym()
	General elliptic problems: BVP2D()

	Solving eigenvalue problems: BVP2Deig()
	Solving parabolic problems: IBVP2D() and IBVP2Dsym()
	Solving hyperbolic problems: I2BVP2D()
	Internal commands in FEMoctave
	Linear elements: FEMEquation() and FEMEquationM()
	Quadratic elements: FEMEquationQuad() and FEMEquationQuadM()
	Effect of right hand side for dynamic problems: FEMInterpolWeight()
	Effect of the Dirichlet values: FEMInterpolBoundaryWeight()

	Commands from Octave-Forge packages
	External programs

	Tools for Didactical Purposes
	Observe the convergence of the error as h0
	Some Element Stiffness Matrices
	Element contributions for equilateral triangles
	From FEM to a finite difference approximation

	Behavior of a FEM solution within triangular elements
	Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix

	The Mathematics of the Algorithms
	Classical solutions and weak solutions
	Transformation, interpolation and Gauss integration
	Transformation of coordinates and integration over a general triangle
	Gauss integration on the standard triangle with 3 Gauss points
	Gauss integration on the standard triangle with 7 Gauss points

	Construction of first order elements
	Linear interpolation on a triangle
	Integration of f
	Integration of b0u
	Integration of au
	Integration of u"017Eb
	Integration over boundary segments

	Construction of second order elements
	The basis functions for a second order element and quadratic interpolation
	Determine values at the Gauss points and apply Gauss integration
	Integration of f
	Integration of b0u
	Transformation of the gradient to the standard triangle
	Partial derivatives at the nodes and second order partial derivatives
	Integration of u"017Eb
	Integration of au
	Integration over boundary segments

	Convergence of the approximate solutions uh to the exact solution u
	Dynamic problems
	Dynamic problems of the heat equation type
	Dynamic problems of the wave equation type

	Inverse power iteration or eigs() to determine small eigenvalues of positive definite matrices

	Examples, Examples, Examples
	An animated wave
	An elliptic problem with radial symmetry, superconvergence
	An example with limited regularity
	A potential flow problem
	A minimal surface problem
	Computing a capacitance
	State the problem
	Create the mesh and solve the BVP
	Compute the capacitance

	Torsion of beams, Prandtl stress function
	The setup with warp function and Prandtl stress function
	On a disk with radius R
	On a square
	On a rectangle

	Bibliography
	List of Figures
	List of Tables
	Index

