
FEMoctave, Finite Element Algorithms in Octave

Andreas Stahel, Bern University of Applied Sciences

Version 2.1.5, created on 15th May 2024

©Andreas Stahel, 2023
“FEMoctave” by Andreas Stahel, BFH, Biel, Switzerland is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.
You are free: to copy, distribute, transmit the work, to adapt the work and to make commercial use of the work. Under the following
conditions: You must attribute the work to the original author (but not in any way that suggests that the author endorses you or your use
of the work). Attribute this work as follows:
Andreas Stahel: FEMoctave, FEM algorithms in Octave.
If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

http://creativecommons.org/licenses/by-sa/3.0/

1

Table of Contents 1

1 Introduction 7

2 The Problems to be Examined 9
2.1 The domain Ω ⊂ R2 and its boundary Γ = ∂Ω = Γ1 ∪ Γ2 . 9
2.2 The general elliptic problem . 9
2.3 The symmetric elliptic problem . 10
2.4 The symmetric eigenvalue problem . 10
2.5 The general parabolic problem . 10
2.6 The symmetric parabolic problem . 10
2.7 The hyperbolic problem . 11
2.8 1D boundary value problems . 11
2.9 1D initial boundary value problems of order 1 . 12
2.10 1D initial boundary value problems of order 2 . 12
2.11 1D eigenvalue value problems . 12
2.12 Nonlinear 1D boundary value problems . 12
2.13 Dynamic nonlinear 1D initial boundary value problems . 12
2.14 Plane elasticity . 13

2.14.1 Description of strain . 13
2.14.2 Description of stress and Hooke’s law . 14
2.14.3 The plane stress problems . 16
2.14.4 The plane strain problems . 17

2.15 Elasticity problems for axisymmetric solids, using cylindrical coordinates 18

3 Illustrative Examples 21
3.1 Solving elliptic problems, static heat equations . 21

3.1.1 A symmetric problem . 21
3.1.2 Laplace equation in cylindrical coordinates . 22
3.1.3 Diffusion on an L-shaped domain . 23
3.1.4 A diffusion convection problem . 24

3.2 Solving eigenvalue problems . 24
3.3 Solving parabolic problems, dynamic heat equations . 27
3.4 Solving hyperbolic problems, wave equations . 28
3.5 Solving 1D steady state boundary value problems . 31
3.6 Solving 1D dynamic initial boundary value problems of order 1, a heat equation 32
3.7 Solving 1D dynamic initial boundary value problems of order 2, a wave equation 33
3.8 Solving nonlinear 1D boundary value problems . 34

3.8.1 A nonlinear 1D BVP solved by BVP1DNL() . 34
3.8.2 A nonlinear 1D BVP solved by successive substitution . 35

3.9 A dynamic nonlinear initial boundary value problem . 37
3.10 Plane elasticity . 38

3.10.1 A plane stress example . 38
3.10.2 A plane strain example . 40
3.10.3 A plane stress eigenvalue problem and a dynamic problem . 42

3.11 An axially symmetric elasticity example . 44

4 The Commands of FEMoctave 47
4.1 Commands for 2D meshes: creation and modification . 47

4.1.1 Structure of a mesh . 47
4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect() . 49
4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle() 50
4.1.4 Adapting meshes and creating holes by using options of CreateMeshTriangle() 52
4.1.5 Adding constraints to a node in the mesh . 55
4.1.6 Converting meshes: upgrading and downgrading . 55
4.1.7 Use delaunay() to create a mesh: Delaunay2Mesh() . 57

SHA 15-5-24

2

4.1.8 Deforming meshes by MeshDeform() . 57
4.2 Evaluation and displaying results . 58

4.2.1 Display results on meshes, FEMtrimesh(), FEMtrisurf(), and FEMtricontour() 58
4.2.2 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient() 59
4.2.3 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP() 59
4.2.4 Integrate a function over the domain: FEMIntegrate() . 60
4.2.5 Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata() 61

4.3 How to define functions . 62
4.3.1 Functions for static problems . 62
4.3.2 Functions for dynamic problems . 63

4.4 Solving elliptic problems . 63
4.4.1 Symmetric elliptic problems: BVP2Dsym() . 63
4.4.2 General elliptic problems: BVP2D() . 64

4.5 Solving 2D eigenvalue problems: BVP2Deig() . 65
4.6 Solving parabolic problems: IBVP2D() and IBVP2Dsym() . 66
4.7 Solving hyperbolic problems: I2BVP2D() . 67
4.8 Solving 1D steady state problems, BVP1D() . 67
4.9 Solving 1D dynamic problems of order 1, IBVP1D() . 71
4.10 Solving 1D dynamic problems of order 2, I2BVP1D() . 73
4.11 Solving 1D eigenvalue problems: BVP1Deig() . 74
4.12 Solving nonlinear 1D boundary value problems: BVP1DNL() . 75
4.13 Solving dynamic nonlinear 1D boundary value problems: IBVP1DNL() 76
4.14 Plane elasticity problems . 77

4.14.1 Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain() 78
4.14.2 Eigenvalue problems, PlaneStressEig(), PlaneStrainEig() 79
4.14.3 Dynamic elasticity problems, PlaneStressDynamic(), PlaneStrainDynamic() 79
4.14.4 Evaluating plane stress and plane strain solutions . 80
4.14.5 Displaying the deformed domain, ShowDeformation() . 81
4.14.6 Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress() 82
4.14.7 Evaluation of stress expressions: EvaluateVonMises(), EvaluatePrincipalStress()

and EvaluateTresca() . 83
4.14.8 Evaluation of the energy density, EvaluateEnergyDensity() 85

4.15 Solving axisymmetric elasticity problems, AxiStress() . 85
4.15.1 Evaluating axisymmetric solutions . 85
4.15.2 Evaluation of strains and stress for axisymmetric problems . 86
4.15.3 Evaluation of the energy density, EvaluateEnergyDensityAxi() 88

4.16 Internal commands in FEMoctave . 88
4.16.1 Linear elements: FEMEquation.cc and FEMEquation.m . 88
4.16.2 Quadratic elements: FEMEquationQuad.cc and FEMEquationQuad.m 89
4.16.3 Cubic elements: FEMEquationCubic.cc and FEMEquationCubic.m 89
4.16.4 Effect of right hand side for dynamic problems: FEMInterpolWeight() 89
4.16.5 Effect of the Dirichlet values: FEMInterpolBoundaryWeight() 90
4.16.6 Determine a few small eigenvalues: eigSmall() . 90
4.16.7 Generating the equations for elasticity problems . 91

4.17 External programs . 92

5 Tools for Didactical Purposes 93
5.1 Observe the convergence of the error as h→ 0 . 93
5.2 Some Element Stiffness Matrices . 95

5.2.1 Element contributions for equilateral triangles . 95
5.2.2 From FEM to a finite difference approximation . 98
5.2.3 Element stiffness matrices for 1D problems . 99
5.2.4 Element stiffness matrices for elasticity problems . 101

5.3 Behavior of a FEM solution within triangular elements . 102
5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix 105
5.5 Compare linear, quadratic and cubic elements . 107

SHA 15-5-24

3

5.6 Are second order elements C1 conforming? . 108
5.7 Superconvergence for a 1D BVP . 111
5.8 Stability of the time steppers, or lack thereof . 113
5.9 Conditional stability of the explicit time stepper for a wave equation . 115
5.10 The shear–locking effect caused by linear elements . 116
5.11 Bending of an Euler beam . 121
5.12 Eigenvalues and eigenmodes of a slender beam . 125
5.13 Adding missing constraints . 127

5.13.1 Adding a constraint for a steady state heat problem . 127
5.13.2 Adding constraints for an elasticity problem . 128

5.14 Missing boundary constraints and null spaces . 129

6 The Mathematics of the Algorithms for 2D FEM 132
6.1 Classical solutions and weak solutions . 132
6.2 A few triangular elements . 134
6.3 Transformation, interpolation and Gauss integration . 135

6.3.1 Transformation of coordinates and integration over a general triangle 135
6.3.2 Gauss integration on the standard triangle with 3 Gauss points . 136
6.3.3 Gauss integration on the standard triangle with 7 Gauss points . 137

6.4 Construction of first order elements . 138
6.4.1 Linear interpolation on a triangle . 139
6.4.2 Integration of f ϕ . 140
6.4.3 Integration of b0 uϕ . 140
6.4.4 Integration of a∇u · ∇ϕ . 141
6.4.5 Integration of u b⃗ · ∇ϕ . 142
6.4.6 Integration over boundary segments . 142

6.5 Construction of second order elements . 144
6.5.1 The basis functions for a second order element and quadratic interpolation 144
6.5.2 Determine values at the Gauss points and apply Gauss integration 145
6.5.3 Integration of f ϕ . 146
6.5.4 Integration of b0 uϕ . 147
6.5.5 Transformation of the gradient to the standard triangle . 147
6.5.6 Partial derivatives at the nodes . 150
6.5.7 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ . 151
6.5.8 Integration over boundary segments . 151

6.6 Construction of third order elements . 153
6.6.1 The basis functions for a third order element and cubic interpolation 154
6.6.2 Determine values at the Gauss points and apply Gauss integration 155
6.6.3 Integration of f ϕ and b0 uϕ . 157
6.6.4 Transformation of the gradient to the standard triangle . 157
6.6.5 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ . 160
6.6.6 Partial derivatives at the nodes . 160
6.6.7 Integration over boundary segments . 161
6.6.8 From a polynomial interpolation to the Gauss integration points 163

6.7 Convergence of the approximate solutions uh to the exact solution u . 164
6.8 Dynamic problems . 165

6.8.1 Dynamic problems of the heat equation type . 165
6.8.2 Using eigenvalues for dynamic problems of the heat equation type 167
6.8.3 Dynamic problems of the wave equation type . 167
6.8.4 Using eigenvalues for dynamic problems of the wave equation type 168

6.9 Inverse power iteration or eigs() to determine small eigenvalues of positive definite matrices 169

SHA 15-5-24

4

7 The Algorithms for 1D FEM 170
7.1 The problems to be examined . 170
7.2 Interpolation, Gauss integration and the element stiffness matrices . 171
7.3 Taking boundary conditions into account . 174
7.4 Solving the BVP with a system of linear equations . 176
7.5 Evaluation of the solution between nodes and evaluation of derivatives . 176
7.6 The first order dynamic problem . 177

7.6.1 An explicit time step . 178
7.6.2 An implicit time step . 178
7.6.3 A Crank–Nicolson time step . 178
7.6.4 An L–stable Runge–Kutta solver, DIRK . 178
7.6.5 A solver for semilinear dynamic problems . 179

7.7 The second order dynamic problem . 179
7.7.1 An implicit solver . 180
7.7.2 An explicit solver . 181

7.8 Nonlinear boundary value problems, Newton’s method and partial substitution 181

8 The Algorithms for Plane Elasticity and Axially Symmetric Elasticity 183
8.1 The plane stress problem . 183
8.2 The plane stress eigenvalue and dynamic problem . 184
8.3 Construction of first order elements . 186

8.3.1 Integration of f1 ϕ1 + f2 ϕ2 . 186
8.3.2 Integration of the terms involving derivatives of ϕ1 and ϕ2 . 186
8.3.3 The boundary integral . 187
8.3.4 Construct a weight matrix W . 187

8.4 Construction of second order elements . 188
8.4.1 Integration of f1 ϕ1 + f2 ϕ2 . 188
8.4.2 Integration of the terms involving derivatives of ϕ1 and ϕ2 . 188
8.4.3 The boundary integral . 189
8.4.4 Construct a weight matrix W . 190

8.5 Construction of third order elements . 190
8.5.1 Integration of f1 ϕ1 + f2 ϕ2 . 190
8.5.2 Integration of the terms involving derivatives of ϕ1 and ϕ2 . 191
8.5.3 The boundary integral . 192
8.5.4 Construct a weight matrix W . 193

8.6 The plane strain problem . 193
8.7 Elasticity for axially symmetric setups . 194
8.8 Construction of first order elements . 195

8.8.1 Integration of r (fr ϕr + fz ϕz) . 195
8.8.2 Integration of the terms involving derivatives of ϕz and ϕz . 195
8.8.3 The boundary integral . 197

8.9 Construction of second order elements . 197
8.9.1 Integration of r (fr ϕr + fz ϕz) . 197
8.9.2 Integration of the terms involving derivatives of ϕr and ϕz . 198
8.9.3 The boundary integral . 199

8.10 Construction of third order elements . 199
8.10.1 Integration of r (fr ϕr + fz ϕz) . 200
8.10.2 Integration of the terms involving derivatives of ϕz and ϕz . 200
8.10.3 The boundary integral . 200

9 Examples, Examples, Examples 201
9.1 An elliptic problem with variable coefficients . 201
9.2 An animated wave . 202
9.3 An elliptic problem with radial symmetry, superconvergence . 203
9.4 An example with limited regularity . 206
9.5 A potential flow problem . 207

SHA 15-5-24

5

9.6 A potential flow problem in a circular pipe . 210
9.7 A potential flow around a wing profile . 213
9.8 A minimal surface problem . 216
9.9 Computing a capacitance . 217

9.9.1 State the problem . 217
9.9.2 Create the mesh and solve the BVP . 218
9.9.3 Compute the capacitance . 220

9.10 Torsion of beams, Prandtl stress function . 220
9.10.1 The setup with the warp function and the Prandtl stress function 220
9.10.2 On a disk with radius R . 222
9.10.3 On a square . 223
9.10.4 On a rectangle . 224

9.11 Dynamic heat conduction problems . 224
9.11.1 With a narrow section in the domain . 224
9.11.2 With a section of lower thermal conductivity . 227
9.11.3 Cooling of a cylinder . 229
9.11.4 Heat waves . 233
9.11.5 Static heat equation in a ball in R3, solved as a 1D problem . 234
9.11.6 Dynamic heat equation in a cylinder, solved as a 1D problem . 237

9.12 Wave propagation, Kirchhoff diffraction . 239
9.13 Sound waves in R2 and R3 . 241

9.13.1 A sound wave in R3 with cylindrical coordinates . 241
9.13.2 A sound wave in R2 . 243
9.13.3 Sound waves in R3 and R2 as 1D problems . 244

9.14 Reflection and transmission of a wave by a change of impedance . 246
9.15 The Black–Scholes equation of mathematical finance . 247
9.16 Schrödinger’s harmonic oscillator . 250
9.17 The EIT forward problem . 251
9.18 A Catenary . 258
9.19 Stretching of a beam . 259
9.20 How a Fata Morgana is appearing . 260
9.21 Keller’s nonlinear boundary value problems . 262

9.21.1 Partial successive substitution . 262
9.21.2 Newton’s method . 262
9.21.3 Using BVP1DNL() . 263
9.21.4 A similar problem with multiple solutions . 264

9.22 A pendulum problem . 265
9.23 A BVP with multiple nonlinear contributions . 266
9.24 Fisher’s equation . 267

9.24.1 A travelling wave solution . 267
9.24.2 A dynamic solution . 269
9.24.3 A dynamic solution of the radially symmetric setup . 270

9.25 From Salt Lake City to Zürich, the shortest connection on a sphere . 271
9.25.1 A solution based on successive substitution . 271
9.25.2 A solution using BVP1DNL() . 273

9.26 A 1D nonlinear bending beam problem . 274
9.26.1 Solving the BVP using Newton’s algorithm . 275
9.26.2 Solving the BVP with the command BVP1DNL() . 276
9.26.3 Solving the BVP as final value of a dynamic problem, using IBVP1DNL() 277

9.27 Mass transfer in a porous catalyst . 278
9.28 Troesch’s equation . 280
9.29 Motion of a string . 281
9.30 A plane stress example by Wait and Mitchel . 281
9.31 A pipe under pressure . 285

9.31.1 As a plane strain problem . 286

SHA 15-5-24

6

9.31.2 As an axisymmetric problem . 290
9.31.3 The analytical solution . 291

9.32 A sphere under hydrostatic pressure . 292
9.33 A crook with a weight attached . 293
9.34 A wrench . 297
9.35 A rotating rubber cylinder . 299
9.36 A washer fastener examined as spring . 301

9.36.1 The setup . 301
9.36.2 Evaluate the force by integrating the normal stress . 303
9.36.3 Evaluate the force by an energy argument . 305
9.36.4 Comparison of linear, quadratic and cubic elements . 305
9.36.5 Effect of different boundary conditions . 306

9.37 A water dam . 306
9.38 A tuning fork . 308
9.39 Vibrations of a ring . 310
9.40 Hertz contact of a rigid cylinder with an elastic half space . 313

9.40.1 The model and the algorithm . 313
9.40.2 Evaluation and visual results . 317
9.40.3 The analytical solution based on the Hertz theory . 318
9.40.4 Parameter studies for different penetration depths . 320

9.41 Hertz contact of a rigid sphere with an elastic half space . 322
9.42 Elastic waves in solids . 327

9.42.1 A cylindrical elastic wave . 327
9.42.2 A planar elastic wave in a canal . 330
9.42.3 A planar wave moving around a turn . 333

Bibliography 336

List of Figures 337

List of Tables 340

Index 342

There is no such thing as “the perfect notes” and improvements are always possible. I welcome feedback and construc-
tive criticism. Please let me know if you use/like/dislike the package and its essential documentation. Please send your
observations and remarks to Andreas.Stahel@gmx.com .

SHA 15-5-24

mailto:Andreas.Stahel@gmx.com

1 INTRODUCTION 7

1 Introduction
• Goals of this project:

– Provide support material for teaching FEM. The material provided might help other instructors to explain or
illustrate the methods and effects of finite element algorithms.

– Use Octave to implement first, second and third order triangular elements in 2D for scalar boundary value
problems. For elasticity plane stress and plane strain problems are examined. For linear 1D boundary value
problems and initial boundary value problems second order elements are used. A nonlinear solver for 1D
problems is implemented. This leads to the Octave package FEMoctave.

– Provide examples on how to solve steady state and dynamic heat equations, wave equations and 2D elasticity
equations. A few nonlinear 1D examples are provided too.

– The source code for all demos and examples is includes in the distribution.

• Tools provided by this project:

– Find this document on the internet at https://andreasstahel.github.io/FEMoctave/FEMdoc.pdf and the complete
Octave package at https://andreasstahel.github.io/FEMoctave/FEMoctave.tgz.

– Documentation and codes are also on GitHub at https://github.com/AndreasStahel/FEMoctave and with Octave
you should be able to install FEMoctave with the command pkg install -forge femoctave . If this
fails try
pkg install https://github.com/AndreasStahel/FEMoctave/archive/v2.1.4.tar.gz

– I work exclusively with Unix systems, but it is possible to use the package on other systems by modifying the
Makefile.

– The only external program used in FEMoctave is triangle, an excellent mesh generator by Jonathan
Shewchuk. The source code of Triangle is not included. Find source code and documentation at
www.cs.cmu.edu/∼quake/triangle.html.

– Instructions on how to install Triangle on a Linux system are given in Section 4.17 on page 92.

This is not:

• an introduction to Octave (or MATLAB). Users are assumed to be familiar with the basics of using Octave . If this is
not the case, may I use the occasion for a shameless add for my book Octave and Matlab for Engineering Applications
by Springer, [Stah22].

• an introduction to FEM algorithms. For a basic (and affordable) introduction consider [TongRoss08]. The basic con-
cept is not explained in these notes for FEMoctave, but many details are spelled out. I used some of the presentations
for a class Numerical Methods for biomedical engineers at the University of Bern. In this class the main ideas of FEM
are spelled out. Find the lecture notes at andreasstahel.github.io/Notes/NumMethods.pdf.

• an introduction for engineers on when and how to use the tool finite element analysis. No attempt is made to explain
the mechanical, physical or electrical background of the examples.

• an introduction to partial differential equations (PDE). The user of FEMoctave is assumed to know which boundary
and initial boundary value problems are well posed, i.e. will have a unique solution.

The structure of this document is as follows:

1 Introduction: a self reference.

2 The Problems to be Examined: for each type of problem solvable by FEMoctave one example is presented. This
is a good starting point to find out what type of problems are examined in these notes.

3 Illustrative Examples: a few examples are are worked out, code and results shown. Read this section if you want to
start working with FEMoctave.

SHA 15-5-24

https://andreasstahel.github.io/FEMoctave/FEMdoc.pdf
https://andreasstahel.github.io/FEMoctave/FEMoctave.tgz
https://github.com/AndreasStahel/FEMoctave
https://www.cs.cmu.edu/~quake/triangle.html
https://andreasstahel.github.io/Notes/NumMethods.pdf

1 INTRODUCTION 8

4 The Commands of FEMoctave: all commands of FEMoctave are briefly explained and some documentation is
provided. This is comparable to a manual.

5 Tools for Didactical Purposes: some results and illustrations that might be useful when teaching a class on the
mathematical basics of FEM.

6 The Mathematics of the Algorithms: the mathematics of the 2D FEM algorithms is spelled out. Linear, quadratic
and cubic elements on triangles are constructed. A matrix formulation is used wherever possible.

7 The Algorithms for 1D FEM: the mathematics for second order element of one dimensional problems are spelled
out. Examined are static problems and dynamic problems of order 1 and 2, i.e. heat and wave equations.

8 Elasticity: the mathematical aspects of an FEM algorithm to solve plane stress and plane strain problems are pre-
sented. The algorithms for axially symmetric elasticity problems are explained, all leading to a matrix formulation.

9 Examples, Examples, Examples: as the title says.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 9

2 The Problems to be Examined
This section consists of a brief list all types of problems that can be solved with this software. A list of the necessary
commands is given in Table 1 on page 11. The instruction on how to use the commands are given in Section 4. Some typical
examples are worked out in Section 9.

2.1 The domain Ω ⊂ R2 and its boundary Γ = ∂Ω = Γ1 ∪ Γ2

Throughout this presentation work with bounded domains Ω ⊂ R2 with two disjoint sections Γ1 and Γ2 of the boundary Γ =
∂Ω.

• On the section Γ1 a Dirichlet boundary condition is applied, i.e. u(x, y) = g1(x, y) for a known function g1.

• On the section Γ2 a Neumann or Robin boundary condition is applied, i.e. the outer normal derivative of u equals
g2 + g3 u for known functions g2 and g3.

In the example shown in Figure 1 the solution satisfies u = +3 on the circular part Γ1 and ∂
∂yu = −1 along the x–axis.

The solution u(x, y) solves ∆u = ∇ · ∇u = div gradu = 0 and minimizes the functional

F (u) =

∫∫
Ω

1

2
∥∇u∥2 dA−

∫
Γ2

u ds

amongst all functions u which satisfy u(x, y) = +3 on Γ1.

-2 -1 0 1 2

0

0.5

1

1.5

2

x

y

Γ
1

Γ
2

Figure 1: A semi–disk as domain in R2 and a solution of a BVP

2.2 The general elliptic problem
Let Ω ⊂ R2 be a bounded domain with a nice boundary Γ, consisting of two disjoint sections Γ1 and Γ2. For given functions
a, b0, b⃗, f and gi we seek a solution of the second order boundary value problem (BVP)

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

. (1)

It is assumed that there is a unique solution u. Consult your book on the theory of PDEs to determine whether the BVP has
in fact a unique solution. Examples of this type of equation are given in Section 3.1.4.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 10

2.3 The symmetric elliptic problem

If there is no convection contribution b⃗ in (1) one ends up with a self-adjoint problem.

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

. (2)

The resulting matrix A will be symmetric and if a > 0, b0 ≥ 0 and Γ1 ̸= Ø or b0 > 0, then the BVP has a unique solution
and the resulting matrix is strictly positive definite.

Using Calculus of Variations one can show that solving (2) is equivalent to minimizing the functional F below among
all functions u satisfying u = g1 on Γ1.

F (u) =

∫∫
Ω

1

2
a ⟨∇u,∇u⟩+ 1

2
b0 u

2 − f u dA−
∫
Γ2

g2 u+
1

2
g3 u

2 ds .

Examples of this type are given in Sections 3.1.1, 3.1.2, 3.1.3, 9.4 and 9.17.

2.4 The symmetric eigenvalue problem
For given functions a, b0, f and g3 seek values of λ and nontrivial solutions u of the eigenvalue problem below.

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

(3)

An example of this type is given in Section 3.2.

2.5 The general parabolic problem
If all functions depend on time t and the spacial variables x and y consider the general dynamic heat equation.

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (t0, T]

u = g1 for (x, y, t) ∈ Γ1 × (t0, T]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (t0, T]

u = u0 on Ω at t = t0

(4)

This is an Initial Boundary Value Problem (IBVP). Mathematicians call this a parabolic problem, engineers think of dynamic
heat equations. Examples are shown in Sections 3.3 and 9.11.4.

2.6 The symmetric parabolic problem
Consider the symmetric situation of (4) to find the symmetric parabolic problem below.

ρ ∂
∂t u−∇ · (a∇u) + b0 u = f for (x, y, t) ∈ Ω× (t0, T]

u = g1 for (x, y, t) ∈ Γ1 × (t0, T]

a ∂∇u
∂n = g2 + g3 u for (x, y, t) ∈ Γ2 × (t0, T]

u = u0 on Ω at t = t0

(5)

If u(x, y) and λ are solutions of the eigenvalue problem (3) with f = g1 = g2 = 0, then the dynamic problem (5) is
solved by e−λt u(x, y). See also Section 6.8.2.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 11

2.7 The hyperbolic problem
Examine an IBVP of hyperbolic type, with the wave equation ü = ∆u as the typical example.

ρ ∂2

∂t2 u+ 2α ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (t0, T]

u = g1 for (x, y, t) ∈ Γ1 × (t0, T]

n⃗ · (a∇u+ u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (t0, T]

u = u0 on Ω at t = t0
∂
∂t u = v0 on Ω at t = t0

(6)

Examples are shown in Sections 3.4, 9.2 and 9.12. The effect of eigenvalues is described in Section 6.8.4.

command type of problem section

BVP2Dsym() solve a symmetric elliptic BVP 4.4.1

BVP2D() solve a general elliptic BVP 4.4.2

BVP2Deig() solve a symmetric elliptic eigenvalue problem 4.5

IBVP2D() solve a parabolic IBVP 4.6

IBVP2Dsym() solve a symmetric parabolic IBVP 4.6

I2BVP2D() solve a hyperbolic IBVP 4.7

BVP1D() solve a static 1D BVP 4.8

IBVP1D() solve a first order 1D IBVP 4.9

I2BVP1D() solve a second order 1D IBVP 4.10

BVP1Deig() solve a 1D eigenvalue BVP 4.11

BVP1DNL() solve a nonlinear 1D BVP 4.12

IBVP1DNL() solve a first order nonlinear 1D IBVP 4.13

PlaneStress() solve a plane stress problem 4.14.1

PlaneStrain() solve a plane strain problem 4.14.1

PlaneStressEig() solve a plane stress eigenvalue problem 4.14.2

PlaneStrainEig() solve a plane strain eigenvalue problem 4.14.2

PlaneStressDynamic() solve a dynamic plane stress problem 4.14.3

PlaneStrainDynamic() solve a dynamic plane strain problem 4.14.3

AxiStress() solve an axially symmetric elasticity problem 4.15

Table 1: Commands to solve boundary value problems, initial boundary value problems and elasticity problems

2.8 1D boundary value problems
A 1D BVP (boundary value problem) is an ordinary differential equation for the independent variable u(x) with x in an
interval x0 ≤ x ≤ xn of the form

− d

dx

(
a(x)

d u(x)

dx

)
+ b(x)

d u(x)

dx
+ c(x)u(x) = d(x) f(x) (7)

with some boundary conditions at x = x0 and x = xn.

u(xi) = gD Dirichlet

a(xi)
d u(xi)

dx = gN1 + gN2 u(xi) Neumann
(8)

The coefficient functions a(x), b(x), c(x) and d(x) will be evaluated at the Gauss points. The function f(x) and the solution
u(x) are evaluated (resp. determined) at the nodes.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 12

Find examples in Sections 3.5, 5.6, 5.7 and 9.19. In Sections 9.21, 9.24, 9.25 and 9.26 nonlinear boundary value
problems are solved.

2.9 1D initial boundary value problems of order 1
The dynamic problem is of the form

w(x)
∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t) (9)

with the initial condition u(x, t0) = u0(x) and appropriate boundary conditions. These have to be independent on time t.

Find examples in Sections 3.6, 5.8, 9.11.6 and 9.15.

2.10 1D initial boundary value problems of order 2
The dynamic problem is of the form

w2(x)
∂2 u(x, t)

∂t2
+ w1(x)

∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t) (10)

with the initial condition u(x, t0) = u0(x), ∂
∂t u(x, t0) = v0 and appropriate boundary conditions. These have to be

independent on time t.

Find examples in Sections 3.7, 5.9, 9.13.3, 9.14 and 9.29.

2.11 1D eigenvalue value problems
For given functions a, b, c, w and gN2 seek values of λ and nontrivial solutions u of the eigenvalue problem below.

− ∂

∂x

(
a(x)

∂ u(x)

∂x

)
+ b(x)

∂ u(x)

∂x
+ c(x)u(x) = λw(x)u(x) (11)

with appropriate boundary conditions

u(xi) = 0 Dirichlet

a(xi)
∂ u(xi)

∂x = gN2 u(xi) Neumann
(12)

Find examples in Sections 3.2 and 9.16.

2.12 Nonlinear 1D boundary value problems
For given functions a, b, c and d and a function f(x, u) or f(x, u, u′) search for solutions of the BVP

− ∂

∂x

(
a(x, u(x), u′(x))

∂ u(x)

∂x

)
+ b(x)

∂ u(x)

∂x
+ c(x)u(x) = d(x) f(x, u(x), u′(x)) (13)

with linear boundary conditions, Dirichlet or Neumann.

Find examples in Sections 3.8.1, 3.8.2, 9.18, 9.19, 9.20, 9.21, 9.22, 9.23, 9.24, 9.25, 9.26, 9.27 and 9.28.

2.13 Dynamic nonlinear 1D initial boundary value problems
For given functions a, b, c and d and a function f(t, x, u) search for solutions u(x, t) of the IBVP

w(x)
∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t, u(x, t)) (14)

with linear boundary conditions, Dirichlet or Neumann and a given initial condition u(x, t0) = u0(x).

Find examples in Sections 3.9, 9.24. and 9.26.3.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 13

2.14 Plane elasticity
With FEMoctave plane elasticity problems can be examined, either plane stress or plane strain.

2.14.1 Description of strain

The first goal is to determine the displacement function u⃗ = (u1, u2). It describes the displacement of arbitrary points
(x, y) ∈ Ω ⊂ R2. Based on u⃗(x, y) the infinitesimal strain tensor is given by

~x

~x+ ~u

x⃗ −→ x⃗+ u⃗(
x

y

)
−→

(
x

y

)
+

(
u1(x, y)

u2(x, y)

)

Figure 2: Deformation of an elastic solid

[
εxx εxy

εxy εyy

]
=

 ∂ u1

∂x
1
2

(
∂ u1

∂y + ∂ u2

∂x

)
1
2

(
∂ u1

∂y + ∂ u2

∂x

)
∂ u2

∂y

 .

It contains the essential information of how a small section of the large solid is deformed, see Figure 3. Obviously this can

-x
6
y

∆x

∆y

A B

C D

�
���

���
��*

u⃗

(((((((
�
�
�
�
��
(((((((

�
�
�
�
��

A′ B′

C ′
D′

(((((((((((

�
�
�
�
�
�
�
�
�
(((((((((((

�
�
�
�
�
�
�
�
�

∆x

∆y

∂ u2

∂x ∆x

∂ u1

∂x ∆x

∂ u2

∂y ∆y

∂ u1

∂y ∆y

Figure 3: Definition of strain: a rectangle before and after deformation

be used in the space R3 too, leading to the 3× 3 strain matrix (or tensor of order 2)
εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 =


∂ u1

∂x
1
2

(
∂ u1

∂y + ∂ u2

∂x

)
1
2

(
∂ u1

∂z + ∂ u3

∂x

)
1
2

(
∂ u1

∂y + ∂ u2

∂x

)
∂ u2

∂y
1
2

(
∂ u2

∂z + ∂ u3

∂y

)
1
2

(
∂ u1

∂z + ∂ u3

∂x

)
1
2

(
∂ u2

∂z + ∂ u3

∂y

)
∂ u3

∂z


and the geometric interpretations in Table 2.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 14

symbol formula interpretation

εxx
∂ u1

∂x ratio of change of length divided by length in x direction

εyy
∂ u2

∂y ratio of change of length divided by length in y direction

εzz
∂ u3

∂z ratio of change of length divided by length in z direction

εxy = εyx
1
2

(
∂ u1

∂y + ∂ u2

∂x

)
the angle between the x and y axis is diminished by 2 εxy

εxz = εzx
1
2

(
∂ u1

∂z + ∂ u3

∂x

)
the angle between the x and z axis is diminished by 2 εxz

εyz = εzy
1
2

(
∂ u2

∂z + ∂ u3

∂y

)
the angle between the y and z axis is diminished by 2 εyz

Table 2: Normal and shear strains in space

2.14.2 Description of stress and Hooke’s law

The deformation of the solid will lead to normal and shearing stress, with the units forces per area. Find a graphical
interpretation of the 6 strains in space R3 in Figure 4 and a description in Table 3.

�
�
�
�

��

�
�
�

�
��

�
�
�

�
��

�
�	x

- y

6z

-
6

��	

τyz

σz

τxz

-
6

��	

τyx

τzx

σx

-
6

��	

σy

τzy

τxy

Figure 4: Components of stress in space

With FEMoctave there are three types of boundary conditions to be examined:

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0⃗ on free boundary Γ3

(15)

The conditions can be set for each component, find the codes in Table 6, to be used when creating meshes by CreateMeshRect()
or CreateMeshTriangle().

For a linear material law the connection between stresses and strains is given by Hooke’s law and uses two material
parameters:

• E: the Young’s modulus of elasticity

• ν: the Poisson ratio, with 0 ≤ ν ≤ 1
2

FEMoctave is based on the general form of Hooke’s law for isotropic (independent on direction) materials. It is a basic
physical law1, confirmed by many measurements. The shown formulation is valid as long as all stress and strains are small.

1One can verify that for homogeneous, isotropic materials a linear law must have this form, e.g. [Sege77]

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 15

symbol description

σx normal stress at a surface orthogonal to x = const

σy normal stress at a surface orthogonal to y = const

σz normal stress at a surface orthogonal to z = const

τxy = τyx
tangential stress in y direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to y = const

τxz = τzx
tangential stress in z direction at surface orthogonal to x = const

tangential stress in x direction at surface orthogonal to z = const

τyz = τzy
tangential stress in z direction at surface orthogonal to y = const

tangential stress in y direction at surface orthogonal to z = const

Table 3: Description of normal and tangential stress in space

Hooke’s law is the foundation of linear elasticity and any book on elasticity will show a formulation, e.g. [Prze68, §2.2]2,
[Sout73, §2.7], or [Wein74, §10.1]. Hooke’s law is given by

εxx

εyy

εzz

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

 ·


σx

σy

σz

 ,


εxy

εxz

εyz

 =
1 + ν

E


τxy

τxz

τyz


(16)

or by inverting the matrix
σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


τxy

τxz

τyz

 =
E

1 + ν


εxy

εxz

εyz

 .

(17)

This leads to an elastic energy density of

W =
1

2
⟨


σx

σy

σz

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

τxz

τyz

 ,


εxy

εxz

εyz

⟩ (18)

=
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz

 ,


εxx

εyy

εzz

⟩+ (19)

+
E

1 + ν
⟨


εxy

εxz

εyz

 ,


εxy

εxz

εyz

⟩ .
2The missing factors of 2 are due to the different definition of the shear strains.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 16

2.14.3 The plane stress problems

For a plane stress problem it is assumed that there are no stresses in z–direction, i.e.

σz = τxz = τyz = 0 .

This leads to a simpler version of Hooke’s law
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν




εxx

εyy

εxy

 and
εzz = −ν

1−ν (εxx + εyy)

εxz = 0

εyz = 0

. (20)

The energy density given by equation (18) simplifies to

Wstress =
1

2
⟨


σx

σy

0

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

0

0

 ,


εxy

εxz

εyz

⟩ =
1

2
⟨


σx

σy

2 τxy

 ,


εxx

εyy

εxy

⟩

=
E

2 (1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)




εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E

2 (1− ν2)
(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
. (21)

Since
ε2xx + ε2yy + 2 ν εxx εyy = ν (εxx + εyy)

2 + (1− ν) (ε2xx + ε2yy) ≥ 0

the energy density Wstress is assured to be positive. With this the total energy of a plane stress problem can be written in
the form3

U(u⃗) = Uelast + UV ol + USurf (22)

=

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∫
Γ2

g⃗N · u⃗ ds .

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved, subject to the
boundary conditions (15). One can verify (e.g. [Stah08]) that the corresponding Euler–Lagrange equations4 are given by

− div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
= f1

−div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
= f2

(23)

If E and ν are constant, i.e. a homogeneous material, use elementary, tedious operations to find a shorter notation for the
above system of PDEs.

− E

2 (1 + ν)

(
∆u⃗+

1 + ν

1− ν
∇⃗
(
∇⃗u⃗
))

= f⃗

3We quietly dropped the constant thickness H from all expressions.
4This author is convinced that it is easier and more efficient to work with the energy to be minimized and not the system of partial differential equations.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 17

The corresponding dynamic problem for u1(x, y, t) and u2(x, y, t) with external force densities f1 and f2 is given by

− div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
+ f1 = ρ ∂2

∂t2 u1

− div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
+ f2 = ρ ∂2

∂t2 u2

(24)

The eigenvalue problem

−div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
= λ ρu1

−div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
= λ ρu2

(25)

leads to harmonic solutions of the form

cos(
√
λ t+ δ)

(
u1(x, y)

u2(x, y)

)

of the dynamic problem (24) (with f⃗ = 0⃗) with frequency ω
2π =

√
λ

2π .

Find examples in Sections 3.10.1, 9.30 9.31, 9.33, 9.34, 9.35, 9.36, 9.37, 9.38, 9.39, 9.40, 9.41 and 9.42 .

2.14.4 The plane strain problems

For a plane strain problem it is assumed that there are no strains in z–direction, i.e.

εxz = εyz = εzz = 0 .

This leads to a simpler version of Hooke’s law
σx

σy

τxy

 =
E

(1 + ν) (1− 2 ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν

 ·


εxx

εyy

εxy


σz =

E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
, τxz = τyz = 0

. (26)

Observe that

σz =
E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
= ν (σx + σy) .

Modify the material parameters ν and E to

ν⋆ =
ν

1− ν
> ν and E⋆ =

E

1− ν2
> E . (27)

Then use elementary algebra to find

ν =
ν⋆

1 + ν⋆
, 1− ν = 1− ν⋆

1 + ν⋆
=

1

1 + ν⋆

1− 2 ν

1− ν
=

1− 2 ν⋆

1+ν⋆

1− ν⋆

1+ν⋆

= 1− ν⋆ and
ν

1− 2 ν
=

ν⋆

1+ν⋆

1− 2 ν⋆

1+ν⋆

=
ν⋆

1− ν⋆

E = E⋆ (1− ν2)

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 18

leading to a different notation for Hooke’s law for the plane strain situation.
σx

σy

τxy

 =
E

1 + ν


1−ν
1−2 ν

ν
1−2 ν 0

ν
1−2 ν

1−ν
1−2 ν 0

0 0 1

 ·


εxx

εyy

εxy

 =
E⋆ (1− ν2)

1 + ν


1

1−ν⋆
ν⋆

1−ν⋆ 0
ν⋆

1−ν⋆
1

1−ν⋆ 0

0 0 1

 ·


εxx

εyy

εxy



=
E⋆

(1− ν⋆) (1 + ν⋆)


1 ν⋆ 0

ν⋆ 1 0

0 0 1− ν⋆

 ·


εxx

εyy

εxy

 .

This is identical to Hooke’s law (20) for the plane stress situation, but with E⋆ and ν⋆ instead of E and ν. The energy
density is in this case given by

Wstrain =
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E (1− ν)
2 (1 + ν) (1− 2 ν)

(
ε2xx + ε2yy + 2

ν

1− ν
εxxεyy + 2

1− 2 ν

1− ν
ε2xy

)

=
1

2

E⋆

1− (ν⋆)2
⟨


1 ν⋆ 0

ν⋆ 1 0

0 0 2 (1− ν⋆)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E⋆

2 (1− (ν⋆)2)

(
ε2xx + ε2yy + 2 ν⋆ εxxεyy + 2 (1− ν⋆) ε2xy

)
(28)

Now the plane strain energy density has the same form as the plane stress energy density, but with modified constants.

Wstress =
E

2 (1− ν2)
(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
.

For a plane strain problem Bernoulli’s principle is used and the corresponding total energy minimized, similar to expres-
sion (22). As a consequence the PDE (23), the dynamic equation (24) and the eigenvalue problem (25) can be adapted to
the plane strain situation by using E⋆ and ν⋆.

Find examples in Sections 3.10.2, 3.10.3 and 9.37.

2.15 Elasticity problems for axisymmetric solids, using cylindrical coordinates
Examine a domain (x, r) = (r, z) ∈ Ω ⊂ R2 and revolve this domain about the z–axis to generate a volume in space R3.
Assume that the displacements are axisymmetric, i.e.

u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

 =


ur(r, z) cosφ

ur(r, z) sinφ

uz(r, z)

 .

To determine the elastic energy in this deformed solid determine5 the strains in the plane φ = 0.

εxx =
∂ u1
∂x

= cos2 φ
∂ ur
∂r

+
sin2 φ

r
ur =

∂ ur
∂r

5For functions f(x, y, z) = F (r, φ, z) (i.e. the identical function written in Cartesian and polar coordinates) use the computational rule (chain rule)
to conclude

∂f

∂x
= cosφ

∂F

∂r
−

sinφ

r

∂F

∂φ
and

∂f

∂y
= sinφ

∂F

∂r
+

cosφ

r

∂F

∂φ
.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 19

εyy =
∂ u2
∂y

= sin2 φ
∂ ur
∂r

+
cos2 φ

r
ur =

1

r
ur

εzz =
∂ uz
∂z

2 εxy =
∂ u1
∂y

+
∂ u2
∂x

= cosφ sinφ
∂ ur
∂r
− cosφ sinφ

r
ur + cosφ sinφ

∂ ur
∂r
− sinφ cosφ

r
ur = 0

2 εxz =
∂ u1
∂z

+
∂ u3
∂x

= cosφ
∂ ur
∂z

+ cosφ
∂ uz
∂r
− sinφ

r

∂ uz
∂φ

=
∂ ur
∂z

+
∂ uz
∂r

2 εyz =
∂ u2
∂z

+
∂ u3
∂y

= sinφ
∂ ur
∂z

+ sinφ
∂ uz
∂r

+
cosφ

r

∂ uz
∂φ

= 0

This leads to 

εxx

εyy

εzz

εxy

εxz

εyz


=



∂ ur

∂r
1
r ur
∂ uz

∂z

0
1
2 (

∂ ur

∂z + ∂ uz

∂r)

0


=



εrr

εφφ

εzz

0

εrz

0


.

Observe that the angular strain εφφ is given by the displacement εφφ = 1
r ur. At nodes with r = 0 use de l’Hôtipal’s rule

to conclude εφφ = limr→0
ur(r,z)

r = ∂ ur(0,z)
∂r = εxx(0, z).

The energy density (18) in the rz–plane at angle φ = 0 is given by

W (r, z) =
1

2
⟨


σx

σy

σz

 ,


εxx

εyy

εzz

⟩+ ⟨


τxy

τxz

τyz

 ,


0

εxz

0

⟩

=
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν ν

ν 1− ν ν

ν ν 1− ν




εrr
1
r ur

εzz

 ,


εrr
1
r ur

εzz

⟩+ E

1 + ν
ε2rz

=
1

2

E

(1 + ν) (1− 2 ν)

(
(1− ν) (ε2rr + ε2zz +

1

r2
u2r) + 2 ν (εrrεzz +

1

r
ur (εrr + εzz))

)
+

+
E

1 + ν
ε2rz .

To find the elastic energy in the deformed solid this expression can be integrated with respect to the angle φ, leading to an
integral over the domain Ω ⊂ R2. The contributions to the total energy by the volume and surface forces lead to similar
expression, and finally to the total energy, similar to (22).

U(u⃗) = Uelast + UV ol + USurf (29)

=

∫∫
Ω

2π r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) (ε2rr + ε2zz +

1

r2
u2r) + 2 ν (εrrεzz +

1

r
ur (εrr + εzz))

)
dA+

+

∫∫
Ω

2π r E

1 + ν
ε2rz dA−

∫∫
Ω

2π r f⃗ · u⃗ dA−
∫
Γ2

2π r g⃗N · u⃗ ds .

Some of the contributions are similar to the elastic energy for plane stress problems (21) or (22), i.e.

Wstress =
E

2 (1− ν2)
(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
,

but there are some more contributions. The factor r will change all expressions for the element stiffness matrices, i.e. new,
slightly more complex Octave codes are required.

SHA 15-5-24

2 THE PROBLEMS TO BE EXAMINED 20

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved, subject to
the boundary conditions (15).

Find examples in Sections 3.11, 9.31.2, 9.32, 9.35, 9.36 and 9.41.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 21

3 Illustrative Examples
Solving a BVP (Boundary Value Problem) or an IBVP (Initial Boundary Value Problem) with FEM (Finite Element Method)
usually involves three steps:

1. Generate the domain with the mesh to be used for the problem. With this step the type of element can be selected, i.e.
linear, quadratic or cubic. The type of boundary conditions are specified.

2. Define the functions describing the problem and then apply the finite element algorithm to generate an approximate
solution.

3. Visualize and analyze the obtained solution.

For all three steps FEMoctave provides tools and the following examples illustrate the procedures.

3.1 Solving elliptic problems, static heat equations
3.1.1 A symmetric problem

On a rectangle Ω = [0, 1] × [0, 2] with Dirichlet boundary Γ1 at x = 0 and at y = 0 and Neumann boundary Γ2 at x = 1
and at y = 2 seek a solution of

−∆u = 0.25 for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

∂ u
∂n = 0 for (x, y) ∈ Γ2

.

The solution is computed and displayed with the help of three commands.

• Divide the x and y axis in subintervalls of length 0.1 and generate the resulting rectangular mesh using CreateMeshRect().
Use the options ...,-1,-2,-1,-2) to indicate the boundary conditions at the four edges in order lower, upper,
left and right. In this example use the order Dirichlet, Neumann, Dirichlet, Neumann.

• Use BVP2Dsym() with constant coefficients to generate and solve the system of linear equation by the FEM.

• Use FEMtrimesh() to display the solution.

y
x

0

0.02

2

0.04

0.06

0.08

0.1

0.12

1.5
1

1
0.8

0.6
0.40.5

0.20 0

Figure 5: Solution of −∆u = 0.25 on a rectangle

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 22

LaplaceRectangle.m
FEMmesh = CreateMeshRect([0:0.1:1],[0:0.1:2],-1,-2,-1,-2);
%%FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment to use quadratic elements
%%FEMmesh = MeshUpgrade(FEMmesh,'cubic'); %% uncomment to use cubic elements

u = BVP2Dsym(FEMmesh,1,0,0.25,0,0,0);
figure(1); FEMtrimesh(FEMmesh,u); xlabel('x'); ylabel('y');

Find the result in Figure 5. The above code is using linear elements. To use quadratic or cubic elements uncomment one of
the lines with MeshUpgrade().

3.1.2 Laplace equation in cylindrical coordinates

The Laplace operator in cylindrical coordinates is given by

∆u =
∂2 u

∂x2
+
∂2 u

∂y2
+
∂2 u

∂z2
=

1

ρ

∂

∂ρ

(
ρ
∂ u

∂ρ

)
+

1

ρ2
∂2 u

∂θ2
+
∂2 u

∂z2
.

Assuming that the solution is independent on the angle θ, then the Laplace equation −∆u(ρ, z) + b0(ρ, z) = f(ρ, z) is
given by

− ∂

∂ρ

(
ρ
∂ u

∂ρ

)
− ∂

∂z

(
ρ
∂ u

∂z

)
+ ρ b0(ρ, z) = ρ f(ρ, z) .

Thus it is in the form of equation (2), with x = ρ and y = z. As an example consider b0(ρ, z) = 10 and f(ρ, z) = 2 z . The
domain Ω to be examined is given by 0 ≤ ρ ≤ 2 and −1 ≤ z ≤ 2 and the boundary conditions are

∂ u(0, z)

∂ρ
= 0 symmetry for −1 < z < 2

ρ
∂ u(2, z)

∂ρ
= −1 flux out of domain for −1 < z < 2

u(ρ,−1) = u(ρ, 2) = 0 given value for 0 < ρ < 2 .

Since the coefficient functions in (2) are not constants define these functions in Octave and then use BVP2Dsym() to solve
the problem. Observe that both Neumann boundary conditions are described by the same function g2(ρ, z) = −ρ

2 , since
g2(0, z) = 0 and g2(2, z) = −1. The code is shown below and find the result in Figure 6.

Figure 6: Solution of the Laplace equation in cylindrical coordinates

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 23

LaplaceCylindrical.m
FEMmesh = CreateMeshRect(linspace(0,2,20),linspace(-1,2,30),-1,-1,-2,-2);
%%FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment to use quadratic elements
function res = f(rz,dummy) res = rz(:,1)*2.*rz(:,2); endfunction
function res = b0(rz,dummy) res = 10*rz(:,1); endfunction
function res = a(rz,dummy) res = rz(:,1); endfunction
function res = g2(rz) res = -1*rz(:,1)/2; endfunction

u = BVP2Dsym(FEMmesh,'a','b0','f',0,'g2',0);
FEMtrimesh(FEMmesh,u); xlabel('\rho'); ylabel('z');

3.1.3 Diffusion on an L-shaped domain

Examine a BVP on an L-shaped domain, as created in Section 4.1. The equation to be solved is

−∆u = 1 for (x, y) ∈ Ω
∂ u
∂n = −2u for (x, y) ∈ Γ

.

For this problem there is no Dirichlet condition and it is solved in three steps.

• Generate the L-shaped domain with the help of CreateMeshTriangle().

• Solve the equations with BVP2Dsym().

• Display the result with FEMtrimesh() and FEMtricontour().

• The code below uses linear elements. Uncommenting the line with MeshUpgrade() will solve the same problem
using second or third order elements.

Find the code below and the result in Figure 7.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

y

x

Figure 7: Solution of a diffusion problem on a L-shaped domain

DiffusionLshape.m
nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
FEMmesh = CreateMeshTriangle('Ldomain',nodes,0.02);
FEMmesh = MeshUpgrade(FEMmesh,'cubic'); %% uncomment to use cubic elements

u = BVP2Dsym(FEMmesh,1,0,1,0,0,-2);
figure(1); FEMtrimesh(FEMmesh,u); xlabel('x'); ylabel('y'); view(-30,30)
figure(2); clf; FEMtricontour(FEMmesh,u); xlabel('x'); ylabel('y');

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 24

3.1.4 A diffusion convection problem

Examine a steady state heat problem on the square Ω = [0, 2]× [0, 2] with constant heating (f(x, y) = +0.1) and a strong
convection in x direction (bx(x, y) = 10) and a weaker convection in y direction (by(x, y) = 5). This leads to the PDE

−∆u+ 10
∂ u

∂x
+ 5

∂ u

∂y
= 0.1 .

The temperature on all of the boundary vanishes. This is a problem of type (1). Solve the BVP with the code below and find
the resulting level curves of the temperature in Figure 8.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

0.002

0.004

0.006

0.008

0.01

0.012

Figure 8: Solution of a diffusion convection problem

DiffusionConvection.m
FEMmesh = CreateMeshRect(linspace(0,2,51),linspace(0,2,51),-1,-1,-1,-1);
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);

figure(1); clf; FEMtricontour(FEMmesh,u,10);
colorbar(); xlabel('x'); ylabel('y'); grid on

The above code uses elements of order 1. To use elements of order 2 on a similar mesh one can first generate a mesh
with linear elements and then use MeshUpgrade() to generate a mesh with elements of order 2. Convert the mesh back
to linear elements, but with the identical nodes, i.e. use MeshQuad2Linear() and then display.

DiffusionConvection.m
FEMmesh = CreateMeshRect(linspace(0,2,26),linspace(0,2,26),-1,-1,-1,-1);
FEMmesh = MeshUpgrade(FEMmesh, 'quadratic'); %% make a mesh with elements of order 2
u = BVP2D(FEMmesh,1,0,10,5,0.1,0,0,0);
FEMmesh = MeshQuad2Linear(FEMmesh); %% convert to identical mesh with linear elements

figure(1); clf; FEMtricontour(FEMmesh,u,10);
colorbar(); xlabel('x'); ylabel('y'); grid on

3.2 Solving eigenvalue problems
As a first eigenvalue problem compute the eigenvalues and eigenfunctions of the Laplace operator on the unit disc with
Dirichlet boundary conditions, i.e. determine a scalar λ and nontrivial function u such that

−∆u = λu on unit disc and u = 0 on the boundary.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 25

The goal is to compute the four smallest eigenvalues and display the fourth eigenfunction. Proceed in three steps.

• Use CreateTriangleMesh() to generate the mesh on the unit disc.

• Use BVP2Deig() with constant coefficients to generate and solve the eigensystem.

• Use FEMtrimesh() to display the fourth eigenfunction. Find the result in Figure 9.

• To use second order element, use MeshUpgrade().

The computed eigenvalues are λ1 ≈ 5.7857, λ2 = λ3 ≈ 14.6959 and λ4 ≈ 26.4169. These values coincide nicely with the
squares of the first zeros of the Bessel functions J0(r), J1(r) and J2(r), the values of the exact problem.

Figure 9: The fourth eigenfunction of ∆u = λu on a disc

EigenvaluesDisc.m
xM = 0; yM = 0; R = 1; N = 160; alpha = linspace(0,N/(N+1)*2*pi,N)';
xy = [xM+R*cos(alpha),yM+R*sin(alpha),-ones(size(alpha))];

FEMmesh = CreateMeshTriangle('circle',xy,0.0005);
%%FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
%%%%%%% solve the eigenvalue problem, show the eigenvalues
%%[la,ve] = BVP2Deig(FEMmesh,1,0,1,0,4);
[la,ve,errorbound] = BVP2Deig(FEMmesh,1,0,1,0,4);
eigenvalues = la
errorbound
exact_values = [fsolve(@(x)besselj(0,x),2.3), fsolve(@(x)besselj(1,x),3.8),...

fsolve(@(x)besselj(2,x),5)].ˆ2
figure(1); FEMtrimesh(FEMmesh,ve(:,4)); xlabel('x'); ylabel('y');

The result shows the first 4 eigenvalues and their corresponding error bounds. The error bounds of 10−28 for the first
eigenvalue is not to be taken too seriously, it just means accurate up to machine precision as eigenvalue of the global stiffness
matrix. Observe that these are the eigenvalues of the FEM approximation to the boundary value problem. They are close to
the eigenvalues of the continuous problem, i.e. the squares of the zeros of the Bessel functions.

eigenvalues = 5.7857
14.6959
14.6961
26.4169

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 26

errorbound = 2.5479e-12 1.6604e-28
2.9179e-12 7.0763e-16
3.2020e-12 7.2782e-15
3.5589e-12 2.3726e-28

exact_values = 5.7832 14.6820 26.3746

In cylindrical coordinates the Laplace operator is given by

∆u(r, θ) =
1

r

∂

∂r
(r
∂ u(r, θ)

∂r
) +

1

r2
∂ u(r, θ)

∂θ2
.

For purely radial solutions the eigenvalue problem on a disk of radius R leads to

−(r u′(r))′ = λ r u(r) for 0 < r < R

u′(0) = 0

u(R) = 0

.

This equation can be solved with the help of BVP1Deig(). Find the graphical result for the first four radial eigenfunctions
in Figure 10(a). The exact values are the squares of the zeros6 of the Bessel function J0(r). Obviously the first eigenvalue
coincides with the above 2D approach. The other eigenvalues differ, since the above code takes angular dependence into
account, while BVP1Deig() examines radial dependence exclusively.

EigenvaluesDisk1D.m
R = 1; N = 40; interval = linspace(0,R,N)';
f_r = @(r)r;
[r,eVal,eVec] = BVP1Deig(interval,f_r,0,0,f_r,[0,0],0,4);

figure(1); plot(r,eVec); xlabel('r'); ylabel('u');
legend('1','2','3','4','location','southeast')

eVal_FEM = eVal'
exact_values = [fsolve(@(x)besselj(0,x),2.3),fsolve(@(x)besselj(0,x),5.4),...

fsolve(@(x)besselj(0,x),9),fsolve(@(x)besselj(0,x),12)].ˆ2
-->
eVal_FEM = 5.7832 30.4713 74.8872 139.0416
exact_values = 5.7832 30.4713 74.8866 139.0403

To obtain the eigenfunctions with angular dependence use separation of variables. With function f(r, θ) = u(r) sin(n θ+
δ) obtain

∆f(r, θ) =
1

r

∂

∂r
(r
∂ f(r, θ)

∂r
) +

1

r2
∂ f(r, θ)

∂θ2

=

(
1

r

∂

∂r
(r
∂ u(r

∂r
)− n2 1

r2
u(r)

)
sin(n θ + δ) .

Thus the corresponding eigenvalue problem is

−(r u′(r))′ + 1
r n

2 u(r) = λ r u(r) for 0 < r < R

u′(0) = 0

u(R) = 0

.

Find the result for n = 1 of BVP1Deig() in Figure 10(b). The exact values are the squares of the zeros of the Bessel
function Jn(r).

6The function fsolve() is used to determine the zeros. To find approximate values use a plot of the function besselj(0,x).

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 27

0 0.2 0.4 0.6 0.8 1
-8

-6

-4

-2

0

2

4

u

r

1
2
3
4

(a) pure radial dependence u(r)

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

r

u

1
2
3
4

(b) with angular dependence u(r) sin(θ)

Figure 10: The first four radial eigenmodes of the Laplace operator on a disk of radius 1, for u(r) and u(r) sin(θ)

EigenvaluesDisk1D.m
n = 1; n2_r = @(r)nˆ2./r;
[r,eVal2,eVec2] = BVP1Deig(interval,f_r,0,n2_r,f_r,[0,0],0,4);

figure(2); plot(r,eVec2); xlabel('r'); ylabel('u');
legend('1','2','3','4','location','southeast')

eVal2_FEM = eVal2'
exact_values2 = [fsolve(@(x)besselj(n,x),4),fsolve(@(x)besselj(n,x),7),...

fsolve(@(x)besselj(n,x),10),fsolve(@(x)besselj(n,x),13)].ˆ2
-->
eVal2_FEM = 14.682 49.219 103.500 177.523
exact_values2 = 14.682 49.218 103.499 177.521

3.3 Solving parabolic problems, dynamic heat equations
As an example solve the dynamic heat equation

∂ u

∂t
−∆u+ 10

∂ u

∂x
+ 5

∂ u

∂y
= 0.1 for 0 < x, y < 2

with zero Dirichlet boundary conditions and the initial temperature

u(0, x, y) = u0(x, y) = 0.005x (2− x)2 y (2− y) .

The solution is computed at 7 equally spaced times ti between 0 and 0.1. In-between 10 steps are taken, but the solution is
not returned. Find the result of the code below in Figure 11. At time 0 the maximal value is attained at (x, y) = (23 , 1). The
convection term +10 ∂ u

∂x + 5 ∂ u
∂y then moves the point of maximal temperature to the upper right section of the square. For

large times t the solution will converge to the steady state solution shown in Figure 8 in Section 3.1.4.

HeatDynamic.m
%% generate the mesh
FEMmesh = CreateMeshRect(linspace(0,2,31),linspace(0,2,31),-1,-1,-1,-1);
x = FEMmesh.nodes(:,1);y = FEMmesh.nodes(:,2);
%% setup and solve the initial boundary value problem
m=1; a=1; b0=0; bx=10; by=5; f=0.1; gD=0; gN1=0; gN2=0;
t0=0; tend=0.1 ; steps = [6,10];
u0 = zeros(length(FEMmesh.nodes),1);

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 28

u0 = 0.005*(2-x).ˆ2.*x.*y.*(2-y);
[u_dyn,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,f,gD,gN1,gN2,u0,t0,tend,steps);
%% show the animation on screen
u_max = max(u_dyn(:));
for t_ii = 1:length(t)
figure(2); FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
xlabel('x'); ylabel('y'); caxis([0,u_max]); axis([0 2 0 2 0 u_max]); drawnow();
figure(3); clf; FEMtricontour(FEMmesh.elem,x,y,u_dyn(:,t_ii),linspace(0,0.99*u_max,11))
xlabel('x'); ylabel('y'); caxis([0,u_max]); drawnow();
pause(1)

endfor

3.4 Solving hyperbolic problems, wave equations
As an example solve the wave equation

∂2 u

∂t2
−∆u = 0 for x2 + y2 < 6

with zero Dirichlet boundary conditions, the initial displacement

u(0, x, y) = u0(x, y) = 0.1 exp(−(x− 1)2 − y2) (R2 − x2 − y2)/R2

and zero initial velocity v0 = 0. This assures compatible initial values, i.e. the boundary condition is satisfied at time t = 0.
The solution is computed at 15 equally spaced times ti between 0 and 7. In-between 30 steps are taken, but the solution is
not returned. The solution is returned at 15 times, leading to Figure 12. The initial hump is traveling towards the boundary
of the circle with speed 1, where it is reflected. More examples are shown in Sections 9.2 and 9.13.

WaveDynamic.m
%% generate a circle
alpha = linspace(0,2*pi,101)'; alpha = alpha(1:end-1); R = 6;
xy = [R*cos(alpha),R*sin(alpha),-ones(size(alpha))];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle('Circle',xy,0.03);

else %% quadratic elements
FEMmesh = CreateMeshTriangle('Circle',xy,4*0.03);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

endif

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
v0 = zeros(size(x));
u0 = 0.1*exp(-1*((x-1).ˆ2+y.ˆ2)); u0 = u0.*(Rˆ2-x.ˆ2-y.ˆ2)/Rˆ2;
%% setup and solve the initial boundary value problem
m=1; d=0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=7 ; steps=[14,30];
tic();
[u_dyn,t] = I2BVP2D(FEMmesh,m,d,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);
toc()

figure(1) %% show the animation on screen
for t_ii = 1:length(t)
FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
xlabel('x'); ylabel('y'); axis([-R R -R R -0.05 0.05])
caxis([-0.05 0.05]); text(4,-2,0.04,sprintf('t=%2.1f',t(t_ii)))
drawnow(); pause(0.3)

endfor
-->
Elapsed time is 0.93231 seconds.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 29

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

Figure 11: Solution of a dynamic heat equation

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 30

Figure 12: Solution of a wave equation

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 31

3.5 Solving 1D steady state boundary value problems
To solve the BVP

−u′′(x) = (1− x)2 for 0 ≤ x ≤ 3

u(0) = 2

u′(3) = −2

on an interval with 19 nodes use the code in ODE1.m, leading to Figure 13(a).

• The initial grid consists onN−1 = 9 subintervals. The algorithm adds the midpoints and thus there are 2 ·9+1 = 19
nodes.

• The Dirichlet condition u(0) = 2 allows to remove one equation and consequently A will be a 18× 18 matrix.

• Of the possible 18 · 18 = 324 entries in the stiffnes matrix A only 68 are different from zero. The nonzero entries are
in a band of width 5 around the diagonal of A, visible in Figure 13(b). This figure was generated by (temporarily)
adding a command spy(A) in the code BVP1D.m.

ODE1.m
N = 10; x = linspace(0,3,N);
[xn,u] = BVP1D(x,1,0,0,1,@(x)(1-x).ˆ2,2,[-2,0]);
figure(1); plot(xn,u)

xlabel('x'); ylabel('u')

0 0.5 1 1.5 2 2.5 3
2

2.2

2.4

2.6

2.8

3

3.2

3.4

u

x
(a) the solution u(x)

0 5 10 15

0

5

10

15

nnz	=	68

(b) the sparsity of A

Figure 13: The solution for a simple 1D boundary value problem and the sparsity of the matrix A

The constant and uniform heating of a ball of radius R can be described by a boundary value problem. The constant f
indicates how much thermal energy is added to the ball per volume and time.

− ∂
∂r (r

2 ∂ u(r)
∂r) = r2 f for 0 ≤ r ≤ R

∂
∂r u(0) = 0

u(R) = 0

This BVP determines the steady state solution. The code below and the resulting Figure 14(a) confirms that the maximal
temperature is attained at the center of the ball.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 32

0 1 2 3 4 5
0

2

4

6

8

10

12

14
te
m
p
e
ra
tu
re
	u

radius	r
(a) steady state solution

0 1 2 3 4 5
0

500

1000

1500

2000

th
e
rm
a
l	e
n
e
rg
y

radius	r

energy	generated
energy	flux

(b) heat flux

Figure 14: The solution of a steady state heat problem and the heat flux across spheres of radius r

HeatBall1D.m
R = 5; f = 3; N = 10; r = linspace(0,R,N);
[r,u] = BVP1D(r,@(r)r.ˆ2,0,0,@(r)r.ˆ2,f,[0,0],0);
figure(1); plot(r,u); xlabel('radius r'); ylabel('temperature u')

The thermal energy generated inside the radius r is given by f 4π
3 r3 and should be equal to the flux through the sphere

with radius r, i.e. 4π r2 ∂ u(r)
∂r . The code below and the resulting Figure 14(b) confirms this observation.

HeatBall1D.m
r_fine = linspace(0,R,1001);
[u_fine,du_fine] = pwquadinterp(r,u,r_fine);

figure(2); plot(r_fine,f*4/3*pi*r_fine.ˆ3,r_fine,-4*pi*r_fine.ˆ2.*du_fine)
xlabel('radius r'); ylabel('thermal energy')
legend('energy generated','energy flux','location','northwest')

3.6 Solving 1D dynamic initial boundary value problems of order 1, a heat equation
The initial boundary value problem describing the dynamics of heating a ball with radiusR and initial temperature u(r, 0) =
u0(r) = 0 is given by

r2 ∂
∂t u(x, t)−

∂
∂r (r

2 ∂
dr u(r, t)) = r2 f(r, t) for 0 < r < R and t > 0
∂
∂r u(0, t) = 0 for t > 0

u(R, t) = 0 for t > 0

u(r, 0) = 0 for 0 < r < R

.

This assumes that the temperature u(r, t) depends on time t and radius r only and the temperature on the boundary r = R
is kept at 0 . Find the graphical output of the code below in Figures 15 and 16.

HeatingBallRadial.m
R = 3; BCleft = [0,0]; BCright = 0; f = 1;
u0 = 0; t0 = 0; t_end = 3;
steps = [10,10]; interval = linspace(0,R,11);
r_square = @(r) r.ˆ2;
[r,u,t] = IBVP1D(interval,r_square,r_square,0,0,r_square,f,BCleft,BCright,...

u0,t0,t_end,steps);

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 33

figure(1); plot(r,u(:,end))
xlabel('radius r'); ylabel('temperature u at t=t_{end}')

figure(2); plot(t,u(1,:))
xlabel('time t'); ylabel('temperature u at r=R')

figure(3); mesh(t,r,u)
xlabel('time t'); ylabel('radius r'); zlabel('temperature u')

figure(4); contour(t,r,u,[0.25:0.25:1.5])
xlabel('time t'); ylabel('radius r');

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

radius	r

te
m
p
e
ra
tu
re
	u
	a
t	
t=
t e
n
d

(a) at final time t = tend

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

time	t
te
m
p
e
ra
tu
re
	u
	a
t	
r=
R

(b) at border r = R

Figure 15: The solution of dynamic heating of a ball, u as function of r or t

3
2.5

2
1.5

radius	r 1
0.5

0 0

0

0.5

1

te
m
p
e
ra
tu
re
	u

1.5

2

32.521.5
time	t

10.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

time	t

ra
d
iu
s
	r

Figure 16: The solution of dynamic heating of a ball, u as function of r and t. The contours are at levels u = 0.25, 0.50,
0.75, 1.00 and 1.25.

3.7 Solving 1D dynamic initial boundary value problems of order 2, a wave equation
The initial boundary value problem describing the dynamics of a vibrating string with initial displacement

u(x, 0) = u0(x) =

{
sin(x) for 0 ≤ x ≤ π
0 for π ≤ x ≤ 3π

and initial velocity
∂

∂t
u(x, 0) = u1(x) =

{
− cos(x) for 0 ≤ x ≤ π
0 for π ≤ x ≤ 3π

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 34

is given by
∂2

∂t2 u(x, t)−
∂2

∂x2 u(x, t)) = 0 for 0 < x < 3π and t > 0

u(0, t) = 0 for t > 0
∂
∂x u(3π, t) = 0 for t > 0

u(x, 0) = u0(x) for 0 < x < 3π
∂
∂t u(x, 0) = u1(x) for 0 < x < 3π

.

Find the graphical output of the code below in Figures 17 and 18.

Wave1D.m
a = 1; b = 0; c = 0; d = 1; f = 0;
w2 = 1; w1 = 0; BCleft = 0; BCright = [0,0];
t0 = 0; tend = 25; steps = [100,20];
interval = linspace(0,3*pi,51)';
u0 = @(x)sin(x).*(x<=pi); u1 = @(x)-cos(x).*(x<=pi);

[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);

figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(x),max(x)])

figure(2); contour(t,x,u,21); xlabel('time t'); ylabel('position x');
colorbar

The initial hump of the form sin(x) for 0 ≤ x ≤ π is moving to the right with speed c = 1. At the border at x = 3π the
pulse is reflected, caused by the Neumann boundary condition ∂

∂x u(ßπ, t) = 0. Then is is moving back toward the border
at x = 0. There it is reflected again, but with the negative of the amplitude, caused by the Dirichlet boundary condition
u(0, t) = 0.

Figure 17: The amplitude of a vibrating string, u as function of x and t, the surface

3.8 Solving nonlinear 1D boundary value problems
3.8.1 A nonlinear 1D BVP solved by BVP1DNL()

As example consider the boundary value problem

− d2

dx2 u(x) = 1
2 + α (xu(x) + sin(u(x)) for −1 < x < 2

u(−1) = 1

u(+2) = 4

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 35

Figure 18: The amplitude of a vibrating string, u as function of x and t, the contour lines

with the parameter α = 0.1 . The right hand side and its partial derivative are given by

f(x, u) =
1

2
+ α (xu(x) + sin(u(x)))

∂

∂u
f(x, u) = 0 + α (x+ cos(u(x)))

and as initial guess for the solution use u0(x) = 1 + x, which satisfies the boundary conditions. This nonlinear problem
is then solved by the code below in NL Newton.m . The iteration stopped after 2 steps. The progress of the iteration is
displayed and the size of the last correction applied is ≈ 1 · 10−7 .

NL Newton.m
interval = linspace(-1,2,40)';
al = +0.1;
f = {@(x,u)0.5+al*(x.*u+sin(u)), @(x,u)+al*(x+cos(u))};
BCleft = 1; BCright = 4;
u0 = @(x)2+x;
[x,u,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,u0,'Display','iter');
inform
figure(1); plot(x,u); xlabel('x'); ylabel('u')
-->
iteration 1, RMS(correction) = 1.465119e-02, RMS(phi) = 1.464906e-02
iteration 2, RMS(correction) = 1.065692e-07, RMS(phi) = 1.065692e-07

inform = scalar structure containing the fields:
info = 1
iter = 2
AbsError = 1.0657e-07

3.8.2 A nonlinear 1D BVP solved by successive substitution

To find the shortest connection of the form y = u(x) between two points at x = a and x = b the length functional

L(u) =

∫ b

a

√
1 + (u′(x))2 dx

has to be minimized. The corresponding Euler–Lagrange equation is

d

dx

(
1√

1 + (u′(x))2
d u(x)

du

)
= 0 . (30)

As example search the connection between (x, y) = (0, 1) and (1, 2), i.e. with the two boundary conditions u(0) = 1 and
u(1) = 2. The straight line is easily determined by BVP1DNL().

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 36

ShortestConnection.m
interval = linspace(0,1,21)';
a = @(x,u,du) 1./sqrt(1+du.ˆ2);
u0 = @(x)2-cos(2*pi*x);
[x,u,inform] = BVP1DNL(interval,a,0,0,1,0,1,2,u0,'Tol',1e-4);
figure(1); plot(x,u); xlabel('x'); ylabel('u')
inform
-->
inform = scalar structure containing the fields:

info = 1
iter = 8
AbsError = 1.1468e-04

Since the coefficient
a(x, u, u′) =

1√
1 + (u′)2

depends on u′ a successive substitution is used and it takes many iteration to converge.

As second problem search for the shortest connection with u(0) = 1 and a(u′(1))u′(1) = α, i.e.

1√
1 + (u′(1))2

u′(1) = α .

For α = 0.5 the code below generates the result with 7 iterations. At the end of the code the values of u(1), u′(1) and the
boundary condition are computed.

ShortestConnection.m
interval = linspace(0,1,21)';
a = @(x,u,du) 1./sqrt(1+du.ˆ2); alpha = 0.5;
u0 = @(x)1+x-0.3*(1-cos(2*pi*x));
[x,u,inform] = BVP1DNL(interval,a,0,0,1,0,1,[alpha,0],u0,

'tol',1e-6,'MaxIter',50,'tol',1e-4,'Display','iter');
figure(1); plot(x,u0(x),x,u); xlabel('x'); ylabel('u')

legend('u_0','u','location','northwest')
inform
du = FEM1DEvaluateDu(x,u);
u_end_du_end = [u(end) du(end) du(end)*a(0,0,du(end))]
-->
iteration 1, RMS of correction = 2.424606e-01
iteration 2, RMS of correction = 3.402180e-02
iteration 3, RMS of correction = 1.014111e-02
iteration 4, RMS of correction = 2.689617e-03
iteration 5, RMS of correction = 6.834600e-04
iteration 6, RMS of correction = 1.715824e-04
iteration 7, RMS of correction = 4.294086e-05

inform = scalar structure containing the fields:
info = 1
iter = 7
AbsError = 4.2941e-05

u_end_du_end = 1.5774 0.5774 0.5000

It is easy to see7 that for α > 1 there is no solution. The above code for α = 0.9 will converge only after 28 iterations.
For α > 1 it will not converge at all!

7The Euler–Lagrange equation implies that u′(x) = β is a constant. Then the equation β√
1+β2

= α has to be solved, leading to β = α√
1−α2

. The

monotonous increasing function f(z) = z√
1+z2

with the limits limz→±∞ f(z) = ±1 shows that the BVP has a solution for −1 < α < +1.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 37

3.9 A dynamic nonlinear initial boundary value problem
As a first (academic) example of (14) examine a nonlinear dynamic heat equation.

∂
∂t u(x, t)−

1
10

∂2

∂x2 u(x, t) = x3 + sin(u(x, t)) for 0 ≤ x ≤ 1 and t ≥ 0

u(0, t) = u(1, t) = 0 for t ≥ 0

u(x, 0) = 0 for 0 ≤ x ≤ 1

With the functions
f(x, t, u) = x3 + sin(u) use

∂

∂u
f(x, t, u) = cos(u)

the code HeatDynamic.m below leads to Figure 19.

• The solution starts out at t = 0 with u(x, 0) = 0 and then is moving up, caused by the heating term x3 + sin(u).

• For large times t the solution u(x, t) converges to the solution of the static problem

− 1

10

∂2

∂x2
u(x) = x3 + sin(u(x))

with zero Dirichlet boundary conditions. This can be verified by using the command BVP1DNL(), as done in the
code below but the figure is not shown in these notes.

(a) the solution u(x, t)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

t

x

(b) the contours

Figure 19: The solutions and its contours for a nonlinear dynamic heat problem

HeatNonlinear.m
L = 1; N = 41; Interval = linspace(0,L,N)';
w = 1; a = 0.1 ; b = 0; c = 0; d = 1;
f = {@(x,t,u)x.ˆ3 + sin(u),@(x,t,u)cos(u)};
t0 = 0; tend = 10; steps = [30,50];
BCleft = 0; BCright = 0; u0 = 0;
[x,u_all,t] = IBVP1DNL(Interval,w,a,b,c,d,f,BCleft,BCright,u0,t0,tend,steps);
figure(1); mesh(t,x,u_all); xlabel('t'); xlim([t0,tend])

ylabel('x'); zlabel('u'); view([30,30])
figure(2); contour(t,x,u_all); xlabel('t'); ylabel('x');

[x,u] = BVP1DNL(Interval,a,b,c,d,{@(x,u)x.ˆ3+sin(u),@(x,u)cos(u)},BCleft,BCright,u0);
figure(3); plot(x,u,x,u_all(:,end)); xlabel('x'); ylabel('u');

legend('static','dynamic', 'location','south')

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 38

3.10 Plane elasticity
In this section a typical plane stress situation is examined and the related commands illustrated. This is followed by a similar
plane strain situation.

3.10.1 A plane stress example

On a trapezoidal domain visible in Figure 20(a) a plane stress problem is set up.

• The material parameters E and ν describe copper.

• At the lower edge at y = 0 the displacements are zero, i.e. u1(x, 0) = u2(x, 0) = 0 for −0.05 ≤ x ≤ +0.05.

• The other edges are force free.

• On all of the domain a force density of f⃗ = (0 , 100
0.3·0.1) ≈ (0 , 3333) is given. Thus the solid is pushed in y direction.

• An initial mesh is generated with the help of triangle and then upgraded to a mesh with second order elements.

With a call of PlaneStress() the displacements u⃗1 and u⃗2 are computed and then displayed, leading to Figure 20.

-0.1 0 0.1
0

0.05

0.1

0.15

0.2

0.25

y

x

(a) the domain (b) the displacement u1 (c) the displacement u2

Figure 20: The computational domain and the two displacement functions u1 and u2

PlaneStressExample.m
W = 0.1; H = 0.3; Load = 100; E = 110e9; nu = 0.35; %% copper
FEMmesh = CreateMeshTriangle('Example1',...

[-W/2 0, -11; +W/2 0 -22; W/4 H -22; -W/4 H -22],0.0001);
figure(1); FEMtrimesh(FEMmesh)

xlabel('x'); ylabel('y'); axis equal
FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment for second order elements
f = {0,Load/(H*W)}; gD = {0,0}; gN = {0,0};
[u1,u2] = PlaneStress(FEMmesh,E,nu,f,gD,gN);
figure(2); FEMtrimesh(FEMmesh,u1)

xlabel('x'); ylabel('y'); zlabel('u_1'); view([50,30])
figure(3); FEMtrimesh(FEMmesh,u2)

xlabel('x'); ylabel('y'); zlabel('u_2'); view([50,30])

With EvaluateStrain() the three strains εxx, εyy and εxy are determined at the nodes and displayed, leading to
Figure 21. The Saint–Venant’s principle at the lower edge y = 0 is clearly visible.

PlaneStressExample.m
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(4);
subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)

xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}'); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 39

Figure 21: The normal strains εxx, εyy and the shearing strain εxy

xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}'); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)

xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}'); view([50,30])

With EvaluateStress() the three stresses σx, σy and τxy are determined at the nodes and displayed, leading to
Figure 22. The Saint–Venant’s principle at the lower edge y = 0 is again clearly visible.

Figure 22: The normal stresses σx and σy and the shearing stress τxy

PlaneStressExample.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(5);
subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)

xlabel('x'); ylabel('y'); zlabel('\sigma_x'); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)

xlabel('x'); ylabel('y'); zlabel('\sigma_y'); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)

xlabel('x'); ylabel('y'); zlabel('\tau_{xy}'); view([50,30])

With the two commands EvaluateVonMises() and EvaluateTresca() the von Mises stress and the Tresca
stress are computed and displayed, leading to Figure 23. At the end of the code the two principal stresses σ1 and σ2 are
computed, but not displayed.

PlaneStressExample.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
figure(6); FEMtrimesh(FEMmesh,vonMises)

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 40

(a) von Mises stress (b) Tresca stress

Figure 23: The von Mises and Tresca stress

xlabel('x'); ylabel('y'); zlabel('von Mises stress'); view([120,30])
Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy);
figure(7); FEMtrimesh(FEMmesh,Tresca)

xlabel('x'); ylabel('y'); zlabel('Tresca stress'); view([120,30])
[s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);

3.10.2 A plane strain example

On the trapezoidal domain visible in Figure 20(a) a plane strain problem is set up.

• The material parameters E and ν describe copper.

• At the lower edge at y = 0 the displacements are zero, i.e. u1(x, 0) = u2(x, 0) = 0 for −0.05 ≤ x ≤ +0.05.

• At the upper edge at y = 0.3 the horizontal displacements is set to +0.01 and the vertical displacement is zero.

• The edges on the side are force free.

• There is no volume force applied to the domain, i.e. f⃗ = 0⃗ .

• An initial mesh is generated by deforminag a regular, rectangular mesh, and then upgraded to a mesh with second
order elements.

With a call of PlaneStrain() the displacements u⃗1 and u⃗2 are computed and then displayed, leading to Figure 24. A
corser mesh on the same domain is generated and then used to display the original and deformed domain. Find the result in
Figure 24(a) with the original domain in green and the deformed domain in red.

PlaneStrainExample.m
W = 0.1; H = 0.3; E = 110e9; nu = 0.35; %% copper
FEMmesh = CreateMeshRect(linspace(-W/2,W/2,10),linspace(0,H,30),-11,-11,-22,-22);
function xy_new = Deform(xy)
xy_new = [xy(:,1).*(1-0.5/0.3*xy(:,2)) , xy(:,2)];

endfunction
FEMmesh = MeshDeform(FEMmesh,'Deform');
CMesh = CreateMeshRect(linspace(-W/2,W/2,6),linspace(0,H,20),-11,-11,-22,-22);
CMesh = MeshDeform(CMesh,'Deform'); %% create a course mesh on the same domain
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

f = {0,0}; gN = {0,0};
function res = gD(xy)
res = +(xy(:,2)>0.1)*0.01;

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 41

-0.2 -0.1 0 0.1 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

y

x
(a) the original and deformed domain (b) the displacement u1 (c) the displacement u2

Figure 24: The computational domain and the two displacement functions u1 and u2

endfunction

[u1,u2] = PlaneStrain(FEMmesh,E,nu,f,{'gD',0},gN);
u1i = FEMgriddata(FEMmesh,u1,CMesh.nodes(:,1),CMesh.nodes(:,2));
u2i = FEMgriddata(FEMmesh,u2,CMesh.nodes(:,1),CMesh.nodes(:,2));
figure(1); ShowDeformation(CMesh,u1i,u2i,2)

axis equal; xlabel('x'); ylabel('y'); ylim([0,0.35])
figure(2); FEMtrimesh(FEMmesh,u1)

xlabel('x'); ylabel('y'); zlabel('u_1'); view([50,30])
figure(3); FEMtrimesh(FEMmesh,u2)

xlabel('x'); ylabel('y'); zlabel('u_2'); view([50,30])

With EvaluateStrain() the three strains εxx, εyy and εxy are determined at the nodes and displayed, leading to
Figure 25.

Figure 25: The normal strains εxx, εyy and the shearing strain εxy

PlaneStrainExample.m
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(4);
subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)

xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}'); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)

xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}'); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)

xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}'); view([50,30])

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 42

With EvaluateStress() the three stresses σx, σy and τxy are determined at the nodes and displayed, leading to
Figure 26. Observe that the function EvaluateStress() is called with for four return arguments, including σz . This
assures that the plane strain expressions are used for the computations.

Figure 26: The normal stresses σx and σy and the shearing stress τxy

PlaneStrainExample.m
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(5); title('stress')
subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)

xlabel('x'); ylabel('y'); zlabel('\sigma_x'); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)

xlabel('x'); ylabel('y'); zlabel('\sigma_y'); view([50,30])
subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)

xlabel('x'); ylabel('y'); zlabel('\tau_{xy}'); view([50,30])

With the two commands EvaluateVonMises() andEvaluateTresca() the von Mises stress and the Tresca
stress are computed and displayed, leading to Figure 23. Observe that four input arguments are given for the functions
EvaluateVonMises() and EvaluateTresca(), including σz . This assures that the plane strain expressions are
used for the computations. At the end of the code the two unknown principal stresses σ1 and σ2 are computed, but not
displayed.

PlaneStrainExample.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
figure(6); FEMtrimesh(FEMmesh,vonMises)

xlabel('x'); ylabel('y'); zlabel("von Mises stress"); view([120,30])
Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy,sigma_z);
figure(7); FEMtrimesh(FEMmesh,Tresca)

xlabel('x'); ylabel('y'); zlabel("Tresca stress"); view([120,30])
[s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);

3.10.3 A plane stress eigenvalue problem and a dynamic problem

Examine an Aluminum beam of length L = 0.2, height H = 0.01 and width W = 0.01. The beam is clamped on the left at
x = 0 and the other boundaries are free. According to the Euler beam theory8 the frequency of the first eigenmode is given
by

freq =
z20
√
E I

2π
√
ρH W L2

≈ 205.63 Hz .

With FEMoctave use the command PlaneStressEig() to determine the first eigenvalue and the corresponding eigen-
mode. A mesh with 80 second order elements is used. The code determines the frequency and the horizontal and vertical
displacements, see Figure 28.

8The coefficient z0 ≈ 1.8751 is the first zero of the function f(z) = 1 − cos(z) cosh(z) and I = 1
12
W H3 is the second moment of the cross

section.

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 43

(a) von Mises stress (b) Tresca stress

Figure 27: The von Mises and Tresca stress

EulerBeamMode1.m
clear *
L = 0.20; H = 0.01; W = 0.01; rho = 2.7e3;
E = 70e9; nu = 0.33; %% Aluminum
I2 = 1/12*Hˆ3*W;

f = @(z) 1+cos(z).*cosh(z); %% clamped at x=0, free at x=L
z0 = fsolve(f,pi/2);
freqEuler = z0ˆ2*sqrt(E*I2/(rho*H*W))/(2*pi*Lˆ2)
Nx = 20; Ny = 2;
Mesh = CreateMeshRect(linspace(0,L,Nx+1),linspace(0,+H,Ny+1),-22,-22,-11,-22);
Mesh = MeshUpgrade(Mesh,'quadratic');
[la,u1,u2] = PlaneStressEig(Mesh,E,nu,rho,1);
freqFEM = sqrt(la)/(2*pi)
u1 = u1/max(abs(u2))/100; u2 = u2/max(abs(u2))/100;
figure(1);FEMtrimesh(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(2);FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
-->
freqEuler = 205.63
freqFEM = 205.69

The same setup can be examined as a dynamic problem. As initial displacement use the shape of the first eigenmode
and zero initial velocity. Then the command PlaneStressDynamic() can construct a solution, leading to Figure 29.
The above frequency of 205.6 Hz is confirmed by the period 1

205.6 ≈ 4.86 ms, visible in Figure 29.

EulerBeamDynamic.m
E = 70e9; nu = 0.33; rho = 2.7e3; L = 0.2; H = 0.01;
f = {0,0}; gD = {0,0}; gN = {0,0};
function res = u0Func(xy)
z = 1.8751; L = max(xy(:,1)); C = -(cos(z)+cosh(z))/(sin(z)+sinh(z));
x = z*xy(:,1)/L;
res = cos(x)-cosh(x) + C*(sin(x)-sinh(x));
res = -0.1*res./max(abs(res));

endfunction
u0 = {0,'u0Func'}; v0 = {0,0};
t0 = 0; tend = 0.0056; steps = [100,20];

Mesh = CreateMeshRect(linspace(0,L,31),linspace(-H/2,+H/2,3),-22,-22,-11,-22);
Mesh = MeshUpgrade(Mesh,'quadratic'); solver = 'implicit';

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 44

[u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,...
tend,steps,'solver',solver);

u1 = u1_all(:,end); u2 = u2_all(:,end);

figure(1); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2');
ylim([-H/2,H/2])

ind = find((Mesh.nodes(:,1)==L).*(Mesh.nodes(:,2)==0)); u2_t = u2_all(ind,:);
figure(2); plot(t*1e3,u2_t); xlabel('t [ms]'); ylabel('u_2(L,0,t)');

xlim([0,max(t)*1e2]); ylim(0.11*[-1,+1])

y x

-0.0004

-0.0002

0.01

0u 1

0.0002

0.0004

0.008
0.006
0.004

0.2
0.15

0.10.002 0.050 0

(a) displacement u1 in x–direction

y x

-0.01

-0.008

-0.006u 2

-0.004

-0.002

0.01
0.008
0.006 0.2

0.15

0

0.004 0.10.002 0.050 0

(b) displacement u2 in y–direction

Figure 28: The first eigenmode of a bending beam

y x

-0.01
0

0.01
0.02u 2

0.03

0.004
0.20.002

0.04
0.05

0.150

0.06

-0.002 0.1
0.05-0.004 0

(a) u2 at final time

0 1 2 3 4 5

-0.1

-0.05

0

0.05

0.1

u
2
(L
,0
,t
)

t	[ms]

(b) movement of u2 at end point

Figure 29: The first eigenmode of a bending beam as dynamic problem

3.11 An axially symmetric elasticity example
A rectangular domain 0 ≤ r = x ≤ R = 0.1 and −2R ≤ z ≤ 2R is rotated about the z–axis and on the middle section
−R ≤ z ≤ R of the surface an external pressure of the form

p(z) =

{
P (R2 − z2) for |z| ≤ R
0 for |z| > R

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 45

is applied. The aim is to determine the radial displacement ur and the z–displacement uz , as function of x = r and z.

• Due to the symmetry only the upper half of the cylinder has to be examined, with the boundary condition uz = 0 in
the plane z = 0.

• Along the z–axis the boundary condition is ur = 0.

• The upper edge is force free.

• Along the right edge at r = R the external pressure is applied.

As a first step create the mesh, define the pressure funcation and the matreial parameters. Then solve the problem using the
function AxiStress().

AxiSymmetricExample.m
R = 0.1;
if 0 %% nonuniform mesh
Mesh = CreateMeshTriangle('AxiSymm',[0 0 -21; R 0 -32; R 2*R -22; 0 2*R -12],1e-4);

else
Mesh = CreateMeshRect(linspace(0,R,10),linspace(0,2*R,20),-21,-22,-12,-32);

endif
Mesh = MeshUpgrade(Mesh,'quadratic');

function res = force(rz)
R = 0.1; P = 1e5; res = -P*max(Rˆ2-rz(:,2).ˆ2,0);

endfunction

E = 1e9; nu = 0.3; f = {0,0}; gD = {0,0}; gN = {'force',0};
[ur,uz] = AxiStress(Mesh,E,nu,f,gD,gN);

With this solution the original and deformed mesh can be displayed, leading to the left part of Figure 30.

AxiSymmetricExample.m
factor = 0.1*R/max(sqrt(ur.ˆ2+uz.ˆ2));
figure(1); ShowDeformation(Mesh,ur,uz,factor); xlabel('r'); ylabel('z'); axis equal;

-0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

r

z

(a) the original and deformed domain (b) the von Mises stress

Figure 30: The original and deformed domain and the von Mises stress for an axially symmetric setup

With the displacements ur and uz evaluate stresses by using the functions EvaluateStressAxi() and EvaluateVonMisesAxi().

AxiSymmetricExample.m
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
figure(12); FEMtrimesh(Mesh,sigma_x)

xlabel('r'); ylabel('z'); zlabel('\sigma_x')

SHA 15-5-24

3 ILLUSTRATIVE EXAMPLES 46

figure(13); FEMtrimesh(Mesh,sigma_y)
xlabel('r'); ylabel('z'); zlabel('\sigma_y')

figure(14); FEMtrimesh(Mesh,sigma_z)
xlabel('r'); ylabel('z'); zlabel('\sigma_z')

vonMises = EvaluateVonMises(sigma_x,sigma_y,sigma_z,tau_xz);
figure(15); FEMtrimesh(Mesh,vonMises)

xlabel('r'); ylabel('z'); zlabel('von Mises'); view(-125,30])

(a) the normal stress σx (b) the nomal stress σz

Figure 31: Stresses for an axially symmetric setup

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 47

4 The Commands of FEMoctave
In this section find the documentation for the commands provided by FEMoctave. A considerable part of this documentation
is also available by using the command help within Octave , e.g. help BVP2D .

4.1 Commands for 2D meshes: creation and modification
FEMoctave provides a few commands to generate and modify meshes, see Table 4. In this section the commands are
briefly explained and elementary examples provided.

command purpose

CreateMeshRect() create a rectangular mesh

CreateMeshTriangle() create a mesh by Triangle

ReadMeshTriangle() read a mesh created by Triangle

MeshAddConstraint() add a constraint to one node in a mesh

MeshUpgrade() transform a mesh of order 1 to order 2 or 3

MeshQuad2Linear() transform a mesh of order 2 to order 1

MeshCubic2Linear() transform a mesh of order 3 to order 1

Delaunay2Mesh() translate a Delaunay grid to a mesh

MeshDeform() deform a given mesh

Table 4: Commands to create and modify meshes

4.1.1 Structure of a mesh

The main information of a mesh, as shown in Section 6.1 is given by the position of the nodes (points), the corresponding
triangles and the boundary edges. A mesh consists of

Nn nodes, with their (x, y) coordinates,

Ne elements, with 3 (or 6, or 10) nodes forming one triangle,

Nb boundary edges, with 2 (or 3, or 4) nodes forming one edge.

In FEMoctave this information is stored as a structure with an arbitrary name, but the elements of the structure require
specific names, as shown in Table 5. The first 6 of these elements can be modified by the user and contain all the necessary
information on the mesh to be used.

• type: a string indicating the order of the element, currently linear, quadratic or cubic. The algorithms will
read this information and construct element stiffness matrices of the correct order.

• nodes: this Nn× 2 matrix contains the coordinates (xi, yi) of the nodes numbered by 1 ≤ i ≤ Nn. The entries are
real numbers.

• nodesT: this Nn vector of integers contains the information of the type of nodes. If the entry in row i equals 0 then
node i is a DOF, i.e. the value of the solution is not prescribed. If the entry in row i equals 1 then node i is a Dirichlet
node and the value of the solution is determined by the given function. For elasticity problems this is a Nn×2 matrix
with the information on both components.

• elem: for first order meshes this Ne× 3 matrix of integers contains in each row the numbers of three nodes forming
one linear element (triangle). The triangles have a positive orientation. For second order elements it is a Ne × 6
matrix of integers. For third order elements it is a Ne× 10 matrix of integers.

• elemT: type of elements is not used yet.

• edges: this Nb × 2, Nb × 3 or Nb × 4 matrix of integers contains in each row the numbers of two, three or four
nodes forming a boundary edge.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 48

• edgesT: thisNb vector of integers contains the information of the type of edges. If the entry in row i equals−1 then
edge i is part of the Dirichlet boundary, i.e. the value of the solution is prescribed. If the entry in row i equals −2
then edge i is part of the Neumann boundary, i.e. the value of the solution is not yet known. For elasticity problems
this is a Nb× 2 matrix with the information on both components. See Table 6 for the codes.

Name Size Information

type string type of element, “linear”, “quadratic” or “cubic”

nodes Nn× 2 coordinates of nodes

nodesT Nn× {1, 2} type of nodes, either 0 (free) or 1 (fixed)

elem Ne× {3, 6, 10} list of nodes that make up the triangles

Ne× 3 for first order elements

Ne× 6 for second order elements

Ne× 10 for third order elements

elemT Ne× 1 type of elements

edges Nb× {2, 3, 4} list of nodes that make up the boundary edges

edgesT Nb× {1, 2} type of boundary edge, Dirichlet, Neumann or elasticity

elemArea Ne× 1 area of the triangles

GP coordinates of the Gauss integration points

3 ·Ne× 2 for first order elements

7 ·Ne× 2 for second and third order elements

GPT (3 or 7) ·Ne× 1 type of the Gauss integration points

nDOF 1× {1, 2} total number of DOF of the system

node2DOF Nn× {1, 2} renumbering from nodes to DOF

Table 5: Elements of a mesh structure

All other elements of a mesh structure can be derived or computed from the above data.

• elemArea: this vector of real numbers contains the area of the individual triangles.

• GP: this matrix of reals contains the coordinates of all Gauss points for the numerical integration. There are 3 (or 7)
Gauss points for each triangle.

• GPT: this vector of integer contains the type for each Gauss point. Currently not used.

• nDOF: this integer gives the total number of degrees of freedom (DOF) for the system to be solved.

• node2DOF: This vector (or matrix for elasticity problems) gives for each node the number of the corresponding DOF.
If the number equals 0 then it is a Dirichlet node.

The commands CreateMeshRect() and CreateMeshTriangle() create meshes with this structure.

The codes for the boundary conditions in Table 6 for elasticity problems might ask for a few examples of boundary
conditions.

-11 : at this node the displacements are given by u1(x, y) = gD1(x, y) and u2(x, y) = gD2(x, y).

-22 : at this node there are no surface forces, i.e. the node is on a free section of the boundary.

-12 : at this node the x–displacement u1(x, y) = gD1(x, y) is given and there is no surface force in y–direction.

-31 : at this node the y–displacement u2(x, y) = gD2(x, y) is given and surface force in x–direction is given by
gN1(x, y).

-23 : at this node there is no surface force in x–direction and the surface force in y–direction is given by gN2(x, y).

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 49

code for scalar problems

-1 Dirichlet condition , u = g1 given

-2 Neumann condition , a ∂
∂n u = g2 + g2 u

for elasticity problems

code in x–direction in y-direction

-1* displacement u1 = gD1 given *

-*1 * displacement u2 = gD2 given

-2* force free section *

-*2 * force free section

-3* force density gN1 given *

-*3 * force density gN2 given

Table 6: Codes for the boundary conditions

4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect()

With the command CreateMeshRect(x,y,Blow,Bup,Bleft,Bright) you can create a mesh on a rectangle. The
function takes 6 input arguments.

• The ordered vectors x and y contain the x and y coordinates of the mesh to be generated.

• For scalar problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition on the corre-
sponding edges. If the index is -1 then the edge is part of the Dirichlet boundary Γ1 and thus the value of the function
is prescribed. If the index is -2 then the edge is part of the Neumann boundary Γ2 and thus information about the
outer normal derivative is known, but not the value of the solution.

• For elasticity problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition according to
the codes in Table 6.

Examples of the usage are given in Sections 3.1.1 and 3.1.2.

CreateMeshRect()
Mesh = CreateMeshRect(X,Y,BLOW,BUP,BLEFT,BRIGHT)

Create a rectangular mesh with nodes at (x_i,y_j) with linear elements

parameters:

* X,Y are the vectors containing the coodinates of the nodes to be generated.

* BLOW, BUP, BLEFT, BRIGHT indicate the type of boundary condition at lower,
upper, left and right edge of the rectangle

* for scalar problems

* B* = -1: Dirichlet boundary condition

* B* = -2: Neumann or Robin boundary condition

* for elasticity problems

* bi = -xy : with two digits for x and y directions

* x/y = 1 : given displacement

* x/y = 2 : force free

* x/y = 3 : given force density

return values

* MESH is a a structure with the information about the mesh.
The mesh consists of n_e elements, n_n nodes and n_ed edges.

* MESH.TYPE a string with the type of triangle: linear

* MESH.ELEM n_e by 3 matrix with the numbers of the nodes forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 50

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes

* MESH.NODEST n_n vector with the type of nodes

* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*3 vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector or n_n by 2 matrix of integers, mapping nodes to DOF

Sample call:
Mesh = CreateMeshRect(linspace(0,1,10),linspace(-1,2,20),-1,-1,-2,-2)

will create a mesh with 200 nodes and 0<=x<=1, -1<=y<=+2

With CreateMeshRect() generate meshes with elements of order 1. With the help of MeshUpgrade() (Sec-
tion 4.1.6) you can upgrade to the same mesh with elements of order 2 or 3.

4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle()

With the command CreateMeshTriangle(name,xy,area) you can create a mesh with the outer borders given in
xy. The mesh will satisfy a minimal angle condition of 30◦ to avoid distorted triangles. The function takes 3 or 4 input
arguments.

• The string ’name’ is the file name to be used to store the information.

• The matrix xy contains the edge points of the domain and the information on the boundary conditions.

• area is the typical are of the triangles to be used.

• The optional argument options can specify more flags to the external call of the program triangle.

The mesh can then be read by calling Mesh = ReadMeshTriangle(’name.1’). Examples of the usage are given in
Sections 3.1.3 and 3.2 and in many of the examples in Section 9 starting on page 201.

CreateMeshTriangle()
MESH = CreateMeshTriangle(NAME,XY,AREA,OPTIONS)

Generate files with a mesh with linear elements using the external code triangle

parameters:

* NAME the base filename: the file NAME.poly will be generated then
triangle will generate files NAME.1.* with the mesh

* XY vector containing the coordinates of the nodes forming the outer boundary.
The last given node will be connected to the first given node to create a closed curve.
The format for XY is [x1,y1,b1;x2,y2,b2;...;xn,yn,bn] where

* xi x-coordinate of node i

* yi y-coordinate of node i

* bi boundary marker for segment from node i to node i+1

* for scalar problems

* bi = -1 Dirichlet boundary condition

* bi = -2 Neumann or Robin boundary condition

* for elasticity problems

* B* = -xy : with two digits for x and y directions

* x/y = 1 : given displacement

* x/y = 2 : force free

* x/y = 3 : given force density

* AREA the typical area of the individual triangles to be used

* OPTIONS additional options to be used when calling triangle.
The options "pa" and the area will be added automatically.
Default options are "q", resp. "qpa". To suppress the verbose information use "Q"

More options are available to adapt mesh sizes and create holes.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 51

See the documentation in FEMdoc.pdf

The information on the mesh generated is written to files and returned
in the structure MESH, if the return argument is provided.

* The information can then be read and used by Mesh = ReadMeshTriangle('NAME.1');

* MESH is a structure with the information about the mesh.
The mesh consists of n_e elements, n_n nodes and n_ed edges.

* MESH.TYPE a string with the type of triangle: linear, quadratic or cubic

* MESH.ELEM n_e by 3 (or 6/10) matrix with the numbers of the nodes
forming triangular elements

* MESH.ELEMAREA n_e vector with the areas of the elements

* MESH.ELEMT n_e vector with the type of elements (not used)

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes

* MESH.NODEST n_n vector with the type of nodes (not used)

* MESH.EDGES n_ed by 2 (or 3/4) matrix with the numbers of the nodes forming edges

* MESH.EDGEST n_ed vector with the type of edge

* MESH.GP n_e*(3/7) by 2 matrix with the coordinates of the Gauss points

* MESH.GPT n_e*(3/7) vector of integers with the type of Gauss points

* MESH.NDOF number of DOF, degrees of freedom

* MESH.NODE2DOF n_n vector of integer, mapping nodes to DOF

Sample call:
Mesh = CreateMeshTriangle('Test',[0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
will create a mesh with 0<=x<=1, -1<=y<=+2 and a typical area of 0.01 for each triangle
Could be read by Mesh = ReadMeshTriangle('Test.1')

• With CreateMeshTriangle() generate meshes with elements of order 1. With the help of the command
MeshUpgrade() (Section 4.1.6) you can upgrade to the same mesh with elements of order 2 or 3.

• If a return argument for CreateMeshTriangle() is provided, the mesh is returned.

• If no return argument is provided, the information is written to files. The generated mesh is then read by calling the
function ReadMeshTriangle().

This function can also be used to read meshes generated by direct call of the external program triangle. This allows to
use all features of triangle and not only the very restricted setup used by CreateMeshTriangle(). In Section 4.1.4
find the options to generate meshes with holes and adapted mesh sizes. To find more about the features of triangle
use the web page www.cs.cmu.edu/∼quake/triangle.html or compile and install the code and then run triangle -h to
examine the built-in help.

ReadMeshTriangle()
FEMMESH = ReadMeshTriangle(NAME.1)
read a mesh generated by CreateMeshTriangle(NAME)
parameter: NAME.1 the filename
return value: FEMMESH the mesh stored in NAME

Sample call:
CreateMeshTriangle('Test',[0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
Mesh = ReadMeshTriangle('Test.1');

will create a mesh with 0<=x<=1, -1<=y<=+2
and a typical area of 0.01 for each triangle

Find an example in Section 9.9.

With CreateMeshTriange() and ReadMeshTriangle() one can only generate meshes with elements of or-
der 1. With the help of MeshUpgrade() (see Section 4.1.6) you can upgrade to the same mesh with elements of order 2
or 3.

SHA 15-5-24

https://www.cs.cmu.edu/~quake/triangle.html

4 THE COMMANDS OF FEMOCTAVE 52

4.1.4 Adapting meshes and creating holes by using options of CreateMeshTriangle()

Give CreateMeshTriangle()more arguments to use some of the features of Triangle to locally create finer meshes
or generate domains with holes. If more than 4 arguments are provided, then line segments, point with mesh sizes or holes
can be generated. Each of the additional arguments is a structure with a name as first entry. There are four types of options:

• Segment: to create additional line segments, used to modify mesh sizes. The mandatory entry name=’Segment’
has to be supplemented with one additional entry border. It lists the x and y coordinates of the points forming the
segment, and the third entry 0 for each point.

Seg1.name = 'Segment'; %% mandatory name
Seg1.border = [0 0 0; 1 0 0; 1 2 0] %% the points on the segment

• MeshSize: to specify the mesh size in one part of the domain. Besides the entry name=’MeshSize’ two additional
entries have to be provided. where with the x and y coordinates of the points where the maximal mesh size is given
and area with the desired mesh size, i.e. the maximal area of the triangles.

Point1.name = 'MeshSize'; %% mandatory name
Point1.where = [1.5 0.2]; %% the point at which the mesh size is applied
Point1.area = 0.01; %% maximal area in the selected area

• Hole: to create a hole in the domain. Besides the mandatory entry name=’Hole’ two additional entries border
and point have to be provided. border lists the x and y coordinates of the points forming the hole, with the third
entry indicating the type of boundary condition, according to Table 6. The entry point has to contain the coordinates
of one point inside the hole.

Hole1.name = 'Hole' %% mandatory name
Hole1.border = [1 1 -22; 3 2 -22; 3 4 -22; 1 2 -22] %% border of the hole
Hole1.point = [1.1 1.1]; %% one point in the hole

• Option: to give more options, not documented yet.

There are a few points to watch out for when using the above optional arguments to CreateMeshTriangle():

• The lines created by Segment shall not interfere with the holes.

• If Segment is used to divide the domain into multiple sections, the endpoints of the segments have to be exactly on
the borders of the domain, but you can (often) not use the points defining the borders of the domain. A possible way
out is described in Example 4–2 below.

4–1 Example : As a first example for the additional options for the command CreateMeshTriangle() examine a
domain with a hole in the middle section and a finer mesh at the lower edge. Find the result of the code below in Figure 32.
In most parts of the domain the area of the triangles is approximately 0.001. Close to the hole the narrow section leads to
smaller triangle and close to the lower edge the optional Segment leads to a finer mesh, visible in Figure 32(b).

MeshBorder = [0 0 -11; 0.1 0 -22; 1.1 1 -23; 1 1 -22]; %% outer boundary of the domain

Hole.name = 'Hole'; %% a hole in the middle section
Hole.border = [0.5+0.02 0.5 -22; 0.5+0.08 0.5 -22;0.6+0.08 0.6 -22; 0.6+0.02 0.6 -22];
Hole.point = [0.522 0.501];

Segment.name = 'Segment'; %% close to the lower edge
Segment.border = [0.01 0.01 0; 0.09 0.01 0];

Mesh = CreateMeshTriangle('Mesh1',MeshBorder,0.01/9, Hole, Segment);
figure(1); FEMtrimesh(Mesh); axis equal

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 53

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) the domain with a hole

0 0.05 0.1

0

0.05

0.1

(b) the finer mesh at the lower edge

Figure 32: A domain with a hole and a finer mesh at the lower edge

The above domain can be used for an elasticity computation. The lower edge is fixed and at the upper edge a vertical
force is applied. At the lower edge Saint–Venant’s principle applies, i.e. shearing is expected and thus a finer mesh should
be used. Find the graphical result in Figure 33. In addition the transversal deflection (u2 − u1)/

√
2 along the center line is

displayed. The result shows that the lever is behaving like a bending beam.

Mesh = MeshUpgrade(Mesh,'quadratic'); E = 100e9; nu = 0.3; f = 1;
[u1,u2] = PlaneStress(Mesh,E,nu,{0,0},{0,0},{0,f});

figure(2);clf; scale = 0.1/max(u2);
ShowDeformation(Mesh,u1,u2,scale); axis([0 1.2 0 1.2])

yi = linspace(0,1); xi = yi+0.05;
u1i = FEMgriddata(Mesh,u1,xi,yi); u2i = FEMgriddata(Mesh,u2,xi,yi);
bend = (u2i-u1i)/sqrt(2);
figure(3); plot(yi,bend); xlabel('x'); ylabel('(u_2-u_1)/sqrt(2)')

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) the deformed lever

0 0.2 0.4 0.6 0.8 1
-5e-09

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

x

(u
2
-u

1
)/

sq
rt

(2
)

(b) bending of the center line

Figure 33: The deformed lever and the bending of the center line

♢

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 54

4–2 Example : In this example a mesh with different size triangles is created on a unit square, see Figure 34. The first
section of the code below generates the file Mesh2.poly, in which the two corners (0, 0) and (1, 1) are listed twice.
This causes FEMoctave to issue a warning matrix singular to machine precisionwhen solving the resulting
linear system. To avoid this problem edit the file Mesh2.poly, remove the two “extra” points and modify the connection
of points 1 and 3.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 34: A domain with a two different mesh sizes

Mesh2.poly
nodes
6 2 0 1
1 0.000000000000 0.000000000000 -1
2 1.000000000000000e+00 0.000000000000000e+00 -1
3 1.000000000000000e+00 1.000000000000000e+00 -2
4 0.000000000000000e+00 1.000000000000000e+00 -1
5 0.000000000000000e+00 0.000000000000000e+00 0
6 1.000000000000000e+00 1.000000000000000e+00 0
segments
5 1
1 1 2 -1
2 2 3 -2
3 3 4 -2
4 4 1 -1
5 5 6 0
holes
0
area markers
2
1 0.100000 0.900000 0 0.100000
2 0.900000 0.100000 0 0.002000
generate mesh by : triangle -Qpq30a Mesh2.poly

Save the new file as Mesh2 mod.poly and run triangle, either by triangle -pq30a Mesh2 mod.poly from a
command line or by system(’triangle -Qpq30a Mesh2 mod.poly’) within Octave .

Mesh2 mod.poly
nodes
4 2 0 1
1 0.000000000000 0.000000000000 -1
2 1.000000000000000e+00 0.000000000000000e+00 -1
3 1.000000000000000e+00 1.000000000000000e+00 -2

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 55

4 0.000000000000000e+00 1.000000000000000e+00 -1
segments
5 1
1 1 2 -1
2 2 3 -2
3 3 4 -2
4 4 1 -1
5 1 3 0
holes
0
area markers
2
1 0.100000 0.900000 0 0.100000
2 0.900000 0.100000 0 0.002000
generate mesh by : triangle -Qpq30a Mesh2_mod.poly

Then read the new mesh by Mesh = ReadMeshTriangle(’Mesh2 mod.1’). The resulting mesh avoids the Octave
warning. ♢

4.1.5 Adding constraints to a node in the mesh

On occasion it is convenient to add additional constraints at single points in the mesh. For this task the FEMoctave
command MeshAddConstraint() can be used. The command

• finds the node in the mesh with the coordinates closest to the given position.

• adds the desired constraint at the selected node.

MeshAddConstraint()
MESH = MeshAddConstraint(MESH,POSITION,MODE)

apply an additional constraint

parameters:

* MESH is the mesh describing the domain

* POSITION coordinates of the node, may be approximate

* MODE mode of the node with the additional constraint

* MODE = -1: fixed value for scalar problems

* MODE = [-1,-1]: fixed x and y displacements for elasticity

* MODE = [-1,-2]: fixed x-displacement for elasticity

* MODE = [-2,-1]: fixed y-displacement for elasticity

return values:

* MESH the new mesh with the additional constraints

Find examples in Sections 5.13.1 and 5.13.2.

4.1.6 Converting meshes: upgrading and downgrading

Given a mesh MeshLin with first order elements one can generate the same mesh with elements of order 2 by calling the
command MeshUpgrade(MeshLin,’quadratic’). The numbering of the nodes of the linear elements is preserved
in the mesh with the quadratic elements. The new nodes are placed at the midpoints of the edges of the triangles. With
MeshUpgrade(MeshLin,’cubic’) a mesh with 10 node cubic elements is generated. Examine Figure 71 on page 135
on how the nodes are placed within the triangles.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 56

MeshUpgrade()
MESHNEW = MeshUpgrade(MESHLIN,TYPE)

convert a mesh MESHLIN of order 1 to a mesh MESHNEW of order 2 or 3
parameters:

* MESHLIN the input mesh of order 1

* TYPE is a string, either 'quadratic' or 'cubic'
the default is 'quadratic'

return value: MESHNEW the output mesh of order 2 or 3

As example generate a mesh with elements of order 1 on the rectangle 0 ≤ x, y ≤ 2 with Dirichlet conditions on three
edges and a Neumann condition on the upper edge at y = 2. In Figure 35 find the mesh with the types of nodes indicated
and the numbering of the resulting degrees of freedom.

N = 3;
FEMmesh1 = CreateMeshRect(linspace(0,2,N+1),linspace(0,2,N+1),-1,-2,-1,-1);
FEMmeshQ = MeshUpgrade(FEMmesh1,'quadratic');

-1 0 -1 0 -1 0 -1 0

-1 0 1 1 1 2 -1 0

-1 0 1 3 1 4 -1 0

-1 0 -2 5 -2 6 -1 0

(a) linear elements

-1 0 -1 0 -1 0 -1 0

-1 0 1 1 1 2 -1 0

-1 0 1 3 1 4 -1 0

-1 0 -2 5 -2 6 -1 0

1 7

-1 0 1 8 1 9

-1 0

1 10

1 11 1 12

-1 0

1 13

1 14 -1 0

-1 0

1 15

-1 0 1 16 1 17

1 18

1 19 1 20

1 21

1 22 -1 0

-2 23

-1 0 1 24 1 25

-2 26

1 27 1 28

-2 29

1 30 -1 0

(b) quadratic elements

Figure 35: The same mesh with linear or quadratic elements. The types of the nodes are marked in green. Dirichlet nodes
are marked by −1, Neumann nodes by −2 and interior nodes by +1. The numbering of the resulting degrees of freedom is
shown in blue. For Dirichlet nodes a DOF of 0 is used.

Using MeshQuad2Linear() one can convert a mesh of order 2 to a mesh of order 1. The nodes will remain un-
changed, but there will be a factor of 4 more elements. With this function one can compare results based on first or second
order elements, using exactly the same degrees of freedom.

MeshQuad2Linear()
MESHLIN = MeshQuad2Linear(MESHQUAD)

convert a mesh MESHQUAD of order 2 to a mesh MESHLIN of order 1
parameter: MESHQUAD the input mesh of order 2
return value: MESHLIN the output mesh of order 1

An example is shown in Section 3.1.4.

Using MeshCubic2Linear() one can convert a mesh of order 3 to a mesh of order 1. The nodes will remain
unchanged, but there will be a factor of 9 more elements. With this function one can compare results based on first or third
order elements, using exactly the same degrees of freedom.

MeshCubic2Linear()
MESHLIN = MeshCubic2Linear(MESHCUBIC)

convert a mesh MESHCUBIC of order 3 to a mesh MESHLIN of order 1
parameter: MESHCUBIC the input mesh of order 3
return value: MESHLIN the output mesh of order 1

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 57

A combination of MeshUpgrade() and subsequent MeshQuad2Liner() or MeshCubic2Liner() can be used
to refine meshes.

4.1.7 Use delaunay() to create a mesh: Delaunay2Mesh()

It is possible to use the Octave command delaunay() to generate a triangulation of a convex domain and then the
command Delaunay2Mesh() to generate a mesh to be used by FEMoctave.

• The generated mesh consists of elements of order one. Use MeshUpgrade() to work with elements of order two
or three.

• At first all boundary points are marked as Dirichlet points. Change the type description in the mesh if you want
Neumann points.

Delaunay2Mesh()
FEMMESH = Delaunay2Mesh(TRI,X,Y)

generate a mesh with elements of order 1, using a Delaunay triangulation
parameters:

* TRI the Delaunay triangulation

* X,Y the coodinates of the points
return value

* FEMMESH is the mesh to be used by FEMoctave

Observe that the quality of the mesh might be very poor, e.g. triangles with very small angles. As example have a look
at the upper edge on the right of the mesh in Figure 36. For almost all cases triangle will generate meshes of better
quality. To generate the domain and the solution in Figure 36 use the code below.

TestDelaunay.m
[x,y] = meshgrid(linspace(-1,1,20)); x = x(:); y = y(:);
ind = find(y<1-0.5*x+0.001); x = x(ind); y = y(ind);
ind = find(x+y>-0.001); x = x(ind); y = y(ind);

tri = delaunay(x,y);
figure(1); triplot(tri,x,y); hold on; plot(x,y,'*'); hold off

xlabel('x'); ylabel('y');
FEMmesh = Delaunay2Mesh(tri,x,y); FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

u = BVP2Dsym(FEMmesh,1,0,4,0,0,0);
figure(2); FEMtrimesh(FEMmesh,u) xlabel('x'); ylabel('y'); view([100,45])
figure(3); clf; FEMtricontour(FEMmesh,u); xlabel('x'); ylabel('y');

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

y

x

Figure 36: A mesh generated by a Delaunay triangulation and the solution of a BVP

4.1.8 Deforming meshes by MeshDeform()

With the function MeshDeform() the nodes of a linear mesh can be deformed.

MeshDeform()

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 58

MeshDeformed = MeshDeform(MESH,DEFORM)
Deform the nodes of MESH by the transformation DEFORM
parameters:

* MESH the initial mesh with linear elements
this has to be a mesh with linear elements

* DEFORM the transformation formula
the function DEFORM takes one argument XY, a n by 2 matrix with the
x and y components in colums and returns the result in a n by 2 matrix.

return value

* DEFORMEDMESH the deformed mesh consistes of linear elements
use MESHUPGRADE to generate quadratic or cubic elements

One should pay attention to not deform the triangles in the mesh too badly by MeshDeform(), as this might decrease
the accuracy of the solutions. The mesh generated by MeshCreateTriangle() will respect the condition of minimal
30◦ angles. After calling MeshDeform() this condition could be violated. Another option is to deform the borders of the
mesh first, and then call CreateMeshTriangle(). In this case the minimal angle condition is respected.

To generate the quarter of a ring in Figure 51 on page 107 use polar coodinates(
x

y

)
=

(
r · cosφ
r · sinφ

)
with 1 ≤ r ≤ 2 and 0 ≤ φ ≤ π

2
.

FEMmesh = CreateMeshTriangle('Test',[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],0.1ˆ2);
function xy_new = Deform(xy) %% use polar coordinates
xy_new = [xy(:,1).*cos(xy(:,2)), xy(:,1).*sin(xy(:,2))];

endfunction
FEMmesh = MeshDeform(FEMmesh,'Deform');
FEMtrimesh(FEMmesh)

Find an example in Section 9.1.

4.2 Evaluation and displaying results
4.2.1 Display results on meshes, FEMtrimesh(), FEMtrisurf(), and FEMtricontour()

To display the results of the computations very elementary wrappers around trimesh(), trisurf() and tricontour()
are provided.9

• With FEMtrimesh() display a function u as a 3D mesh. If no values for u are provided, the 2D mesh is displayed.

• With FEMtrisurf() display a function u as a 3D surface. The syntax is identical to FEMtrimesh().

• With FEMtricontour() display level curves of a function u. The syntax similar to the above. Unfortunately the
command FEMtricontour() exhibits a problem and it is advisable to clear the figure by a command clf before
creating a contour plot.

All functions accept meshes with linear, quadratic or cubic elements.

• For quadratic elements the 6 nodes in each element are connected by straight lines, i.e. as if one second order triangle
would be composed of 4 first order triangles.

• For cubic elements the 10 nodes in each element are connected by straight lines, i.e. as if one third order triangle
would be composed of 9 first order triangles.

9It is obviously possible to improve the wrappers, as non of the advanced features of trimesh() or trisurf() is passed through. If you want to
use those, have a look at the elementary code in the FEMtri* functions and copy the necessary lines in to your code.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 59

FEMtrimesh()
FEMtrimesh (MESH, U)
display a solution U on a triangular mesh
parameters:

* MESH is the mesh

* U values of the function to be displayed
if U is not given, then the mesh is displayed in 2D

FEMtrisurf()
FEMtrisurf (MESH, U)
display a solution U as surface on a triangular mesh
parameters:

* MESH is the mesh

* U values of the function to be displayed

FEMtricontour()
FEMtricontour (MESH, U, V)

display contours of a solution U on a triangular mesh
parameters:

* MESH is the mesh

* U values of the function to be displayed

* V contours to be used, default value is 21
if V is scalar, it is the number of contours
if V is a vector, it is the levels of the contours

4.2.2 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient()

Given the values u of a function at the nodes, the two components of the gradient can be computed with the function
FEMEvaluateGradient().

FEMEvaluateGradient()
[UX,UY] = FEMEvaluateGradient(MESH,U)

evaluate the gradient of the function u at the nodes
parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of the function at the node
return value

* UX x component of the gradient of u

* UY y component of the gradient of u

the values of the gradient are determined on each element
at the nodes the average of the gradient of the elements is used

The gradient is determined on each of the elements, using either linear, quadratic or cubic interpolation. Then at each node
the average of the values of the gradient of the neighboring triangles is returned. This is different from the results generated
by FEMgriddata(). Examples are given in Sections 5.1, 9.3, 9.4, 9.5 and 9.10. Due to using broadcasting in the Octave
code (bsxfun()) the code is fast! This function could be used (or is that abused?) to evaluate derivatives of functions
given on an irregular grid!

4.2.3 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP()

Given the values u of a function at the nodes, the values of u and its gradient can be computed at the Gauss points by calling
FEMEvaluateGP(). For first order elements a piecewise linear interpolation is used, thus the gradients will be constant
on each triangular element. For second order elements a quadratic interpolation is used. For third order elements a cubic
interpolation is used.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 60

FEMEvaluateGP()
[UGP,GRADUGP] = FEMEvaluateGP(MESH,U)

evaluate the function and gradient at the Gauss points
parameters:

* MESH is the mesh describing the domain and the boundary types

* U vector with the values of at the nodes
return values

* UGP values of u at the Gauss points

* GRADUGP matrix with the values of the gradients in the columns

Examples are given in Sections 9.8 and 9.10.

4.2.4 Integrate a function over the domain: FEMIntegrate()

Given a function name, the values of a function at the nodes or at the Gauss points one can integrate this function over the
domain given by the mesh. There are different methods used, all based on the Gauss integration presented in Section 6.3.2.

• If a function name is specified, then this function will be evaluated at the Gauss points and then integrated.

• If a scalar value is given, then the function is assumed to be constant.

• If a column vector is given with as many components as nodes in the mesh, then an element wise interpolation is used
to obtain the values at the Gauss points. The function FEMEvaluateGP() is used to find the values at the Gauss
points.

• If a column vector is given with as many components as Gauss points in the mesh, then these are used as values at the
Gauss points.

FEMIntegrate()
NUMINTEGRAL = FEMIntegrate(MESH,U)

integrate a function u over the domain given in Mesh
parameters:

* MESH is the mesh describing the domain

* U the function to be integrated
can be given as function name to be evaluated or as scalar
value, or as a vector with the values at the nodes or the Gauss points.

return value

* NUMINTGERAL the numerical approximation of the integral

As a simple example integrate the function u(x, y) = x y3 over the unit square 0 ≤ x, y ≤ 1. The exact integral
equals 1

8 , but you have to subtract the exact value to see the difference to the numerical evaluation with the Gauss points.
This is not unusual, since the Gauss integration leads to very accurate approximations, if the function is smooth. Linear
elements use 3 integration points in each triangle, quadratic and cubic meshes use 7 integration points in each triangle. Thus
integrations using a linear mesh might not be as accurate.

N = 40; Mesh = CreateMeshRect(linspace(0,1,N),linspace(0,1,N),-2,-2,-2,-2);
function res = f_int(xy) res = xy(:,1).*xy(:,2).ˆ3; endfunction

integral1 = FEMIntegrate(Mesh,'f_int') % using the function name
uGP = feval('f_int',Mesh.GP);
integral2 = FEMIntegrate(Mesh,uGP) % using the values at the Gauss points
-->
integral1 = 0.12500
integral2 = 0.12500

To determine the area of a domain Ω ⊂ R2 one can integrate the constant 1 over the domain. More examples are given
in Sections 5.1, 9.1, 9.8 and 9.10.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 61

4.2.5 Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata()

Given a function by the values at the nodes of a mesh use the command FEMgriddata() to evaluate the function at
arbitrary points.

• The value of the function and the partial derivatives can be evaluated.

• Depending on the mesh provided either a piecewise linear, quadratic or cubic interpolation is used.

• If a point (xi, yi) is on the edge of a triangle it is a matter of rounding which of the neighboring triangles is used for
the interpolation. Since all elements used by FEMoctave are C0 conforming, this has no influence on the value of the
function. The elements are not C1 conforming and thus the partial derivatives will jump across element boundaries.
See also Section 5.3 starting on page 102.

• If a point (xi, yi) is not in a triangle, then NaN is returned.

• The evaluation is very fast, even for large numbers of elements and interpolation points.

• Evaluation along arbitrary curves is possible, and fast. Then use trapz() to integrate along curves. Find examples
in Sections 9.5 and 9.17.

FEMgriddata()
[UI,UXI,UYI] = FEMgriddata(MESH,U,XI,YI)
evaluate the function (and gradient) at given points by interpolation
parameters:

* MESH is the mesh describing the domain
If MESH consists of linear elements, piecewise linear interpolation is used.
If MESH consists of quadratic elements, piecewise quadratic interpolation is used.
If MESH consists of cubic elements, piecewise cubic interpolation is used.

* U vector with the values of the function at the nodes

* XI, YI coordinates of the points where the function is evaluated
return values:

* UI values of the interpolated function u

* UXI x component of the gradient of u

* UYI y component of the gradient of u

The values of the function and the gradient are determined on each element by
a piecewise linear, quadratic or cubic interpolation.
If a point is not inside the mesh NaN is returned.

This function is similar to FEMEvaluateGradient(), but allows to evaluate at arbitrary points. At the nodes
the value of the gradient in one of the triangles is returned. As a consequence the results generated by the command
FEMEvaluateGradient() look smoother on occasion.

The code below evaluates a function on an L-shaped domain on a rectangular grid. Find the result in Figure 37.

nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
Mesh = CreateMeshTriangle('Ldomain',nodes,0.002);
x = Mesh.nodes(:,1); y = Mesh.nodes(:,2);

function res = f_int2(xy) res = sin(pi*xy(:,1)).ˆ2.*xy(:,2)+1; endfunction

u = feval('f_int2',Mesh.nodes);
N = 51; [xi,yi] = meshgrid(linspace(-1,1,N)); %% generate the uniform grid
tic(); ui3 = FEMgriddata(Mesh,u,xi,yi); toc()

figure(1); mesh(xi,yi,ui3)
xlabel('x'); ylabel('y'); zlabel('u')

-->
Elapsed time is 0.0075829 seconds.

Examples are given in Sections 5.3, 9.3, 9.5, 9.9, 9.11 and 9.17.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 62

Figure 37: A function evaluated on a uniform grid

4.3 How to define functions
There are three basic techniques to define functions in Octave to be used with FEMoctave.

• If the function is a constant you can simply use this scalar as input argument.

• You may provide the function name of the function to be called to compute the values of the function. Observe that
the function has to be vectorized10. Due to a recent change in Octave the script versions should use a dummy second
argument11. The function can be implemented as a name.m Octave function or as dynamically linked function
name.oct, written in C++.

• You can provide a vector of the correct size with all the values of the function at the Gauss integration points of the
mesh.

Section 9 contains many examples or you may examine the examples below.

4.3.1 Functions for static problems

The functions BVP2D(), BVP2Dsym() and BVP2Deig() accept the coefficient functions as input parameters. These
functions accept (currently) one parameter, a matrix with two columns. The first (resp. second) column contains the x (resp.
y) coordinates of the points at which the function is to be evaluated.

As a first example consider the function f(x, y) = 7. There are three options:

1. Pass the constant 7 as scalar to the FEMoctave function. This is the preferred approach.

2. Define a function

Octave
function res = ff(xy,dummy)
res = 7*ones(size(yz)(1),1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

3. Determine the vector of the correct size by

Octave
10For scalar problems the functions on the boundary are actually called for one point at a time, but this might change. For elasticity problems the

functions are called with multiple points. Thus it is advisable to write all functions vectorized.
11In the script files (FEMEquation.m and similar) the function is called with the node types as second argument, to be used for different sections in

the domain. If you only use the compiled versions (FEMEquation.oct and similar) the dummy argument is not required. I might remove this “feature”
in a next release.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 63

ffVec = 7 * ones(size(mesh.GP)(1),1);

and then pass the vector ffVec to the FEMoctave function.

For the second example function
f(x, y) = 7 + 2x

the option constant is not applicable. There are two equally valid methods.

1. Define a function

Octave
function res = ff(xy,dummy)
res = 7 + 2*xy(:,1);

endfunction

and then pass the string ’ff’ to the FEMoctave function.

2. Determine the vector of the correct size by

Octave
ffVec = 7 + 2*xy(:,1);

and then pass the vector ffVec to the FEMoctave function.

To implement the function
f(x, y) = J0(r) = J0(

√
x2 + y2)

to be passed to the FEMoctave command use

Octave
function y = f(xy)
y = besselj(0,sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2));

endfunction

With this definition pass the string ’f’ to the FEMoctave function. Alternatively you can first compute the column vector
fVec of this function at the Gauss points of the mesh by

Octave
fVec = f(mesh.GP);

and then pass the vector fVec to the FEMoctave function.

4.3.2 Functions for dynamic problems

The only change is the additional time t, to be passed as a second argument, i.e. f(xy,t)=... .

4.4 Solving elliptic problems
The first few commands shown in Table 1 can be used to solve elliptic problem on a bounded domain Ω ⊂ R2. In the next
two sections the commands to solve a symmetric and a non-symmetric elliptic BVP are shown.

4.4.1 Symmetric elliptic problems: BVP2Dsym()

Equations given in the form (2)

−∇ · (a∇u) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

a ∂ u
∂n = g2 + g3 u for (x, y) ∈ Γ2

are solved by

Octave

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 64

u = BVP2Dsym(mesh,a,b0,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors. The return value
u is a vector with the values of the solution at the nodes.

BVP2Dsym()
U = BVP2Dsym(MESH,A,B0,F,GD,GN1,GN2)

Solve a symmetric, elliptic boundary value problem

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0 and F may also be given as vectors with the
values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

Find examples in Sections 3.1.1, 3.1.2, 3.1.3, 9.4, 9.5, 9.8 and 9.17.

4.4.2 General elliptic problems: BVP2D()

Equations given in the form of (1)

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

are solved by

Octave
u = BVP2D(mesh,a,b0,bx,by,f,g1,g2,g3)

where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors. The expressions
bx and by denote the two components of the convection vector b⃗. The return value u is a vector with the values of the
solution u at the nodes. Find an example in Section 3.1.4.

BVP2D()
U = BVP2D(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

Solve an elliptic boundary value problem

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return value

* U is the vector with the values of the solution at the nodes

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 65

4.5 Solving 2D eigenvalue problems: BVP2Deig()
To solve an eigenvalue problem of the form (3)

−∇ · (a∇u) + b0 u = λ f u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ1

a ∂ u
∂n = g3 u for (x, y) ∈ Γ2

use

Octave
[Eval,Evec,errorbound] = BVP2Deig(mesh,a,b0,f,gN2,nVec,tol);

where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors.

• The function can be called with one (Eval) or two ([Eval,Evec]) return arguments. A possible third return
argument ([Eval,Evec,errorbound]) is of limited use, since with newer versions of FEMoctave eigs() is
used, instead of an inverse power iteration.

– The first return value Eval is a column vector containing the estimated values of the eigenvalues λi.
– If the second return value Evec is asked for, then a matrix will be returned. Each column contains the values of

a normalized eigenfunction at the nodes.
– The third return argument errorbound will return a matrix with two columns, containing information on the

error bound of the eigenvalues. Observe that the error of the eigenvalue computation is given, not the error
of the overall FEM problem. The error of the FEM discretization has to be estimated by other tools. Some
mathematical details are given in Section 6.9.

* The first column contains a conservative error estimate. The actual error of the eigenvalue is guaranteed to
be smaller.

* The second column contains a more aggressive error estimate. Under most circumstances the estimate is
valid. For highly clustered eigenvalues the error is overestimated.. There are circumstances when the error
of the largest eigenvalues is underestimated. If the error is extremely small, the estimate might indicate an
even smaller error. Keep in mind that the error is always larger than machine accuracy permits.

• The integer parameter nVec indicate the number of smallest eigenvalues to be be computed.

• The parameter tol will lead to the iteration stopping if the relative change from one step to the next is smaller than
tol. If the parameter is not given, then a default value of 10−5 is used.

An example of an eigenvalue problem is given in Section 3.2.

BVP2Deig()
[EVAL,EVEC,ERRORBOUND] = BVP2Deig(MESH,A,B0,W,GN2,NVEC,TOL)

determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP

-div(a*grad u)+ b0*u = Eval*w*u in domain
u = 0 on Dirichlet boundary

n*(a*grad u) = gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* A,B0,W,GN2 are the coefficients and functions describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0 and W may also be given as vectors with the
values of the function at the Gauss points.

* NVEC is the number of smallest eigenvalues to be computed

* TOL optional tolerance for the eigenvalue iteration, default 1e-5

return values:

* EVAL is the vector with the eigenvalues

* EVEC is the matrix with the eigenvectors as columns

* ERORBOUND is a matrix with error bounds of the eigenvalues

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 66

In Sections 6.8.2 and 6.8.4 find the consequences of the eigenvalues to solutions of dynamic heat and wave equations.

4.6 Solving parabolic problems: IBVP2D() and IBVP2Dsym()
To solve an initial boundary value problem (IBVP) of the form (4)

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (t0, T]

u = g1 for (x, y, t) ∈ Γ1 × (t0, T]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (t0, T]

u = u0 on Ω at t = t0

use the command IBVP2D(). Find an example in Section 3.3 and a description of the algorithm in Section 6.8.1.

IBVP2D()
[U,T] = IBVP2D(MESH,M,A,B0,BX,BY,F,GD,GN1,GN2,U0,T0,TEND,STEPS,OPTIONS)
Solve an initial boundary value problem

m*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

parameters:

* MESH is the mesh describing the domain and the boundary types

* M,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE. Any constant function can be given by its scalar value.
The functions M,A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0 is the initial value, can be given as a constant, function
name or as vector with the values at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.
If STEPS = n, then n Crank Nicolson steps are taken and the results returned.
If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value. Currently only the stepping
algorithm can be selected as "SOLVER" and the possible values

* "CN" the standard Crank-Nicolson (default)

* "IMPLICIT" the standard implicit solver

* "EXPLICIT" the standard explicit solver

* "RK" an L-stable, implicit Runge-Kutta solver

return values

* U is a matrix with n+1 columns with the values of the solution at the nodes
at different times T

* T is the vector with the values of the times at which the solutions are returned.

If there is no convection term b⃗ = 0⃗, then the resulting matrix A is symmetric and (most often) positive definite. Thus
one can use a Cholesky factorization for the time stepper. This is (or should be) faster. The structure of IBVP2Dsym() is
almost identical to IBVP2D().

IBVP2Dsym()
IBVP2Dsym(MESH,M,A,B0,F,GD,GN1,GN2,U0,T0,TEND,STEPS)

Solve a symmetric initial boundary value problem
m*d/dt u - div(a*grad u) + b0*u = f in domain

u = gD on Dirichlet boundary
n*(a*grad u) = gN1+gN2*u on Neumann boundary

u(t0) = u0 initial value
...

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 67

4.7 Solving hyperbolic problems: I2BVP2D()
Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2 u+ 2α ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (t0, T]

u = g1 for (x, y, t) ∈ Γ1 × (t0, T]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (t0, T]

u = u0 on Ω at t = t0
∂
∂t u = v0 on Ω at t = t0

To solve this wave type equation use the command I2BVP2D(). Find examples in Sections 9.2 and 9.13 and a description
of the algorithm in Section 6.8.3.

I2BVP2D()
[U,T] = I2BVP2D(MESH,M,D,A,B0,BX,BY,F,GD,GN1,GN2,U0,V0,T0,TEND,STEPS,OPTIONS)

Solve an initial boundary value problem

m*dˆ2/dtˆ2 u + 2*d*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
u(t0) = u0 initial value

d/dt u(t0) = v0 initial velocity
parameters:

* MESH is the mesh describing the domain and the boundary types

* M,D,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions M,D,A,B0,BX,BY and F may also be given as
vectors with the values of the function at the Gauss points.

* F may be given as a string for a function depending on (x,y)
and time t or a a vector with the values at nodes or as scalar.
If F is given by a scalar or vector it is independent on time.

* U0,V0 are the initial value and velocity, can be given as a constant,
function name or as vector with the values at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.

* If STEPS = n, then n steps are taken and the n+1 results returned.

* If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value. Currently only
the stepping algorithm can be selected as "SOLVER" and the possible values

* "IMPLICIT" the standard implicit solver (default)

* "EXPLICIT" the standard explicit solver

return values

* U is a matrix with n+1 columns with the values of the solution at the nodes
at different times T

* T is the vector with the values of the times at which the solutions are returned

4.8 Solving 1D steady state problems, BVP1D()
To solve a steady state boundary value problem (7), i.e.

− d

dx

(
a(x)

d u(x)

dx

)
+ b(x)

d u(x)

dx
+ c(x)u(x) = d(x) f(x)

with boundary conditions (8) at x = x0 and x = xn

u(xi) = gD Dirichlet

a(xi)
d u(xi)

dx = gN1 + gN2 u(xi) Neumann

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 68

use the command BVP1D().

command purpose

BVP1D() solve a static boundary value problem in 1D

IBVP1D() solve a first order initial boundary value problem in 1D

I2BVP1D() solve a second order initial boundary value problem in 1D

BVP1Deig() solve an eigenvalue problem in 1D

BVP1DNL() solve a nonlinear boundary value problem in 1D

IBVP1DNL() solve a dynamic nonlinear boundary value problem in 1D

GenerateFEM1D() generate the matrices for BVP1D()

pwquadinterp() piece–wise quadratic interpolation

FEM1DEvaluateDu() evaluate the first derivative at the nodes

FEM1DIntegrate() evaluate integral with Simpson’s rule

FEM1DGaussPoints() determine the coordinates of the Gauss points and interpolation matrices

GenerateWeight1D() weight matrices for the dynamic 1D problems

Table 7: Commands to solve and examine 1D boundary value problems

For a call of BVP1D()
[x, u] = BVP1D(interval, a, b, c, d, f, BCleft, BCright)

the following parameters are required:

• interval: the interval on which the BVP will be solved. It has the form interval = [x1, x1, x2, . . . , xn]. On each
subinterval [xi, xi+1] the midpoint xi+xi+1

2 will be added and then quadratic function on the subinterval will be used
for the computations.

• a, b, c and d: these coefficient functions can be given either as constant scalar value, as vector or as function handle12

to determine the values.

– The scalar constant will be used as value at the Gauss points.

– The vector has to contain the values at the Gauss points.

– The function handle will be evaluated at the Gauss points.

The code has to be vectorized, e.g. to describe the coefficient a(x) = x2 use the vectorized function handle a =
@(x)x.∧2 .

• f: this function can be given as constant scalar, as vector or as a vectorized function handle. f will determine the
values of the function f(x) at the nodes, i.e. the end- and mid-points of the subintervals.

– The scalar constant will be used as value at all of the nodes.

– The vector has to contain the values at the nodes.

– The function handle will be evaluated at the nodes.

• There are two ways to define the inhomogeneous contribution d(x) f(x) for a BVP. Except for quadratic functions
the results will be slightly different. E.g. for the BVP −u′′(x) = sin(x) the expression sin(x) can be given by
d(x) = sin(x) and f(x) = 1 or d(x) = 1 and f(x) = sin(x).

1. For d(x) = sin(x) and f(x) = 1 use the arguments d=@(x)sin(x) and f=1. With this description sin(x)
will be evaluated at the Gauss points and then used for the RHS of the linear system. This is the approach
preferred by this author.

12This is different from the way to define functions for the 2D codes in FEMoctave.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 69

2. For d(x) = 1 and f(x) = sin(x) use the arguments d=1 and f=@(x)sin(x). With this description sin(x)
will be evaluated at the nodes (end- and mid-points of the subintervals) and with a quadratic interpolation the
values at the Gauss points will be determined and then used for the RHS of the linear system. This approach is
be useful for iterative procedures for nonlinear problems.

• BCleft and BCright: with these parameters the boundary conditions are specified. If it is a single scalar Dirichlet
conditions are used. If it is a vector of two scalars, Neumann conditions are used. E.g.

– BCleft = 3 describes the boundary condition u(x0) = 3

– BCleft = [3, -2] describes the boundary condition a(x0)u′(x0) = 3− 2u(x0)

There are two return arguments:

• x is a vector with the coordinates of the nodes, i.e. all end- and mid–points of the subintervals.

• u is a vector with the values of the (approximate) solution u(x) at the nodes.

Internally BVP1D()will call the function GenerateFEM1D() to approximate the solution of the boundary value problem
by a linear system Au⃗ = M f⃗ . The code in BVP1D() implements the different boundary conditions.

BVP1D()
[X,U] = BVP1D(INTERVAL,A,B,C,D,F,BCLEFT,BCRIGHT)

solve a 1D boundary value probme (BVP)
-(a(x)*u'(x))' + b(x)*u'(x) + c(x)*u(x) = d(x)*f(x)
with boundary conditions at the two endpoints

* Dirichlet: u(x) = g_D

* Neumann: a(x)*u'(x) = g_N1 + g_N2*u(x)

parameters:

* INTERVAL the discretized interval for the BVP

* A constant, vector or function handle to evaluate a(x)

* B constant, vector or function handle to evaluate b(x)

* C constant, vector or function handle to evaluate c(x)

* D constant, vector or function handle to evaluate d(x)

* F constant, vector or function handle to evaluate f(x)

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

return values

* X the nodes in the given inteval

* U the values of the solution at the nodes

The function GenerateFEM1D() is used by BVP1D(), IBVP1D() and I2BVP1D() to generate the matrices re-
quired to solve the BVP and IBVP.

GenerateFEM1D()
[A,M,XNEW] = GenerateFEM1D(X,A,B,C,D)

generate the matrices A and M to discretize the expression
-d/dx (a(x) d/dx u(x)) + b(x)*d/dx u(x) + c(x)*u(x) - d(x)*f(x)
by A*u - M*f

parameters:

* A function handle to evaluate the coefficient a(x), vectorized

* B function handle to evaluate the coefficient b(x), vectorized

* C function handle to evaluate the coefficient c(x), vectorized

* D function handle to evaluate the coefficient d(x), vectorized
return values

* A matrix discretizing the expressions involving u(x)

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 70

* M matrix discretizing the evalaution of d(x)*f(x)

* XNEW vector with the grid points
for an elementary demo use "demo GenerateFEM1D"

BVP1D() will determine the values of the solution at the nodes. If more values are required use a piece–wise quadratic
interpolation, i.e. the command pwquadinterp(). The values of the function and the first and second derivatives can be
evaluated.

pwquadinterp()
yi = pwquadinterp(xdata,ydata,xi) % evaluate the values of the function
[yi, yi_x, yi_xx] = pwquadinterp(xdata,ydata,xi)% evaluate first and second derivatives

Use the data (xdata,ydata) to determine a piecewise quadratic function
and then evaluate this function at the points xi.
With multiple return arguments derivatives are evaluated.
The function requires that:
there are an odd number of data points,
xdata and xi are both in increasing order,
the xi values lie between xdata(1) and xdata(end).

The above command will evaluate the function and derivatives at arbitrary points in the interval. If the values of the
derivative are only required at the notes, use the command FEM1DEvaluateDu().

FEM1DEvaluateDu()
DU = FEM1DEvaluateDu(X,U)
evaluate the first derivative at the nodes x

parameters:

* X coordinates of the nodes, generated by BVP1D()

* U values of the function at the nodes
return values

* DU the values of the derivative at the nodes

To evaluate the the integral of a function given at the nodes use FEM1DIntegrate(). This function uses Simpson’s
rule to evaluate the integral numerically. This is a good match for the second order elements used by FEMoctave since
piecewise polynomials of degree 2 are integrated exactly.

FEM1DIntegrate.m
function res = FEM1DIntegrate(x,u)
%% Result = FEM1DIntegrate(x,u)
%% numerical integration of FEM expression, using Simpson's rule
%% the grid x requires the shape of FEMoctave 1D grids
dd = diff(x(:)); w = ([dd;0]+[0;dd])/3; w(2:2:end) *=2;
res = w'*u(:);

endfunction

For some problems the locations of the Gauss points are required. Use the function FEM1DGaussPoints(). This
function also returns matrices to interpolate the values of a function and its derivative at the Gauss points, using the values
at the nodes. See Section 7.2 for the details, equation (70) interpolates the values of the function.

FEM1DGaussPoints()
[XGAUSS,NODES2GAUSSU,NODES2GAUSSDU] = FEM1DGaussPoints(X)
determine the coordinates of the Gauss points and interpolation matrices

parameters:

* X coordinates of the nodes, generated by BVP1D()
return values

* XGAUSS coordinates of the Gauss points

* NODES2GAUSSU matrix to evaluate u at the Gauss points

* NODES2GAUSSDU matrix to evaluate u' at the Gauss points

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 71

The commands IBVP1D() and I2BVP1D() use the internal command GenerateWeight1D() to solve dynamic
1D problems.

GenerateWeight1D()
[XNEW,W1MAT,W2MAT] = GenerateWeight1D(X,W1,W2)

generate the weight matrices W1MAT and W2MAT

parameters:

* W1 constant, vector or function handle to evaluate the coefficient w1(x), vectorized

* W2 (optional) constant, vector or function handle to evaluate the coefficient w2(x),
vectorized

return values

* XNEW vector with the grid points

* W1MAT weight matrix discretizing W1

* W2MAT (optional) weight matrix discretizing W2

4.9 Solving 1D dynamic problems of order 1, IBVP1D()
To solve a dynamic boundary value problem (9), i.e.

w(x)
∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t)

with boundary conditions as in (8)

u(xi) = gD Dirichlet

a(xi)u
′(xi) = gN1 + gN2 u(xi) Neumann

and an initial condition u(x, t0) = u0(x) use the command IBVP1D().

Most of the parameters for a call of

[x, u, t] = IBVP1D(interval, w, a, b, c, d, f, BCleft, BCright, u0, t0, tend, steps, varargin)

are very similar to the above call of BVP1D().

• w: is the coefficient function for the weight w(x) and can be given as scalar value, vector of values at the Gauss points
or function handle.

• f: this function can be given as constant scalar, as vector or as a vectorized function handle of the form f = @(x,t).
f will determine the values of the function f(x, t) at the nodes, i.e. the end- and mid-points of the subintervals.

• u0: the initial value u(x, t0) = u0(x), either as single scalar, vector of values at the nodes or a function handle.

• t0: tend: initial and end time.

• steps: number of steps to be taken by the time stepping algorithm.

– If steps = n is a single, positive integer, then n steps will be taken and thus n+1 results returned, including
the initial value u0(x).

– If steps = [n nint] is a vector of two positive integers, then n steps will be taken and thus n+ 1 results
returned. In between the returned results nint additional steps will be performed, such that the time step ∆t
will be smaller.

The length of one time step is given by ∆t = tend−t0
n∗nint .

• With the optional argument the type of time stepping algorithm can be selected. Use the string "solver" as name
for the option and a string for the name of the algorithm. Find information on these time steppers in Section 7.6,
starting on page 177.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 72

– "CN": the standard Crank–Nicolson algorithm. This is the default algorithm. It is consistent of order 2 and
unconditionally stable, but not L–stable.

– "implicit": the standard implicit solver. It is consistent of order 1, unconditionally stable and L–stable.

– "explicit": the standard explicit solver. It is consistent of order 1, only conditionally stable and certainly
not L–stable. It is not recommended to use this solver on real problems. If instabilities are very likely to show
up, FEMoctave issues a warning message. It can be used to demonstrate the effect of conditional stability, see
page 177.

– "RK": an implicit Runge–Kutta algorithm. It is consistent of order 2, unconditionally stable and L–stable. The
computational effort is larger than for the other algorithms, but still small for 1D problems.

There are three return arguments:

• x is a vector with coordinates of the nodes, i.e. all end- and mid–points of the subintervals.

• u is a matrix with the values of the (approximate) solutions u(x) at the nodes. The first column contains the initial
values. Each column contains the values for one time, given in the return argument t.

• t is a vector with the times at which the values are returned in u.

Internally IBVP1D() will call the function GenerateFEM1D() to approximate the solution of the initial boundary value
problem by a linear system of ordinary differential equations W d

dt u⃗(t) + Au⃗(t) = M f⃗(t). The code in IBVP1D()
implements the boundary conditions and the time steppers.

IBVP1D()
[X,U,T] = IBVP1D(INTERVAL,W,A,B,C,D,F,BCLEFT,BCRIGHT,U0,T0,TEND,STEPS,OPTIONS)

solve a 1D initial boundary value problem (IBVP)

w(x)*d/dt u(x,t) - (a(x)*u'(x,t))' + b(x)*u'(x,t) + c(x)*u(x,t) = d(x)*f(x,t)

with initial condition u(x,t0) = u0(x) and boundary conditions at the two endpoints

* Dirichlet: u(x,t) = g_D

* Neumann: a(x)*u'(x,t) = g_N1 + g_N2*u(x)

parameters:

* INTERVAL the discretized interval for the BVP

* W constant, vector or function handle to evaluate w(x)

* A constant, vector or function handle to evaluate a(x)

* B constant, vector or function handle to evaluate b(x)

* C constant, vector or function handle to evaluate c(x)

* D constant, vector or function handle to evaluate d(x)

* F constant, vector or function handle to evaluate the f(x)

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

* U0 constant, vector with the initial values at the nodes or a
function handle to evaluate u(t0)

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.

* If STEPS = n, then n steps are taken and the n+1 results returned.

* If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value.
Currently only the stepping algorithm can be selected as "SOLVER"
and the possible values

* "CN" the standard Crank-Nicolson (default)

* "IMPLICIT" the standard implicit solver

* "EXPLICIT" the standard explicit solver

* "RK" an L-stable, implicit Runge-Kutta solver

return values

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 73

* X the nodes in the given interval

* U is a matrix with n+1 columns with the values of the solution at
the nodes at different times T

* T is the vector with the values of the times at which the solutions are returned.

4.10 Solving 1D dynamic problems of order 2, I2BVP1D()
To solve a dynamic boundary value problem (10), i.e.

w2(x)
∂2 u(x, t)

∂t2
+ w1(x)

∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t)

again with Dirichlet or Neumann boundary conditions and an initial value u(x, t0) = u0(x) and initial velocity ∂
∂t u(x, t0) =

u1(x) use the command I2BVP1D(). The syntax is similar to the above IBVP1D(). The only essential difference is the
specification of the initial velocity u1(x). As time stepper select either the unconditionally stable implicit solver or the
conditionally stable explicit solver. Both are consistent of order 2 .

I2BVP1D()
[X,U,T] = I2BVP1D(INTERVAL,W1,A,B,C,D,F,BCLEFT,BCRIGHT,U0,U1,T0,TEND,STEPS,OPTIONS)

solve a second order 1D initial boundary value problem (IBVP)

w2(x)*dˆ2/dtˆ2 u(x,t) + w1(x)*d/dt u(x,t) - (a(x)*u'(x,t))' +
b(x)*u'(x,t) + c(x)*u(x,t) = d(x)*f(x,t)

with initial condition u(x,t0) = u0(x) and d/dt u(x,t0) = u1 and
boundary conditions at the two endpoints

* Dirichlet: u(x,t) = g_D

* Neumann: a(x)*u'(x,t) = g_N1 + g_N2*u(x)

parameters:

* INTERVAL the discretized interval for the BVP

* W2 constant, vector or function handle to evaluate w2(x)

* W1 constant, vector or function handle to evaluate w1(x)

* A constant, vector or function handle to evaluate a(x)

* B constant, vector or function handle to evaluate b(x)

* C constant, vector or function handle to evaluate c(x)

* D constant, vector or function handle to evaluate d(x)

* F constant, vector or function handle to evaluate the f(x,t)

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

* U0 constant, vector with the initial values at the nodes or a
function handle to evaluate u(t0)

* U1 constant, vector with the initial velocitiesat the nodes or
a function handle to evaluate u(t0)

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.

* If STEPS = n, then n steps are taken and the n+1 results returned.

* If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value. Currently only the
stepping algorithm can be selected as "SOLVER" and the possible values

* "IMPLICIT" the standard implicit solver (default)

* "EXPLICIT" the standard explicit solver

return values

* X the nodes in the given interval

* U is a matrix with n+1 columns with the values of the solution
at the nodes at different times T

* T is the vector with the values of the times at which the solutions are returned.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 74

4.11 Solving 1D eigenvalue problems: BVP1Deig()
To solve an 1D eigenvalue problem of the form (11)

− d

dx

(
a(x)

d u(x)

dx

)
+ b(x)

d u(x)

dx
+ c(x)u(x) = λw(x)u(x) for x0 < x < xn

u(xi) = 0 Dirichlet BC

a(xi)
d u(xi)

dx
= gN2 u(xi) Neumann BC

use

Octave
[x,eVal,eVec,errorbound] = BVP1Deig(interval,a,b,c,w,BCleft,BCright,nVec,tol)

where the coefficient functions can be given as described in Section 4.8, as constants, vectors or function handles. There are
(possibly) two additional arguments

• The integer parameter nVec indicates the number of smallest eigenvalues to be be computed.

• The optional parameter tol will lead to the iteration stopping if the relative change from one step to the next is
smaller than tol. If the parameter is not given, then a default value of tol= 10−5 is used.

The function can be called with two (x,Eval) or three ([x,Eval,Evev]) return arguments. A possible fourth return
argument ([x,Eval,Evec,errorbound]) is of limited use, since with newer versions of FEMoctave eigs() is used,
instead of an inverse power iteration.

• The first argument x contains the nodes at which the solutions are evaluated.

• The second return value eVal is a column vector containing the estimated values of the eigenvalues λi.

• If the third return value eVec is asked for, then a matrix will be returned. Each column contains the values of a
normalized eigenfunction at the nodes.

• The fourth return argument errorbound is similar to the command BVP2Deig() (Section 4.5, page 65).

Examples of 1D eigenvalue problem are given in Section 3.2 and 9.16.

BVP1Deig()
[X,EVAL,EVEC,ERRORBOUND] = BVP1Deig(INTERVAL,A,B,C,W,BCLEFT,BCRIGHT,NVEC,TOL)

determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP

-(a(x)*u'(x))' + b(x)*u'(x) + c(x)*u(x) = eVal*w(x)*u(x)
u = 0 on Dirichlet boundary

a*u' = g_N2*u on Neumann boundary

parameters:

* INTERVAL the discretized interval for the BVP

* A constant, vector or function handle to evaluate a(x)

* B constant, vector or function handle to evaluate b(x)

* C constant, vector or function handle to evaluate c(x)

* W constant, vector or function handle to evaluate d(x)

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

* NVEC the number of smallest eigenvalues to be computed

* TOL optional tolerance for the eigenvalue iteration, default 1e-5

return values

* X the nodes in the given interval

* EVAL the eigenvalues of the solution at the nodes

* EVEC the matric of eigenvectors of the solutions at the nodes

* ERRORBOUND a matrix with error bounds of the eigenvalues

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 75

4.12 Solving nonlinear 1D boundary value problems: BVP1DNL()
Search for solutions of nonlinear boundary value problems given in equation (13)

− ∂

∂x

(
a(x, u(x), u′(x))

∂ u(x)

∂x

)
+ b(x)

∂ u(x)

∂x
+ c(x)u(x) = d(x) f(x, u(x), u′(x))

with linear Dirichlet of Neumann boundary conditions.

• For the dependence on the function f on u and u′ Newton’s method is used, based on the linear Taylor approximation

f(x, u+ ϕ, u′ + ϕ′) ≈ f(x, u, u′) + ∂ f

∂u
ϕ+

∂ f

∂u′
ϕ′

• If the coefficient a depends on u or u′ a partial substitution method is used.

• If a and f are nonlinear, a combination of Newton and substitution is used. The basic idea is spelled out in Algo-
rithm 1. Find more details in Section 7.8.

Algorithm 1: The algorithm of BVP1DNL()
evaluate an = a(x, u0(x), u

′
0(x)) and f0 = f(x, u0(x), u

′
0(x))

solve −(an u′n)′ + b u′n + c un = f0
repeat

set uold = un
evaluate fn = f(x, un(x), u

′
n(x)), fu = ∂

∂uf(x, un(x), u
′
n(x)) and fu′ = ∂

∂u′ f(x, un(x), u
′(x))

evaluate the coefficients bn = b− d fu and cn = c− d fu′

solve −(an ϕ′)′ + bn ϕ
′ + cn ϕ = +(an u

′
n)

′ − bn u′n − cn un + d fn
set un = un + ϕ, i.e. one Newton step
evaluate an = a(x, un(x), u

′
n(x)) and fn = f(x, un(x), u

′
n(x))

solve (an u
′
n)

′ + b u′n + c un = d fn, i.e one substitution step
until RMS of uold − un small enough or too many iterations;
return the results

BVP1DNL()
[X,U] = BVP1DNL(INTERVAL,A,B,C,D,F,BCLEFT,BCRIGHT,U0,OPTIONS)

solve a nonlinear 1D boundary value problem (BVP)

-(a(x,u,u')*u'(x))' + b(x)*u'(x) + c(x)*u(x) = d(x)*f(x,u,u')

with boundary conditions at the two endpoints

* Dirichlet: u(x) = g_D

* Neumann: a(x,u,u')*u'(x) = g_N1 + g_N2*u(x)

parameters:

* INTERVAL the discretized interval for the BVP

* A constant, vector or function handle to evaluate a(x), a(x,u) or a(x,u,u')
at the Gauss points.

* A a constant or vector of values of a(x).

* A = @(X) a function handle to evaluate f(x).

* A = {@(X,U), @(X,U)} assumes that the function a(x,u) depends on x and u.
The two function handles evaluate a(x,u) and the partial derivative a_u(x,u).

* A = {@(X,U,U'), @(X,U,U') , @(X,U,U')} assumes that a(x,u,u') depends on
x, u and u'. The three function handles evaluate a(x,u,u') and the partial
derivatives a_u(x,u,u') and a_u'(x,u,u').

* B constant, vector or function handle to evaluate b(x) at Gauss points

* C constant, vector or function handle to evaluate c(x) at Gauss points

* D constant, vector or function handle to evaluate d(x) at Gauss points

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 76

* F constant, vector or function handle to evaluate f(x), f(x,u) or
f(x,u,u') and the partial derivatives at nodes

* F a constant or vector of values of f(x) at the nodes.

* F = @(X) a function handle to evaluate f(x) at the nodes.

* F = {@(X,U), @(X,U)} assumes that the function f depends on x and u.
The two function handles evaluate f(x,u) and the partial derivative f_u(x,u).

* F = {@(X,U,U'), @(X,U,U') , @(X,U,U')} assumes that f depends on x, u and u'.
The three function handles evaluate f(x,u,u') and the partial derivatives
f_u(x,u,u') and f_u'(x,u,u').

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

* U0 constant, vector or function handle to evaluate u0(x) at the nodes.
This is the starting value for the iteration.

* OPTIONS additional options, given as pairs name/value.

* "TOL" the tolerance for the iteration to stop, given as pair [TOLREL,TOLABS]
for the relative and absolute tolerance. The iteration stops if the
absolute or relative error is smaller than the specified tolerance.
RMS (root means square) values are used. If only TOLREL is specified
TOLABS = TOLREL is used. The default values are TOLREL = TOLABS = 1E-5.

* "MAXITER" the maximal number of iterations to be used. The default value is 10.

* "DISPLAY" should information be displayed for the iterations

* "OFF" no display, default

* "ITER" display the number of the iteration and the RMS size of the update

return values

* X the nodes in the given interval

* U the values of the solution at the nodes

* INFORM a structure with information on the performance of the algorithm

* INFORM.INFO = 1 if the algorithm converged with the desired tolerance, -1 if not.

* INFORM.ITER the number of iterations used.

* INFORM.ABSERROR the RMS value of the last correction applied.

4.13 Solving dynamic nonlinear 1D boundary value problems: IBVP1DNL()
Search for solutions of nonlinear boundary value problems given in equation (14)

w(x)
∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t, u(x, t))

with linear boundary conditions, Dirichlet or Neumann and a given initial condition u(x, t0) = u0(x).

• As time stepper a Crank–Nicolson scheme is used.

• For each time step a nonlinear equation has to be solved. A standard Newton method is used, based on

f(x, t, u+ ϕ) ≈ f(x, t, u) + ∂ f

∂u
ϕ .

IBVP1DNL()
[X,U,T] = IBVP1DNL(INTERVAL,W,A,B,C,D,F,BCLEFT,BCRIGHT,U0,T0,TEND,STEPS,OPTIONS)

solve a 1D initial boundary value problem (IBVP)

w(x)*d/dt u(x,t) - (a(x)*u'(x,t))' + b(x)*u'(x,t) + c(x)*u(x,t) = d(x)*f(x,t,u(x,t))
with initial condition u(x,t0) = u0(x) and boundary conditions at the two endpoints

* Dirichlet: u(x,t) = g_D

* Neumann: a(x)*u'(x,t) = g_N1 + g_N2*u(x)

parameters:

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 77

* INTERVAL the discretized interval for the BVP

* W constant, vector or function handle to evaluate w(x)

* A constant, vector or function handle to evaluate a(x)

* B constant, vector or function handle to evaluate b(x)

* C constant, vector or function handle to evaluate c(x)

* D constant, vector or function handle to evaluate d(x)

* F a structure F = {@(X,T,U), @(X,T,U)}. The two function handles evaluate
f(x,t,u) and the partial derivative f_u(x,t,u).

* BCLEFT and BCRIGHT the two boundary conditions

* for a Dirichlet condition specify a single value G_D

* for a Neumann condition specify the values [G_N1,G_N2]

* U0 constant or vector with the initial values at the nodes or
a function handle to evaluate u(x,t0)

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.

* If STEPS = n, then n steps are taken and the n+1 results returned.

* If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value.

* "TOL" the tolerance for the iteration at each time step to stop,
given as pair [TOLREL,TOLABS] for the relative and absolute tolerance.
The iteration stops if the absolute or relative error is smaller than the specified
tolerance. RMS (root means square) values are used. If only TOLREL is specified
TOLABS=TOLREL is used. The default values are TOLREL = TOLABS = 1E-5.

* "MAXITER" the maximal number of iterations to be used. The default value is 10.

return values

* X the nodes in the given interval

* U is a matrix with n+1 columns with the values of the solution at the nodes at times T

* T is the vector with the values of the times at which the solutions are returned.

4.14 Plane elasticity problems
For a plane stress problem the total energy (22) is

U(u⃗) =

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∫
Γ2

g⃗N · u⃗ ds ,

respecting the boundary conditions (15)

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0⃗ on free boundary Γ3

The corresponding Euler–Lagrange equations are shown in (23).

For a plane strain problem the total energy in expression (28)

U(u⃗) = Uelast + UV ol + USurf

=

∫∫
Ω

1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∫
Γ2

g⃗N · u⃗ ds

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 78

=

∫∫
Ω

1

2

E

(1− (ν⋆)2)
⟨


1 ν⋆ 0

ν⋆ 1 0

0 0 2 (1− ν⋆)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∫
Γ2

g⃗N · u⃗ ds .

is minimized, again respecting the boundary conditions (15). Thus the resulting Euler–Lagrange equations are very similar
to (23), but with E⋆ and ν⋆, given in (27) by

ν⋆ =
ν

1− ν
> ν and E⋆ =

E

1− ν2
> E .

4.14.1 Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain()

To solve a plane stress problem use the command PlaneStress().

PlaneStress()
[U1,U2] = PlaneStress(MESH,E,NU,F,GD,GN)

solve an plane stress problem

plane stress equation in domain
u = gD on Gamma_1

force density = gN on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young's modulus and Poisson's ratio for the material

* F = {F1,F2} a cell array with the two components of the volume forces

* GD = {GD1,GD2} a cell array with the two components of the
prescribed displacements on the boundary section Gamma_1

* GN = {GN1,GN2} a cell array with the two components of the
surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU, F1 and F2 may also be given as vectors
with the values of the function at the Gauss points

return values

* U1 vector with the values of the x-displacement at the nodes

* U2 vector with the values of the y-displacement at the nodes

The code for PlaneStrain() is almost identical to PlaneStress() .

PlaneStrain()
[U1,U2] = PlaneStrain(MESH,E,NU,F,GD,GN)

solve an plane strain problem

plane strain equation in domain
u = gD on Gamma_1

force density = gN on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young's modulus and Poisson's ratio for the material

* F = {F1,F2} a cell array with the two components of the volume forces

* GD = {GD1,GD2} a cell array with the two components of the
prescribed displacements on the boundary section Gamma_1

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 79

* GN = {GN1,GN2} a cell array with the two components of the
surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU, F1 and F2 may also be given as vectors
with the values of the function at the Gauss points

return values

* U1 vector with the values of the x-displacement at the nodes

* U2 vector with the values of the y-displacement at the nodes

4.14.2 Eigenvalue problems, PlaneStressEig(), PlaneStrainEig()

For a domain Ω and material parameter E, ν and the density ρ the eigenvalue problem (25)

−div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
= λ ρu1

−div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
= λ ρu2

is examined by the command PlaneStressEig().

PlaneStressEig()
[LA,U1,U2] = PlaneStressEig(MESH,E,NU,W,NVEC,TOL)

solve a plane stress eigenvalue problem

A*u = la*w*u in domain, plane stress equation
u = 0 on Gamma_1

force density = 0 on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young's modulus and Poisson's ratio for the material

* W the material density

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU and W may also be given as vectors
with the values of the function at the Gauss points

* NVEC the number of smallest eigenvalues to be determined

* TOL optional tolerance for for the eigenvalue iteration, default 1e-5

return values

* LA the eigenvalues

* U1 matrix with the values of the x-displacement at the nodes

* U2 matrix with the values of the y-displacement at the nodes

Examples are given in Sections 3.10.3, 5.12, 5.14, 9.38 and 9.39 .

The command PlaneStrainEig() is very similar. The only difference is the usage of the plane strain assumption.

4.14.3 Dynamic elasticity problems, PlaneStressDynamic(), PlaneStrainDynamic()

To solve a dynamic plain stress problem (24)

−div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
+ f1 = ρ ∂2

∂t2 u1

− div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
+ f2 = ρ ∂2

∂t2 u2

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 80

use the command PlaneStressDynamic().

PlaneStressDynamic()
[U1,U2,T] = PlaneStressDynamic(MESH,E,NU,RHO,F,GD,GN,U0,V0,T0,TEND,STEPS,OPTIONS)

solve a dynamic plane stress problem

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young's modulus and Poisson's ratio for the material

* RHO,the density of the material

* F = {F1,F2} a cell array with the two components of the volume forces.
The functions take two arguments, coordinates xy and time t,
i.e. of the form F1(XY,T).

* GD = {GD1,GD2} a cell array with the two components of the prescribed
displacements on the boundary section Gamma_1

* GN = {GN1,GN2} a cell array with the two components of the surface forces on
the boundary section Gamma_2

* U0, V0 the initial displacement and initial velocity.

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU and RHO may also be given as vectors with the values of
the function at the Gauss points

* The functions F1, F2, U0 and V0 may also be given as vectors with the values
of the function at the nodes

* T0, TEND are the initial and final times

* STEPS is a vector with one or two positive integers.

* If STEPS = n, then n steps are taken and the n+1 results returned.

* If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.

* OPTIONS additional options, given as pairs name/value.
Currently only the time stepping algorithm can be selected as "SOLVER" and the
possible values

* "IMPLICIT" an implicit solver (default)

* "EXPLICIT" the standard explicit solver

return values

* U1, U2 matrices with the values of the x- and y-displacements at the nodes.
Matrices with n+1 columns with the values of the solution at the nodes
at different times T

* T vector with the n+1 values of the times at which the solutions are returned.

To solve a dynamic plane strain problem use the command PlaneStrainDynamic(). The code is a wrapper of the
plane stress function, adapting to the modified material parameters

E → E⋆ =
E

1− ν2
≥ E and ν → ν⋆ =

ν

1− ν
≥ ν .

You can as well call PlaneStressDynamic() with the modified parameters.

Examples are given in Sections 3.10.3 and 9.42.

4.14.4 Evaluating plane stress and plane strain solutions

In Table 8 find the commands related to solving plane elasticity problems and analyzing their solutions. The functions
EvaluateStress(), EvaluateStrain(), EvaluateVonMises(), EvaluateTresca() and EvaluatePrincipalStress()
determine the values at the nodes of the mesh. Thus for many applications these function have to be followed by a call of
FEMgriddata() to evaluate at arbitrary points.

Observe that the two computational paths

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 81

1. Evaluate the partial derivative ∂u1

∂x by a piecewise interpolation of the values of u1 at the nodes. This is used by the
command FEMgriddata() with 2 or 3 return arguments.

2. Evaluate the normal strain εxx at the nodes, followed by a piecewise interpolation to determine the value at the
arbitrary point (x, y). This is used by the command EvaluateStrain() to determine the values at the nodes.

will NOT generate identical results. The difference should be small, but can be substantial, in particular for first order
elements.

1. The value of eps xx 1 is evaluated using the values of u1 at the nodes and then a piecewise linear or quadratic
interpolation leads to the value of the partial derivative ∂u1

∂x at the point (x, y).

2. The second option eps xx 2 will first find values of the strain εxx at the nodes, by taking an average of the par-
tial derivatives ∂u1

∂x at the node in the different triangles touching the node. Then a piecewise linear or quadratic
interpolation of the values of εxx at the nodes is used to estimate εxx = ∂u1

∂x at the point (x, y).

[˜,eps_xx_1,˜] = FEMgriddata(FEMmesh,u1,x,y)
[eps_xx,eps_yy,tau_xy] = EvaluateStrain(FEMmesh,u1,u2);
eps_xx_2 = FEMgriddata(FEMmesh,eps_xx,x,y)

command purpose

PlaneStress() solve a plane stress problem

PlaneStrain() solve a plane strain problem

PlaneStressEig() solve a plane stress eigenvalue problem

PlaneStrainEig() solve a plane strain eigenvalue problem

PlaneStressDynamic() solve a dynamic plane stress problem

PlaneStrainDynamic() solve a dynamic plane strain problem

PStressEquationM() generate plane stress equations, order 1

PStressEquationQuadM() generate plane stress equations, order 2

PStressEquationCubicM() generate plane stress equations, order 3

PStressEquationWM() generate matrices for plane stress, eigen and dynamic, order 1

PStressEquationQuadWM() generate matrices for plane stress, eigen and dynamic, order 2

PStressEquationCubicWM() generate matrices for plane stress, eigen and dynamic, order 3

ShowDeformation() display the original and deformed domain

EvaluateStrain() given the displacement evaluate the strains at the nodes

EvaluateStress() given the displacement evaluate the stresses at the nodes

EvaluateVonMises() evaluate the von Mises stress at the nodes

EvaluatePrincipalStress() evaluate the three principal stresses at the nodes

EvaluateTresca() evaluate the Tresca stress at the nodes

EvaluateEnergyDensity() evaluate the energy density at the nodes

Table 8: Commands to solve and examine plane elasticity problems

4.14.5 Displaying the deformed domain, ShowDeformation()

With the command ShowDeformation() the original and deformed domain are displayed.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 82

ShowDeformation()
ShowDeformation(MESH,U1,U2,FACTOR)

display the original domain and the deformed domain

parameters:

* MESH is the mesh describing the domain

* U1 vector with the values of the x-displacements at the nodes

* U2 vector with the values of the y-displacements at the nodes

* FACTOR is the scaling factor for the displacements U1 and U2

4.14.6 Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress()

Given the displacements u⃗1 and u⃗2 with the corresponding mesh use the function EvaluateStrain() to determine the
normal and shearing strains at the nodes of the mesh. The same function can be used for plane stress and plane strain
problems. The missing normal strain εzz in z–direction can be determined independently.

• For a plane stress setup use εzz = −ν
1−ν (εxx + εyy).

• For a plane strain setup the assumption is εzz = 0.

EvaluateStrain()
[EPS_XX,EPS_YY,EPS_XY] = EvaluateStrain(MESH,U1,U2)

evaluate the normal and shearing strains at the nodes

parameters:

* MESH is the mesh describing the domain

* U1 vector with the values of the x-displacements at the nodes

* U2 vector with the values of the y-displacements at the nodes
return values:

* EPS_XX values of normal strain in x direction at the nodes

* EPS_YY values of normal strain in y direction at the nodes

* EPS_XY values of shearing strain at the nodes

Given the displacements u⃗1 and u⃗2 with the corresponding mesh use the function EvaluateStress() to determine
the normal and shearing stresses at the nodes. Since Hooke’s law is used to determine the stresses the material parameters E
and ν have to be provided. Use the same function for plane stress and plane strain problems, but with different arguments.

• For a plane stress setup ask for three return arguments σx, σy and τxy . All other components of the stress tensor are
zero, based on the plane stress assumption.

• For a plane strain setup ask for four return arguments σx, σy , τxy and σz . Based on Hooke’s law the other shearing
stresses are given by τxz = τyz = 0.

EvaluateStress()
[SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStress(MESH,U1,U2,E,NU)

evaluate the normal and shearing stresses at the nodes, using
Hooke's law for plane stress or plane strain setups

* [SIGMA_X,SIGMA_Y,TAU_XY] = EvaluateStress(MESH,U1,U2,E,NU)
with three return arguments assumes a plane stress situation

* [SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStress(MESH,U1,U2,E,NU)
with four return arguments assumes a plane strain situation

parameters:

* MESH is the mesh describing the domain

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 83

* U1 vector with the values of the x-displacements at the nodes

* U2 vector with the values of the y-displacements at the nodes

* E Young's modulus of elasticity, either as constant or as
string with the function name

* NU Young's modulus of elasticity, either as constant of as
string with the function name

return values:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes,
only for plane strain situations

4.14.7 Evaluation of stress expressions: EvaluateVonMises(), EvaluatePrincipalStress() and EvaluateTresca()

There are many expressions used for post processing elasticity problems. The following commands allow to evaluate a few
of them at the nodes of the given mesh.

The von Mises stress σM is useful as an indicator for material failure for ductile materials, e.g. most metals. It is one
of the most common output expressions used for mechanical FEM simulations. It is a measure for the differences of the
principals stresses, since

σ2
M =

1

2

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)
.

• For a plane stress setup use σz = τxz = τyz = 0 to simplify the expression for the von Mises stress.

σ2
M =

1

2

(
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

)
+ 3

(
τ2xy + τ2yz + τ2zx

)
=

1

2

(
(σx − σy)2 + σ2

y + σ2
x

)
+ 3 τ2xy = σ2

x + σ2
y − σyσ2

x + 3 τ2xy

• For a plane strain setup use τxz = τyz = 0 to simplify the expression for the von Mises stress slightly.

σ2
M =

1

2

(
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

)
+ 3 τ2xy

Select the plane stress or plane strain setup by calling the function EvaluateVonMises() with three or four input
arguments.

• If the three arguments σx, σy and τxy are given, then a plane stress situation is used.

• If the four arguments σx, σy , τxy and σz are given, then a plane strain situation is used.

EvaluateVonMises()
VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)

evaluate the von Mises stress at the nodes

* VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY)
with three input arguments assumes a plane stress situation

* VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
with four input arguments assumes a plane strain situation

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes,
only for plane strain situations

return values:

* VONMISES values of the von Mises stress at the nodes

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 84

By selecting an appropriate (local) coordinate system the shearing stresses will vanish and only the three principal
stresses σ1, σ2 and σ3 are used. They are the eigenvalues of the stress matrix

σx τxy τxz

τxy σy τyz

τxz τyz σz

 .

• For a plane stress problem determine the principal stresses σ1 and σ2 by solving a quadratic equation.

0 = det

[
σx − σ τxy

τxy σy − σ

]
= σ2 − σ (σx + σy) + σxσy − τ2xy

σ1,2 =
1

2

(
(σx + σy)±

√
(σx + σy)2 − 4σxσy + 4 τ2xy

)
=

1

2

(
(σx + σy)±

√
(σx − σy)2 + 4 τ2xy

)
For a plane stress problem the third principal stress is given by σ3 = 0.

• For a plane strain setup the first two of the above principal stresses remain unchanged. The values of σ3 are determined
by

σ3 = σz =
E ν (εxx + εyy)

(1 + ν) (1− 2 ν)
= ν (σ1 + σ2) = ν (σx + σy) .

and returned by the function EvaluateStress().

Thus there is no need for code to compute the values of σ3.

EvaluatePrincipalStress()
[SIGMA_1,SIGMA_2] = EvaluatePrincipalStress(SIGMA_X,SIGMA_Y,TAU_XY)

evaluate the first two principal stresses at the nodes

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes
return values:

* SIGMA_1 first principal stress at the nodes

* SIGMA_2 second principal stress at the nodes

The Tresca stress is another indicator for material failure for ductile materials. The Tresca stress measures the differ-
ences of the principal stresses and is given by

σT = max{|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|} .

Select the plane stress or plane strain setup by calling the function EvaluateTresca() with three or four input argu-
ments.

• If the three input arguments σx, σy and τxy are given, then a plane stress situation is used.

• If the four input arguments σx, σy , τxy and σz are given, then a plane strain situation is used.

EvaluateTresca()
TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)

evaluate the Tresca stress at the nodes

* TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY)
with three input arguments assumes a plane stress situation

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 85

* TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
with four input arguments assumes a plane strain situation

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* TAU_XY values of shearing strain at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes,
only for plane strain situations

return values:

* TRESCA Tresca stress at the nodes

4.14.8 Evaluation of the energy density, EvaluateEnergyDensity()

EvaluateEnergyDensity()
W = EvaluateEnergyDensity(MESH,EPS_XX,EPS_YY,EPS_XY,E,NU,OPTIONS)

evaluate the energy density at the nodes

parameters:

* MESH is the mesh describing the domain

* EPS_XX, EPS_YY, EPS_XY vectors with the values of the strains at the nodes

* E Young's modulus of elasticity, either as constant or as string with the function name

* NU Poisson's ratio, either as constant or as string with the function name

* OPTIONS additional options, given as pairs name/value. Currently only plain stress
or strain can be selected as "MODEL" and the possible values are

* "PSTRESS" for the plain stress assumption (default)

* "PSTRAIN" for the plain strain assumption
return value:

* W values of the energy density at the nodes

4.15 Solving axisymmetric elasticity problems, AxiStress()
By minimizing the energy given by equation (29) on page 19 an axisymmetric elasticity problem can be solved. The
construction of the elements is shown in Section 8.7 starting on page 194. The commands to solve axially symmetric
problems and analyze their solutions are shown in Table 9.

4.15.1 Evaluating axisymmetric solutions

To determine the radial displacement ur and the z–displacement uz use the command AxiStress().

AxiStress()
[UR,UZ] = AxiStress(MESH,E,NU,F,GD,GN)

solve an axisymmetric elasticity problem

plane stress equation in domain
u = gD on Gamma_1

force density = gN on Gamma_2
force density = 0 on Gamma_3

parameters:

* MESH is the mesh describing the domain and the boundary types

* E,NU Young's modulus and Poisson's ratio for the material

* F = {F1,F2} a cell array with the two components of the volume forces

* GD = {GD1,GD2} a cell array with the two components of the
prescribed displacements on the boundary section Gamma_1

* GN = {GN1,GN2} a cell array with the two components of the

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 86

surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value

* Any function can be given by a string with the function name

* The functions E, NU, F1 and F2 may also be given as vectors
with the values of the function at the Gauss points

return values

* UR vector with the values of the r-displacement at the nodes

* UZ vector with the values of the z-displacement at the nodes

command purpose

AxiStress() solve an axially symmetric elasticity problem

AxiStressEquationM() generate the equations, elements of order 1

AxiStressEquationQuadM() generate the equations, elements of order 2

AxiStressEquationCubicM() generate the equations, elements of order 3

EvaluateStrainAxi() given the displacement evaluate the strains at the nodes

EvaluateStressAxi() given the displacement evaluate the stresses at the nodes

EvaluateVonMisesAxi() evaluate the von Mises stress at the nodes

EvaluatePrincipalStressAxi() evaluate the three principal stresses at the nodes

EvaluateTrescaAxi() evaluate the Tresca stress at the nodes

EvaluateEnergyDensityAxi() evaluate the energy density at the nodes

Table 9: Commands to solve and examine axially symmetric elasticity problems

4.15.2 Evaluation of strains and stress for axisymmetric problems

Based on Section 2.15 the strains for an axisymmetric problem with displacements ur(r, z) and uz(r, z) in the plane y = 0
are given by 

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 =


∂ ur

∂r 0 1
2 (

∂ ur

∂z + ∂ uz

∂r)

0 1
r ur 0

1
2 (

∂ ur

∂z + ∂ uz

∂r) 0 ∂ uz

∂z

 .

Using Hooke’s law this leads to the stresses
σx

σy

σz

 =
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


εxx

εyy

εzz



=
E

(1 + ν) (1− 2 ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 ·


∂ ur

∂r
1
r ur
∂ uz

∂z


τzx =

E

1 + ν

1

2
(
∂ ur
∂z

+
∂ uz
∂r

)

Based on this the stresses and strains for axisymmetric problems can be evaluated. The codes are similar to the corresponding
codes for plane elasticity problems, see Section 4.14.4 starting on page 80.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 87

• EvaluateStrainAxi()
[EPS_XX,EPS_YY,EPS_ZZ,EPS_XZ] = EvaluateStrainAxi(MESH,UR,UZ)
evaluate the normal and shearing strains at the nodes

parameters:

* MESH is the mesh describing the domain

* UR vector with the values of the r-displacements at the nodes

* UZ vector with the values of the z-displacements at the nodes
return values:

* EPS_XX values of normal strain in x direction at the nodes

* EPS_YY values of normal strain in y direction at the nodes

* EPS_ZZ values of normal strain in z direction at the nodes

* EPS_XZ values of shearing strain at the nodes

• EvaluateStressAxi()
[SIGMA_X,SIGMA_Y,SIGMA_Z,TAU_XZ] = EvaluateStressAxi(MESH,UR,UZ,E,NU)
evaluate the normal and shearing stresses at the nodes, using Hooke's law

parameters:

* MESH is the mesh describing the domain

* UR vector with the values of the r-displacements at the nodes

* UZ vector with the values of the z-displacements at the nodes

* E Young's modulus of elasticity, either as constant or as
string with the function name

* NU Young's modulus of elasticity, either as constant or as
string with the function name

return values:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes

* TAU_XZ values of shearing strain at the nodes

• EvaluateVonMisesAxi()
VONMISES = EvaluateVonMisesAxi(SIGMA_X,SIGMA_Y,SIGMA_Z,TAU_XZ)
evaluate the von Mises stress at the nodes

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes

* TAU_XZ values of shearing strain at the nodes
return values:

* VONMISES values of the von Mises stress at the nodes

• Based on the stress matrix 
σx 0 τxz

0 σy 0

τxz 0 σz


two principal stresses are given by solving a quadratic equation.

0 = det

[
σx − σ τxz

τxz σz − σ

]
= σ2 − σ (σx + σz) + σxσz − τ2xz

σ1,2 =
1

2

(
(σx + σz)±

√
(σx + σz)2 − 4σxσz + 4 τ2xz

)
=

1

2

(
(σx + σz)±

√
(σx − σz)2 + 4 τ2xz

)
SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 88

The third principal stress is given by σ3 = σy .

EvaluatePrincipalStressAxi()
[SIGMA_1,SIGMA_2] = EvaluatePrincipalStressAxi(SIGMA_X,SIGMA_Z,TAU_XZ)
evaluate two principal stresses at the nodes

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes

* TAU_XZ values of shearing strain at the nodes
return values:

* SIGMA_1 first principal stress at the nodes

* SIGMA_2 second principal stress at the nodes

• EvaluateTrescaAxi()
TRESCA = EvaluateTrescaAxi(SIGMA_X,SIGMA_Y,SIGMA_Z,TAU_XZ)
evaluate the Tresca stress at the nodes

parameters:

* SIGMA_X values of normal stress in x direction at the nodes

* SIGMA_Y values of normal stress in y direction at the nodes

* SIGMA_Z values of normal stress in z direction at the nodes

* TAU_XZ values of shearing strain at the nodes
return values:

* TRESCA Tresca stress at the nodes

4.15.3 Evaluation of the energy density, EvaluateEnergyDensityAxi()

EvaluateEnergyDensityAxi()
W = EvaluateEnergyDensityAxi(MESH,EPS_XX,EPS_YY,EPS_ZZ,EPS_XZ,E,NU)

evaluate the energy density at the nodes for an axially symmetric setup

parameters:

* MESH is the mesh describing the domain

* EPS_XX, EPS_YY, EPS_ZZ, EPS_XZ vectors with the values of the strains at the nodes

* E Young's modulus of elasticity, either as constant or as string with the function name

* NU Poisson's ratio, either as constant or as string with the function name

return value:

* W values of the energy density at the nodes

4.16 Internal commands in FEMoctave
In this section a few internal commands are documented. Usually these commands are not used when solving boundary
value problems or elasticity problems. But the contain the essential codes to generate the matrices and vectors required to
solve the problems. The coding is based on the algorithms shown in Section 6, starting on page 132. They can also be useful
to illustrate the essential steps of finite element algorithms, e.g. individual element stiffness matrices.

4.16.1 Linear elements: FEMEquation.cc and FEMEquation.m

This is the fundamental function that transforms a BVP to a system of linear equations. First order triangular elements are
used. To speed it up it is written in C++, leading to the file FEMEquation.oct.

FEMEquation()

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 89

[A,B] = FEMEquation(MESH,A,B0,BX,BY,F,GD,GN1,GN2)

sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 1

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 1 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

The script function FEMEquation.m perfoms the same task and is easier to read and understand, but considerably
slower than the compiled code.

4.16.2 Quadratic elements: FEMEquationQuad.cc and FEMEquationQuad.m

This is the fundamental function that transforms a BVP to a system of linear equations. Second order triangular elements
are used. To speed it up it is written in C++.

FEMEquationQuad()
[A,B] = FEMEquationQuad(MESH,A,B0,BX,BY,F,GD,GN1,GN2)
sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 2

-div(a*grad u - u*(bx,by))+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary

parameters:

* MESH triangular mesh of order 2 describing the domain and the
boundary types

* A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
describing the PDE.
Any constant function can be given by its scalar value.
The functions A,B0,BX,BY and F may also be given as vectors
with the values of the function at the Gauss points.

return values:

* A, B: matrix and vector for the linear system to be solved, A*u-B=0

The script function FEMEquationQuad.m performs the same task and is easier to read and understand, but consider-
ably slower than the compiled code.

4.16.3 Cubic elements: FEMEquationCubic.cc and FEMEquationCubic.m

These two commands are very similar to the above section, but use triangular elements of order 3.

4.16.4 Effect of right hand side for dynamic problems: FEMInterpolWeight()

For the time stepping in parabolic and hyperbolic problems many systems of linear equations have to be solved using
the RHS f(t, x, y) for different values of the time t. Thus a function to keep track of the influence of f is useful,
FEMInterpolWeight(). This function returns a sparse matrix wMat such that the RHS of the system to be solved is

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 90

given by wMat f⃗ .

FEMInterpolWeight()
WMAT = FEMInterpolWeight(FEMMESH,WFUNC)

create the matrix to determine the contribution of w*f to a IBVP or BVP
the contribution of w*f is the determined by wMat*f, where f is the
vector with the values at the "free" nodes

-div(a*grad u)+ b0*u = w*f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* MESH is the mesh describing the domain and the boundary types

* WFUNC is the weight function w
It may be given as a function name, a vector with the values
at the Gauss points or as a scalar value

return value

* WMAT is the sparse weight matrix

This function is used in IBVP2D(), I2BVP2D() and IBVP2Dsym().

4.16.5 Effect of the Dirichlet values: FEMInterpolBoundaryWeight()

If the same system has to be solved for many different Dirichlet values gD on the boundary, one can generate the equation
once and the only recompute the changes for different gD.

FEMInterpolBoundaryWeight()
WMAT = FEMInterpolBoundaryWeight(FEMMESH,A,B0)

create the matrix to determine the contribution of gD to a IBVP or BVP
the contribution of gD is the determined by wMat*gD, where gD is
the vector with the values at the Dirichlet nodes

-div(a*grad u)+ b0*u = f in domain
u = gD on Dirichlet boundary

n*(a*grad u) = gN1+gN2*u on Neumann boundary

parameters:

* FEMMESH is the mesh describing the domain and the boundary types.

* A,B0 are the coefficients and functions describing the PDE.
return value:

* WMAT is the sparse weight matrix

4.16.6 Determine a few small eigenvalues: eigSmall()

In the function BVP2Deig() a few small eigenvalues are determined with the help of the wrapper eigSmall() for the
Octave function eigs(). Usually generalized eigenvalues are used in FEMoctave.

eigSmall()
[Lambda,{Ev,err}] = eigSmall(A,V,tol)

solve A*Ev = Ev*diag(Lambda) standard eigenvalue problem

[Lambda,{Ev,err}] = eigSmall(A,B,V,tol)
solve A*Ev = B*Ev*diag(Lambda) generalized eigenvalue problem

A is a (sparse) mxm matrix
B is a (sparse) mxm matrix
V is either n, the number of desired eigenvalues

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 91

or a mxn matrix, the initial eigenvectors for the iteration
tol is the relative error, used as the stopping criterion

X is a column vector with the eigenvalues
EV is a matrix whose columns represent normalized eigenvectors
err is a vector with the aposteriori error estimates for the eigenvalues

this implementation is based on using eigs()

4.16.7 Generating the equations for elasticity problems

The codes PStressEquationM.m, PStressEquationQuadM.m and PStressEquationCubicM.m generate
the linear system of equations to be solved for plane stress and plane strain problems. They are used in PlaneStress()
and PlaneStrain(). The Octave codes are based on the algorithms in Section 8 (starting on page 183) and easier to
read and understand than C++ code, which is not writte (yet).

PStressEquationM.m
[gMat,gVec] = PStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with linear elements

PStressEquationQuadM.m
[gMat,gVec] = PStressEquationQuadM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with quadratic elements

PStressEquationCubicM.m
[gMat,gVec] = PStressEquationCubicM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with cubic elements

A similar set of functions will generate the matrices for the elastic eigenvalue problems. The codes are in the files
PStressEquationWM.m, PStressEquationQuadWM.m and PStressEquationcubicWM.m and they are used
in PlaneStressEig() and PlaneStrainEig(). The same codes are used to generate the matrices for the dynamic
elasticity problems, used in PlaneStressDynamic() and PlaneStrainDynamic().

For axially symmetric problems FEMoctave uses similar commands. Find them in the script files
AxiStressEquationM.m, AxiStressEquationQuadM.m and AxiStressEquationCubicM.m .

AxiStressEquationM.m
[gMat,gVec] = AxiStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%% [gMat,gVec] = AxiStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%%
%% setup the equation for an axisymmetric problem with linear elements

AxiStressEquationQuadM.m
[gMat,gVec] = AxiStressEquationQuadM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%% [gMat,gVec] = AxiStressEquationQuadM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%%
%% setup the equation for an axisymmetric problem with quadratic elements

AxiStressEquationCubicM.m
[gMat,gVec] = AxiStressEquationCubicM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%% [gMat,gVec] = AxiStressEquationCubicM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%%
%% setup the equation for an axisymmetric problem with cubic elements

These Octave codes might be replaced by a compiled code for speed reasons.

SHA 15-5-24

4 THE COMMANDS OF FEMOCTAVE 92

4.17 External programs
• Triangle To construct nonuniform triangular meshes FEMoctave uses an external program. The source code not

distributed with FEMoctave, due to copyright worries. Find on the web at www.cs.cmu.edu/∼quake/triangle.html.
Here are instructions on how to install Triangle on a Linux system:

– Download the zip file at http://www.netlib.org/voronoi/triangle.zip . Create a directory triangle and copy
thefile triangle.zip into that directory.

– In that directory apply the following commands in a terminal.

unzip triangle.zip
make
sudo cp triangle /usr/local/bin/

Now triangle is available on your system and can be used by FEMoctave.

• CuthillMcKee to obtain a good numbering. Not necessary any more, since the sparse factorizations do a better job.

• tricountour.m is a code by Duane Hanselman available at the Mathworks web site matlabcentral. It was used
by previous versions of the function FEMtricontour(). The current version of FEMoctave contains a simple
implementation of tricontour.m . Neither code is able to generate good labels for the contours.

SHA 15-5-24

https://www.cs.cmu.edu/~quake/triangle.html
http://www.netlib.org/voronoi/triangle.zip

5 TOOLS FOR DIDACTICAL PURPOSES 93

5 Tools for Didactical Purposes
In this section a few effects of FEM are illustrated. This could be useful to teach a class on the FEM.

5.1 The convergence of the solutions as h→ 0 is examined, using an example. Find the orders of convergence for linear,
quadratic and cubic elements.

5.2 Some element stiffness matrices are examined. A path from FEM to a finite difference approximation is shown.

5.3 The behavior of FEM solutions within an element is examined. Find a visualization of the accuracy of linear, quadrat-
ics or cubic element.

5.4 The number of nodes, triangles and their effect on the sparsity of the global stiffness matrix is examined.

5.5 Elements of order 1, 2 or 3 are used to solve the same problem. The sizes of the resulting matrices and errors are
examined.

5.6 A few examples illustrate the second order elements are notC1–conforming, i.e. the first derivative might jump across
borders of elements.

5.7 The effect of superconvergence is illustrated using a 1D boundary value problem.

5.8 The stability of four different time steppers for dynamic heat problems is visualized.

5.9 The stability condition for time steppers for the wave equation is illustrated.

5.10 The effect of shear–locking for elasticity problems, solved with the help of linear elements, is explained and visual-
ized. It is shown why quadratic elements do not suffer from possible shear–locking.

5.11 The standard problem of a bending Euler beam is solved with elements of order 1, 2 and 3 and on different meshes.
The results are compared.

5.12 Eigenmodes of a slender bending beam are examined. The effect of different elements, mesh sizes and dimensions of
the beam can be observed.

5.13 The effect of adding missing constraints for a heat and an elasticity problem is examined.

5.14 The (bad) effect of missing boundary constraints for elasticity problems is explained with the help of an example.

5.1 Observe the convergence of the error as h→ 0

Consider the unit square Ω = [0, 1]× [0, 1]. One can verify that the function ue(x, y) = sin(x) · sin(y) is the exact solution
of the boundary value problem

−∇ · ∇u = −2 sin(x) · sin(y) for 0 ≤ x, y ≤ 1
∂ u(x,1)

∂y = − sin(x) · cos(1) for 0 ≤ x ≤ 1 and y = 1

u(x, y) = ue(x, y) on the other sections of the boundary

.

Let h > 0 be the typical length of a side of a triangle. For second order elements 2h is used and for third order elements
3h, such that the computational effort is comparable to first order elements. Nonuniform meshes are used, to avoid super-
convergence. By choosing different values of h one should observe smaller errors for smaller values of h. The sizes of the
matrices vary (approximately) from 50× 50 to 58′000× 58′000. The error is measured by computing the L2 norms of the
difference of the exact and approximate solutions, for the values of the functions and its partial derivative with respect to y.
These are the expressions used in the theoretical convergence estimates stated in Section 6.7. A double logarithmic plot
leads to Figure 38.

• For linear elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 2 and thus conclude that
the error is proportional to h2.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 94

-2.5 -2 -1.5 -1 -0.5
-12

-10

-8

-6

-4

-2

0

lo
g 1

0
(d

iff
er

en
ce

)

log10(h)

linear, u-ue
linear, d/dy (u-ue)
quad, u-ue

quad, d/dy (u-ue)
cubic, u-ue
cubic, d/dy (u-ue)

Figure 38: Convergence results for linear, quadratic and cubic elements

– The slope of the curve for the absolute values of ∂
∂y (u(x, y) − ue(x, y)) is approximately 1 and thus conclude

that the error of the gradient is proportional to h.

• For quadratic elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 3 and thus conclude that
the error is proportional to h3.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y) − ue(x, y)) is approximately 2 and thus conclude

that the error of the gradient is proportional to h2.

• For cubic elements:

– The slope of the curve for the absolute values of u(x, y) − ue(x, y) is approximately 4 and thus conclude that
the error is proportional to h4.

– The slope of the curve for the absolute values of ∂
∂y (u(x, y) − ue(x, y)) is approximately 3 and thus conclude

that the error of the gradient is proportional to h3.

These observations confirm the theoretical error estimates in Section 6.7 on page 164. It is rather obvious from Figure 38
that higher order elements generate more accurate solutions for a comparable computational effort.

TestConvergence.m
a = 1; b0 = 0; gN2 = 0; N = 6;
Npow = 6; % use Npow = 6 for final run

function res = u_exact(xy,dymmy) res = sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = f(xy,dummy) res = 2*sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = u_y(xy) res = sin(xy(:,1)).*cos(xy(:,2)); endfunction

for ii = 1:Npow
Ni = N*2ˆ(ii-1); h(ii) = 1/(Ni); area = 0.5/(Ni)ˆ2;
FEMmesh1 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],area);
FEMmesh2 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],4*area);
FEMmesh2 = MeshUpgrade(FEMmesh2,'quadratic');

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 95

FEMmesh3 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],9*area);
FEMmesh3 = MeshUpgrade(FEMmesh3,'cubic');

%%% solve with first order elements
u1 = BVP2Dsym(FEMmesh1,a,b0,'f','u_exact','u_y',gN2);
Difference(ii) = sqrt(FEMIntegrate(FEMmesh1,(u1-u_exact(FEMmesh1.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh1,u1);
DifferenceUy(ii) = sqrt(FEMIntegrate(FEMmesh1,(uy-u_y(FEMmesh1.nodes)).ˆ2));

%%% now for second order elements
u2 = BVP2Dsym(FEMmesh2,a,b0,'f','u_exact','u_y',gN2);
DifferenceQ(ii) = sqrt(FEMIntegrate(FEMmesh2,(u2-u_exact(FEMmesh2.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh2,u2);
DifferenceUyQ(ii) = sqrt(FEMIntegrate(FEMmesh2,(uy-u_y(FEMmesh2.nodes)).ˆ2));

%%% now for third order elements
u3 = BVP2Dsym(FEMmesh3,a,b0,'f','u_exact','u_y',gN2);
DifferenceC(ii) = sqrt(FEMIntegrate(FEMmesh3,(u3-u_exact(FEMmesh3.nodes)).ˆ2));
[ux,uy] = FEMEvaluateGradient(FEMmesh3,u3);
DifferenceUyC(ii) = sqrt(FEMIntegrate(FEMmesh3,(uy-u_y(FEMmesh3.nodes)).ˆ2));

endfor
figure(1); plot(log10(h),log10(Difference), '+-',log10(h),log10(DifferenceUy), '+-',

log10(h),log10(DifferenceQ),'+-',log10(h),log10(DifferenceUyQ),'+-',
log10(h),log10(DifferenceC),'+-',log10(h),log10(DifferenceUyC),'+-')
xlabel('log_{10}(h)'); ylabel('log_{10}(difference)')
legend('linear, u-u_e','linear, d/dy (u-u_e)',
'quad, u-u_e','quad, d/dy (u-u_e)','cubic, u-u_e','cubic, d/dy (u-u_e)',
'location','southeast'); xlim([-2.5,-0.5])

5.2 Some Element Stiffness Matrices
5.2.1 Element contributions for equilateral triangles

Generate the trivial mesh consisting of a single equilateral triangle with the help of CreateMeshTriangle(). The code
in CreateTriangle.m generates the mesh and Figure 39.

CreateTriangle.m
%% corners of an equilateral triangle
corners = 1*[0,0,-2;1,0,-2;0.5,sqrt(3)/2,-2];
mm = CreateMeshTriangle('one_triangle',corners,max(corners(:).ˆ2))
plot([mm.nodes(:,1);mm.nodes(1,1)],[mm.nodes(:,2);mm.nodes(1,2)],'o-r',

mm.GP(:,1),mm.GP(:,2),'b*')
xlabel('x'); ylabel('y'); title('triangle, with Gauss points'); axis equal

For the PDE −∆u = 1 generate the element stiffness matrix A and the element vector f⃗ by using the command
FEMEquation().

[A,f] = FEMEquation (mm,1,0,0,0,1,0,0,0);
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = 0.57735 -0.28868 -0.28868

-0.28868 0.57735 -0.28868
-0.28868 -0.28868 0.57735

Element_Vector = -0.14434
-0.14434
-0.14434

This result corresponds to the exact result for the element stiffness matrix in Figure 39.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 96

A =

√
3

6


+2 −1 −1
−1 +2 −1
−1 −1 +2



b⃗ =

√
3

4 · 3


−1
−1
−1

 =
area of triangle

3


−1
−1
−1


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
triangle, with Gauss points

y

x

1 2

3

Figure 39: An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix

Using the same idea one can examine the contributions of the different terms to the element stiffness matrix. As example
consider the term caused by b0 u = 1u in the PDE.

B = FEMEquation(mm,0,1,0,0,0,0,0,0);
B = full(B)
-->
B = 0.072169 0.036084 0.036084

0.036084 0.072169 0.036084
0.036084 0.036084 0.072169

The result confirms

B =
area of triangle

12


2 1 1

1 2 1

1 1 2

 .

Examine a mesh consisting of equilateral triangles, as shown in Figure 40. Then examine the linear equation corre-
sponding to an interior point at (xi, yi).

-2 -1 0 1 2

-2

-1

0

1

2

Figure 40: Uniform meshes consisting of equilateral triangles

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 97

• The node is corner of 6 triangles, thus the coefficient ai,i of the global stiffness matrix consists of 6 contributions
found on the diagonal in the element stiffness matrix A in Figure 39, i.e. ai,i = 6 +2

2
√
3
= 6√

3
.

• If a node at (xj , yj) shares two triangles with (xi, yi) then the entry ai,j in the global stiffness matrix consists of 2
contributions found off the diagonal in the element stiffness matrix A in Figure 39, i.e. ai,j = 2 −1

2
√
3
= −1√

3
.

• If the function f in −∇2u = f is constant, then there will be 6 contributions from the six neighboring triangle. If the

length of one side of a triangle equals h, then the area is
√
3
4 h2. Thus find bi = 6

area of triangle
3 (−f) = −

√
3
2 h2 f .

As a result find the equation for the node at (xi, yi).

1

h2

 6√
3
u(xi, yi)−

1√
3

∑
neigbours

u(xj , yj)

 = +

√
3

2
f

1

h2

u(xi, yi)− 1

6

∑
neigbours

u(xj , yj)

 = +
1

4
f

This is somewhat similar to a finite difference approximation. For each row of the global stiffness matrix the entry on the
diagonal and 6 more will be different from 0.

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic elements for
the PDE −∆u = 1. The triangular, equilateral element and the matrix are shown in Figure 41. The vector is given by

A =

√
3

18



6 1 1 0 −4 −4
1 6 1 −4 0 −4
1 1 6 −4 −4 0

0 −4 −4 24 −8 −8
−4 0 −4 −8 24 −8
−4 −4 0 −8 −8 24


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

triangle, with Gauss points

1 2

3

45

6

Figure 41: An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix

b⃗ =

√
3

4 · 3



0

0

0

−1
−1
−1


=

area of triangle
3



0

0

0

−1
−1
−1


For the global stiffness matrix for the very regular mesh in Figure 40

• on each row of the matrix corresponding to a corner of the triangle the entry on the diagonal and 12 more will be
different from 0. If the mesh is not as regular even 19 entries on each row might be different from zero.

• on each row of the matrix corresponding to a midpoint of a side of the triangle the entry on the diagonal and 6 more
will be different from 0. If the mesh is not as regular even 9 entries on each row might be different from zero.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 98

5.2.2 From FEM to a finite difference approximation

Generate the trivial mesh consisting of a single right triangle with the help of CeateMeshTriangle. The code in CreateTriangle.m
generates the mesh and Figure 42. For the PDE −∆u = 1 generate the element stiffness matrix A and the element vector b⃗
by using FEMEquation() or FEMEquationM().

CreateTriangle.m
%% corners of a right triangle
corners = 1*[0,0,-2;1,0,-2;0,1,-2];
CreateMeshTriangle('one_triangle',corners,max(corners(:).ˆ2))
mm = ReadMeshTriangle('one_triangle.1');
[A,f] = FEMEquation(mm,1,0,0,0,1,0,0,0); %% using compiled code
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = 1.00000 -0.50000 -0.50000

-0.50000 0.50000 0.00000
-0.50000 0.00000 0.50000

Element_Vector = -0.16667
-0.16667
-0.16667

A =


+1 −0.5 −0.5
−0.5 +1 0

−0.5 0 +1

 , b⃗ =
1

6


−1
−1
−1



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y
triangle, with Gauss points

Figure 42: A right triangle, the Gauss integration points and the element stiffness matrix

Based on elements of the above type there is a connection of FEM to the finite difference method. Generate a rect-
angular grid, shown in Figure 43. Examine the PDE −∆u = π with Neumann boundary conditions. Use the command
FEMEquation to generate the matrix A and the vector b⃗, then the linear equation A u⃗ + b⃗ has to be solved. The code
displays the equation at node 5.

x = [-1,0,1];
FEMmesh = CreateMeshRect(x,x,-2,-2,-2,-2)
figure(1); clf
ShowMesh(FEMmesh.nodes,FEMmesh.elem)
xlabel('x'); ylabel('y')
axis(1.2*[-1,1,-1,1]*max(x))
hold on
for kk = 1:length(FEMmesh.nodes)

text(FEMmesh.nodes(kk,1)+0.02,FEMmesh.nodes(kk,2)-0.07,num2str(kk),'color',[1 0 0])
endfor
hold off

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 99

-2 -1 0 1 2
-2

-1

0

1

2

(a) a section

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

y

1 2 3

4 5 6

7 8 9

(b) a small section, numbered

Figure 43: Uniform meshes consisting of rectangular triangles

a=1; b0=bx=by= 0; f=pi;
[A,b] = FEMEquation(FEMmesh,a,b0,bx,by,f,0,0,0);
A5 = full(A(5,:))
b5 = b(5)
-->
A5 = 0 -1 0 -1 4 -1 0 -1 0
b5 = -3.1416

The results imply that the equation to be solved is

−u2 − u4 + 4u5 − u6 − u8 = π .

Running the code again with x = [1,0,1]/2 will not change A, but lead to b5 = −π 4. Thus for a width h of the
triangles the equation to be solved is

−u(x− h, y)− u(x, y − h) + 4u(x, y)− u(x+ h, y)− u(x, y + h)

h2
= f(x, y) .

This is the usual finite difference approximation of −∆u = f .

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic elements for
the PDE −∆u = 1. The element and the matrix are shown in Figure 44. The vector is given by

b⃗ =
1

2 · 3



0

0

0

−1
−1
−1


=

area of triangle
3



0

0

0

−1
−1
−1


.

5.2.3 Element stiffness matrices for 1D problems

To examine an ODE of the form (7)

− (a(x)u′(x))
′
+ b(x)u′(x) + c(x)u(x) + d(x) f(x) = 0

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 100

A =
1

6



6 1 1 0 −4 −4
1 3 0 0 0 −4
1 0 3 0 −4 0

0 0 0 16 −8 −8
−4 0 −4 −8 16 0

−4 −4 0 −8 0 16


0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

triangle, with Gauss points

y

x

1 2

3

45

6

Figure 44: A right angle triangle, the Gauss integration points and the element stiffness matrix

with the help of FEM the element stiffness matrix for each subinterval has to be determined. In the case of constant
coefficients the formulas from Section 7.2 (page 171) can be simplified, mainly to examine the structure of the matrices.
Four contributions have to be taken into account. Use code similar to

h = 1;
[A,M,x] = GenerateFEM1D([0 h],1,0,0,1);
A = full(A)
A_rat = rats(A*h)
M = full(M)
M_rat = rats(M/h)

to determine the matrices. With the notations u− = u(−h/2), u0 = u(0) and u+ = u(+h/2) obtain

I2 =

∫ +h/2

−h/2

u′(x)ϕ′(x) dr ≈ ⟨ 1

3h


+7 −8 +1

−8 +16 −8
+1 −8 +7




u−

u0

u+

 ,


ϕ−

ϕ0

ϕ+

⟩ = ⟨A2u⃗, ϕ⃗⟩

I1 =

∫ +h/2

−h/2

u′(x)ϕ(x) dx ≈ ⟨1
6


−3 +4 −1
−4 0 +4

+1 −4 +3




u−

u0

u+

 ,


ϕ−

ϕ0

ϕ+

⟩ = ⟨A1u⃗, ϕ⃗⟩

I0 =

∫ +h/2

−h/2

u(x)ϕ(x) dx ≈ ⟨ h
30


+4 +2 −1
+2 +16 +2

−1 +2 +4




u−

u0

u+

 ,


ϕ−

ϕ0

ϕ+

⟩ = ⟨A0u⃗, ϕ⃗⟩

If =

∫ +h/2

−h/2

f(x)ϕ(x) dx ≈ ⟨ h
30


+4 +2 −1
+2 +16 +2

−1 +2 +4




f−

f0

f+

 ,


ϕ−

ϕ0

ϕ+

⟩ = ⟨Mef⃗ , ϕ⃗⟩

The contribution by one element to the linear system Au⃗ = Mf⃗ is

(aA2 + bA1 + cA0) u⃗ and Me f⃗ .

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 101

As a very simple example examine the ODE −u′′(x) = f on three intervals of length h. Use

Me


f

f

f

 =
f

6


1

4

1


and the above element stiffnes matrix A2 to find the linear system

1

3h



+7 −8 +1

−8 +16 −8
+1 −8 +14 −8 +1

−8 +16 −8
+1 −8 +14 −8 +1

−8 +16 −8
+1 −8 +7





u0

u1

u2

u3

u4

u5

u6


=
f h

6



1

4

2

4

2

4

1


• The matrix is symmetric and shows a semi–bandwidth of 3, i.e. at most five entries in each row or column, around

the diagonal.

• The above system of 7 equations does not have a unique solution. For a constant vector u⃗ = 1⃗ the matrix multiplication
leads to the zero vector. This is caused by the missing boundary conditions. With the additional constraints u0 =
u6 = 0 the system has a unique solution. In the above matrix the first and last rows and columns have to be removed.

• The second of the above equations is identical to the well known finite difference formula for the second derivative,
i.e.

−u0 + 2u1 + u2
(h/2)2

= f

and similar for the fourth and sixth equation. The third equation

u0 − 8u1 + 14u2 − 8u3 + u4
h2

= f

shows a five point approximation of the second derivative and similar for the fifth equation

5.2.4 Element stiffness matrices for elasticity problems

For the equilateral triangle in Figure 41 examine the symmetric element stiffness matrix for parameters E = 1 and ν = 0.3
for linear elements.

A1 ≈



0.531 −0.420 −0.111 0.179 −0.014 −0.165
−0.420 0.531 −0.111 0.014 −0.179 0.165

−0.111 −0.111 0.222 −0.192 0.192 0

0.179 0.014 −0.192 0.325 −0.008 −0.317
−0.014 −0.179 0.192 −0.008 0.325 −0.317
−0.165 0.165 0 −0.317 −0.317 0.634


If the location of the corners of the triangle are slightly perturbed, then all entries are different from 0. On a mesh similar

to Figure 40 (but not as uniform) with 14′040 degrees of freedom the number of nonzero entries in each row of the resulting
matrix leads to the histogram in Figure 45(a). If each of the nodes would connect to 6 other nodes, then 14 nonzero entries
per row are expected. The average observed on the examined mesh is 13.8 nonzeros in each row or column. Thus only
≈ 1‰ of the entries in the matrix are not zero, i.e. it is a very sparse matrix.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 102

%

nonzeros in a row
0 5 10 15 20

0

10

20

30

40

50

(a) for linear elements

%

nonzeros in a row
0 10 20 30 40 50

0

20

40

60

80

(b) for quadratic elements

Figure 45: The number of nonzero entries in each row

For quadratic elements the 12× 12 element stiffness matrix is given by

A2 ≈



0.53 0.14 0.04 0 −0.15 −0.56 0.18 0 0.05 0 −0.22 −0.02
0.14 0.53 0.04 −0.15 0 −0.56 0 −0.18 −0.05 0.22 0 0.02

0.04 0.04 0.22 −0.15 −0.15 0 0.06 −0.06 0 0.26 −0.26 0

0 −0.15 −0.15 1.71 −1.12 −0.30 0 0.26 0.22 0 0 −0.48
−0.15 0 −0.15 −1.12 1.71 −0.30 −0.26 0 −0.22 0 0 0.48

−0.56 −0.56 0 −0.30 −0.30 1.71 0.02 −0.02 0 −0.48 0.48 0

0.18 0 0.06 0 −0.26 0.02 0.33 0 0.11 0 −0.42 −0.01
0 −0.18 −0.06 0.26 0 −0.02 0 0.33 0.11 −0.42 0 −0.01

0.05 −0.05 0 0.22 −0.22 0 0.11 0.11 0.63 −0.42 −0.42 0

0 0.22 0.26 0 0 −0.48 0 −0.42 −0.42 1.71 −0.02 −0.85
−0.22 0 −0.26 0 0 0.48 −0.42 −0.00 −0.42 −0.02 1.71 −0.85
−0.02 0.02 0.00 −0.48 0.48 −0.00 −0.01 −0.01 −0.00 −0.85 −0.85 1.71


and for a slight perturbation of the corners again all 144 entries are different from zero. On a mesh similar to Figure 40 (but
not as uniform) with 56′700 degrees of freedom the number of nonzero entries in each row of the resulting matrix leads to
the histogram in Figure 45(b) with an average of 22.7 nozeros per row or column. For a corner of a triangle contacting 6
triangles expect 6 ·6+2 = 38 nonzero entries. For a midpoint of a triangle expect 2 ·9 = 18 nonzero entries. The midpoints
outnumber the corners by a factor of three. Thus expect an average of 3·18+38

4 = 23 nonzero entries in each row of the
matrix. Thus only ≈ 0.4‰ of the entries in the matrix are not zero, i.e. it is a very sparse matrix.

5.3 Behavior of a FEM solution within triangular elements
To examine the behavior of a solution within each of the triangular elements use the boundary value problem

−∆u = − exp(y) for (x, y) ∈ Ω

u(x, y) = exp(y) for (x, y) ∈ Γ
.

on the domain Ω displayed in Figure 46(a). The exact solution is given by u(x, y) = exp(y), shown in Figure 46(b). The
problem is solved twice:

1. using 32 triangular elements of order 1.

2. using 8 triangular elements of order 2.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 103

The nodes used coincide for the two approaches, i.e four triangles in Figure 46(a) for the linear elements correspond to one
of the eight triangles for the quadratic elements.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

x

y

(a) the mesh (b) the solution

Figure 46: The mesh and the solution for a BVP

Figure 47(a) shows the difference of the computed solution with first order elements to the exact solution. Within each of
the 32 elements the difference is not too far from a quadratic function. Figure 47(b) shows the values of the partial derivative
∂ u
∂y . It is clearly visible that the gradient is constant within each triangle, and not continuous across element borders.

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 47: Difference to the exact solution and values of ∂ u
∂y , using a first order mesh

Figure 48(a) shows the difference of the computed solution with second order elements to the exact solution. The error
is considerably smaller than for linear elements, using identical degrees of freedom. Within each of the 8 elements the
difference does not show a simple structure. Figure 48(b) shows the values of the partial derivative ∂ u

∂y . It is clearly visible
that the gradient is not constant within the triangles. By a careful visual inspection one has to accept that the gradient is not
continuous across element borders, but the jumps are considerably smaller than for linear elements. These elements are not
C1–conforming. Figure 49 shows the errors for the partial derivative ∂ u

∂y and confirms this observation.
In Figure 50 find the differences of the values of the solution and the partial derivative with respect to y for the same

computation using cubic elements. Observe that the approximation errors are considerably smaller. The partial derivatives
∂ u
∂x and ∂ u

∂y are not continuous across the limits of the triangles, since these third order elements are not C1–conforming.

FEMInsideElement

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 104

(a) the difference to the exact solution (b) the values of ∂ u
∂y

Figure 48: Difference to the exact solution and values of ∂ u
∂y , using a second order mesh

(a) using linear elements (b) using quadratic elements

Figure 49: Difference of the approximate values of ∂ u
∂y to the exact values

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 105

(a) u− uexact (b) ∂
∂y

(u− uexact)

Figure 50: Difference of the approximate values of u and ∂ u
∂y to the exact values for cubic elements

N = 2; MeshType = 'quadratic' %% use 'linear', 'quadratic' or 'cubic'
Mesh = CreateMeshTriangle('test',[0 0 -1;1 0 -1;1 2 -1; 0 1 -1],1/Nˆ2);
switch MeshType
case 'quadratic'
Mesh = MeshUpgrade(Mesh,'quadratic');

case 'cubic'
Mesh = MeshUpgrade(Mesh,'cubic');

endswitch

xi = linspace(0.2,1.1,5); yi = xi*0.8+0.05;
Ngrid = 100; [xi,yi] = meshgrid(linspace(0,1,Ngrid),linspace(0,2,Ngrid));

figure(1); FEMtrimesh(Mesh)
xlabel('x'); ylabel('y'); xlim([-0.1,1.1]); ylim([-0.1,2.1])

function res = u_exact(xy) res = +exp(xy(:,2)) ; endfunction
function u = f(xy) u = -exp(xy(:,2)); endfunction

u_ex = reshape(u_exact([xi(:),yi(:)]),Ngrid,Ngrid);
u = BVP2Dsym(Mesh,1,0,'f','u_exact',0,0);
[ui,uxi,uyi] = FEMgriddata(Mesh,u,xi,yi);

figure(2); FEMtrimesh(Mesh,u); hold on
plot3(xi,yi,ui,'g.'); hold off;
xlabel('x'); ylabel('y'); title('u'); view([-60 25])

figure(3); mesh(xi,yi,uyi)
xlabel('x'); ylabel('y'); title('u_y')

figure(4); mesh(xi,yi,uyi-u_ex)
xlabel('x'); ylabel('y'); title('difference of u_y'); view([-110, 30])

5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix
Let Ω ⊂ R2 be a domain with a triangular mesh with many triangles. There is a connection between

N = number of nodes and T = number of triangles.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 106

Examine the typical mesh on the right and consider only triangles and
nodes inside the mesh, as the number of contributions by the borders
are considerably smaller for large meshes.

• each triangle has three corners

• each (internal) corner is touched by 6 triangles

• each triangle has 3 midpoints of edges and each of the midpoints
is shared by 2 triangles ������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

• For first order elements the nodes are the corners of the triangles.

N ≈ 1

6
T 3 =

1

2
T

Thus the number N of nodes is approximately half the number T of triangles.

• For second order elements the nodes are the corners of the triangles and the midpoints of the edges. Each midpoint is
shared by two triangles.

N ≈ 1

2
T +

3

2
T = 2T

Thus the number N of nodes is approximately twice the number T of triangles.

• For third order elements the nodes are the corners of the triangles, two points each edge and the central point. Each
point on an edge is shared by two triangles.

N ≈ 1

2
T +

2 · 3
2

T + T =
9

2
T

Thus the number N of nodes is approximately 4.5 times the number T of triangles.

The above implies that the number of degrees of freedom to solve a problem with second or third order elements with a
typical diameter h of the triangles is approximately equal to using linear elements on triangles with diameter h/2 (quadratic)
or h/3 (cubic).

The above estimates also allow to estimate how many entries in the sparse matrix resulting from an FEM algorithm will
be different from zero.

• For linear elements each node typically touches 6 triangles and each of the involved corners is shared by two triangles.
Thus there might be 6 + 1 = 7 nonzero entries in each row of the matrix.

• For second order triangles distinguish between corners and midpoints.

– Each corner touches typically six triangles and thus expect up to 6 × 3 + 1 = 19 nonzero entries in the corre-
sponding row of the matrix.

– Each midpoint touches two triangles and two of the corner points are shared. Thus expect up to 2+2×3+1 = 9
nonzero entries in the corresponding row of the matrix.

The midpoints outnumber the corners by a factor of three. Thus expect an average of 3·9+19
4 = 11.5 nonzero entries

in each row of the matrix.

• For third order triangles distinguish between corners, points on edges and center points.

– Each corner touches typically six triangles and thus expect up to 6 × 6 + 1 = 37 nonzero entries in the corre-
sponding row of the matrix.

– Each point on an edge touches two triangles and four points on the same edge are shared. Thus expect up to 16
nonzero entries in the corresponding row of the matrix.

– Each center point leads to 10 nonzero entries.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 107

There are approximately C corners points, 2C midpoints and on the 3C edges find 6C points. Thus expect an
average of 1·37+6·16+2·10

2+6+1 = 153
9 = 17 nonzero entries in each row of the matrix.

• The above estimates are not correct for equations with constant coefficients or horizontal or vertical edges. Then
expect fewer nonzero entries in each row of the matrix.

This points to about a factor of 11.5
7 ≈ 1.6 more nonzero entries in the matrix for quadratic elements for the same number

of degrees of freedom. For cubic elements expect a factor of 17
7 ≈ 2.4. This implies that the computational effort is larger,

the actual effect depends on the linear solver used.

5.5 Compare linear, quadratic and cubic elements
To examine the performance of the different order elements examine the BVP

−∇
(
(1 + x2)∇u(x, y)

)
= −4 (1 + x2) exp(−2 y) for (x, y) ∈ Ω

∂ u(y,0)
∂x = 0 for 1 ≤ y ≤ 2

u(x, y) = exp(−2 y) on other sections of the boundary

.

on the domain shown in Figure 51. The exact solution is given by ue(x, y) = exp(−2 y). For different values of the typical

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

y

x

(a) linear elements

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

(b) quadratic elements

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

(c) cubic elements

Figure 51: Meshes for linear, quadratic and cubic elements, leading to similar size linear systems to be solved.

element size h for linear elements the three types of elements are used.

• For quadratic elements use hquad = 2h to aim for the same number of degrees of freedom, i.e. the same size of
linear system of equations to be examined. For cubic elements hcubic = 3h is used. This leads to meshes shown in
Figure 51. Observe that the mesh for cubic elements is not as good as the mesh for linear elements to approximate
the deformed domain, caused by the larger elements.

• For each solution u determine the L2 error, i.e.

error =

∫∫
Ω

|u(x, y)− ue(x, y)|2 dA

1/2

.

• For each setup determine the size n× n of the matrix A for the linear system to be solved.

• For each setup determine the number of nonzero entries in the sparse matrix A and then the average number of
nonzeros in each row of A.

• When different values h1 and h2 are used the expression the errors are expected to be proportional to hk, with the
order of convergence k. Thus if h is replaced by h/2 expect ratios of 2, 4, 8 or 16 for the L2 errors, according to the
theoretical results shown in Section 6.7 on page 164.

• If h is replaced by h/2 expect the number of elements and the size of the matrix Ato be multiplied by 4. The number
of nonzero entries in each row should not change drastically.

The results in Table 10 confirm the theoretical estimates of the errors and the number of nonzero entries in the matrix A.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 108

Element linear quadratic cubic

width h of elements 0.025 0.0125 0.050 0.0250 0.075 0.0375

number of elements 3944 15912 998 3944 432 1764

size n of matrix 1920 7850 1920 7850 1896 7842

L2 error 2.2 · 10−4 6.4 · 10−5 1.8 · 10−5 1.4 · 10−6 8.4 · 10−7 5.6 · 10−8

ratio of L2 errors ≈ 2.9 ≈ 4.7 ≈ 15

nonzeros per row 6.8 6.9 11.0 11.2 16.1 16.6

Table 10: Results for elements of order 1, 2 and 3

5.6 Are second order elements C1 conforming?
The command BVP1D() uses second order elements to solve two–point boundary value problems. Since the values of the
piecewise quadratic functions coincide at the limit of two neighboring subintervals the elements are C0 conforming, i.e. the
numerical solution is continuous. The “open” question is whether these elements areC1 conforming, i.e. are first derivatives
continuous?

This is illustrated by the code below and the resulting Figure 52. The BVP solved is

−u′′(x) = sign(x) for − 1 < x < +1 and u(−1) = u(+1) = 0 .

One might expect special behavior at x = 0.

• The approximate solution u⃗ is determined by calling BVP1D().

• The derivative is evaluated

– by pwquadinterp() with a very high resolution.

– by FEM1DEvaluateDu() at the nodes.

Then both are plotted and no difference between the two is visible, i.e. the first derivative u′(x) seems to be continu-
ous. Zooming in around x ≈ 0 confirms the observation.

Observe: since −u′′(x) = ±1 is solved by ∓ 1
2 x

2 the exact solution uexact(x) of the above problem consists of two
quadratic functions, patched together at x = 0, in spite of the discontinous right hand side sign(x).

uexact(x) =

{
1
2 x (1 + x) for − 1 ≤ x ≤ 0
1
2 x (1− x) for 0 ≤ x ≤ +1

The algorithm in BVP1D() is based on piecewise quadratic approximations and will thus generate the exact solution.

Test C1conforming.m
n = 8; x = linspace(-1,1,n+1)';
[x,u] = BVP1D(x,1,0,0,@(x)sign(x),1,0,0);
figure(1); plot(x,u,'+-')

xlabel('x'); ylabel('u')
x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
du = FEM1DEvaluateDu(x,u);
figure(2); plot(x_fine,du_fine,x,du,'+')

xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')

As a second BVP examine

−u′′(x) + sign(x− 0.5)u′(x) = 1 for − 1 < x < +1 and u(−1) = u(+1) = 0 .

One might expect special behavior at x = 0.5.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 109

-1 -0.5 0 0.5 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x

u

(a) the solution u(x)

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

d
u
/d
x

x

interpolated
at	nodes

(b) the derivative u′(x)

Figure 52: The solution and the first derivative, evaluated at the nodes and by interpolation

• The approximate solution u⃗ is determined by calling BVP1D().

• The derivative is evaluated

– by pwquadinterp() with a very high resolution.

– by FEM1DEvaluateDu() at the nodes.

Then both are plotted and no difference between the two is visible in the full graph in Figure 53(a) i.e. the first
derivative u′(x) seems to be continuous. Zooming in around x ≈ 0.5 leads to Figure 53(b) and a jump of the first
derivative at x = 0.5 is visible.

• Since there is a node at x = 0.5 the code in pwquadinterp() returns the values of u′(x) for the subinterval to the
left of x = 0.5, and then jumps to the values on the right subinterval. FEM1DEvaluateDu() returns the average
value of the slopes of u(x) to the left and right of x = 0.5 . This is visible in Figure 53(b).

• The size of the jump of u′(x) is smaller if more elements are used, e.g. by n=2*8 .

The consequence: second order element are not C1 conforming. For 2D FEM algorithms the same is correct, visualized by
Figure 48 on page 104.

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

x

d
u
/d
x

interpolated
at	nodes

(a) the derivative u′(x)

0.499 0.5 0.501

-0.47

-0.465

-0.46

-0.455

-0.45

-0.445

x

d
u
/d
x

interpolated
at	nodes

(b) zoom of the derivative u′(x)

Figure 53: The first derivative, complete graph and zoomed in at x = 0.5

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 110

Test C1conforming.m
n = 8; x = linspace(-1,1,n+1)';
[x,u] = BVP1D(x,1,@(x)sign(x-0.5),0,1,1,0,0);
figure(1); plot(x,u)

xlabel('x'); ylabel('u')
x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
du = FEM1DEvaluateDu(x,u);
figure(2); plot(x_fine,du_fine,x,du,'+')

xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')

The above example might lead to the suspicion that the jump in the first derivative is caused by the noncontinuous
coefficient sign(x − 0.5) of u′(x). This is not the case, even extremely smooth problems lead to jumps in the derivative.
The boundary value problem

−u′′(x) = − exp(x) for − 1 < x < +1 and u(−1) = exp(−1) and u(+1) = exp(+1)

has the exact solution uexact(x) = exp(x). Solving the problem with only 2 subintervals leads to the errors of u(x) and
u′(x) in Figure 54. In Figure 54(b) the sizable jump of the derivative at x = 0 is clearly visible.

-1 -0.5 0 0.5 1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

e
rr
o
r	
o
f	
u

x

at	nodes
interpolated

(a) error uFEM (x)− exp(x)

-1 -0.5 0 0.5 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

x

e
rr
o
r	
o
f	d
u
/d
x

at	nodes
interpolated

(b) error u′FEM (x)− exp(x)

Figure 54: Differences of the FEM solution uFEM (x) to the exact solution uexact(x) = exp(x)

Test C1conforming.m
n = 2; x = linspace(-1,1,n+1)';
[x,u] = BVP1D(x,1,0,0,1,@(x)exp(x),exp(-1),exp(1));
figure(1); plot(x,u)

xlabel('x'); ylabel('u')

x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
du = FEM1DEvaluateDu(x,u);
figure(2); plot(x_fine,du_fine,x,du,'+')

xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')
figure(3); plot(x,u,x_fine,u_fine,x_fine,exp(x_fine))

xlabel('x'); ylabel('u');
legend('at nodes','interpolated','exact','location','northwest');

figure(4); plot(x,u-exp(x),'+',x_fine,u_fine-exp(x_fine))
xlabel('x'); ylabel('error of u')
legend('at nodes','interpolated','location','northwest')

figure(5); plot(x,du-exp(x),'+',x_fine,du_fine-exp(x_fine))
xlabel('x'); ylabel('error of du/dx')
legend('at nodes','interpolated','location','northwest')

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 111

5.7 Superconvergence for a 1D BVP
Examine the solution of the 1D BVP

−u′′ = sin(x) for 0 ≤ x ≤ π

2
with u(0) = 0 and u′(

π

2
) = 0

with the exact solution uexact(x) = sin(x). Use the command BVP1D() to find the numerical approximation uFEM on a
coarse grid, and then pwquadinterp() to evaluate the solution on a finer grid.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

x

u

(a) the solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-4e-05

-2e-05

0

2e-05

4e-05

x
u
F
E
M
-u
e
xa
c
t

interpolated
at	nodes

(b) difference to the exact solution

Figure 55: The solution and difference to the exact solution for a 1D BVP

Observe that

• the solution is rather accurate, even on a grid with few nodes, e.g. 21 nodes.

• The solution is considerably more accurate at the nodes, than in-between nodes. This effect is called superconver-
gence. You can not count on the effect of superconvergence, as it might not happen in your problem. The convergence
in the L2 norm is given by the theoretical results in Section 6.7 on page 164.

BVP1DSuperconvergence.m
N = 10; % number of elements, then 2*N+1 nodes
x = linspace(0,pi/2,N+1);
[xn,u] = BVP1D(x,1,0,0,1,@(x)-sin(x),0,1);

x_fine = linspace(0,pi/2,1001);
[u_fine du_fine, ddu_fine] = pwquadinterp(xn,u,x_fine);
figure(1); plot(x_fine,u_fine)

xlabel('x'); ylabel('u')
figure(11); plot(x_fine,u_fine-sin(x_fine),xn,u-sin(xn),'+')

xlabel('x'); ylabel('u_{FEM}-u_{exact}'); xlim([min(x_fine),max(x_fine)])
legend('interpolated','at nodes')

The results generated by pwquadinterp() allow to display the derivatives and the deviation of the derivatives.
Observe that

• the first derivative is piecewise linear, but it is hard to see without zooming in.

• the difference to the exact derivative oscillates on each subinterval.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 112

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

d
u
/d
x

FEM
exact

(a) first derivative of the solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.002

-0.001

0

0.001

0.002

0.003

x

d
if
fe
re
n
ce
	d
u
/d
x

(b) difference of the first derivatives

Figure 56: The derivative of the numerical solution and difference to the exact solution

BVP1DSuperconvergence.m
figure(12); plot(x_fine,du_fine-cos(x_fine))

xlabel('x'); ylabel('difference du/dx'); xlim([min(x_fine),max(x_fine)])
figure(3); plot(x_fine,ddu_fine,x_fine,-sin(x_fine))

xlabel('x'); ylabel('dˆ2u/dxˆ2'); xlim([min(x_fine),max(x_fine)])
legend('FEM','exact')

figure(13); plot(x_fine,ddu_fine+sin(x_fine))
xlabel('x'); ylabel('difference dˆ2u/dxˆ2'); xlim([min(x_fine),max(x_fine)])

The results generated by pwquadinterp() allow to display the second derivatives and the deviation of the derivatives.
Observe that

• the second derivative is piecewise constant. This should be no surprise, since piecewise quadratic functions are used
the generate the FEM solution.

• the difference to the exact second derivative changes the sign on each subinterval.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

x

d
2
u
/d
x2

FEM
exact

(a) second derivative of the solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.1

-0.05

0

0.05

0.1

x

d
if
fe
re
n
c
e
	d
2
u
/d
x2

(b) difference of the second derivatives

Figure 57: The second derivative of the numerical solution and difference to the exact solution

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 113

5.8 Stability of the time steppers, or lack thereof
Examine the initial boundary value problem

∂
∂t u(x, t) = ∂2

∂x2 u(x, t) for 0 < x < 1
∂
∂x u(0, t) = 0 for t > 0

u(1, t) = 1 for t > 0

u(x, 0) = 0 for 0 < x < 1

.

Observe that the initial condition u(x, 0) = 0 does not satisfy the boundary condition u(1, t) = 1. As a consequence the
behavior of the solution will be critical for x close to 1 . Examine the FEM solution generated by different time stepping
algorithms. On the interval [0, 1] with 14 elements of order 2 use 10 time steps to find the solution at time t = 2 .

• The implicit time stepper is unconditionally stable and L–stable. Thus expect convergence of the solution, but slow
convergence, since the scheme is only consistent of order 1 . Find the result in Figure 58.

• The Crank–Nicolson time stepper is unconditionally stable, but not L–stable and consistent of order 2 . Thus expect
convergence of the solution, but CN will have a hard time to deal with the inconsistent initial condition. Find the
result in Figure 59 and the problem around x = 1 is obvious. The solution at x = 1 oscillates wildly from step to
step. This is caused by the stability function g(z) = 2−z

2+z for the Crank–Nicolson stepper (see page 177). For very
large z the stability condition |g(z)| < 1 is satisfied, but g(z) is very close to −1. Thus instead of getting very small
the corresponding contribution (eigen mode) will almost keep its amplitude, but flip its sign at each step.

• The explicit time stepper is only conditionally stable. Thus expect serious trouble for large time steps. Taking only
10 time steps leads to a large ∆t. Find the (obviously invalid) result in Figure 60(a).

• The implicit Runge–Kutta time stepper is unconditionally stable, L–stable and and consistent of order 2 . Thus expect
convergence of the solution, and it will take care of the inconsistent initial condition. Find the result in Figure 60(b).

Computations with finer grids and smaller time steps show that the value of u(x, 2) ≈ 0.991 is a good approximation of the
true value.

x
t

0

0.2

1

0.4u

0.8

0.6

0.8

1

2
1.5

1
0.6
0.4
0.2 0.5

0 0

(a) as function of x and t

0 0.2 0.4 0.6 0.8 1
0.975

0.98

0.985

0.99

0.995

1

u

x

1
FEM

(b) final solution at t = 2

Figure 58: The solution generated by the implicit time stepper

Stability1D dynamic.m
BCleft = [0,0]; BCright = 1; xMax = 1;
interval = linspace(0,xMax,15); u0 = 0;
t0 = 0 ; tend = 2; steps = [10,1];
w = 1; a = 1; b = 0; c = 0; d = 1; f = 0;
solver = 'implicit'; %% select one solver
%% solver = 'explicit';

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 114

x
t

0

1

0.5

1u

1.5

2

2
1.5

0.8
0.6
0.4 1
0.2 0.5

0 0

(a) as function of x and t

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

u 1
FEM

(b) final solution at t = 2

Figure 59: The solution generated by the Crank–Nicolson time stepper

0 0.2 0.4 0.6 0.8 1
-2e+31

-1e+31

0

1e+31

2e+31

3e+31

4e+31

u

x

1
FEM

(a) explicit time stepper

0 0.2 0.4 0.6 0.8 1
0.99

0.992

0.994

0.996

0.998

1

x

u 1
FEM

(b) Runke–Kutta time stepper

Figure 60: The solution at time t = 2 generated by the explicit and Runge–Kutta time steppers

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 115

%% solver = 'CN';
%% solver = 'RK';
[x,u,t] = IBVP1D(interval,w,a,b,c,d,f,BCleft,BCright,u0,t0,tend,steps,'solver',solver);

figure(1); mesh(t,x,u); ylim([0,xMax])
xlabel('t'); ylabel('x'); zlabel('u')

u_at_0 = u(1,end)

u_ones = ones(size(x));
figure(2); plot(x,u_ones,x,u(:,end)); xlim([0,xMax])

xlabel('x'); ylabel('u'); legend('1', 'FEM','location','west')

5.9 Conditional stability of the explicit time stepper for a wave equation
For heat problems the explicit solver is only conditional stable, i.e. the time steps ∆t have to be small enough, see the above
Section 5.8. The same is the case for hyperbolic problems. Examine the example in Section 3.7, i.e. solve ∂2

∂t2 u = ∂2

∂x2 u.
The system of ODEs solved in I2BVP1D() is W2

d2

dt2 u⃗(t) = A u⃗(t) and the stability condition is using the largest
generalized eigenvalue λmax of A u⃗ = λW2u⃗ and given by

∆t ≤ 2√
λmax

.

The command I2BVP1D() will issue a warning if this condition is violated for the explicit solver, but attempts to return
results anyhow.

To obtain the stability condition examine the discretization of the ordinary differential equation ü = −λu.

ui−1 − 2ui + uu+1 = −(∆t)2λui(
ui

ui+1

)
=

(
ui

(−(∆t)2λ+ 2)ui − ui−1

)
=

[
0 1

−1 2− (∆t)2λ

] (
ui−1

ui

)

0 = det

[
0− µ 1

−1 (∆t)2λ+ 2− µ

]
= µ2 − (2− (∆t)2λ)µ+ 1

= µ2 − (µ1 + µ2)µ+ µ1µ2

Thus conclude that µ1 · µ2 = 1. For the system to be stable the eigenvalues µi have to satisfy |µi| = 1. This is the case iff
the µi are complex, thus the discriminant of the quadratic equation has to be negative.

0 ≥ (2− (∆t)2λ)2 − 4 = −4 (∆t)2λ+ (∆t)4λ2 = (∆t)2λ (−4 + (∆t)2 λ)

λ ≤ 4

(∆t)2
or ∆t ≤ 2√

λ

For the second order elements used in I2BVP1D() the value of the largest generalized eigenvalue λmax is approximately13

proportional to (∆x)2. This allows to adapt the time step ∆t such that the algorithm is stable. In the source code of
I2BVP1D.m (or I2BVP2D.m) uncomment the lines

%%lambda = eigs(A,W2,1);
%%disp(sprintf("Values: lambda = %g, dt = %g, 2/sqrt(lambda) =
%%%g\n",...
%%%lambda,dt,2/sqrt(lambda)))

to observe the critical values.

In the code WaveExplicitTest.m select the solver (explicit or implicit) and the number of time steps (105 or 100).

• For Figure 61(a) the explicit solver with 105 time steps is used. The value of ∆t is just small enough for the algorithm
to be stable.

13I am not aware of an exact formula.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 116

• For Figure 61(b) the explicit solver with 100 time steps is used. The value of ∆t is slightly to large for the algorithm
to be stable. The blowup of the rapidly oscillating solution is obvious.

• For Figure 61(c) the implicit solver with 100 time steps is used. The implicit algorithm is unconditionally stable.

This example should clearly illustrate that respecting the stability condition for the explicit solver is essential. For the
unstable situation you will in most cases not obtain number at all, but NaNs. This author recommends to use the implicit
solver for 1D problems. The similar solver I2BVP2D() for 2D problems shows the same stability behavior.

0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
(x
)	
at
	t
e
n
d

x

(a) explicit solver with 105 steps

0 2 4 6 8
-1.5e+17

-1e+17

-5e+16

0

5e+16

1e+17

u
(x
)	
at
	t
e
n
d

x

(b) explicit solver with 100 steps

0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u
(x
)	
at
	t
e
n
d

(c) implicit solver with 100 steps

Figure 61: Solutions of the wave equation at the time t = tend

WaveExplicitTest.m
%% test the stability 1D wave equation
if 1
solver = 'explicit';
else
solver = 'implicit';
endif

if 1
steps = [20,5]; %% unstable for explicit solver

else
steps = [21,5]; %% stable for both solvers

endif

a = 1; b = 0; c = 0; d = 1; f = 0; w2 = 1; w1 = 0; BCleft = 0; BCright = [0,0];
t0 = 0; tend = 5; interval = linspace(0,3*pi,51)';
u0 = @(x)sin(x).*(x<=pi); u1 = @(x)-cos(x).*(x<=pi);
[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,...

steps,'solver',solver);

figure(11); clf; mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(x),max(x)])

figure(12); clf; contour(t,x,u,21); xlabel('time t'); ylabel('position x');
figure(13); plot(x,u(:,end)); xlabel('x'); ylabel('u(x) at t_{end}');

xlim([min(x),max(x)])

5.10 The shear–locking effect caused by linear elements
Examine a domain Ω = [−L

2 , +L
2] × [−H

2 , +H
2] ⊂ R2 with L = H = 0.1 and apply a horizontal deformation u1 on the

left and right edges at x = ±L
2 of size ±c y = ±5 · 10−4 y. The upper and lower edge are force free. Use the material

parameters E = 100 · 109 and ν = 0. Find the original and deformed domain in Figure 62. One can verify14 that an exact

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 117

-0.06-0.04-0.02 0 0.020.040.06
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y

x

Figure 62: Original and deformed domain and the Gauss integration points for linear elements

solution of the boundary value problem is given by

u1(x, y) =
2 c

L
x y , u2(x, y) =

c

L
(
L2

4
− x2) where c = 5 · 10−4 .

This exact solution leads to the strains εxx = 2 c
L y and εyy = εxy = 0 and thus the elastic energy (use the elastic energy

density (21) with ν = 0)

Uelast = Uεxx
+ Uεyy

+ Uεxy

=
E

2

∫∫
Ω

ε2xx dA+
E

2

∫∫
Ω

ε2yy dA+
E

2

∫∫
Ω

2 ε2xy dA

=
E

2

∫ +H/2

−H/2

∫ +L/2

−L/2

4 c2

L2
y2 dx dy + 0 + 0 =

E

2

4 c2

L2
L
2H3

3 8
=

125

3
≈ 41.667

Determine approximate solutions of this plane stress problem with NH=NL layers in either direction and using either
linear or quadratic elements. Then use these solutions u⃗1 and u⃗2 and the function FEMgriddata() to evaluate the strains
εxx, εyy and εxy on a fine xy–grid. Find the results for two layers (NL=NH=2) in Figure 63. Observe that the strains
obtained by quadratic elements are very close to the strains of the exact solution. The strains based on linear elements show
some surprising features:

• The strains are piecewise constant! This should be no surprise, since a partial derivative of order one of a piecewise
linear function leads to a piecewise constant strain function. For this reason first order triangular elements are also
called Constant Strain Triangles, or short CST elements.

• The piecewise constant approximation of the normal strain εxx is as good as can be, since only 8 triangular elements
are used with this mesh.

• The piecewise approximation of the shearing strain εxy is drastically different from the exact value 0 . This is caused
by the two contributions to εxy = 1

2 (
∂ u1

∂y + ∂ u2

∂x), which do not cancel out on the piecewise constant sections. The
approximation based on second order elements is quite good, since 10−19 ≈ 0 .

14E.g. use [Stah08, §5] with ν = 0 and u1 = x y and u2 = −x2

2
to arrive at

0
?
=

∂2u1

∂x2
+
∂2u1

∂y2
+

∂

∂x

(
∂u1

∂x
+
∂u2

∂y

)
= +0 + 0 +

∂

∂x
(y + 0) OK

0
?
=

∂2u2

∂x2
+
∂2u2

∂y2
+

∂

∂y

(
∂u1

∂x
+
∂u2

∂y

)
= −1 + 0 +

∂

∂y
(y + 0) OK

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 118

(a) εxx with quadratic elements (b) εxx with linear elements

(c) εxy with quadratic elements (d) εxy with linear elements

Figure 63: The strains εxx and εxy with two layers in each direction for linear and quadratic elements

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 119

To examine the stiffness of the deformed body compute the elastic energy put into the body by the deformation. To
arrive at reliable values a couple of steps are performed:

1. Generate a rather fine grid on the domain Ω, using the command meshgrid().

2. Evaluate the partial derivatives of u1 and u2 on the grid with the help of FEMgriddata(). Then compute the three
strains on the fine grid.

3. Use the command mesh() to visualize a few strains, leading to Figure 63.

4. With the strains use the expressions for the elastic energy density to evaluate the different contributions.

5. Use an iterated trapezoidal rule (trapz()) to perform the numerical integration for the three contributions to the
elastic energy.

The above is performed for different numbers of layers of first and second order elements. Find the results in Table 11. This

element type # of layers Uelast Uεxx Uεyy Uεxy

exact 41.666 41.666 0 0

quadratic NL=NH=1 41.759 41.759 0 0

quadratic NL=NH=2 41.759 41.759 0 0

quadratic NL=NH=5 41.759 41.759 0 0

linear NL=NH=1 187.5 125 0 62.5

linear NL=NH=2 78.472 62.847 0 15.625

linear NL=NH=5 48.122 45.622 0 2.500

linear NL=NH=10 43.850 43.225 0 0.625

Table 11: Elastic energy contributions for shearing

table shows a few, possibly surprising, results.

• The results generated be second order elements are very accurate, even for one layer only. This is caused by the fact
that the exact solution is a polynomial of degree 2 and thus can be represented exactly by second order elements.
The remaining, small difference can be made smaller by using a better integration scheme. See the remarks below
(page 121), where an exact result is obtained.

• The results based on linear elements are severely different. The elastic energy is considerably too high and thus the
solid considered to be much stiffer than it actually is. There are two contributions to this no-desirable effect:

1. The piecewise constant patches lead to larger integrals.

2. The shearing contribution by εxy does not vanish. The effect is often called shear locking.

For a small number of layers the effect is drastic, for larger number of layers the effect becomes smaller.

ShearLocking.m
L = 0.1; H = 0.1; E = 100e9; nu = 0;
%% shearing of elements by applied displacement
NL = 2; %% elements along length L
NH = NL; %% elements along height H
Order = 1; %% order of elements, either 1 or 2

FEMmesh = CreateMeshRect([-L/2:L/NL:L/2],[-H/2:H/NH:+H/2],-22,-22,-11,-11);
if Order==2
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

endif

function res = gD1(xy)

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 120

Disp = 0.01;
res = Disp*xy(:,1).*xy(:,2);

endfunction

[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{'gD1',0},{0,0});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('u1')
figure(3); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u2')

figure(1); factor = 4e2;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1)+factor*u1,FEMmesh.nodes(:,2)+factor*u2,...

'color','red','linewidth',2);
hold on ;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),...

'color','green','linewidth',1);
plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),'b*');
hold off; xlabel('x'); ylabel('y'); xlim([-0.06,+0.06]); ylim([-0.06,+0.06]); axis equal

%% generate the data on the grid
x = linspace(-L/2,L/2,31); y = linspace(-H/2,+H/2,31); [xx,yy] = meshgrid(x,y);
[u1i,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);
[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;

figure(12); mesh(xx,yy,eps_xxi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}')
figure(13); mesh(xx,yy,eps_yyi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}')
figure(14); mesh(xx,yy,eps_xyi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}')

Wi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2 + eps_yyi.ˆ2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.ˆ2);
Wxxi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2);
Wyyi = 0.5*E/(1-nuˆ2)*(eps_yyi.ˆ2);
Wxxyyi = 0.5*E/(1-nuˆ2)*(2*nu*eps_xxi.*eps_yyi);
Wxyi = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xyi.ˆ2);

figure(15); mesh(xx,yy,Wi);xlabel('x'); ylabel('y'); title('energy density')

EnergiesGrid = [trapz(x,trapz(y,Wi)),trapz(x,trapz(y,Wxxi)),...
trapz(x,trapz(y,Wyyi)),trapz(x,trapz(y,Wxyi))]

The evaluation on a fine grid might seems unnecessary, since FEMoctave provides EvaluateStrain() to deter-
mine the values of the strains at the nodes. Then determine the contributions to the energy densities and integrate using
FEMIntegrate().

• The results for second order meshes seem reasonable.

• The results based on linear meshes are off, values and graphics. This is caused by the algorithms used:

1. EvaluateStrain() returns values at the nodes. For the derivatives the average value of the neighboring
elements are used, not the values inside the elements.

2. FEMIntegrate() will then take those values at the nodes and (for linear elements) apply a piecewise linear
interpolation, followed by a Gauss integration. Thus the values used for the integration are drastically different
form the values used when the equation was solved.

ShearLocking.m
%%% evaluate at the nodes
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);

W = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2 + eps_yy.ˆ2+2*nu*eps_xx.*eps_yy+2*(1-nu)*eps_xy.ˆ2);
Wxx = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2);
Wyy = 0.5*E/(1-nuˆ2)*(eps_yy.ˆ2);

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 121

Wxy = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xy.ˆ2);

%% integration results are not reliable
EnergiesFEMIntegrate = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx),...

FEMIntegrate(FEMmesh,Wyy),FEMIntegrate(FEMmesh,Wxy)]
figure(4); FEMtrimesh(FEMmesh,W);

xlabel('x'); ylabel('y'); title('energy density, on nodes'); view([-50,20])

The above problem can be removed by evaluating the partial derivatives at the Gauss points, instead of the nodes. Use
FEMEvaluateGP() to determine the contributions to the elastic energy density. Then integrate with FEMIntegrate().

ShearLocking.m
%% integrate by evaluation at the Gauss points
[u1G,gradU1] = FEMEvaluateGP(FEMmesh,u1);
[u2G,gradU2] = FEMEvaluateGP(FEMmesh,u2);
eps_xxG = gradU1(:,1); eps_yyG = gradU2(:,2); eps_xyG = (gradU1(:,2)+gradU2(:,1))/2;
W = 0.5*E/(1-nuˆ2)*(eps_xxG.ˆ2 + eps_yyG.ˆ2+2*nu*eps_xxG.*eps_yyG+2*(1-nu)*eps_xyG.ˆ2);
Wxx = 0.5*E/(1-nuˆ2)*(eps_xxG.ˆ2);
Wyy = 0.5*E/(1-nuˆ2)*(eps_yyG.ˆ2);
Wxxyy = 0.5*E/(1-nuˆ2)*(2*nu*eps_xxG.*eps_yyG);
Wxy = 0.5*E/(1-nuˆ2)*(2*(1-nu)*eps_xyG.ˆ2);
EnergiesFEMIntegrateGauss = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx),...

FEMIntegrate(FEMmesh,Wyy),FEMIntegrate(FEMmesh,Wxy)]

Below find the results for two layers NL=NH=2 and first and second order elements. Shown are in that order∫∫
Ω

W =

∫∫
Ω

Wxx + Wyy + Wxy + Wxxyy

∫∫
Ω

Wxx =
E

2 (1− ν2)

∫∫
Ω

ε2xx dA∫∫
Ω

Wyy =
E

2 (1− ν2)

∫∫
Ω

ε2yy dA∫∫
Ω

Wxy =
E

2 (1− ν2)

∫∫
Ω

2 (1− ν) ε2xy dA

• first order elements

EnergiesGrid = 78.4722 62.8472 0 15.6250
EnergiesFEMIntegrate = 67.4913 58.5938 0 8.8976
EnergiesFEMIntegrateGauss = 78.1250 62.5000 0 15.6250

• second order elements

EnergiesGrid = 4.1759e+01 4.1759e+01 6.8171e-30 8.2941e-30
EnergiesFEMIntegrate = 4.1667e+01 4.1667e+01 6.6145e-30 2.7413e-30
EnergiesFEMIntegrateGauss = 4.1667e+01 4.1667e+01 6.5378e-30 8.5890e-30

Observe that the results based on the integration with the Gauss points yields the same numbers as the exact formula.

5.11 Bending of an Euler beam
A plate of length L = 1, width W = 1 and height H = 0.1 is attached at the left edge and an upward force of F = 100 is
applied on the right side. Use the material parameters E = 100 · 109 and ν = 0. Based on the Euler beam theory conclude

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 122

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

y

x

Figure 64: The original shape of the a beam and its (exaggerated) deformed shape, using two layers of elements

∂2

∂x2
u2(x, y) =

M

E I
=

F

E I
(L− x) ,

∂

∂x
u2(x, y) =

F

E I
(Lx− 1

2
x2)

u2(x, y) =
F

E I
(
L

2
x2 − 1

6
x3)

u1(x, y) = −y ∂

∂x
u2(x, y) = − F

E I
(Lx− 1

2
x2) y

εxx(x, y) =
∂ u1(x, y)

∂x
= − F

E I
(L− x) y , εyy(x, y) =

∂ u2(x, y)

∂y
= 0

εxy(x, y) =
1

2
(
∂ u1
∂y

+
∂ u2
∂x

) =
F

E I

(
−(Lx− 1

2
x2) + (

L

2
2x− 1

2
x2)

)
= 0

For the above parameters with the second moment I = W H3

12 of the cross section obtain the following maximal values.

u2(L, y) =
F

3E I
L3 = 4

F

EW H3
L3 = 4 · 10−6

u1(L,−H/2) =
F

4E I
LH = 3

F

EW H2
L = 3 · 10−7

εxx(0,−H/2) =
F

2E I
LH = 6

F

EW H2
L = 6 · 10−7

Use these results to verify the accuracy of the numerical approximations.

To examine the performance of the FEM algorithms use a rectangular mesh with NL sections along the horizontal x–axis
and NH layers in the vertical y–direction. The code is using first, second or third order elements. In Figure 65 find the mesh
and the corresponding integration points for meshes with NL=10 and just one layer, i.e. NH=1 . Observe that the figure uses
different scaling, all triangles have height and width 0.1, which is usually recommended for good quality meshes. The code
was run with NL=10 horizontal sections and NH=1 or 5 vertical sections. The elastic energy density Wstress is computed
and displayed in Figure 66. Observe the piecewise constant energy density for linear elements, i.e. CST elements.

Multiple runs of the code BendingBeam.m lead to the results in Table 12. The values for the elastic energy are
computed with the help of the strain values at the Gauss points. Observe that second and third order elements generate
rather accurate results, even for a very coarse grid. With a coarse grid of linear elements the effect of shear locking is clearly
visible. But even for a 80× 8 grid the results are not very accurate.

BendingBeam.m
%% bending of beam by applied force
L = 1; H = 0.1; E = 100e9; nu = 0; Force = 100;

NL = 20; %% number of elements along length L
NH = NL/10; %% number of elements along height H

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 123

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x

y

(a) linear elements

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y

x
(b) quadratic elements

Figure 65: Meshes for linear and quadratic elements with one layer, with the integration points

(a) one layer of linear elements (b) one layer of quadratic elements

(c) five layers of linear elements (d) five layers of quadratic elements

Figure 66: The elastic energy density of the bending beam with one or five layers

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 124

element order NL NH max{u2} max{εxx} energy

Euler beam 4 · 10−6 6 · 10−7 2 · 10−4

first 80 8 3.8159 · 10−6 5.7295 · 10−7 1.9079 · 10−4

first 40 4 3.3036 · 10−6 4.8900 · 10−7 1.6517 · 10−4

first 20 2 2.1525 · 10−6 3.1248 · 10−7 1.0762. · 10−4

first 10 1 0.9079 · 10−6 1.2718 · 10−7 0.4539 · 10−4

second 80 8 4.0243 · 10−6 6.1660 · 10−7 2.0120 · 10−4

second 40 4 4.0242 · 10−6 6.1101 · 10−7 2.0120 · 10−4

second 20 2 4.0235 · 10−6 6.0326 · 10−7 2.0117 · 10−4

second 10 1 4.0162 · 10−6 5.8832 · 10−7 2.0081 · 10−4

third 80 8 4.0244 · 10−6 6.2131 · 10−7 2.0122 · 10−4

third 40 4 4.0243 · 10−6 6.1708 · 10−7 2.0122 · 10−4

third 20 2 4.0243 · 10−6 6.1176 · 10−7 2.0121 · 10−4

third 10 1 4.0241 · 10−6 6.0592 · 10−7 2.0120 · 10−4

Table 12: Different values for the deformation of a bending beam, depending on the size of the grid

Order = 2; %% order of elements, either 1, 2 or 3
FEMmesh = CreateMeshRect([0:L/NL:L],[-H/2:H/NH:+H/2],-22,-22,-11,-33);

figure(1); FEMtrimesh(FEMmesh);%% axis equal;
hold on; plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),'b*'); hold off
xlabel('x'); ylabel('y')

switch Order
case 2
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

case 3
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

endswitch

[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{0,0},{0,Force/H});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('u1')
figure(3); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u2')

FEMoctave_u2Max = max(u2);
EulerBeam = 4*Force*Lˆ3/(E*Hˆ3);
MaximalDisplacements = [EulerBeam, FEMoctave_u2Max]
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(12); FEMtrimesh(FEMmesh,eps_xx); xlabel('x'); ylabel('y'); zlabel('eps_{xx}')
Results_Maxu1_Maxeps_xx = [max(abs(u1)), max(abs(eps_xx))]
W = 0.5*E/(1-nuˆ2)*(eps_xx.ˆ2 + eps_yy.ˆ2+2*nu*eps_xx.*eps_yy+2*(1-nu)*eps_xy.ˆ2);

EnergyByForce = [Force*EulerBeam/2, Force*max(u2)/2]

figure(4);FEMtrimesh(FEMmesh,W); xlabel('x'); ylabel('y');
title('energy density, on nodes'); view([-50,20])

figure(5);clf;FEMtricontour(FEMmesh,W); xlabel('x'); title('energy density')

%% integrate by evaluation at the Gauss points
W = EvaluateEnergyDensity(FEMmesh,eps_xx,eps_yy,eps_xy,E,nu);
EnergyIntegration = FEMIntegrate(FEMmesh,W)

[xx,yy] = meshgrid(linspace(0,L,101),linspace(-H/2,+H/2,51));
[u1i,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 125

[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;

Wi = 0.5*E/(1-nuˆ2)*(eps_xxi.ˆ2+eps_yyi.ˆ2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.ˆ2);

figure(14); mesh(xx,yy,Wi);xlabel('x'); ylabel('y');
title('energy density, on fine grid'); view([-50,20])

%% show deformed domain
factor = 1e5/2;
figure(100); ShowDeformation(FEMmesh,u1,u2,factor); xlabel('x'); ylabel('y'); axis equal

5.12 Eigenvalues and eigenmodes of a slender beam
For the beam in Section 3.10.3 (page 42) more information can be obtained by PlaneStressEig(). The code in the file
EulerBeamModes.m allows to examine multiple aspects of the eigenmodes of a bending beam. The code will generate
figures similar to Figure 67. The Aluminum beam of length L = 0.2, height H = 0.01 and width W = 0.01 is clamped at
the left edge at x = 0.

• Change the value of Mode to evaluate different modes, e.g. Mode = 4. The result might be surprising at first sight.

• Change the height H of the beam and observe the effect of the frequencies and maybe even the shape of the modes.

• The code allows to use linear, quadratic or cubic elements by selecting MeshType. Observe that the frequencies
obtained by quadratic elements are smaller then the ones by linear elements, Cubic elements lead to the smallest
frequencies.

• Modify the size of the mesh and observe that for finer meshes the frequencies are slightly lower.

• For a coarse mesh and linear elements the frequencies are considerably to high. This is caused by shear locking, see
Section 5.10.

EulerBeamModes.m
clear *
L = 0.20; H = 0.01; W = 0.01; rho = 2.7e3;
E = 70e9; nu = 0.33; %% Aluminum
I2 = 1/12*Hˆ3*W;
Mode = 2
Nx = 20; Ny = 3;
MeshType = 'linear';
MeshType = 'quadratic';
%MeshType = 'cubic';

f = @(z) 1+cos(z).*cosh(z); %% clamped at x=0, free at x=L
% z = linspace(0,Mode*pi,100);
% figure(101); plot(z,f(z)); xlabel('z'); ylabel('f(z)')
z0 = fsolve(f,Mode*pi-pi/2);
freqEuler = z0ˆ2*sqrt(E*I2/(rho*H*W))/(2*pi*Lˆ2)
% p = k*lambdaˆ0.25*L;
% C = (sin(p)-sinh(p))/(cos(p)+cosh(p));
% x = linspace(0,L); x_p = k*lambdaˆ0.25*x;
% y = cos(x_p)-cosh(x_p) + C*(sin(x_p)-sinh(x_p)); y = y/y(end);
% figure(102); plot(x,y); xlabel('x'); ylabel('height y(x)');
Mesh = CreateMeshRect(linspace(0,L,Nx+1),linspace(0,+H,Ny+1),-22,-22,-11,-22);
switch MeshType
case 'quadratic'
Mesh = MeshUpgrade(Mesh,'quadratic');

case 'cubic'
Mesh = MeshUpgrade(Mesh,'cubic');

endswitch

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 126

y x

-0.2
-0.15

0.01

-0.1
-0.05

0u 1

0.05
0.1
0.15

0.008
0.006 0.2

0.15

0.2

0.004 0.10.002 0.050 0

(a) horizontal displacement u1

y x

-1

0.01

-0.5

0u 2

0.5

1

0.008
0.006
0.004 0.1

0.15
0.2

0.002 0.050 0

(b) vertical displacement u2

y x

-200

0.01

-100

0

σ
x	
[G
P
a
] 100

200

0.15
0.20.006

0.004

0.008

0.10.002 0.050 0

(c) horizontal stress σx

0 0.05 0.1 0.15 0.2 0.25
-0.005

0

0.005

0.01

0.015

x

y

(d) original and deformed beam

Figure 67: The second eigenmode of a bending beam

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 127

[la,u1,u2] = PlaneStressEig(Mesh,E,nu,rho,max(4,Mode));
freqFEM = sqrt(la')/(2*pi)
u1_disp = u1(:,Mode); u2_disp = u2(:,Mode);
MaxDisp = max(max(abs(u1_disp)),max(abs(u2_disp)));
u1_disp = u1_disp/MaxDisp; u2_disp = u2_disp/MaxDisp;
figure(1); FEMtrimesh(Mesh,u1_disp); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(2); FEMtrimesh(Mesh,u2_disp); xlabel('x'); ylabel('y'); zlabel('u_2')
[sigma_x,sigma_y,tau_xy] = EvaluateStress(Mesh,u1_disp,u2_disp,E,nu);
figure(11); FEMtrimesh(Mesh,sigma_x*1e-9);

xlabel('x'); ylabel('y'); zlabel('\sigma_x [GPa]')
figure(12); FEMtrimesh(Mesh,sigma_y*1e-9);

xlabel('x'); ylabel('y'); zlabel('\sigma_y [GPa]')
figure(13); FEMtrimesh(Mesh,tau_xy*1e-9);

xlabel('x'); ylabel('y'); zlabel('\tau_{xy} [GPa]')

figure(20);clf; factor = 0.005;
trimesh(Mesh.elem,Mesh.nodes(:,1)+factor*u1_disp,Mesh.nodes(:,2)+factor*u2_disp,...
'color','red','linewidth',2);
hold on ;
trimesh(Mesh.elem,Mesh.nodes(:,1),Mesh.nodes(:,2),'color','green','linewidth',1);
xlabel('x'); ylabel('y'); %%xlim([0,L*1.1])
-->
Mode = 2
freqEuler = 1288.7
freqFEM = 205.66 1274.56 3508.03 6372.09

5.13 Adding missing constraints
5.13.1 Adding a constraint for a steady state heat problem

Examine the boundary value problem

−∆u(x, y) = sin(π x) for −1 ≤ x, y ≤ +1
∂
∂n u(x, y) = 0 on the boundary

This BVP with Neumann boundary conditions only has solution if the integral of the RHS over the domain vanishes.
This is the case. Since

∫∫
Ω

sin(π x) dA = 0 this problem has solutions, but infinitely many. The solutions differ by a

constant. To obtain a unique solution the value at one point can be selected, e.g. at (x, y) = (0, 0) select u(0, 0) = 7.
With this additional constraint the solution is unique. In the code AdditionalConstraint.m below the command
MeshAddConstraint() is used to

• select the node closes to the origin by Position = [0,0]

• add the constraint u = 7 at this node by using the function gD(x, y) = 7

The two numbers generated by the code illustrate that

• the first solution u1 without the constraint has a huge mean value. The condition number of the matrix generated by
the FEM code is huge. But Octave still shows a solution. It is the users responsibility to realize that the solution is
not the desired one.

• the average value of the solution u2 at the nodes a close to 7 and Figure 68 confirms the result. Replacing the average
values at the nodes by a numerical integration leads to a result even closer to 7.

AdditionalConstraintHeat.m
Mesh = CreateMeshTriangle('square',[-1,-1,-2;1,-1,-2;1 1 -2; -1 1 -2],0.05);
figure(1); FEMtrimesh(Mesh);
Mesh = MeshUpgrade(Mesh,'quadratic');
function res = f(xy)

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 128

res = sin(pi*xy(:,1));
endfunction
u1 = BVP2D(Mesh,1,0,0,0,'f',7,0,0);
MeanSolution1 = mean(u1)

Mesh = MeshAddConstraint(Mesh,[0,0],-1);
u2 = BVP2D(Mesh,1,0,0,0,'f',7,0,0);
figure(1); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u')
MeanSolution2 = mean(u2)
MeanSolution2Intgeration = FEMIntegrate(Mesh,u2)/4
-->
MeanSolution1 = -6.6466e+07
MeanSolution2 = 6.9988
MeanSolution2Intgeration = 7.0000

Figure 68: The solution of the boundary value problem with an additional constraint

5.13.2 Adding constraints for an elasticity problem

A similar setup can be considered for a plane stress elasticity problem. On a square −1 ≤ x, y ≤ +1 a set of boundary
forces is applied.

fx(+1, y) = +cos(y) for −1 ≤ y ≤ +1

fx(−1, y) = − cos(y) for −1 ≤ y ≤ +1

fy(x,+1) = +cos(x) for −1 ≤ x ≤ +1

fy(x,−1) = − cos(x) for −1 ≤ x ≤ +1

The net force on the plate is zero, i.e. there is a solution. But the plate is free to move and rotate. With PlaneStress()
a solution can be determined, leading to Figure 69(a) for the total displacement u =

√
u21 + u22. It is clearly visible that the

origin (0, 0) is displaced. Modifying the setup slightly15 can lead to very different solutions.

Adding two constraints

• zero displacement in x and y–direction at the origin by using Pos = [0.0]; Mode = [-1,-1];

• and zero dispacement in y–direction at the point (1, 0) by using Pos = [1,0]; Mode = [-2,-1];

• each followed by a call of Mesh = MeshAddConstraint(Mesh,Pos,Mode);

prevents the plate from moving and rotating freely. A call of PlaneStress() then leads to Figure 69(b). It is clearly
visible that the origin (0, 0) is not moved. Slight changes in the setup will lead to slightly different solutions.

15Add a tiny contribution of 10−10 to one of the bounadry forces and observe the results.

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 129

AdditionalConstraintPlate.m
Mesh = CreateMeshRect(linspace(-1,1,9),linspace(-1,1,9),-23, -23, -32, -32);
Mesh = MeshUpgrade(Mesh,'quadratic');
function res = fx(xy)
res = 1*xy(:,1).*cos(xy(:,2));
endfunction
function res = fy(xy)
res = 1*xy(:,2).*cos(xy(:,1));
endfunction
[u1,u2] = PlaneStress(Mesh,1,0,{0,0},{0,0},{'fx','fy'});
figure(2); FEMtrimesh(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(3); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
figure(4); FEMtrimesh(Mesh,sqrt(u1.ˆ2+u2.ˆ2)); xlabel('x'); ylabel('y'); zlabel('|u|')
figure(5); clf; FEMtricontour(Mesh,sqrt(u1.ˆ2+u2.ˆ2)); xlabel('x'); ylabel('y'); axis equal

Pos = [0.0]; Mode = [-1,-1]; %% fix the origin
Mesh = MeshAddConstraint(Mesh,Pos,Mode); %% remove rotations
Pos = [1,0]; Mode = [-2,-1];
Mesh = MeshAddConstraint(Mesh,Pos,Mode);
[u1m,u2m] = PlaneStress(Mesh,1,0,{0,0},{0,0},{'fx','fy'});

figure(12); FEMtrimesh(Mesh,u1m); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(13); FEMtrimesh(Mesh,u2m); xlabel('x'); ylabel('y'); zlabel('u_2')
figure(14); FEMtrimesh(Mesh,sqrt(u1m.ˆ2+u2m.ˆ2)); xlabel('x'); ylabel('y'); zlabel('|u|')
figure(15); clf; FEMtricontour(Mesh,sqrt(u1m.ˆ2+u2m.ˆ2)); xlabel('x');
ylabel('y'); axis equal

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

(a) without contraints

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

(b) with contraints

Figure 69: The contours for the displacement u =
√
u21 + u22, without and with constraints

5.14 Missing boundary constraints and null spaces

Examine a domain Ω ⊂ R2 and minimize the elastic energy given by equation (22) with f⃗ = g⃗N = 0⃗

U(u⃗) =

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA ,

i.e. no external forces and all of the boundary is free to move. Since the strains depend on derivatives of the displacement,
the energy U(u⃗) will not change for constant displacement vectors u⃗. In addition the domain can be rotated without

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 130

deformation, i.e. without adding elastic energy. This leads to a three dimensional subspace on which the elastic energy
vanishes. No reliable FEM algorithm will be able to solve the corresponding problem of minimizing the energy, since there
is no unique minimum. To obtain a solution constraints have to be introduced, preventing the solid from moving in the x
and y direction and preventing rotations.

As a consequence the global stiffness matrix A should have a three dimensional null space, describing constant dis-
placements and rotations. Thus expect three very small eigenvalues. Constant displacement vectors u⃗ in x or y direction
and rotations should satisfy

A u⃗ = 0⃗ and
1

2
⟨u⃗,Au⃗⟩ = 0 ,

where the second expression corresponds to the elastic energy. These expressions are examined in the code below. The code
verifies this on a trapezoidal domain with corners at (0, 0), (1, 0), (1, 2) and (0, 1).

• There are three eigenvalues very close to zero. Due to the finite accuracy of the arithmetic on the CPU the values are
not exactly zero16. The fourth eigenvalue is considerably larger. This confirms the three dimensional null space of the
matrix A.

• The vector shift x implements a translation of the solid in x direction. Since A*shift x is approximately 0 the
vector is in the null space of A.

• With the vector shift y the behavior in y direction is examined.

• The displacement vector rot vec examines a rotation of the solid, verifying that the energy is not increased by this
rotation.

• The null space of the matrix A is spanned by the above three vectors.

• With the vector rand vec examine an arbitrary displacement and observe that this vector is not in the null space and
the energy is clearly increased.

TestNullSpace.m
Mesh = CreateMeshTriangle('test',[1 0 -22;2 0 -22;2 2 -22; 1 1 -22],0.01);

E = 1e9; nu = 0.3; f = {0,0}; gD = {0,0}; gN = {0,0}; %% set the parameters
if 0 %% plane stress
[A,g] = PStressEquationM(Mesh,E,nu,f,gD,gD); %% determine matrix A

else %% axially symmetric
[A,g] = AxiStressEquationM(Mesh,E,nu,f,gD,gD); %% determine matrix A

endif
A = (A+A')/2; %% assure that matrix is symmetric, it should be, but rounding errors
EigenValues = eigs(A,6,'sa') %% find the smallest eigenvalues

n = size(A,1)/2;
shift_x = [ones(n,1);zeros(n,1)]; %% constant shift in x direction
shift_x = shift_x/norm(shift_x);
Norm_Shift_x = [norm(A*shift_x),shift_x'*A*shift_x/2]

shift_y = [zeros(n,1);ones(n,1)]; %% constant shift in y direction
shift_y = shift_y/norm(shift_y);
Norm_Shift_y = [norm(A*shift_y),shift_y'*A*shift_y/2]

x = Mesh.nodes(:,1); y = Mesh.nodes(:,2); %% at point [x,y] add displacement [-y,x]
rot_vec = [-y;x]; %% a rotation
rot_vec = rot_vec/norm(rot_vec);
Norm_Rotation = [norm(A*rot_vec),rot_vec'*A*rot_vec/2]

rand_vec = [x.*y;y]; %% an arbitrary displacement vector
rand_vec = rand_vec/norm(rand_vec);
Norm_Random = [norm(A*rand_vec),rand_vec'*A*rand_vec/2]

16The operation A = (A+A′)/2 assures that the matrix is symmetric, to get around a problem in the implementation of eigs() in Octave .

SHA 15-5-24

5 TOOLS FOR DIDACTICAL PURPOSES 131

-->
EigenValues = -5.9793e-07 -3.8610e-07 4.6269e-07 8.6494e+06 2.7384e+07 3.1225e+07

Norm_Shift_x = 3.1718e-07 7.8932e-10
Norm_Shift_y = 2.8492e-07 -1.9276e-08
Norm_Rotation = 3.3145e-07 2.2532e-09
Norm_Random = 5.1146e+07 5.3317e+06

Another option is the (newer) command PlaneStressEig(), which shows that the first 3 eigenvalues are (approxi-
mately) zero and the other eigenvalues are clearly positive.

lambda = PlaneStressEig(Mesh,W,nu,1,6)'
-->
lambda = -1.2637e-17 8.7877e-18 5.2417e-17 1.2456e-02 3.2735e-02 3.7392e-02

The zero eigenvalues could be removed by using additional constraints, as shown in the previous Section 5.13.2. The
example of vibrations of a ring in Section 9.39 illustrates the same effect.

The situation changes for axially symmetric problems, i.e. the domain in the xz–plane is rotated about the z–axis to
obtain the object in the space R3. Instead of PStressEquationM() use AxiStressEquationM() to generate the
stiffness matrix A. In the above code change the switch in the third line to obtain the results below.

• For axially symmetric problems moving the object up (in z–direction) does not lead to a deformation, thus there is at
least a one-dimensional nullspace.

• Moving the intersection of the object with the plane y = 0 in radial direction (in the x–direction) does deform the 3D
object and thus increases the elastic energy.

• Rotating the intersection of the object with the plane y = 0 does deform the 3D object and thus increases the elastic
energy.

As a consequence there is only one eigenvalue (close to) zero, which is confirmed by the results below.

EigenValues = 1.7398e-06 4.0145e+06 7.3985e+06 1.8776e+07 5.0384e+07 5.4062e+07

Norm_Shift_x = 4.0504e+07 4.8423e+06
Norm_Shift_y = 6.0413e-07 -4.3348e-09
Norm_Rotation = 2.3078e+07 1.0892e+06
Norm_Random = 1.5364e+08 1.8131e+07

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 132

6 The Mathematics of the Algorithms for 2D FEM
In this section the mathematical background for the FEM method applied to the problems in Section 2 is explained. Most
of the theory is used to solve the second order elliptic boundary value problem (1). The explanations are certainly not
complete, but should provide enough information to ease the understanding of the code. For in-depth coverage consult one
of the many books on FEM and/or numerical analysis. The starting point for this presentation are the lecture notes [Stah08].
Find a list of books on FEM in [Stah08, §0].

The organization of this section is as follows:

6.1 The definition of classical and weak solutions of boundary value problems is given and the connection to calculus of
variations is shown.

6.2 The most often used triangular elements are presented.

6.3 The method of interpolation on triangles and Gauss integration is explained.

6.4 Element stiffness matrices for triangular elements of order 1 are carefully derived. The construction of the global
stiffness matrix is explained. The integration of the different contributions is performed.

6.5 Element stiffness matrices for triangular elements of order 2 are carefully derived. The integration of the different
contributions is performed.

6.6 Element stiffness matrices for triangular elements of order 3 are carefully derived. The integration of the different
contributions is performed.

6.7 The theoretical convergence result is shown.

6.8 The algorithms to solve dynamic initial boundary value problems are presented.

– In Section 6.8.1 dynamic heat equations are examined, using the Crank–Nicolson approach.

– In Section 6.8.2 using eigenvalues to solve dynamic heat equations is explained.

– In Section 6.8.3 dynamic wave equations are examined, using an implicit approximation.

– In Section 6.8.4 using eigenvalues to solve dynamic wave equations is explained.

6.9 A few remarks on using the inverse power iteration to determine eigenvalues.

6.1 Classical solutions and weak solutions
A function u = u(x, y) is called a classical solution of the BVP (1) iff it is twice differentiable and

−∇ · (a∇u− u b⃗) + b0 u = f for (x, y) ∈ Ω

u = g1 for (x, y) ∈ Γ1

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y) ∈ Γ2

.

Multiply this equation with a smooth function ϕ, vanishing on Γ1, and integrate over the domain Ω. Then use integration
by parts to arrive at

0 = −∇ · (a∇u− u b⃗) + b0 u− f

0 =

∫∫
Ω

(
−∇ · (a∇u− u b⃗) + b0 u− f

)
ϕ dA

=

∫∫
Ω

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA−
∫
Γ

ϕ
(
a∇u− u b⃗

)
· n⃗ ds

=

∫∫
Ω

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA−
∫
Γ2

ϕ (g2 + g3 u) ds . (31)

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 133

function u is a classical solution

∇ (a∇u) = f in Ω

u = 0 on ∂Ω

���
���

���
���*

Calculus of Variations

function u is minimizer of

F (u) =
∫∫
Ω

1
2 a (∇u)

2 + f · u dA

u = 0 on ∂Ω

HH
HHH

HHH
HHHHj

multiply by ϕ and integrate

-
∂ F
∂u = 0

function u is a weak solution∫∫
Ω

a∇u · ∇ϕ+ f ϕ dA = 0

for all ϕ vanishing on ∂Ω

?

discretize

vector u⃗ ∈ RN is minimizer of

F (u⃗) = 1
2 ⟨A u⃗ , u⃗⟩+ ⟨W f⃗ , u⃗⟩

?

discretize

vector u⃗ ∈ RN satisfies

⟨A u⃗ , ϕ⃗⟩+ ⟨W f⃗ , ϕ⃗⟩ = 0

for all vectors ϕ⃗ ∈ RN

?

u⃗ ∈ RN satisfies A u⃗+W f⃗ = 0⃗

?

u⃗ ∈ RN satisfies A u⃗+W f⃗ = 0⃗FEM

Figure 70: Classical and weak solutions, minimizers and FEM

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 134

If a function u satisfies (31) it is called a weak solution of the above BVP. If there is no convection term (⃗b = 0⃗) and some
sign conditions for a and b0 are satisfied, the above is equivalent to minimizing the functional

F (u) =

∫∫
Ω

1

2
a (∇u)2 + 1

2
b0 u

2 + f · u dA−
∫
Γ2

g2 u+
1

2
g3 u

2 ds

among all functions u satisfying the boundary condition u = g1 on Γ1. Figure 70 shows connections between classical
solutions, weak solutions and the resulting system of (linear) equations for the finite element approach. The left branch in
Figure 70 illustrates the usage of minimization and calculus of variations in the context of FEM algorithms. This approach
is often called Ritz method, named after the Swiss mathematician Walter Ritz (1878–1909). The right branch in Figure 70
shows a Galerkin method, named after the Russian mathematician Boris Galerkin (1871–1945).

In the above equation integrals over the domain Ω ⊂ R2 have to be computed. To
discretize this process use a triangularization of the domain, using grid points (xi, yi) ∈
Ω, 1 ≤ i ≤ n. On each triangle Tk replace the function u by polynomials of degree 1
(or 2, or 3). These polynomials are completely determined by their values at the three
corners of the triangle (or corners and some points on the edges). Integrals over the full
domain Ω are split up into integrals over each triangle and then a summation over all
triangles ∫∫

Ω

. . . dA =
∑
k

∫∫
Tk

. . . dA .

The gradients of u and ϕ are replaced by the gradients of the piecewise polynomials.
Each contribution has to be written in the form∫∫

Tk

. . . dA = ⟨Aku⃗k , ϕ⃗k⟩+ ⟨Wkf⃗k , ϕ⃗k⟩ ,

where Ak is the element stiffness matrix.

The above integral will be rewritten as sum of the above integrations of the triangles, leading to the condition

⟨Au⃗+Wf⃗ , ϕ⃗⟩ = 0 for all ϕ⃗ ∈ RN .

This condition is satisfied if u⃗ solves the linear system Au⃗ = −Wf⃗ . The matrix A is called global stiffness matrix. It is
this system of linear equations that will be solved to obtain an approximate solution of the boundary value problem (1).

6.2 A few triangular elements
There are different methods to construct finite elements on triangles. In Figure 71 find a graphical representation of a few
commonly used triangular elements.

• A solid dot at a position indicates that the value at this point is used as a DOF (Degree Of Freedom).

• A circle around a solid dot at a position indicates that the values of the first order partial derivatives are used as DOFs,
e.g. in the Hermite elements.

• A double circle around a solid dot at a position indicates that the values, first and second order partial derivatives are
used as DOFs, e.g. in the Argyris elements.

• A short line at a position indicates that the value of the normal derivative at this point is used as a DOF, e.g. in the
Morley and Argyris elements.

An element is called

• C0 conforming if the resulting solutions are continuous across element boundaries.

• C1 conforming if the resulting solutions and the first order derivatives are continuous across element boundaries.

The codes in FEMoctave only use linear, quadratic and cubic elements.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 135

J

J
J
J
J
J
Jt t

t

linear

J

J
J
J
J
J
Jt

t
t

t
t

t
quadratic

J

J
J
J
J
J
Jt t

t
��QQ

Morley

J

J
J
J
J
J
Jt

t
t

t
t

t
t

t t
t

cubic

J

J
J
J
J
J
Jth th

th
t

Hermite

J

J
J
J
J
J
Jthm thm

thm
��QQ

Argyris

Figure 71: A few triangular elements

linear quadratic Morley cubic Hermite Argyris

degrees of freedom DOF 3 6 6 10 10 21

polynomial basis P1 P2 P2 P3 P3 P5

C0 conforming yes yes no yes yes yes

C1 conforming no no quasi no quasi yes

Table 13: Properties of triangular elements

6.3 Transformation, interpolation and Gauss integration
From the above it is obvious that integration over general triangles is important for the development of FEM algorithms.
It turns out to be convenient to find integration methods for a standard triangle and then consider the general triangle by
appropriate coordinate transformations.

6.3.1 Transformation of coordinates and integration over a general triangle

All of the necesssary integrals for the FEM method are integrals over general triangles E. These can be written as images
of a standard triangle in a (ξ, ν)–plane, according to Figure 72. The transformation is given by

- ξ

6

ν

@
@
@
@
@
@
@

Ωt1 t2

t3
t4t5
t6

j(
ξ

ν

)
7→

(
x

y

)

- x

6

y

�������1

�
�
�
�
�
�
�
�
���J
J
J
J
J
J
J

E

ξ

ν

(x1, y1)

(x2, y2)

(x3, y3)

t
t

t
tt

t

Figure 72: Transformation of the standard triangle Ω to a general triangle E

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 136

(
x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1
y2 − y1

)
+ ν

(
x3 − x1
y3 − y1

)

=

(
x1

y1

)
+

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+T ·

(
ξ

ν

)

with the transformation matrix

T =

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
.

By using 0 < ξ, ν < 1 with ξ+ν < 1 the standard triangle Ω is mapped onto the general triangleE ⊂ R2. If the coordinates
(x, y) are given find the values of (ξ, ν) with the help of(

ξ

ν

)
= T−1 ·

(
x− x1
y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1
y − y1

)
.

If a function f(x, y) is to be integrated over the triangle E use the transformation∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)∂ (ξ, ν)

)∣∣∣∣ dξ dν = |det(T)|
∫ 1

0

(∫ ν

0

f (x⃗ (ξ, ν)) dξ

)
dν . (32)

The Jaccobi determinant is given by∣∣∣∣det(∂ (x, y)∂ (u, v)

)∣∣∣∣ = |det(T)| = |(x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)|

If the orientation of the triangle is positive, then det(T) will be positive. Since the area of the standard triangle Ω equals 1
2

find
area of E =

1

2
|detT| .

For an efficient numerical integration over the standard triangle Ω choose integration points g⃗j ∈ Ω and corresponding
weights wj for j = 1, 2, . . . ,m and then work with the values of the function at those points, i.e. seek an approximation of
the integral of the form ∫∫

Ω

f(ξ⃗) dA ≈
m∑
j=1

wj f(g⃗j) . (33)

The integration points g⃗j and weights wj have to be chosen, such that the approximation error is as small as possible.
Required are three essential conditions for the integration method:

• If a sample point is used in a Gauss integration, then all other points obtainable by permuting the three corners of the
triangle must appear and with identical weight.

• All sample points g⃗j must be inside the triangle, or on the triangle boundary.

• All weights wj must be positive.

6.3.2 Gauss integration on the standard triangle with 3 Gauss points

In Figure 73 consider the three points at g⃗1 = 1
2 (λ, λ), g⃗2 = (1− λ, λ/2) and g⃗1 = (λ/2, 1 − λ). Find optimal values for

the parameters λ and w such that polynomials of degree as high as possible are integrated exactly by∫∫
∆

f dA ≈ w (f(g⃗1) + f(g⃗2) + f(g⃗3)) .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 137

-
ξ

6ν

@
@

@
@

@
@
@

@
@
@@�

�
�

�
��

HH
HHH

HHH
HHH

A
A
A
A
A
A
A
A
A
AA

r1 r2
r 3

r r

r

Figure 73: Gauss integration of order 2 on the standard triangle, using 3 integration points

To determine the optimal values determine a solution of a nonlinear system of 2 equations for the unknowns λ and w.
Require that ξk for 0 ≤ k ≤ 2 be integrated exactly. This leads to the solution λ = 1/3 and the weight w = 1/6 . This
approximate integration yields the exact results for polynomials f up to degree 2 . Thus for a single triangle with diameter
h, i.e. an area of the order h2, the integration error for smooth functions is of the order h3 · h2 = h5. When dividing a large
domain in sub-triangles of size h this leads to a total integration error of the order h3.

The Gauss points and weights are given by

G =


1/6 1/6

2/3 1/6

1/2 2/3

 and w =
1

6
.

For a general triangle the Gauss points are located at

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+T ·GT .

This integration scheme will be used for linear elements17.

6.3.3 Gauss integration on the standard triangle with 7 Gauss points

As a second method use the points g1 = (λ1, λ1) and g4 = (λ2, λ2) along the diagonal ξ = ν. Similarly use two more
points along each connecting straight line from a corner of the triangle to the midpoint of the opposite edge. This leads to
a total of 6 integration points where groups of 3 have the same weight. Finally add the midpoint with weight w3. This is
illustrated in Figure 74. The result is a 7 × 2 matrix G containing in each row the coordinates of one integration point g⃗j
and a vector w⃗ ∈ R7 with the corresponding integration weights. To determine the optimal values solve a nonlinear system
of 5 equations for the unknowns λ1, λ2, w1, w2 and w3. Require that ξk for 0 ≤ k ≤ 5 be integrated exactly. Find details
in [Stah08]. Pick a solution of the resulting nonlinear system with 0 < λ1 < λ2 < 1 (points inside the triangle) and positive
weights w1, w2 and w3.

This approximate integration yields the exact results for polynomials f up to degree 5 . Thus for one triangle with
diameter h and an area of the order h2 the integration error for smooth functions is of the order h6 ·h2 = h8. When dividing
a large domain in sub-triangles of size h this leads to a total integration error of the order h6. For most problems this error
will be considerably smaller than the approximation error of the FEM method and it is reasonably safe to ignore the error.

17One might be temped to add the center of the triangle as a fourth point, but the resulting weight will be negative. This would lead to stiffness matrices
that are not positive definite.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 138

-
ξ

6ν

@
@

@
@

@
@
@

@
@
@@�

�
�

�
��

HH
HHH

HHH
HHH

A
A
A
A
A
A
A
A
A
AA

r1 r 2

r 3

r4r5
r6

r 7

Figure 74: Gauss integration of order 5 on the standard triangle, using 7 integration points

The optimal choice of Gauss points and integration weights is given by18

G =



λ1/2 λ1/2

1− λ1 λ1/2

λ1/2 1− λ1
λ2/2 λ2/2

1− λ2 λ2/2

λ2/2 1− λ2
1/3 1/3


≈



0.101287 0.101287

0.797427 0.101287

0.101287 0.797427

0.470142 0.470142

0.059716 0.470142

0.470142 0.059716

0.333333 0.333333


and w⃗ =



w1

w1

w1

w2

w2

w2

w3


≈



0.0629696

0.0629696

0.0629696

0.0661971

0.0661971

0.0661971

0.1125000


. (34)

Using the general transformation results to compute the coordinates XG for the Gauss integration in a general triangle by

XG =

(
x1

y1

)
+

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
·GT =

(
x1

y1

)
+T ·GT . (35)

This notation is used to compute the Gauss points for a given triangulation of the domain, i.e. for the mesh.

6.4 Construction of first order elements
Assume that the function u is linear on each triangle Tk, thus determined by the values at the three corners. Then all integrals
in expression (31) have to be examined. For the linear elements use the integration with 3 Gauss nodes in the triangle, as
described in Section 6.3.2. All contributions in (31)

0 =

∫∫
Ω

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA−
∫
Γ2

ϕ (g2 + g3 u) ds

have to be transformed into
0 = ⟨Au⃗+Wf⃗ , ϕ⃗⟩ . (36)

By integration over one triangle E find

∫∫
E

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA ≈ ⟨AE


u1

u2

u3

 ,


ϕ1

ϕ2

ϕ3

⟩+ ⟨WE f⃗E ,


ϕ1

ϕ2

ϕ3

⟩ .
The matrix AE is the element stiffness matrix and WE f⃗E the corresponding vector. These entries have to be added in
the correct rows and columns of the global stiffness matrix. For this examine the local and global numbering of nodes in
Figure 75. In each triangle the three corners are numbered by 1,2 and 3, but in the global mesh (consisting of many triangles)

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 139

2 k

3
j

1
i

local ←→ global

triangle ←→ mesh

1 ←→ i

2 ←→ k

3 ←→ j

Figure 75: Local and global numbering of nodes

they are numbered by i,k and j. Thus the entries in the element stiffness matrix AE have to be added to rows/columns i,k
and j in the global stiffness matrix A.

AE =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 −→ A = A+



col i col j col k
. . .

...
...

...

row i · · · a11 · · · a13 · · · · · · a12 · · ·
...

. . .
...

...

row j · · · a31 · · · a33 · · · · · · a32 · · ·
...

...
. . .

...

row k · · · a21 · · · a23 · · · · · · a22 · · ·
...

...
...

. . .


Similar procedures have to be appplied to the vectors.

6.4.1 Linear interpolation on a triangle

If the values of the function ϕ(x, y) at the three corners are given by ϕ1, ϕ2 and ϕ3 then the values ϕ(g⃗i) are given by

ϕ(g⃗1) =
2

3
ϕ1 +

1

6
ϕ2 +

1

6
ϕ3

ϕ(g⃗2) =
1

6
ϕ1 +

2

3
ϕ2 +

1

6
ϕ3

ϕ(g⃗3) =
1

6
ϕ1 +

1

6
ϕ2 +

2

3
ϕ3

or using a matrix notation 
ϕ(g⃗1)

ϕ(g⃗3)

ϕ(g⃗3)

 =
1

6


4 1 1

1 4 1

1 1 4




ϕ1

ϕ2

ϕ3

 = M ϕ⃗ .

This interpolation of the values from the nodes of the triangle to the Gauss points g⃗i is independent of shape and size of the
triangle.

For second order elements the construction of this interpolation matrix is performed using the basis functions (see
Section 6.5.1). For the linear case use the simpler basis functions

Φ⃗(ξ, ν) =


Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

 =


1− ξ − ν

ξ

ν


18The exact values are λ1 = (12− 2

√
15)/21, λ2 = (12 + 2

√
15)/21, w1 = (155−

√
15)/2400, w4 = (155 +

√
15)/2400 and w7 = 9/80.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 140

and a linear interpolation of a function given at the nodes is given by

f(ξ, ν) =

3∑
i=1

fi Φi(ξ, ν) .

Since

∂

∂ξ
Φ⃗(ξ, ν) =


−1
1

0

 and
∂

∂ν
Φ⃗(ξ, ν) =


−1
0

1


observe that the gradient does not depend on the position within the triangle.

6.4.2 Integration of f ϕ

Examine different methods to give the function f : either by providing the values at the Gauss points, or by using the values
at the nodes.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ w 2 area(E) (f1 ϕ(g⃗1) + f2 ϕ(g⃗2) + f3 ϕ(g⃗3))

=
2 area(E)

6
⟨M ϕ⃗ , f⃗⟩ = area(E)

3
⟨ϕ⃗ , MT f⃗⟩ .

Thus find one contribution to (36).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss points by a
linear interpolation. Then integrate as above, leading to the approximation∫∫

E

f ϕ dA ≈ 2 area(E)
6

⟨M ϕ⃗ , M f⃗⟩ = area(E)
3

⟨ϕ⃗ , MTM f⃗⟩ .

The matrix

MTM =
1

36


18 9 9

9 18 9

9 9 18

 =
1

4


2 1 1

1 2 1

1 1 2


is independent on the shape and size of the element (triangle). Thus find one contribution to (36).

6.4.3 Integration of b0 uϕ

Since the values of the functions u and ϕ are known at the nodes interpolate both functions and then use the values of the
function b0(x, y) at the Gauss nodes to find∫∫

E

b0 uϕ dA ≈ w 2 area(E)
3∑

i=1

b0(g⃗i)u(g⃗i)ϕ(g⃗1)

=
2 area(E)

6
⟨M ϕ⃗ , diag(⃗b)M u⃗⟩ = area(E)

3
⟨ϕ⃗ , MT diag(⃗b0)M u⃗⟩ ,

where

diag b⃗0 =


b0(g⃗1) 0 0

0 b0(g⃗2) 0

0 0 b0(g⃗3)

 .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 141

If b0(x, y) happens to be a constant, then the above may be simplified to

∫∫
E

b0 uϕ dA ≈ b0
area(E)

12
⟨ϕ⃗ ,


2 1 1

1 2 1

1 1 2

 u⃗⟩ .
Thus find another contribution to (36).

6.4.4 Integration of a∇u · ∇ϕ

Since the functions u and ϕ are linear on each triangle, we use the fact that the gradients are constant on each triangle. The
gradient may be determined with the help of a normal vector of the plane passing through the three points

x1

y1

u1

 ,


x2

y2

u2

 and


x3

y3

u3

 .

A normal vector n⃗ is given by the vector product

n⃗ =


x2 − x1
y2 − y1
u2 − u1

×


x3 − x1
y3 − y1
u3 − u1

 =


+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)
−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)
+(x2 − x1) · (y3 − y1)− (y2 − y1) · (x3 − x1)

 .

The third component of this vector equals twice the oriented19 area of the triangle. To obtain the gradient in the first two
components the vector has to be normalized, such that the third component equals −1. Find

∇u =

(
d u
∂x
d u
∂y

)
=

−1
2 area(E)

(
+(y2 − y1) · (u3 − u1)− (u2 − u1) · (y3 − y1)
−(x2 − x1) · (u3 − u1) + (u2 − u1) · (x3 − x1)

)
.

This formula can be written in the form

∇u =
−1

2 area(E)

[
(y3 − y2) (y1 − y3) (y2 − y1)
(x2 − x3) (x3 − x1) (x1 − x2)

]
·


u1

u2

u3

 =
−1

2 area(E)
G ·


u1

u2

u3

 . (37)

and thus

⟨∇ϕ , ∇u⟩ = 1

4 area(E)2
⟨G


ϕ1

ϕ2

ϕ3

 , G


u1

u2

u3

⟩ = 1

4 area(E)2
⟨


ϕ1

ϕ2

ϕ3

 , GT ·G


u1

u2

u3

⟩ .
If ai are the values of the function a(x, y) at the Gauss points g⃗i find

∫∫
E

a∇ϕ · ∇u dA ≈ a1 + a2 + a3
12 area(E)

⟨


ϕ1

ϕ2

ϕ3

 , GT ·G


u1

u2

u3

⟩ .
As an exercise one can verify that the matrix GT ·G is symmetric and positive semi-definite. The expression vanishes for
constant vectors, i.e. for vanishing gradients.

19It is quietly assumed that the third component of n⃗ is positive. Since only the square of the gradient is used the influence of this ignorance will
disappear. Generate meshes with triangles with a positive orientation also allow to assure n3 > 0.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 142

6.4.5 Integration of u b⃗ · ∇ϕ

Since the gradient of ϕ is constant on each of the triangles use

(
ϕx

ϕy

)
= ∇ϕ =

−1
2 area(E)

G ·


ϕ1

ϕ2

ϕ3

 =
−1

2 area(E)

[
Gx

Gy

]
·


ϕ1

ϕ2

ϕ3

 ,

where
Gx =

[
y3 − y2 y1 − y3 y2 − y1

]
and Gy =

[
x2 − x3 x3 − x1 x1 − x2

]
.

Let b1,i be the values of the first component of b⃗ at the Gauss nodes and find∫∫
E

u b1 ϕx dA ≈ area(E)
3

3∑
i=1

u(g⃗i) b1,i ϕx,i

=
−area(E)

3 · 2 area(E)
⟨


Gx

Gx

Gx




ϕ1

ϕ2

ϕ3

 ,


b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,
[
GT

x GT
x GT

x

]
b1,1 0 0

0 b1,2 0

0 0 b1,3

M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 , GT
x

[
b1,1 b1,2 b1,3

]
M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,


b1,1(y3 − y2) b1,2(y3 − y2) b1,3(y3 − y2)
b1,1(y1 − y3) b1,2(y1 − y3) b1,3(y1 − y3)
b1,1(y2 − y1) b1,2(y2 − y1) b1,3(y2 − y1)

M


u1

u2

u3

⟩ .
If the values of the second component of b⃗ at the Gauss nodes are given by b2,i find by similar computations∫∫

E

u b2 ϕy dA ≈ −area(E)
3

3∑
i=1

u(g⃗i) b2,i ϕy,i

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 , GT
y

[
b2,1 b2,2 b2,3

]
M


u1

u2

u3

⟩

=
−1
6
⟨


ϕ1

ϕ2

ϕ3

 ,


b2,1(x2 − x3) b2,2(x2 − x3) b2,3(x2 − x3)
b2,1(x3 − x1) b2,2(x3 − x1) b2,3(x3 − x1)
b2,1(x1 − x2) b2,2(x1 − x2) b2,3(x1 − x2)

M


u1

u2

u3

⟩ .
This leads to two more contributions to (36).

6.4.6 Integration over boundary segments

In expression (31) compute integrals over the boundary∫
Γ2

ϕ (g2 + g3 u) ds .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 143

For triangular domains the boundary consists of straight line segments. Replace the integral by a sum of line integrals and
use a Gauss integration. Based on the two endpoints x⃗1 and x⃗2 use the values at the two Gauss integration points20

p⃗1 = 1
2 (x⃗1 + x⃗2)− 1

2
√
3
(x⃗2 − x⃗1)

p⃗2 = 1
2 (x⃗1 + x⃗2) +

1
2
√
3
(x⃗2 − x⃗1) .

Polynomials up to degree 3 are integrated exactly, thus the error is proportional to h4. By linear interpolation between the
points x⃗1 and x⃗2 find the values of the function u at the Gauss points to be

u(p⃗1) = (1− α)u1 + αu2

u(p⃗2) = αu1 + (1− α)u2

or (
u(p⃗1)

u(p⃗2)

)
=

[
(1− α) α

α (1− α)

] (
u1

u2

)
,

where α = 1−1/
√
3

2 ≈ 0.211325. Using the length L =
√
(x2 − x1)2 + (y2 − y1)2 this leads to the approximations

∫
ϕ g2 ds ≈ L

2
⟨

[
(1− α) α

α (1− α)

](
ϕ1

ϕ2

)
,

(
g2(p⃗1)

g2(p⃗2)

)
⟩

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α) α

α (1− α)

] (
g2(p⃗1)

g2(p⃗2)

)
⟩

∫
ϕ g3 u ds ≈ L

2
⟨

[
(1− α) α

α (1− α)

] (
ϕ1

ϕ2

)
,

[
g3(p⃗1) 0

0 g3(p⃗2)

] [
(1− α) α

α (1− α)

] (
u1

u2

)
⟩

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α) α

α (1− α)

] [
(1− α) g3(p⃗1) α g3(p⃗1)

α g3(p⃗2) (1− α) g3(p⃗2)

] (
u1

u2

)
⟩

=
L

2
⟨

(
ϕ1

ϕ2

)
,

[
(1− α)2 g3(p⃗1) + α2 g3(p⃗2) (1− α)α (g3(p⃗1) + g3(p⃗2))

(1− α)α (g3(p⃗1) + g3(p⃗2)) α2 g3(p⃗1) + (1− α)2 g3(p⃗2)

] (
u1

u2

)
⟩ .

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second
expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be
integrated is a polynomial of degree 3, or less. If h is the typical length of an edge then the error is of the order h5 for one
line segment and thus of order h4 for the total boundary. This boundary integration is used for first order elements.

The second expression is of the form∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨

(
ϕ2

ϕ2

)
,

[
b11 b12

b21 b22

] (
u1

u2

)
⟩ (38)

and its effect on the linear system A u⃗+W f⃗ = 0⃗ to be solved depends on nodes being on the Dirichlet part of the boundary.

• If u1 and u2 are both free, i.e. not on the Dirichlet section, then all entries of the matrix B have to be added to the
global stiffness matrix A.

20To derive the formula integrate 1, t, t2 and t3 over the interval [−1, 1].∫+1
−1 f(t) dt = w1 f(−ξ) + w1 f(+ξ)∫+1

−1 1 dt = 2 = w1 1 + w1 1 =⇒ w1 = 1∫+1
−1 t dt = 0 = −w1 ξ + w1 ξ = 0∫+1

−1 t
2 dt = 2

3
= +w1 ξ2 + w1 ξ2 =⇒ ξ =

√
1/3∫+1

−1 t
3 dt = 0 = −w1 ξ3 + w1 ξ3 = 0

Thus t4 is not integrated exactly and the error is proportional to h4.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 144

• If u1 and u2 are on the Dirichlet section, then nothing has to be added to A and f⃗ .

• If u1 is free and u2 is on the Dirichlet section, then only the first expression

b11 u1 + b12 u2 = b11 u1 + b12 d2

has to be added. d2 is the Dirichlet value at the position of u2. Then b11 has to be taken into account in A and b12 d2
has to be added to W f⃗ .

• If u2 is free and u1 is on the Dirichlet section, then only the second expression b21 u1 + b22 u2 = b21 d1 + b22 u2 has
to be added. d1 is the Dirichlet value at the position of u1. Then b22 has to be taken into account in A and b12 d1 has
to be added to W f⃗ .

6.5 Construction of second order elements
In this section the construction of the element stiffness matrix and vector for triangular elements or order 2 is examined.
The ideas are very similar to Section 6.4 for linear basis functions, but using a bit more mathematics is required. Again all
contributions in (31)

0 =

∫∫
Ω

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA−
∫
Γ2

ϕ (g2 + g3 u) ds

have to be transformed into
0 = ⟨Au⃗+Wf⃗ , ϕ⃗⟩ .

For second order element a general quadratic function is used on each of the triangles in the mesh. There are 6 linearly
independent polynomials of degree 2 or less, namely 1, x, y, x2, y2 and x · y.

6.5.1 The basis functions for a second order element and quadratic interpolation

Examine the standard triangle Ω in Figure 72 with the values of a function f(ξ, ν) at the corners and at the midpoints of the
edges. Use the numbering as shown in Figure 72. The parameters ξ and ν at the nodes are given by Table 14. Construct
polynomials ϕi(ξ, ν) of degree 2, such that

Φi(ξj , νj) = δi,j =

{
1 if i = j

0 if i ̸= j

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials are given
by

node i 1 2 3 4 5 6

ξi 0 1 0 1
2 0 1

2

νi 0 0 1 1
2

1
2 0

Table 14: Coordinates of the nodes in the standard quadratic triangle

Φ⃗(ξ, ν) =



Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

Φ4(ξ, ν)

Φ5(ξ, ν)

Φ6(ξ, ν)


=



(1− ξ − ν) (1− 2 ξ − 2 ν)

ξ (2 ξ − 1)

ν (2 ν − 1)

4 ξ ν

4 ν (1− ξ − ν)
4 ξ (1− ξ − ν)


(39)

and find their graphs in Figure 76.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 145

0

1

ξ

0

1

1

ν

0

(a) Φ1(ξ, ν) = (1− ξ − ν) (1− 2 ξ − 2 ν)

0

1

ξ

0

1

1

ν

0

(b) Φ2(ξ, ν) = ξ (2 ξ − 1)

0

1

ξ

0

1

1

ν

0

(c) Φ3(ξ, ν) = ν (2 ν − 1)

0

1

ξ

0

1

1

ν

0

(d) Φ4(ξ, ν) = 4 ξ ν

ξ

0

0

1

1

1

ν

0

(e) Φ5(ξ, ν) = 4 ν (1− ξ − ν)

0

1

ξ

0

1

1

ν

0

(f) Φ6(ξ, ν) = 4 ξ (1− ξ − ν)

Figure 76: Basis functions for second order triangular elements

Any quadratic polynomial f on the standard triangle Ω can be written as linear combination of the basis functions by
using

f(ξ, ν) =

6∑
i=1

f(ξi, νi) Φi(ξ, ν) =

6∑
i=1

fi Φi(ξ, ν) . (40)

This is the formula to apply a quadratic interpolation on the triangle, using the values fi of the function at the nodes. To use
this interpolation for a given point (x, y) in the triangle E in Figure 72 determine the correct values of the parameters ξ and
ν, i.e. solve (

x

y

)
=

(
x1

y1

)
+ ξ

(
x2 − x1
y2 − y1

)
+ ν

(
x3 − x1
y3 − y1

)
.

This is equivalent to the linear system

T

(
ξ

ν

)
=

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

] (
ξ

ν

)
=

(
x− x1
y − y1

)
.

Since the 2× 2 matrix T is invertible find(
ξ

ν

)
= T−1 ·

(
x− x1
y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1
y − y1

)
.

6.5.2 Determine values at the Gauss points and apply Gauss integration

Use equation (35) to determine the coordinates of the seven Gauss points. Then a function to be integrated can be evaluated
at these Gauss points. Computing the values of the basis functions Φi(ξ, ν) at the Gauss points g⃗j by mj,i = Φi(g⃗j) and
write

f(g⃗j) =

6∑
i=1

fi Φi(g⃗j) =

6∑
i=1

mj,i fi

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 146

or using a matrix notation M ∈ R7×6
f(g⃗1)

f(g⃗2)
...

f(g⃗7)

 =


m1,1 m1,2 · · · m1,6

m2,1 m2,2 · · · m2,6

...
...

. . .
...

m7,1 m7,2 · · · m7,6

 ·


f1

f2
...

f6

 = M · f⃗ (41)

≈



+0.474353 −0.080769 −0.080769 0.041036 0.323074 0.323074

−0.080769 +0.474353 −0.080769 0.323074 0.041036 0.323074

−0.080769 −0.080769 +0.474353 0.323074 0.323074 0.041036

−0.052584 −0.028075 −0.028075 0.884134 0.112300 0.112300

−0.028075 −0.052584 −0.028075 0.112300 0.884134 0.112300

−0.028075 −0.028075 −0.052584 0.112300 0.112300 0.884134

−0.111111 −0.111111 −0.111111 0.444444 0.444444 0.444444





f1

f2

f3

f4

f5

f6


The Gauss integration can be written in the form∫∫

Ω

f(ξ, ν) dA ≈
7∑

j=1

wj f(g⃗j) = ⟨w⃗ , M · f⃗⟩ .

To integrate over the general triangle E use the transformation (32), i.e.∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)∂ (ξ, ν)

)∣∣∣∣ dξ dν ≈ |detT| ⟨w⃗ , M · f⃗⟩ .
Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.5.3 Integration of f ϕ

The test function ϕ is given by its values ϕ⃗ at the nodes, i.e. the corners of the triangle and the midpoints of the sides.
Examine different methods to give the function f : either by providing the values at the Gauss points, or by using the values
at the nodes.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ |det(T)|
7∑

j=1

wj fj ϕ(gj) = |det(T)| ⟨diag(w⃗)f⃗ , M ϕ⃗⟩

= |det(T)| ⟨MT diag(w⃗)f⃗ , ϕ⃗⟩ ,

Thus find one contribution to (36).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss points by a
quadratic interpolation. Then integrate as above, leading to the approximation∫∫

E

f ϕ dA ≈ |det(T)| ⟨diag(w⃗)Mf⃗ , M ϕ⃗⟩ = |det(T)| ⟨MT diag(w⃗)Mf⃗ , ϕ⃗⟩ .

The matrices MT diag(w⃗) and MT diag(w⃗)M are independent on the triangle E.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 147

6.5.4 Integration of b0 uϕ

Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function b0(x, y) at the
Gauss nodes to find∫∫

E

b0 uϕ dA ≈ | det(T)|
7∑

j=1

wj b0(gj)u(gj)ϕ(gj) = |det(T)| ⟨diag(w⃗) diag(⃗b0)M u⃗ , M ϕ⃗⟩

= |det(T)| ⟨MT diag(w⃗) diag(⃗b0)M u⃗ , ϕ⃗⟩ ,

where diag(⃗b0) = diag(b0(g⃗1), b0(g⃗2), b0(g⃗3), . . . , b0(g⃗7)).

6.5.5 Transformation of the gradient to the standard triangle

To examine the contributions containing∇u or∇ϕ requires considerably more tools than the ones used in Section 6.4.4 for
linear elements. For linear elements the gradients are constant on each of the triangles. For quadratic elements the gradients
are linear functions and thus not constant. First examine how the gradient behave under the transformation to the standard
triangle, only then use the above integration methods.

Using Section 6.3.1 the coordinates (ξ, ν) of the standard triangle are connected to the global coordinates (x, y) by(
x

y

)
=

(
x1

y1

)
+

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
·

(
ξ

ν

)
=

(
x1

y1

)
+T ·

(
ξ

ν

)

or equivalently (
ξ

ν

)
= T−1 ·

(
x− x1
y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1
y − y1

)
.

If a function f(x, y) is given on the general triangle E can pull it back to the standard triangle by

g(ξ, ν) = f(x(ξ, ν) , y(ξ, ν))

and then compute the gradient of g(ξ, ν) with respect to its independent variables ξ and ν. The result will depend on the
partial derivatives of f with respect to x and y. The standard chain rule implies

∂

∂ξ
g(ξ, ν) =

∂

∂ξ
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ξ
+
∂ f(x, y)

∂y

∂ y

∂ξ

=
∂ f(x, y)

∂x
(x2 − x1) +

∂ f(x, y)

∂y
(y2 − y1)

∂

∂ν
g(ξ, ν) =

∂

∂ν
f(x(ξ, ν) , y(ξ, ν)) =

∂ f(x, y)

∂x

∂ x

∂ν
+
∂ f(x, y)

∂y

∂ y

∂ν

=
∂ f(x, y)

∂x
(x3 − x1) +

∂ f(x, y)

∂y
(y3 − y1) .

This can be written with the help of matrices in the form(
∂ g
∂ξ
∂ g
∂ν

)
=

[
(x2 − x1) (y2 − y1)
(x3 − x1) (y3 − y1)

]
·

(
∂ f
∂x
∂ f
∂y

)
= TT ·

(
∂ f
∂x
∂ f
∂y

)

or equivalently (
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T . (42)

This implies (
∂ f

∂x
,
∂ f

∂y

)
=

(
∂ g

∂ξ
,
∂ g

∂ν

)
·T−1 =

1

detT

(
∂ g

∂ξ
,
∂ g

∂ν

)
·

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 148

or by transposition (
∂ f
∂x
∂ f
∂y

)
=

1

detT

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

] (
∂ g
∂ξ
∂ g
∂ν

)
. (43)

Let g be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e.

g(ξ, ν) =

6∑
i=1

gi Φi(ξ, ν)

where the basis function Φi(ξ, ν) are given by (39). Then its gradient with respect to ξ and ν can be determined with the
help of elementary partial derivatives applied to the expressions in (39). The result is

grad Φ⃗ =



−3 + 4 ξ + 4 ν −3 + 4 ξ + 4 ν

4 ξ − 1 0

0 4 ν − 1

4 ν 4 ξ

−4 ν 4− 4 ξ − 8 ν

4− 8 ξ − 4 ν −4 ξ


=
[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
. (44)

Thus find on the standard triangle Ω(
∂ g

∂ξ
,
∂ g

∂ν

)
= (g1, g2, g3, g4, g5, g6) ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
= g⃗T ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
.

If the function φ(x, y) is given on the general triangle E as linear combination of the basis functions on E find

φ(x, y) =

6∑
i=1

φi Φi(ξ(x, y) , ν(x, y)) .

Now combine the results in this section to conclude(
∂ φ

∂x
,
∂ φ

∂y

)
=

(
∂ φ

∂ξ
,
∂ φ

∂ν

)
·T−1 = φ⃗T ·

[
Φ⃗ξ Φ⃗ν

]
·T−1

or by transposition(
∂ φ
∂x
∂ φ
∂y

)
=
(
T−1

)T · [Φ⃗T
ξ

Φ⃗T
ν

]
· φ⃗ =

1

det(T)

[
+y3 − y1 −y2 + y1

−x3 + x1 +x2 − x1

]
·

[
Φ⃗T

ξ

Φ⃗T
ν

]
· φ⃗

and the same identities can be spelled out for the two components independently.

∂ φ

∂x
=

1

det(T)

[
(+y3 − y1) Φ⃗T

ξ + (−y2 + y1) Φ⃗
T
ν

]
· φ⃗ , (45)

∂ φ

∂y
=

1

det(T)

[
(−x3 + x1) Φ⃗

T
ξ + (+x2 − x1) Φ⃗T

ν

]
· φ⃗ . (46)

For the numerical integration use the values of the gradient at the Gauss integration points g⃗j = (ξj , νj). The values of
the function φ at the Gauss points can be computed with the help of the interpolation matrix M by

φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = M ·


φ1

φ2

...

φ6

 .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 149

Similarly we define the interpolation matrices for the partial derivatives. Using

Mξ =


−3 + 4 ξ1 + 4 ν1 4 ξ1 − 1 0 4 ν1 −4 ν1 4− 8 ξ1 − 4 ν1

−3 + 4 ξ2 + 4 ν2 4 ξ2 − 1 0 4 ν2 −4 ν2 4− 8 ξ2 − 4 ν2
...

...

−3 + 4 ξ7 + 4 ν7 4 ξ7 − 1 0 4 ν7 −4 ν7 4− 8 ξ7 − 4 ν7



≈



−2.18971 −0.59485 0.00000 0.40515 −0.40515 2.78456

0.59485 2.18971 0.00000 0.40515 −0.40515 −2.78456
0.59485 −0.59485 0.00000 3.18971 −3.18971 0.00000

0.76114 0.88057 0.00000 1.88057 −1.88057 −1.64170
−0.88057 −0.76114 0.00000 1.88057 −1.88057 1.64170

−0.88057 0.88057 0.00000 0.23886 −0.23886 0.00000

−0.33333 0.33333 0.00000 1.33333 −1.33333 0.00000


find 

φξ(g⃗1)

φξ(g⃗2)
...

φξ(g⃗7)

 = Mξ ·


φ1

φ2

...

φ6

 .

Similarly write

Mν =


−3 + 4 ξ1 + 4 ν1 0 4 ν1 − 1 4 ξ1 4− 4 ξ1 − 8 ν1 −4 ξ1
−3 + 4 ξ2 + 4 ν2 0 4 ν2 − 1 4 ξ2 4− 4 ξ2 − 8 ν2 −4 ξ2

...
...

−3 + 4 ξ7 + 4 ν7 0 4 ν7 − 1 4 ξ7 4− 4 ξ7 − 8 ν7 −4 ξ7



≈



−2.18971 0.00000 −0.59485 0.40515 2.78456 −0.40515
0.59485 0.00000 −0.59485 3.18971 0.00000 −3.18971
0.59485 0.00000 2.18971 0.40515 −2.78456 −0.40515
0.76114 0.00000 0.88057 1.88057 −1.64170 −1.88057
−0.88057 0.00000 0.88057 0.23886 0.00000 −0.23886
−0.88057 0.00000 −0.76114 1.88057 1.64170 −1.88057
−0.33333 0.00000 0.33333 1.33333 0.00000 −1.33333


and 

φν(g⃗1)

φν(g⃗2)
...

φν(g⃗7)

 = Mν ·


φ1

φ2

...

φ6

 .

The matrices Mξ and Mν allow to compute the values of the partial derivatives at the Gauss points in the standard triangle Ω
and they are independent on the general triangle E.

Combining the above two computations use the notation

x⃗i =

(
x1

y1

)
+T ·

(
ξi

νi

)
for i = 1, 2, 3, . . . , 7

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 150

and find for the first component φx = ∂ φ
∂x of the gradient at the Gauss points

φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

]
· ϕ⃗

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)MT

ν

]
· ϕ⃗ .

The above results for Mξ and Mν can be coded in Octave and then used to compute the element stiffness matrix.

6.5.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω use the
formulas for the partial derivatives of the basis functions in expression (44) to find them at the nodes, given by the (ξ, ν)
coordinates in Table 14 for quadratic elements.

φξ(ξ1, ν1)

φξ(ξ2, ν2)

φξ(ξ3, ν3)

φξ(ξ4, ν4)

φξ(ξ5, ν5)

φξ(ξ6, ν6)


=



−3 1 1 1 −1 −1
−1 3 −1 1 −1 1

0 0 0 0 0 0

0 0 4 2 2 0

0 0 −4 −2 −2 0

4 −4 0 −2 2 0





φ1

φ2

φ3

φ4

φ5

φ6


= Nξ



φ1

φ2

φ3

φ4

φ5

φ6


and 

φν(ξ1, ν1)

φν(ξ2, ν2)

φν(ξ3, ν3)

φν(ξ4, ν4)

φν(ξ5, ν5)

φν(ξ6, ν6)


=



−3 1 1 1 −1 −1
0 0 0 0 0 0

−1 −1 3 1 1 −1
0 4 0 2 0 2

4 0 −4 −2 0 2

0 −4 0 −2 0 −2





φ1

φ2

φ3

φ4

φ5

φ6


= Nν



φ1

φ2

φ3

φ4

φ5

φ6


.

Now use the transformation formulas (45) and (46) to determine the gradient of a function on the general triangle

φ(x, y) =

6∑
i=1

φi Φi(ξ(x, y), ν(x, y))

at the nodes (xi, yi) in the general triangle E, leading to
φx(x1, y1)

φx(x2, y2)
...

φx(x6, y6)

 =
1

det(T)

[
(+y3 − y1)NT

ξ + (−y2 + y1)N
T
ν

]
· φ⃗ ,


φy(x1, y1)

φy(x2, y2)
...

φy(x6, y6)

 =
1

det(T)

[
(−x3 + x1)N

T
ξ + (+x2 − x1)NT

ν

]
· φ⃗ .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 151

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle used for the
interpolation and a node is typically member of more than one triangle.

6.5.7 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ

The vector function b⃗(x⃗) has to be evaluated at the Gauss integration points g⃗j . Then the integration of∫∫
E

u b⃗ ∇ϕ dA =

∫∫
E

u b1
∂ ϕ

∂x
dA+

∫∫
E

u b2
∂ ϕ

∂y
dA

is approximated by∫∫
E

u b1
∂ ϕ

∂x
dA ≈ |detT|

detT
⟨
(
(y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

)
· diag(

−→
wb1) ·M · u⃗ , ϕ⃗⟩

∫∫
E

u b2
∂ ϕ

∂y
dA ≈ |detT|

detT
⟨
(
(−x3 + x1)M

T
ξ + (x2 − x1)MT

ν

)
· diag(

−→
wb2) ·M · u⃗ , ϕ⃗⟩ .

The function a∇u · ∇ϕ = a (∂ u
∂x

∂ ϕ
∂x + ∂ u

∂y
∂ ϕ
∂y) has to be evaluated at the Gauss integration points g⃗j , then multiplied

by the Gauss weights wi and added up. Use the vector
−→
wa with the values of the function a(xi, yi) and the weights wi at

the Gauss points to obtain∫∫
E

a
∂ u(x⃗)

∂x

∂ ϕ(x⃗)

∂x
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂x

∂ ϕ(x⃗(ξ, ν))

∂x
dξ dν

≈ |detT|
(detT)2

⟨Ax · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ax · u⃗ , ϕ⃗⟩∫∫

E

a
∂ u(x⃗)

∂y

∂ ϕ(x⃗)

∂y
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂y

∂ ϕ(x⃗(ξ, ν))

∂y
dξ dν

≈ |detT|
(detT)2

⟨Ay · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ay · u⃗ , ϕ⃗⟩

where

Ax =
[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]T
· diag(−→wa) ·

[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]
Ay =

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]T
· diag(−→wa) ·

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]
.

6.5.8 Integration over boundary segments

In expression (31) we have to compute integrals over the boundary∫
Γ2

ϕ (g2 + g3 u) ds .

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line integrals
and use a Gauss integration. Based on the two endpoints x⃗1 and x⃗3 and the midpoint x⃗2 = 1

2 (x⃗1 + x⃗3) use the values at

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 152

three Gauss integration points. Based on21

∫ h/2

−h/2

f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h7. To evaluate a function
at the Gauss points

p⃗1 = 1
2 (x⃗1 + x⃗3)−

√
3

2
√
5
(x⃗3 − x⃗1)

p⃗2 = x⃗2 = 1
2 (x⃗1 + x⃗3)

p⃗3 = 1
2 (x⃗1 + x⃗3) +

√
3

2
√
5
(x⃗3 − x⃗1)

use a quadratic interpolation of a function with f− = f(−h/2), f0 = f(0) and f+ = f(+h/2). Since22

f(x) = f0 +
f+ − f−

h
x+ 2

f− − 2 f0 + f+
h2

x2

the quadratic interpolation result at ±αh is

f(±αh) = f0 ± (f+ − f−)α+ 2 (f− − 2 f0 + f+)α
2

= f− (±α+ 2α2) + f0 (1− 4α2) + f+ (∓α+ 2α2)

where α =
√
3

2
√
5
=

√
15
10 ≈ 0.316. If a function u is given at the two endpoints by u1 and u3 and at the midpoint by u2

obtain 
u(p⃗1)

u(p⃗2)

u(p⃗3)

 =


+α+ 2α2 1− 4α2 −α+ 2α2

0 1 0

−α+ 2α2 1− 4α2 +α+ 2α2




u1

u2

u3



= MB


u1

u2

u3

 ≈


+0.68730 0.4 −0.08730
0 1 0

−0.08730 0.4 +0.68730




u1

u2

u3

 (47)

With the length L =
√

(x3 − x1)2 + (y3 − y1)2 of the segment this leads to the approximations

∫
edge

ϕ g2 ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩ = L

18
⟨


ϕ1

ϕ2

ϕ3

 , MT
B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩
21To derive the 3 point Gauss integration scheme use∫+1

−1 f(t) dt = w1 f(−ξ) + w0 f(0) + w1 f(+ξ)∫+1
−1 1 dt = 2 = w1 1 + w0 1 + w1 1∫+1
−1 t dt = 0 = −w1 ξ + w0 0 + w1 ξ = 0∫+1

−1 t
2 dt = 2

3
= +w1 ξ2 + w1 ξ2∫+1

−1 t
3 dt = 0 = −w1 ξ3 + w1 ξ3 = 0∫+1

−1 t
4 dt = 2

5
= +w1 ξ4 + w1 ξ4∫+1

−1 t
5 dt = 0 = −w1 ξ5 + w1 ξ5 = 0

Thus t6 is not integrated exactly and the error is proportional to h6. The system to be solved is
w0 + 2w1 = 2

2w1 ξ2 = 2
3

2w1 ξ4 = 2
5

=⇒ ξ2 =
3

5
, w1 =

5

9
, w0 =

8

9
.

22To verify use f(0) = f0 and

f(±h/2) = f0 ±
f+ − f−

h

h

2
+ 2

f− − 2 f0 + f+

h2
h2

4
= f0 ±

1

2
(f+ − f−) +

1

2
(f− − 2 f0 + f+) .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 153

∫
edge

ϕ g3 u ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

 ,


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

⟩

=
L

18
⟨


ϕ1

ϕ2

ϕ3

 , MT
B


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

⟩ .
The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second
expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be
integrated is a polynomial of degree 5, or less. If h is the typical length of an edge then the error is of the order h7 for one
line segment and thus of order h6 for the total boundary. This boundary integration is used for the second order elements.

The second expression is of the form

∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨


ϕ2

ϕ2

ϕ3

 ,


b11 b12 b13

b21 b22 b23

b31 b32 b33




u1

u2

u3

⟩
and its effect on the linear system A u⃗+W f⃗ = 0⃗ depends on nodes being on the Dirichlet part of the boundary.

• If u1 and u3 are both free, i.e. not on the Dirichlet section, then u2 is free too. All entries of the matrix B have to be
added to the global stiffness matrix A.

• If u1 and u3 are on the Dirichlet section, then nothing has to be added to A and f⃗ .

• If u1 and u2 are free and u3 is on the Dirichlet section, then only the first two expressions

b11 u1 + b12 u2 + b13 u3 = b11 u1 + b12 u2 + b13 d3

b21 u1 + b22 u2 + b23 u3 = b21 u1 + b22 u2 + b23 d3

have to be added. d3 is the Dirichlet value at the position of u3. b13 g3 and b23 d3 have to be added to W f⃗ , the other
expression to A.

• If u2 and u3 are free and u1 is on the Dirichlet section, then only the second and third expressions

b21 u1 + b22 u2 + b23 u3 = b21 d1 + b22 u2 + b23 u3

b31 u1 + b32 u2 + b33 u3 = b31 d1 + b32 u2 + b33 u3

have to be added. d1 is the Dirichlet value at the position of u1. b21 g1 and b31 d1 have to be added to W f⃗ , the other
expression to A.

• If u1 and u3 are free, then u2 has to be free too, since it is the midpoint of a Neumann section of the boundary.

6.6 Construction of third order elements
In this section the construction of the element stiffness matrix and vector for triangular elements or order 3 is examined.
The ideas are extremely similar to Section 6.5 for quadratic functions. Again all contributions in (31)

0 =

∫∫
Ω

(a∇u− u b⃗) · ∇ϕ+ (b0 u− f) ϕ dA−
∫
Γ2

ϕ (g2 + g3 u) ds

have to be transformed into
0 = ⟨Au⃗+Wf⃗ , ϕ⃗⟩ . (48)

For third order elements a general cubic function is used on each of the triangles in the mesh. There are 10 linearly
independent polynomials of degree 3 or less, namely 1, x, y, x2, x y, y2, x3, x2y, x y2 and y3.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 154

- ξ

6

ν

@
@
@
@
@
@
@

Ωt
1

t2

t3
t4

t5t6

t7

t
8

t
9

t10

j(
ξ

ν

)
7→

(
x

y

)

- x

6

y

�������1

�
�
�
�
�
�
�
�
���J
J
J
J
J
J
J

E

ξ

ν

(x1, y1)

(x2, y2)

(x3, y3)

t
t

t

t t

t
tt

t
t

Figure 77: Transformation of the cubic standard triangle Ω to a general triangle E

6.6.1 The basis functions for a third order element and cubic interpolation

Examine the standard triangle Ω in Figure 77 with the values of a function f(ξ, ν) at the corners, the points on the edges
and the mid point. Use the numbering as shown in Figure 77. The parameters ξ and ν at the nodes are given by Table 15.
Construct polynomials ϕi(ξ, ν) of degree 3, such that

Φi(ξj , νj) = δi,j =

{
1 if i = j

0 if i ̸= j

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials are given
by23

node i 1 2 3 4 5 6 7 8 9 10

ξi 0 1 0 2
3

1
3 0 0 1

3
2
3

1
3

νi 0 0 1 1
3

2
3

2
3

1
3 0 0 1

3

Table 15: Coordinates of the nodes in the standard cubic triangle

Φ⃗(ξ, ν) =



Φ1(ξ, ν)

Φ2(ξ, ν)

Φ3(ξ, ν)

Φ4(ξ, ν)

Φ5(ξ, ν)

Φ6(ξ, ν)

Φ7(ξ, ν)

Φ8(ξ, ν)

Φ9(ξ, ν)

Φ10(ξ, ν)



=



(1− (ξ + ν)) (1− 3 (ξ + ν)) (1− 3
2 (ξ + ν))

ξ (3 ξ − 1) (32 ξ − 1)

ν (3 ν − 1) (32 ν − 1)
9
2 ξ ν (3 ξ − 1)
9
2 ξ ν (3 ν − 1)

9
2 ν (1− (ξ + ν)) (3 ν − 1)

9 ν (1− (ξ + ν)) (1− 3
2 (ξ + ν))

9 ξ (1− 3
2 (ξ + ν)) (1− (ξ + ν))

9
2 ξ (3 ξ − 1) (1− (ξ + ν))

27 ξ ν (1− (ξ + ν))



(49)

23Use that the level curves of the functions ξ, ν and 1− (ξ+ ν) at the levels 0, 1
3

, 2
3

and 1 are straight lines through the nodes. For each node use these
functions to write down a polynomial vanishing at all other nodes, then choose the leading factor such that at the node the value equals 1.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 155

=



1− 11
2 ξ −

11
2 ν + 9 ξ2 + 18 ξ ν + 9 ν2 − 9

2 ξ
3 − 27

2 ξ
2 ν − 27

2 ξ ν
2 − 9

2 ν
3

ξ − 9
2 ξ

2 + 9
2 ξ

3

ν − 9
2 ν

2 + 9
2 ν

3

− 9
2 ξ ν +

27
2 ξ

2 ν

− 9
2 ξ ν +

27
2 ξ ν

2

− 9
2 ν +

9
2 ξ ν + 18 ν2 − 27

2 ξ ν
2 − 27

2 ν
3

9 ν − 45
2 ξ ν −

45
2 ν

2 + 27
2 ξ

2 ν + 27 ξ ν2 + 27
2 ν

3

9 ξ − 45
2 ξ

2 − 45
2 ξ ν +

27
2 ξ

3 + 27 ξ2 ν + 27
2 ξ ν

2

− 9
2 ξ + 18 ξ2 + 9

2 ξ ν −
27
2 ξ

3 − 27
2 ξ

2 ν

27 ξ ν − 27 ξ2 ν − 27 ξ ν2



(50)

and find their graphs in Figure 78.
Any cubic polynomial f on the standard triangle Ω can be written as linear combination of the 10 basis functions by

using

f(ξ, ν) =

10∑
i=1

f(ξi, νi) Φi(ξ, ν) =

10∑
i=1

fi Φi(ξ, ν) . (51)

This is the formula to apply a cubic interpolation on the triangle, using the values fi = f(ξi, νi) of the function at the nodes.
To use this interpolation for a given point (x, y) in the triangleE in Figure 77. The transformation form the standard triangle
Ω to the general triangle E is identical to the second order elements, i.e.(

x

y

)
=

(
x1

y1

)
+

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

] (
ξ

ν

)
=

(
x1

y1

)
+T

(
ξ

ν

)

and (
ξ

ν

)
= T−1 ·

(
x− x1
y − y1

)
=

1

det(T)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
·

(
x− x1
y − y1

)
.

6.6.2 Determine values at the Gauss points and apply Gauss integration

Use equation (35) (page 138) to determine the coordinates of the seven Gauss points. Then a function to be integrated
can be evaluated at these Gauss points. Determine the values of the basis functions Φi(ξ, ν) at the Gauss points g⃗j by
mj,i = Φi(g⃗j) and write

f(g⃗j) =

10∑
i=1

fi Φi(g⃗j) =

10∑
i=1

mj,i fi

or using a matrix notation with M ∈ R7×10
f(g⃗1)

f(g⃗2)
...

f(g⃗7)

 =


m1,1 m1,2 · · · m1,10

m2,1 m2,2 · · · m2,10

...
...

. . .
...

m7,1 m7,2 · · · m7,10

 ·


f1

f2
...

f10

 = M · f⃗ ≈ (52)

≈



+0.22 +0.06 +0.06 −0.03 −0.03 −0.25 +0.51 +0.51 −0.25 +0.22

+0.06 +0.22 +0.06 +0.51 −0.25 −0.03 −0.03 −0.25 +0.51 +0.22

+0.06 +0.06 +0.22 −0.25 +0.51 +0.51 −0.25 −0.03 −0.03 +0.22

+0.04 −0.06 −0.06 +0.41 +0.41 +0.05 −0.10 −0.10 +0.05 +0.36

−0.06 +0.04 −0.06 −0.10 +0.05 +0.41 +0.41 +0.05 −0.10 +0.36

−0.06 −0.06 +0.04 +0.05 −0.10 −0.10 +0.05 +0.41 +0.41 +0.36

0 0 0 0 0 0 0 0 0 1





f1

f2

f3

f4
...

f9

f10


SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 156

Figure 78: The 10 basis functions for third order triangular elements
SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 157

The Gauss integration can be written in the form∫∫
Ω

f(ξ, ν) dA ≈
7∑

j=1

wj f(g⃗j) = ⟨w⃗ , M · f⃗⟩ .

To integrate over the general triangle E use the transformation (32), i.e.∫∫
E

f dA =

∫∫
Ω

f (x⃗ (ξ, ν))

∣∣∣∣det(∂ (x, y)∂ (ξ, ν)

)∣∣∣∣ dξ dν ≈ |detT| ⟨w⃗ , M · f⃗⟩ .
Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.6.3 Integration of f ϕ and b0 uϕ

These integrations are identical to the case of quadratic elements The test function ϕ is given by its values ϕ⃗ at the nodes,
i.e. the corners of the triangle and the two points on each side.

• If the values of the function f at the Gauss points g⃗i are denoted by fi then this integral is approximated by∫∫
E

f ϕ dA ≈ |det(T)|
7∑

j=1

wj fj ϕ(gj) = |det(T)| ⟨diag(w⃗)f⃗ , M ϕ⃗⟩ = |det(T)| ⟨MT diag(w⃗)f⃗ , ϕ⃗⟩ .

Thus find one contribution to (48).

• If the values of the function f at the nodes are denoted by fi then first determine the values at the Gauss points by a
cubic interpolation. Then integrate as above, leading to∫∫

E

f ϕ dA ≈ |det(T)| ⟨diag(w⃗)Mf⃗ , M ϕ⃗⟩ = |det(T)| ⟨MT diag(w⃗)Mf⃗ , ϕ⃗⟩ .

• Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function b0(x, y)
at the Gauss nodes to find∫∫

E

b0 uϕ dA ≈ |det(T)|
7∑

j=1

wj b0(gj)u(gj)ϕ(gj) = |det(T)| ⟨diag(w⃗) diag(⃗b0)M u⃗ , M ϕ⃗⟩

= |det(T)| ⟨MT diag(w⃗) diag(⃗b0)M u⃗ , ϕ⃗⟩ .

The matrices MT diag(w⃗) and MT diag(w⃗)M are again independent on the triangle E, but different from the case of
quadratic elements.

6.6.4 Transformation of the gradient to the standard triangle

Computing the partial derivatives is again very similar to the case of quadratic elements. If a function f(x, y) is given on
the general triangle E can pull it back to the standard triangle by

g(ξ, ν) = f(x(ξ, ν) , y(ξ, ν))

and then compute the gradient of g(ξ, ν) with respect to its independent variables ξ and ν. The result is This can be written
with the help of matrices in the form(

∂ g
∂ξ
∂ g
∂ν

)
=

[
(x2 − x1) (y2 − y1)
(x3 − x1) (y3 − y1)

]
·

(
∂ f
∂x
∂ f
∂y

)
= TT ·

(
∂ f
∂x
∂ f
∂y

)

or equivalently (
∂ g

∂ξ
,
∂ g

∂ν

)
=

(
∂ f

∂x
,
∂ f

∂y

)
·T ,

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 158

or (
∂ f
∂x
∂ f
∂y

)
=

1

detT

[
y3 − y1 −y2 + y1

−x3 + x1 x2 − x1

] (
∂ g
∂ξ
∂ g
∂ν

)
.

Let u be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e. u(ξ, ν) =∑10
i=1 ui Φi(ξ, ν), where the basis function Φi(ξ, ν) are given by (50). Then its gradient with respect to ξ and ν can be

determined with the help of elementary partial derivatives applied to the expressions in (50). The results are

Φ⃗ξ(ξ, ν) =
∂

∂ξ
Φ⃗(ξ, ν) =



− 11
2 + 18 ξ + 18 ν − 27

2 ξ
2 − 27 ξ ν − 27

2 ν
2

1− 9 ξ + 27
2 ξ

2

0

− 9
2 ν + 27 ξ ν

− 9
2 ν +

27
2 ν

2

9
2 ν −

27
2 ν

2

− 45
2 ν + 27 ξ ν + 27 ν2

9− 45 ξ − 45
2 ν +

81
2 ξ

2 + 54 ξ ν + 27
2 ν

2

− 9
2 + 36 ξ + 9

2 ν −
81
2 ξ

2 − 27 ξ ν

27 ν − 54 ξ ν − 27 ν2



(53)

and

Φ⃗ν(ξ, ν) =
∂

∂ν
Φ⃗(ξ, ν) =



− 11
2 + 18 ξ + 18 ν − 27

2 ξ
2 − 27 ξ ν − 27

2 ν
2

0

1− 9 ν + 27
2 ν

2

− 9
2 ξ +

27
2 ξ

2

− 9
2 ξ + 27 ξ ν

− 9
2 + 9

2 ξ + 36 ν − 27 ξ ν − 81
2 ν

2

9− 45
2 ξ − 45 ν + 27

2 ξ
2 + 54 ξ ν + 81

2 ν
2

− 45
2 ξ + 27 ξ2 + 27 ξ ν

+ 9
2 ξ −

27
2 ξ

2

27 ξ − 27ξ2 − 54 ξ ν



. (54)

Thus find on the standard triangle Ω(
∂ u

∂ξ
,
∂ u

∂ν

)
= (u1, u2, . . . , u10) ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
= u⃗T ·

[
Φ⃗ξ(ξ, ν) Φ⃗ν(ξ, ν)

]
.

For a function φ(x, y) =
∑10

i=1 φi Φi(ξ(x, y) , ν(x, y)) use the above to conclude(
∂ φ
∂x
∂ φ
∂y

)
=

1

det(T)

[
+y3 − y1 −y2 + y1

−x3 + x1 +x2 − x1

]
·

[
Φ⃗T

ξ

Φ⃗T
ν

]
· φ⃗

or spelled out for the two components independently

∂ φ

∂x
=

1

det(T)

[
(+y3 − y1) Φ⃗T

ξ + (−y2 + y1) Φ⃗
T
ν

]
· φ⃗ ,

∂ φ

∂y
=

1

det(T)

[
(−x3 + x1) Φ⃗

T
ξ + (+x2 − x1) Φ⃗T

ν

]
· φ⃗ .

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 159

For the numerical integration use the values of the gradient at the Gauss integration points g⃗j = (ξj , νj). Using expres-
sion (50) the values of the function φ at the Gauss points can be computed with the help of the interpolation matrix M.

φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = M ·


φ1

φ2

...

φ10


Similarly, using (53) and (54), define the interpolation matrices for the partial derivatives.

∂

∂ξ


φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = Mξ ·


φ1

φ2

...

φ10

 and
∂

∂ν


φ(g⃗1)

φ(g⃗2)
...

φ(g⃗7)

 = Mν ·


φ1

φ2

...

φ10

 . (55)

Approximate values are

Mξ ≈



−2.408 0.227 0 −0.179 −0.317 0.317 −1.725 3.271 −1.090 1.904

−0.227 2.408 0 1.725 −0.317 0.317 0.179 1.090 −3.271 −1.904
−0.227 0.227 0 −1.408 4.996 −4.996 1.408 −0.138 0.138 0

−0.511 −0.247 0 3.852 0.868 −0.868 1.358 1.137 −0.379 −5.210
0.247 0.511 0 −1.358 0.868 −0.868 −3.852 0.379 −1.137 5.210

0.247 −0.247 0 0.489 −0.221 0.221 −0.489 −2.984 2.984 0

0.500 −0.500 0 1.500 0 0 −1.500 −1.500 1.500 0


and

Mν ≈



−2.269 0 0.227 −0.317 −0.179 −1.090 3.271 −1.725 0.317 1.904

0.863 0 0.227 4.996 −1.408 0.138 −0.138 1.408 −4.996 0

0.863 0 2.408 −0.317 1.725 −3.271 1.090 0.179 0.317 −1.904
2.473 0 −0.247 0.868 3.852 −0.379 1.137 1.358 −0.868 −5.210
0.626 0 −0.247 −0.221 0.489 2.984 −2.984 −0.489 0.221 0

0.626 0 0.511 0.868 −1.358 −1.137 0.379 −3.852 −0.868 5.210

2.000 0 −0.500 0 1.500 1.500 −1.500 −1.500 0 0


.

The matrices Mξ and Mν allow to compute the values of the partial derivatives at the Gauss points in the standard triangle Ω
and they are independent on the general triangle E.

Combining the above two computations use the notation

x⃗i =

(
x1

y1

)
+T ·

(
ξi

νi

)
for i = 1, 2, 3, . . . , 7

and find for the first component φx = ∂ φ
∂x of the gradient at the Gauss points

φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

]
· ϕ⃗

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 160

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)MT

ν

]
· ϕ⃗ .

The above results for Mξ and Mν can be coded in Octave and then used to compute the element stiffness matrix.

6.6.5 Integration of u b⃗ · ∇ϕ and a∇u · ∇ϕ

The vector function b⃗(x⃗) has to be evaluated at the Gauss integration points g⃗j . Then the integration of∫∫
E

u b⃗ ∇ϕ dA =

∫∫
E

u b1
∂ ϕ

∂x
dA+

∫∫
E

u b2
∂ ϕ

∂y
dA

is approximated by∫∫
E

u b1
∂ ϕ

∂x
dA ≈ |detT|

detT
⟨
(
(y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

)
· diag(

−→
wb1) ·M · u⃗ , ϕ⃗⟩

∫∫
E

u b2
∂ ϕ

∂y
dA ≈ |detT|

detT
⟨
(
(−x3 + x1)M

T
ξ + (x2 − x1)MT

ν

)
· diag(

−→
wb2) ·M · u⃗ , ϕ⃗⟩ .

The function a∇u · ∇ϕ = a (∂ u
∂x

∂ ϕ
∂x + ∂ u

∂y
∂ ϕ
∂y) has to be evaluated at the Gauss integration points g⃗j , then multiplied

by the Gauss weights wi and added up. Use the vector
−→
wa with the values of the function a(xi, yi) and the weights wi at

the Gauss points to obtain∫∫
E

a
∂ u(x⃗)

∂x

∂ ϕ(x⃗)

∂x
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂x

∂ ϕ(x⃗(ξ, ν))

∂x
dξ dν

≈ |detT|
(detT)2

⟨Ax · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ax · u⃗ , ϕ⃗⟩∫∫

E

a
∂ u(x⃗)

∂y

∂ ϕ(x⃗)

∂y
dA = |detT|

∫∫
Ω

a(x⃗(ξ, ν))
∂ u(x⃗(ξ, ν))

∂y

∂ ϕ(x⃗(ξ, ν))

∂y
dξ dν

≈ |detT|
(detT)2

⟨Ay · u⃗ , ϕ⃗⟩ =
1

|detT|
⟨Ay · u⃗ , ϕ⃗⟩ ,

where

Ax =
[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]T
· diag(−→wa) ·

[
(+y3 − y1)Mξ + (−y2 + y1)Mν

]
Ay =

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]T
· diag(−→wa) ·

[
(−x3 + x1)Mξ + (+x2 − x1)Mν

]
.

6.6.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω use the
formulas for the partial derivatives of the basis functions in expressions (53) and (54) to find them at the nodes, given by the

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 161

(ξ, ν) coordinates in Table 15 for cubic elements.

φξ(ξ1, ν1)

φξ(ξ2, ν2)

φξ(ξ3, ν3)

φξ(ξ4, ν4)

φξ(ξ5, ν5)

φξ(ξ6, ν6)

φξ(ξ7, ν7)

φξ(ξ8, ν8)

φξ(ξ9, ν9)

φξ(ξ10, ν10)



=



−11
2 1 0 0 0 0 0 9 −9

2 0

−1 11
2 0 0 0 0 0 9

2 −9 0

−1 1 0 −9
2 9 −9 9

2 0 0 0

−1 1 0 9
2 0 0 3

2 3 −3 −6
−1 −1

2 0 3 3 −3 3 3
2 0 −6

1
2 1 0 −3 3 −3 −3 0 −3

2 6

−1 1 0 −3
2 0 0 −9

2 3 −3 6

−1 −1
2 0 0 0 0 0 −3

2 3 0
1
2 1 0 0 0 0 0 −3 3

2 0
1
2

−1
2 0 3

2 0 0 −3
2

−3
2

3
2 0





φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10



= Nξ



φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10


and 

φν(ξ1, ν1)

φν(ξ2, ν2)

φν(ξ3, ν3)

φν(ξ4, ν4)

φν(ξ5, ν5)

φν(ξ6, ν6)

φν(ξ7, ν7)

φν(ξ8, ν8)

φν(ξ9, ν9)

φν(ξ10, ν10)



=



−11
2 0 1 0 0 −9

2 9 0 0 0

−1 0 1 9 −9
2 0 0 9

2 −9 0

−1 0 11
2 0 0 −9 9

2 0 0 0

−1 0 −1
2 3 3 0 3

2 3 −3 −6
−1 0 1 0 9

2 −3 3 3
2 0 −6

1
2 0 1 0 0 3

2 −3 0 0 0

−1 0 −1
2 0 0 3 −3

2 0 0 0

−1 0 1 0 −3
2 −3 3 −9

2 0 6
1
2 0 1 3 −3 −3

2 0 −3 −3 6
1
2 0 −1

2 0 3
2

3
2

−3
2

−3
2 0 0





φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10



= Nν



φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10


Now use the transformation formulas (45) and (46) to determine the gradient of a function on the general triangle

φ(x, y) =

10∑
i=1

φi Φi(ξ(x, y), ν(x, y))

at the nodes (xi, yi) in the general triangle E, leading to
φx(x1, y1)

φx(x2, y2)
...

φx(x10, y10)

 =
1

det(T)

[
(+y3 − y1)NT

ξ + (−y2 + y1)N
T
ν

]
· φ⃗ ,


φy(x1, y1)

φy(x2, y2)
...

φy(x10, y10)

 =
1

det(T)

[
(−x3 + x1)N

T
ξ + (+x2 − x1)NT

ν

]
· φ⃗ .

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle used for the
interpolation and a node is typically member of more than one triangle.

6.6.7 Integration over boundary segments

In expression (31) integrals over the section Γ2 of the boundary are required.∫
Γ2

ϕ (g2 + g3 u) ds

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 162

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line integrals
and use a Gauss integration. Based on the two endpoints x⃗1 and x⃗3 and the midpoint x⃗2 = 1

2 (x⃗1 + x⃗3) use the values at
three Gauss integration points.

-h/2 -h/6 0 +h/6 +h/2
x

f

Figure 79: The interpolation from four nodes to three Gauss points on an interval [−h
2 ,+

h
2]

Based on ∫ h/2

−h/2

f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)

=
h

18

(
5 f(−

√
15

10
h) + 8 f(0) + 5 f(

√
15

10
h)

)
polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h7. To evaluate a function
at the Gauss points

p⃗1 = 1
2 (x⃗1 + x⃗4)−

√
3

2
√
5
(x⃗4 − x⃗1)

p⃗2 = 1
2 (x⃗1 + x⃗4)

p⃗3 = 1
2 (x⃗1 + x⃗4) +

√
3

2
√
5
(x⃗4 − x⃗1)

use a cubic interpolation of a function with f−2 = f(−h/2), f−1 = f(−h/6), f+1 = f(+h/6) and f+2 = f(+h/2).
Required are the values at x = 0 and x = ±

√
15
10 h ≈ ±0.387h. This is illustrated in Figure 79 with the values of the

function f(x) indicated by red spots and the interpolation position and values in green. The computations are tedious shown
at the end of this section in Subsection 6.6.8 and lead to

u(p⃗1)

u(p⃗2)

u(p⃗3)

 = MB


f−2

f−1

f+1

f+2

 ≈


0.4880 0.7479 −0.2979 0.06199

−0.0625 0.5625 0.5625 −0.0625
0.06199 −0.2979 0.7479 0.4880




f−2

f−1

f+1

f+2


With the length L =

√
(x4 − x1)2 + (y4 − y1)2 of the segment this leads to the approximations

∫
edge

ϕ g2 ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

ϕ4

 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩ = L

18
⟨


ϕ1

ϕ2

ϕ3

ϕ4

 , MT
B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩

∫
edge

ϕ g3 u ds ≈ L

18
⟨MB


ϕ1

ϕ2

ϕ3

ϕ4

 ,


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

u4

⟩

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 163

=
L

18
⟨


ϕ1

ϕ2

ϕ3

ϕ4

 , MT
B


5 g3(p⃗1) 0 0

0 8 g3(p⃗2) 0

0 0 5 g3(p⃗3)

 MB


u1

u2

u3

u4

⟩ .
The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second
expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be
integrated is a polynomial of degree 5, or less. If h is the typical length of an edge then the error is of the order h7 for one
line segment and thus of order h6 for the total boundary. This boundary integration is used for third order elements. The
second expression is of the form

∫
ϕ g3 u ds ≈ ⟨ϕ⃗,B u⃗⟩ = ⟨


ϕ2

ϕ2

ϕ3

ϕ4

 ,


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b34 b44




u1

u2

u3

u4

⟩

and its effect on the linear system A u⃗ + W f⃗ = 0⃗ to be solved depends on nodes being on the Dirichlet section of the
boundary or the Neumann section.

• If u1 and u4 are free, i.e. not on the Dirichlet section, then u2 and u3 are free too. All entries of the matrix B have to
be added to the global stiffness matrix A.

• If u1 and u4 are on the Dirichlet section, then u2 and u3 are on the Dirichlet section too. Nothing has to be added to
A and f⃗ .

• If u1, u2 and u3 are free and u4 is on the Dirichlet section, then only the first three expressions

b11 u1 + b12 u2 + b13 u3 + b14 u4 = b11 u1 + b12 u2 + b13 u3 + b14 d4

b21 u1 + b22 u2 + b23 u3 + b24 u4 = b21 u1 + b22 u2 + b23 u3 + b24 d4

b31 u1 + b32 u2 + b33 u3 + b34 u4 = b31 u1 + b32 u2 + b33 u3 + b34 d4

have to be taken into account. d4 is the Dirichlet value at the position of u4. The contributions b14 d4, b24 d4 and
b34 d4 have to be added to W f⃗ , the other expressions to A.

• If u2, u3 and u4 are free and u1 is on the Dirichlet section, then only the least three expressions

b21 u1 + b22 u2 + b23 u3 + b24 u4 = b21 d1 + b22 u2 + b23 u3 + b24 u4

b31 u1 + b32 u2 + b33 u3 + b34 u4 = b31 d1 + b32 u2 + b33 u3 + b34 u4

b41 u1 + b42 u2 + b43 u3 + b44 u4 = b41 d1 + b42 u2 + b43 u3 + b44 u4

have to be taken into account. d1 is the Dirichlet value at the position of u1. The contributions b21 d1, b31 d1 and
b41 d1 have to be added to W f⃗ , the other expressions to A.

6.6.8 From a polynomial interpolation to the Gauss integration points

For an interval [−h/2,+h/2] use a polynomial p(x) = c0 + c1 x+ c2 x
2 + c3 x

3, leading to

f−2 = p(−h/2) = c0 −
1

2
h c1 +

1

4
h2 c2 −

1

8
h3 c3

f−1 = p(−h/6) = c0 −
1

6
h c1 +

1

36
h2 c2 −

1

216
h3 c3

f+1 = p(+h/6) = c0 +
1

6
h c1 +

1

36
h2 c2 +

1

216
h3 c3

f+2 = p(+h/2) = c0 +
1

2
h c1 +

1

4
h2 c2 +

1

8
h3 c3

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 164

or with a matrix notation 
+1 − 1

2 + 1
4 − 1

8

+1 − 1
6 + 1

36 − 1
216

+1 + 1
6 + 1

36 + 1
216

+1 + 1
2 + 1

4 + 1
8




c0

h c1

h2 c2

h3 c3

 =


f−2

f−1

f+1

f+2

 .

The corresponding inverse matrix leads to
c0

h c1

h2 c2

h3 c3

 =
1

16


−1 +9 +9 −1
+2 −54 +54 −2
+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2

 .

With λ =
√
15
10 ≈ 0.3873 and p(λh) = c0 + λ c1 h+ λ2 c2 h

2 + λ3 c3 h
3 obtain

p(λh) =
1

16

[
1 λ λ2 λ3

]

−1 +9 +9 −1
+2 −54 +54 −2
+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2




p(−λh)
p(0)

p(+λh)

 =
1

16


1 −λ λ2 −λ3

1 0 0 0

1 +λ λ2 +λ3



−1 +9 +9 −1
+2 −54 +54 −2
+36 −36 −36 +36

−72 +216 −216 +72




f−2

f−1

f+1

f+2



= MB


f−2

f−1

f+1

f+2

 ≈


0.4880 0.7479 −0.2979 0.06199

−0.0625 0.5625 0.5625 −0.0625
0.06199 −0.2979 0.7479 0.4880




f−2

f−1

f+1

f+2

 .

This matrix MB is used on the segments of the boundary to determine the values at the Gauss integration points, given the
values of the four nodes of a third order element.

6.7 Convergence of the approximate solutions uh to the exact solution u

A key feature of a good FEM algorithm is a rapid convergence. As the diameter h of the triangles converges to 0, the
approximate solution uh(x, y) should converge to the exact solution u(x, y). The statements below are correct for very
smooth exact solutions and “nice” domains. Find more information in books on the mathematical background of FEM, e.g.
[AxelBark84] or consult [Stah08].

It is convenient to state the approximation results using two norms on the function space L2(Ω) and the Sobolev space
V = H1(Ω) =W 1,2(Ω). The norms are given by

∥u∥22 =

∫∫
Ω

u2(x, y) dA and ∥u∥2V =

∫∫
Ω

u2(x, y) + ∥∇u(x, y)∥2 dA .

The convergence results assume that the meshes are well defined, e.g. satisfy a minimal angle condition. The scalar h is the
typical (or maximal) diameter of the triangles used for the mesh.

• If the solutions uh are generated by first order, triangular elements, i.e. piecewise linear functions, then

∥uh − u∥V ≤ C h and ∥uh − u∥2 ≤ C1 h
2

for some constants C and C1 independent on h. A short formulation is

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 165

– uh converges to u with an error proportional to h2 as h→ 0.

– ∇uh converges to∇u with an error proportional to h as h→ 0.

• If the solutions uh are generated by second order, triangular elements, i.e. piecewise quadratic functions, then

∥uh − u∥V ≤ C h2 and ∥uh − u∥2 ≤ C1 h
3

for some constants C and C1 independent on h. A short formulation is

– uh converges to u with an error proportional to h3 as h→ 0.

– ∇uh converges to∇u with an error proportional to h2 as h→ 0.

• If the solutions uh are generated by third order, triangular elements, i.e. piecewise cubic functions, then

∥uh − u∥V ≤ C h3 and ∥uh − u∥2 ≤ C1 h
4

for some constants C and C1 independent on h. A short formulation is

– uh converges to u with an error proportional to h4 as h→ 0.

– ∇uh converges to∇u with an error proportional to h3 as h→ 0.

Observe that the convergence results are about the integral of differences, and not point-wise estimates. In addition the
exact solution u is assumed to be smooth. Thus one has to be careful when using the estimates for problems with limited
regularity of the type in Section 9.4.

6.8 Dynamic problems
The are two distinct classes of dynamic problems:

• Parabolic problems with the heat equation u̇ = ∆u as the typical example.

• Hyperbolic problems with the wave equation ü = ∆u as the typical example.

For both types the following sections will present unconditionally stable, consistent time stepping algorithms.

6.8.1 Dynamic problems of the heat equation type

Examine an IBVP (4) of parabolic type.

ρ ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0. Solve the static
problem with nonhomogeneous boundary conditions.

−∇ · (a∇uB − uB b⃗) + b0 uB = 0 for (x, y, t) ∈ Ω

uB = g1 for (x, y) ∈ Γ1

n⃗ · (a∇uB + uB b⃗) = g2 + g3 uB for (x, y, t) ∈ Γ2

(56)

Then the new function v(x, y, t) = u(x, y, t)− uB(x, y) is a solution of an initial boundary value problem with no constant
boundary contributions, i.e. g1 = g2 = 0.

ρ ∂
∂t v −∇ · (a∇u− v b⃗) + b0 v = f for (x, y, t) ∈ Ω× (0, T]

v = 0 for (x, y, t) ∈ Γ1 × (0, T]

n⃗ · (a∇v + v b⃗) = g3 v for (x, y, t) ∈ Γ2 × (0, T]

v = u0 − uB on Ω at t = 0

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 166

This equation is transformed to a system of ordinary differential equations.

W
d

dt
v⃗(t) +A v⃗(t) = f⃗(t) with v⃗(0) = v⃗0 . (57)

The implementation assumes that the coefficient functions ρ, a, b0, b⃗ and gi depend on (x, y), while f may depend on time t
and the position (x, y). There are four algorithms for the time stepping available, identical to the solvers for the 1D problem
in Section 4.9 on page 71.

• CN: the standard Crank–Nicolson algorithm. This is the default algorithm.

• implicit: the standard implicit solver.

• explicit: the standard explicit solver.

• RK: an implicit Runge–Kutta algorithm.

Some documation on these standard algorithms is shown in Section 7.6 on page 177.

For the command IBVP2D() the Crank–Nicolson approximation can be used to advance the solution of the ODE (57)
from time t to t+∆t. Approximate the time derivative in (57) by a centered difference formula.

W
v⃗(t+∆t)− v⃗(t)

∆t
= −A v⃗(t+∆t) + v⃗(t)

2
+ f⃗(t+∆t/2)(

W +
∆t

2
A

)
v⃗(t+∆t) = +

(
W − ∆t

2
A

)
v⃗(t) + ∆t f⃗(t+∆t/2)

For each time step a linear system has to be solved. Observe that the matrix on the left does not change as time advances.
Using an sparsity preserving LU factorization of the matrix on the left, these systems can be solved efficiently. The matrices
P and Q are permutation matrices with P−1 = PT . A substantial amount of time has to be used to perform the LU
factorization, but then the time stepping is fast.

P
(
W + ∆t

2 A
)
Q = LU LU factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

P
(
W + ∆t

2 A
)
Q Q−1 v⃗ = P b⃗

LU Q−1 v⃗ = P b⃗

v⃗ = Q (U\(L\(P b⃗))) in the Octave code

With the computed v⃗(t) then find the solution u⃗(t) = v⃗(t) + u⃗B of the original problem. This is the default algorithm used
with the command IBVP2D().

If the matrix A is symmetric and positive definite one can use Cholesky factorization with row and column permutations
to preserve the sparsity, as much as possible. This should be faster than a LU factorization. The Cholesky factorization is but its not!
used with the command IBVP2Dsym().

QT
(
W + ∆t

2 A
)
Q = RT R Cholesky factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

QT
(
W + ∆t

2 A
)
Q QT v⃗ = QT b⃗

RT R QT v⃗ = QT b⃗

v⃗ = Q (R\(RT \(QT b⃗))) in the Octave code

The Octave manual claims that a lower Cholesky factorization is often faster.

QT
(
W + ∆t

2 A
)
Q = LLT lower Cholesky factorization(

W + ∆t
2 A

)
v⃗ = b⃗ system to be solved

QT
(
W + ∆t

2 A
)
Q QT v⃗ = QT b⃗

LLT QT v⃗ = QT b⃗

v⃗ = Q (LT \(L\(QT b⃗))) in the Octave code

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 167

6.8.2 Using eigenvalues for dynamic problems of the heat equation type

With equation (57) for f⃗ = 0⃗

W
d

dt
v⃗(t) +A v⃗(t) = 0⃗ with v⃗(0) = v⃗0

observe that a generalized eigenvalue λ with eigenvector v⃗, i.e.

A v⃗ = λW v⃗

leads to a solution u⃗(t) = c exp(−λ t) v⃗, since

W
d

dt
u⃗(t) = −λW v⃗ exp(−λ t)

A u⃗(t) = +λW v⃗ exp(−λ t)

Thus for λ > 0 find an exponentially decaying solution of the IBVP.

6.8.3 Dynamic problems of the wave equation type

Examine an IBVP (6) of hyperbolic type.

ρ ∂2

∂t2 u+ 2α ∂
∂t u−∇ · (a∇u− u b⃗) + b0 u = f for (x, y, t) ∈ Ω× (0, T]

u = g1 for (x, y, t) ∈ Γ1 × (0, T]

n⃗ · (a∇u− u b⃗) = g2 + g3 u for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0
∂
∂t u = v0 on Ω at t = 0

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e g1 = g2 = 0, using (56). Then
the new function v(x, y, t) = u(x, y, t) − uB(x, y) is a solution of an initial boundary value problem with no constant
boundary contributions, i.e. g1 = g2 = 0.

ρ ∂2

∂t2 v + 2α ∂
∂t v(t)−∇ · (a∇u− v b⃗) + b0 v = f for (x, y, t) ∈ Ω× (0, T]

v = 0 for (x, y, t) ∈ Γ1 × (0, T]

n⃗ · (a∇v − v b⃗) = g3 v for (x, y, t) ∈ Γ2 × (0, T]

v = u0 − uB on Ω at t = 0
∂
∂t v = v0 on Ω at t = 0

This equation is transformed to a system of ordinary differential equations.

W
d2

dt2
v⃗(t) + 2D

d

dt
v⃗(t) +A v⃗(t) = f⃗(t) with v⃗(0) = u⃗0 − u⃗B ,

d

dt
v⃗(0) = v⃗0 (58)

The implementation assumes that the coefficient functions ρ, α, a, b0, b⃗ and gi depend on (x, y), while f may depend on
time t and the position (x, y). Then use an implicit approximation24 to advance the solution from time t−∆t and t to t+∆t.

W
d2

dt2
v⃗(t) = −2D d

dt
v⃗(t)−A v⃗(t) + f⃗(t)

W
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −2D v⃗(t+∆t)− v⃗(t−∆t)

2∆t
−

−A v⃗(t−∆t) + 2 v⃗(t) + v⃗(t+∆t)

4
+ f⃗(t)(

+W +∆tD+
(∆t)2

4
A

)
v⃗(t+∆t) = −

(
W −∆tD+

(∆t)2

4
A

)
v⃗(t−∆t) +

+

(
2W − (∆t)2

2
A

)
v⃗(t) + (∆t)2 f⃗(t)

24This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 168

This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time advances.
Thus use again a sparsity preserving LU factorization for the time stepping. The above scheme is unconditionally stable, at
least for constant coefficients25.

• To construct the solution at the initial time ∆t one could use the initial value u0 and initial velocity v0 and a scheme
with the same order of consistency with respect to time. An explicit scheme for the first step leads to

d

dt
v⃗(0) = v⃗0 ≈

v⃗(∆t)− v⃗(−∆t)
2∆t

=⇒ v⃗(−∆t) ≈ v⃗(∆t)− 2∆t v⃗0

W
d2

dt2
v⃗(t) = −2D d

dt
v⃗(t)−A v⃗(t) + f⃗(t)

W
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −2D v⃗(t+∆t)− v⃗(t−∆t)

2∆t
−A v⃗(t) + f⃗(t)

(W +∆tD) v⃗(t+∆t) = −(W −∆tD) v⃗(t−∆t) + 2W v⃗(t) + (∆t)2 (−A v⃗(t) + f⃗(t))

(W +∆tD) v⃗(∆t) = −(W −∆tD) (v⃗(∆t)− 2∆t v⃗0) +

+2W (u⃗0 − u⃗B) + (∆t)2 (−A (u⃗0 − uB) + f⃗(0))

2W v⃗(∆t) = +2 (W −∆tD)∆t v⃗0 +

+2W (u⃗0 − u⃗B) + (∆t)2 (−A (u⃗0 − u⃗B) + f⃗(0))

W v⃗(∆t) = (W −∆tD)∆t v⃗0 +

+W (u⃗0 − u⃗B) +
1

2
(∆t)2 (−A (u⃗0 − u⃗B) + f⃗(0)) .

The conditional stability for this single step might cause numerical trouble.

• One could also use v⃗(−∆t) ≈ v⃗(∆t)− 2∆t v⃗0 in the implicit scheme at t = 0.(
+W +∆tD+

(∆t)2

4
A

)
v⃗(∆t) = −

(
W −∆tD+

(∆t)2

4
A

)
(v⃗(∆t)− 2∆t v⃗0) +

+

(
2W − (∆t)2

2
A

)
v⃗(0) + (∆t)2 f⃗(0)(

+2W + 2
(∆t)2

4
A

)
v⃗(∆t) = +2∆t

(
W −∆tD+

(∆t)2

4
A

)
v⃗0 +

+

(
2W − (∆t)2

2
A

)
v⃗(0) + (∆t)2 f⃗(0)(

+W +
(∆t)2

4
A

)
v⃗(∆t) = +∆t

(
W −∆tD+

(∆t)2

4
A

)
v⃗0 +

+

(
W − (∆t)2

4
A

)
v⃗(0) +

(∆t)2

2
f⃗(0)

This initial step requires solving a new system of linear equations. If there is no damping term (D = 0) it is the same
system as for the time stepping, thus is used.

The above implicit solver is the default for the algorithm in I2BVP2D(). It is very similar to the algorithm in Sec-
tion 7.7.1 for 1D problems. In addition an explicit solver is available in I2BVP2D() too, with the description in Sec-
tion 7.7.2.

6.8.4 Using eigenvalues for dynamic problems of the wave equation type

With equation (58) for f⃗ = 0⃗ and a damping factor DW with a constant D ≥ 0 (instead of the matrix D)

W
d2

dt2
v⃗(t) + 2DW

d

dt
v⃗(t) +A v⃗(t) = 0⃗ (59)

25I have a proof in WaveStability.tex.

SHA 15-5-24

6 THE MATHEMATICS OF THE ALGORITHMS FOR 2D FEM 169

observe that a generalized eigenvalue λ > 0 with eigenvector v⃗, i.e. A v⃗ = λW v⃗ and weak damping 0 ≤ D <
√
λ leads

to a solution u⃗(t) = exp(µ t) v⃗ with µ ∈ C, since

0⃗ = µ2 W v⃗ exp(µ t) + µ 2DW v⃗ exp(µ t) + λW v⃗ exp(µ t)

0 = µ2 + µ 2D + λ

µ1,2 =
1

2

(
−2D ±

√
4D2 − 4λ

)
= −D ± i

√
λ−D2 ∈ C .

Thus the real solutions are of the form

u⃗(t) = exp(−D t)
(
v⃗1 cos(

√
λ−D2 t) + v⃗2 sin(

√
λ−D2 t)

)
.

The angular velocity of the exponentially decaying oscillations is given by ω =
√
λ−D2.

• For the case of strong damping D >
√
λ use

µ1,2 = −D ±
√
D2 − λ ∈ R

to find two exponentially decaying solutions

u⃗(t) = c1 exp(−D +
√
D2 − λ t) v⃗1 + c2 exp(−D −

√
D2 − λ t) v⃗2 .

• If the damping term is not in the special formDW d
dt v⃗(t) the above, simple approach does not work. Instead replace

equation (59) by the first order system

d

dt

(
v(t)

W d
dt v⃗(t)

)
=

(
d
dt v⃗(t)

−2D d
dt v⃗(t)−A v⃗(t)

)

or with a matrix notation

d

dt

[
I 0

0 W

] (
v(t)
d
dt v⃗(t)

)
=

[
0 I
−A −2D

] (
v(t)
d
dt v⃗(t)

)
.

Thus the generalized eigenvalues of [
0 I
−A −2D

]
x⃗ = λ

[
I 0

0 W

]
x⃗

provide information on the behavior of the solutions of the wave equation. This is not implemented in FEMoctave.

6.9 Inverse power iteration or eigs() to determine small eigenvalues of positive definite ma-
trices

The algorithm to solve the generalized eigenvalue problem

A x⃗ = λB x⃗

for given, positive definite matrices A and B is based on inverse power iteration. A small number of the smallest eigenvalues
can be estimated with reasonable efficiency. This algorithm imposes some restrictions though:

• Both matrices A and B have to be symmetric and strictly positive definite.

• Only very few eigenvalues and eigenvectors should be computed. The convergence rate for too many eigenvalues is
unacceptable.

• There are obvious improvements possible, but I hope for an Octave implementation of the command eigs(). This
is the case now, thus I use eigs(). Thus some of the notes on eigenvalues do not apply any more.

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 170

The algorithm is presented in [GoluVanLoan96] and some more details are worked out in [VarFEM], available at an-
dreasstahel.github.io/Notes/VarFEM.pdf.

To determine the first m eigenvalues proceed as follows.

• Create an n×m matrix V0 with the initial vectors v⃗j,0 as its columns.

• repeat until desired precision is reached

– solve the matrix equation A ·Vk = B ·Vk−1 or Vk = A−1 ·B ·Vk−1

– ortho-normalize the columns of Vk, using a generalized Gram-Schmidt algorithm. The resulting columns of
Vk are orthonormal with respect to the scalar product ⟨x⃗ , By⃗⟩.

• for j = 1, 2 . . .m compute βj = ⟨V(:, j) , A ·V(:, j)⟩. Then βj should be good approximations to the eigenvalues.

The error estimates are based on results in [Demm97]. For a normalized, approximate eigenvector v⃗i and the corresponding
approximate eigenvalue βi compute the residual r⃗ = A v⃗i − βi B v⃗i. Then the estimates

min
λj∈σ(A)

|βi − λj | ≤
√
⟨r⃗ , B−1r⃗⟩ and |βi − λj | ≤

⟨r⃗ , B−1r⃗⟩
gap

(60)

are valid. The denominator gap measures the distance to the next eigenvalue.

gap = min{|βi − λj | : λj ∈ σ(A), j ̸= i} .

Without the exact values of the eigenvalues λi there is no way to compute the gap exactly. Thus use the approximate
eigenvalues. Expect the error estimate to have its problems at multiple eigenvalues. For the largest computed eigenvalue
one can not estimate gap reliably, since no information on the next eigenvalue is available.

7 The Algorithms for 1D FEM
In this section the algorithm for FEM algorithms for problems with one independent variable are presented, for sake of
completeness. Only second order elements will be used. These notes are based on the presentation in the class room
notes [Stah08, §6.9].

7.1 The 1D problems to be examined are shown.

7.2 The element stiffness matrix is constructed.

7.3 The boundary conditions are taken into account.

7.5 The tools to evaluate the solutions of 1D problems are introduced.

7.6 Dynamic problems of order 1 with respect to time are examined. Four different time steppers are introduced and
compared. The algorithm for nonlinear problems is spelled out.

7.7 Dynamic problems of order 2 with respect to time are examined. An implicit and an explicit time stepper are pre-
sented.

7.8 An algorithm to solve a nonlinear boundary value problems is presented.

7.1 The problems to be examined
The ordinary differential equation to be examined is of the form

− (a(x)u′(x))
′
+ b(x)u′(x) + c(x)u(x) = d(x) f(x) (61)

with some boundary conditions. Multiplying (61) by a smooth test function ϕ(x) and an integration by parts leads to

0 =

∫ xn

x0

(
− (a(x)u′(x))

′
+ b(x)u′(x) + c(x)u(x)− d(x) f(x)

)
ϕ(x) dx = (62)

= −a(x)u′(x)ϕ(x)
xn

x=x0
+

∫ xn

x0

a(x)u′(x)ϕ′(x) + (b(x)u′(x) + c(x)u(x)− d(x) f(x))ϕ(x) dx

SHA 15-5-24

https://andreasstahel.github.io/Notes/VarFEM.pdf
https://andreasstahel.github.io/Notes/VarFEM.pdf

7 THE ALGORITHMS FOR 1D FEM 171

The ODE (61) has to be supplemented with boundary conditions at the two endpoints x = x0 and x = xn.

u(xi) = gD Dirichlet

a(xi)u
′(xi) = gN1 + gN2 u(xi) Neumann

(63)

If the contribution b(x)u′(x) vanishes in the ODE (61), solving the ODE is closely related to minimizing the “energy”
expression

F (u) =

∫ xn

x0

1

2
a(x) (u′(x))2 +

1

2
c(x)u2(x)− d(x) f(x)u(x) dx , (64)

respecting the boundary conditions. For a Neumann condition at the right endpoint add the contribution

−gN1 u(xn)−
1

2
gN2 u

2(xn) (65)

to the above functional F (u) and similar at the left endpoint add

+gN1 u(x0) +
1

2
gN2 u

2(x0)

Using FEM this equation will be discretized, leading to the global stiffness matrix A and the global weight matrix M,
such that ⟨Au⃗−Mf⃗ , ϕ⃗⟩ = 0 for all vectors ϕ⃗. This then leads to the linear system Au⃗ = Mf⃗ to be solved for the vector u⃗ .

The corresponding first order dynamic equation is given by

w(x)
∂ u(x, t)

∂t
− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t) (66)

with the initial condition u(x, 0) = u0(x) and the boundary conditions, either Dirichlet of Neumann.

The initial value problem of order 2 is

w2(x)
∂2

∂t2
u(x, t) + 2w1(x)

∂

∂t
u(x, t)− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, t) (67)

again with the corresponding boundary and initial conditions.

A nonlinear boundary value problem is of the form

− ∂

∂x

(
a(x)

∂ u(x, t)

∂x

)
+ b(x)

∂ u(x, t)

∂x
+ c(x)u(x, t) = d(x) f(x, u(x), u′(x)) (68)

with the corresponding linear boundary conditions.

7.2 Interpolation, Gauss integration and the element stiffness matrices
In a first step the code will extend the provided interval [x0, x1, x2, . . . , xn] and add the midpoints xi+0.5 = xi+xi+1

2 to the
interval, i.e. the new discretization will consist of 2n+ 1 points. The nodes are at

x⃗ = [x0, x0.5, x1, x1.5, . . . , xn−1, xn−0.5, xn] ∈ R2n+1 .

To generate a finite element formulation first examine a subinterval xi ≤ x ≤ xi+1. The nodes for the FEM algorithm
are the two endpoints xi, xi+1 and the midpoint xi+0.5 = xi+xi+1

2 . For given coefficient functions a(x), b(x), c(x) and
d(x) and the values of the functions u(x), f(x) and ϕ(x) at the three nodes. Then use a quadratic interpolation to construct
the functions u(x), f(x) and ϕ(x) on the interval. Four integrals have to be examined.

If =
∫ xi+1

xi
d(x) f(x)ϕ(x) dr , I0 =

∫ xi+1

xi
c(x)u(x)ϕ(x) dr ,

I1 =
∫ xi+1

xi
b(x)u′(x)ϕ(x) dr and I2 =

∫ xi+1

xi
a(x) u′(x)ϕ′(x) dr

To compute these integrals use the very efficient 3–point Gauss integration on a standard interval [−h
2 , +h

2] of length h.

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 172

• On the interval −h
2 ≤ x ≤ +h

2 the 3-point Gauss integration formula is given by∫ h/2

−h/2

u(x) dx ≈ h

18

(
5u(−

√
3

5

h

2
) + 8u(0) + 5u(+

√
3

5

h

2
)

)
. (69)

• The three values of a function u(x) at u(−h/2) = u−, u(0) = u0 and u(h/2) = u+ determine a quadratic interpo-
lating polynomial26

u(x) = u0 +
u+ − u−

h
x+

u+ − 2u0 + u−
h2

2x2 .

Use x = 0 and x = ±
√

3
5

h
2 to determine the values of u(x) at the Gauss points by27


u(−

√
3
5
h
2)

u(0)

u(+
√

3
5
h
2)

 =


3
10 +

√
3
5

2
4
10

3
10 −

√
3
5

2

0 1 0

3
10 −

√
3
5

2
4
10

3
10 +

√
3
5

2

 ·


u−

u0

u+



=
1

10


3 +
√
15 4 3−

√
15

0 10 0

3−
√
15 4 3 +

√
15

 ·


u−

u0

u+

 = G0 ·


u−

u0

u+

 .

Use this Gaussian interpolation matrix to compute the values of the function at the Gauss integration points, using the
values at the nodes.

• The matrix G0 is basis to construct a matrix to interpolate from the nodes of a FEM grid to the Gauss points. As
example consider a grid with three elements of order 2 and thus 3 · 2 + 1 = 7 nodes and there are 3 · 3 = 9 Gauss
points. Each block in the matrix is given by G0. This leads to the 9× 7 matrix which allows to determine the values
of the function at the Gauss points by a matrix multiplication.

u1−

u10

u1+

u2−

u20

u2+

u3−

u30

u3+



=



3+
√
15

10
4
10

3−
√
15

10

0 1 0
3−

√
15

10
4
10

3+
√
15

10
3+

√
15

10
4
10

3−
√
15

10

0 1 0
3−

√
15

10
4
10

3+
√
15

10
3+

√
15

10
4
10

3−
√
15

10

0 1 0
3−

√
15

10
4
10

3+
√
15

10





u0

u1

u2

u3

u4

u5

u6


(70)

Observe that this matrix does not depend on the distances hi between the nodes.

26To verify the formula use u(0) = u0 and for x = ±h
2

u(±
h

2
) = u0 ±

u+ − u−

h

h

2
+
u+ − 2u0 + u−

h2
2h2

4
= u0 (1− 1) + u+ (±

1

2
+

1

2
)− u− (±

1

2
−

1

2
) .

27E.g. to obtain the last row in G0 evaluate u(+
√

3
5

h
2
).

u(+

√
3

5

h

2
) = u0 +

u+ − u−

h

√
3

5

h

2
+
u+ − 2u0 + u−

h2
2
3

5

h2

22

=

(
−
√

3

5

1

2
+

3

10

)
u− +

(
1−

3

5

)
u0 +

(
+

√
3

5

1

2
+

3

10

)
u+

=

 3

10
−

√
3
5

2

 u− +
4

10
u0 +

 3

10
+

√
3
5

2

 u+

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 173

• The above can be repeated to obtain the values of the derivative

u′(x) =
u+ − u−

h
+
u+ − 2u0 + u−

h2
4x

at the Gauss points.
u′(−

√
3
5
h
2)

u′(0)

u′(+
√

3
5
h
2)

 =
1

h


−1− 2

√
3
5 +4

√
3
5 +1− 2

√
3
5

−1 0 +1

−1 + 2
√

3
5 −4

√
3
5 +1 + 2

√
3
5

 ·


u−

u0

u+

 =
1

h
G1 ·


u−

u0

u+

 .

• Use the same idea as above construct a matrix to evaluate the derivatives at the Gauss points by a matrix multiplication.
Each block in this matrix is given by 1

hi
G1.

• Define a weight matrix W by

W = diag([
5

18
,
8

18
,
5

18
]) =


5
18 0 0

0 8
18 0

0 0 5
18


and then rewrite the Gauss integration (69) in the form∫ +h/2

−h/2

u(x) dx ≈ h

18

(
5u(−

√
3

5

h

2
) + 8u(0) + 5u(+

√
3

5

h

2
)

)
= h

3∑
i=1

(WG0 u⃗)i ,

where the vector u⃗ contains the values of the function at ±h
2 and 0 .

• To evaluate the function a(x) at the Gauss points use the matrix notation

a =


a(−

√
3
5

h
2) 0 0

0 a(0) 0

0 0 a(+
√

3
5

h
2)


and similarly for the functions b(x), c(x) and d(x), leading to the diagonal matrices b, c and d.

The above notation leads to the required integrals. With ∆xi = xi+1 − xi obtain

If =

∫ xi+1

xi

−d(x) f(x)ϕ(x) dx ≈ ∆xi ⟨WdG0 f⃗ , G0 ϕ⃗⟩ = −∆xi ⟨GT
0 WdG0 f⃗ , ϕ⃗⟩

I0 =

∫ xi+1

xi

c(x)u(x)ϕ(x) dx ≈ ∆xi ⟨WcG0 u⃗ , G0 ϕ⃗⟩ = ∆xi ⟨GT
0 WcG0 u⃗ , ϕ⃗⟩

I1 =

∫ xi+1

xi

b(x)u′(x)ϕ(x) dx ≈ ∆xi
∆xi

⟨WbG1 u⃗ , G0 ϕ⃗⟩ = ⟨GT
0 WbG1 u⃗ , ϕ⃗⟩

I2 =

∫ xi+1

xi

a(x) u′(x)ϕ′(x) dr ≈ ∆xi
(∆xi)2

⟨WaG1 u⃗ , G1 ϕ⃗⟩ =
1

∆xi
⟨GT

1 WaG1 u⃗ , ϕ⃗⟩

USing a summation apply the above integrals to the interval I = [x0, xn], discretized by x0 < x1 < x2 < . . . < xn−1 < xn.
For the second order elements the midpoints xi+0.5 = xi+xi+1

2 of the intervals will be used too, leading to the nodes at
x0 < x0.5 < x1 < x1.5 < x2 < . . . < xn−1 < xn−0.5 < xn, i.e. x⃗ ∈ R2n+1. Examine the discrete version of the weak
solution, thus integrals (or sums) of the type

I =

∫ xr

xl

a(x)u′(x)ϕ′(x) + b(x)u′(x)ϕ(x) + c(x)u(x)ϕ(x)− d(x) f(x)ϕ(x) dx

=

n∑
i=1

∫ xi+1

xi

a(x)u′(x)ϕ′(x) + b(x)u′(x)ϕ(x) + c(x)u(x)ϕ(x)− d(x) f)(x)ϕ(x) dx

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 174

≈
n∑

i=1

(
1

∆xi
⟨GT

1 Wai G1 u⃗i , ϕ⃗i⟩+ ⟨GT
0 Wbi G1 u⃗i , ϕ⃗i⟩+

+∆xi ⟨GT
0 Wci G0 u⃗i , ϕ⃗i⟩ −∆xi ⟨GT

0 Wdi G0 f⃗i , ϕ⃗i⟩
)

= ⟨A u⃗−M f⃗ , ϕ⃗⟩ for all vectors ϕ⃗ ∈ R2n+1 .

The stiffness matrix A and the weight matrix M are both of size (2n+ 1)× (2n+ 1), but the boundary conditions are not
taken into account yet. This has to be done with some care, since the differential equation (61) has a unique solution only if
boundary conditions are taken into account.

7.3 Taking boundary conditions into account
Ignoring the boundary conditions the linear system to be solved for u⃗ ∈ R2n+1 is

A u⃗ = M f⃗ , (71)

where f⃗ ∈ R2n+1 contains the vaues of f(x) at the nodes x⃗ ∈ R2n+1. The contribution in (62) by boundary terms is

a(x)u′(x)ϕ(r)
xn

x=x0
= a(xn)u

′(xn)ϕ(xn)− a(x0)u′(x0)ϕ(x0) .

This leads to different algorithms to take Dirichlet or Neumann conditions into account. There are four possible combina-
tions of Dirichlet (D) and Neumann (N) boundary conditions: DD, DN, ND and NN.

DD Dirichlet conditions at both endpoints.
The first component of the vector u⃗ equals u(x0) = gD1 and the for the last component use u(xn) = gD2. Equa-
tion (71) reads as

A



gD1

u0.5

u1
...

u2n−1

u2n−0.5

gD2


= M



f0

f0.5

f1
...

fn−1

fn−0.5

fn


Remove the first and last row in the matrix A. Split off the first column a⃗f and the last column a⃗l form the matrix
[⃗af ,Ar, a⃗l] and in the matrix M ∈ R(2n+1)×(2n+1) remove the first and last row, leading to Mr ∈ R(2n−1)×(2n+1).
Then examine

Au⃗ = Mf⃗ −→
[
a⃗f Ar a⃗l

] 
gD1

u⃗r

gD2

 = Mr f⃗ −→ Ar u⃗r = Mr f⃗ − a⃗f gD1 − a⃗l gD2 ,

where Ar ∈ R(2n−1)×(2n−1), u⃗r ∈ R2n−1, Mr ∈ R(2n−1)×(2n+1) and f⃗ ∈ R2n+1. The solution is then given by
[gD1, u⃗r, gD2] ∈ R2n+1.

DN Dirichlet at x0 and Neumann at xn
The Dirichlet condition u(x0) = gD1 leads to the modifications of the first rows and columns of A and M, just as
above. For the boundary condition a(xn)u′(xn) = gN1 + gN2 u(xn) the correct type of contributions will have to be

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 175

taken into account. The additional contributions in (65) to the functional F (u) in (64) lead to

A



gD1

u0.5

u1
...

un−1

un−0.5

un


−



0

0

0
...

0

0

gN2 un


= M



f0

f0.5

f1
...

fn−1

fn−0.5

fn


+



0

0

0
...

0

0

gN1


.

Thus the matrix A and the RHS have to be modified accordingly. From the last entry on the diagonal of the matrix A
subtract gN2. [

a⃗f Ar

] (gD1

u⃗r

)
= Mr f⃗ + g⃗N1 −→ Ar u⃗r = Mr f⃗ − a⃗f gD1 + g⃗N1 ,

where Ar ∈ R2n×2n, u⃗r ∈ R2n, Mr ∈ R2n×(2n+1) and f⃗ ∈ R2n+1. The solution is then given by [gD1, u⃗r] ∈
R2n+1.

ND Neumann at x0 and Dirichlet at xn
The Dirichlet condition u(xn) = gD2 leads to the modifications of the last rows and columns, just as above. For
the boundary condition a(x0)u′(x0) = gN1 + gN2 u(x0) the correct type of contributions will have to be taken into
account. The additional contributions in (65) to the functional F (u) leads to

A



u0

u0.5

u1
...

un−0.5

gD2


+



gN2 u0

0

0
...

0

0


= M



f0

f0.5

f1
...

fn−0.5

fn


−



gN1

0

0
...

0

0


.

Observe the different signs of the Neumann contribution. Thus the matrix A and the RHS have to be modified
accordingly. To the first entry on the diagonal of the matrix A add gN2.[

Ar a⃗l

] (u⃗r

gD2

)
= Mr f⃗ + g⃗N1 −→ Ar u⃗r = Mr f⃗ − a⃗l gD1 − g⃗N1 ,

where Ar ∈ R2n×2n, u⃗r ∈ R2n, Mr ∈ R2n×(2n+1) and f⃗ ∈ R2n+1. The solution is then given by [u⃗r, gD2] ∈
R2n+1.

NN Neumann conditions at both endpoints.
The modifications are given by

A



u0

u0.5

u1
...

un−0.5

un


+



+gN2 left u0

0

0
...

0

−gN2 rightun


= M



f0

f0.5

f1
...

fn−0.5

fn


+



−gN1 left

0

0
...

0

+gN1 right


.

The size of the matrices A and M remains unchanged. To the first entry on the diagonal of the matrix gA add gN2 left

and from the last entry subtract gN2 right.
Ar u⃗ = M f⃗ + g⃗N1,

where Ar ∈ R(2n+1)×(2n+1), u⃗ ∈ R2n+1, M ∈ R(2n+1)×(2n+1) and f⃗ ∈ R2n+1.

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 176

7.4 Solving the BVP with a system of linear equations
Using the above algorithms leads to the linear system

Ar u⃗r −Mr f⃗ = 0⃗ or u⃗ = A−1
r Mr f⃗ = Ar\Mr f⃗ .

The resulting matrix Ar is symmetric if b(x) vanishes identically and it has a band structure with semi-bandwidth 3, i.e. in
each row there are up to 5 nonzero entries around the diagonal.

7.5 Evaluation of the solution between nodes and evaluation of derivatives
The above algorithms lead to the values of the solution at the nodes. Between nodes the algorithm is based on piece–wise
quadratic interpolation. Thus it is advisable to use a quadratic interpolation if the values at more points are required. The
Octave function pwquadinterp() does just that, and it can be used to evaluate first and second derivatives too.

To evaluate the derivatives at the nodes use the quadratic interpolation. For a quadratic function with u− = u(−h
2),

u(0) = u0 and u+ = u(+h
2) the derivative

u′(x) =
u+ − u−

h
+
u+ − 2u0 + u−

h2
4x

leads to values at the end- and mid–points.

u′(−h
2
) =

u+ − u−
h

− u+ − 4u0 + u−
h2

2h =
1

h
(−3u− + 2u0 − 1u+)

u′(0) =
1

h
(−1u− + 0u0 + 1u+)

u′(+
h

2
) =

u+ − u−
h

+
u+ − 4u0 + u−

h2
2h =

1

h
(+1u− − 2u0 + 3u+)

With a matrix notation write this in the form
u′(−h

2)

u′(0)

u′(+h
2)

 =
1

h


−3 +4 −1
−1 0 +1

+1 −4 +3




u−

u0

u+

 .

The second derivative is constant on each subinterval and given by

u′′(x) = 4
u− − 2u0 + u+

h2
.

This is used in the code FEM1DEvaluateDu() to determine the derivatives at the nodes, generated by BVP1D(). At the
endpoints of the subintervals the average of derivatives in the two neighboring intervals is used.

FEM1DEvaluateDu.m
function [du,ddu] = FEM1DEvaluateDu(x,u)
%% du = FEM1DEvaluateDu(x,u)
%% evaluate first and second derivatives at the nodes x
%% requires the interval x and u to be generated by BVP1D()
n = (length(x)-1)/2; %% number of subintervals
du = zeros(size(x)); ddu = du;
M = 0.5*[-3,4,-1;-2,0,2;1,-4,3]; %% matrix to determine first derivatives
h = diff(x); h = h(1:2:end)*2;
for jj = 1:n
range = [2*jj-1:2*jj+1];
du(range) += M*u(range)/h(jj);
ddu(range) += 2*[1;2;1]*[1 -2 1]*u(range)/h(jj)ˆ2;

endfor
du([1;end]) *= 2; ddu([1;end]) *= 2;

endfunction

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 177

7.6 The first order dynamic problem
The approach to solve the dynamic problem (66)

w(x)
∂

∂t
u(x, t)− (a(x)u′(x, t))

′
+ b(x)u′(x, t) + c(x)u(x, t) = d(x) f(x, t)

is similar to the 2D approach presented in Section 6.8.1. The first step is to solve the static problem

− (a(x)u′B(x))
′
+ b(x)u′B(x) + c(x)uB(x) = 0 with uB(xi) = gD or a(xi)u

′
B(xi) = gN1 + gN2 uB(xi)

Then the new function v(x, t) = u(x, t) − uB(x) is a solution of an initial boundary value problem with no constant
boundary contributions, i.e. at the boundary points x0 and xn

v(xi, t) = 0 or a(xi) v
′(xi, t) = 0 + gN2(xi) v(xi, t)

and the initial condition v(x, 0) = u0(x) − uB(x). This problem is then discretized with respect to x, leading to a system
of ordinary differential equations, similar to equation (57)

W
d

dt
v⃗(t) +A v⃗(t) = M f⃗(t) with v⃗(t0) = v⃗0 (72)

There are many algorithms available to perform a time step from v⃗(t) to v⃗(t+∆t). Table 16 shows a few key properties
of the solvers used in IBVP1D() and IBVP2D().

• order of consistency: order of consistency of the time stepping algorithm.

• A–stability: a solver is called A–stable if for ODEs of the type d
dt u⃗(t) = A u⃗(t) with negative eigenvalues the

approximate solutions remain bounded, independent on the stepsize ∆t.

• L–stability: a solver is called L–stable if the above approximate solutions converge to zero rapidly for large eigenval-
ues λ < 0.28

• number (#) of systems to solve: the number of linear systems that have to be solved for one time step.

algorithm order of consistency A–stability L–stability # of systems to solve

explicit 1 conditional no 1

implicit 1 unconditional yes 1

Crank–Nicolson 2 unconditional no 1

Runge–Kutta, L–stable 2 unconditional yes 2

Table 16: Properties of the ODE solvers used in IBVP1D()

FEMoctave uses a very simple implementation of the time steppers, i.e. no stepsize control or adaptation is performed.
The stepsize ∆t is constant on the time interval to be examined. One can specify the number of time slices to be returned
as result and how many steps to take between the returned times. For the explicit time stepper a warning is issued if the
algorithm is very likely to be unstable, i.e. when ∆t > 2

λmax
. This authors advise is to not use the explicit time stepper.

28 For an ODE u̇(t) = −λu(t) with exact solution u(t) = c exp(−λ t) applying one time step is implemented by multiplying with a factor
g(λ∆t) = g(z). The function g(z) depends on the algorithm.

– explicit: ui+1−ui

∆t
= −λui, thus ui+i = (1 − λ∆t)ui and g(z) = 1 − z. The stability condition |g(z)| < 1 leads to z = λ∆t < 2 or

∆t < 2
λmax

.

– implicit: ui+1−ui

∆t
= −λui+1, thus ui+i =

1
1+λ∆t

ui and g(z) = 1
1+z

.

– Crank–Nicolson: ui+1−ui

∆t
= −λ ui+1+ui

2
, thus ui+i =

2−λ∆t
2+λ∆t

ui and g(z) = 2−z
2+z

.

If |g(z)| < 1 for Re(z) > 0 then the algorithm is A–stable. If limz→+∞ |g(z)| = 0 then the algorithm is L–stable.

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 178

7.6.1 An explicit time step

To solve (72) with an explicit solver with time step ∆t use

W
v⃗(t+∆t)− v⃗(t)

∆t
+A v⃗(t) = M f⃗(t)

W v⃗(t+∆t) = W v⃗(t) + ∆t
(
−A v⃗(t) +M f⃗(t)

)
v⃗(t+∆t) = v⃗(t) + ∆tW−1

(
−A v⃗(t) +M f⃗(t)

)
.

7.6.2 An implicit time step

To solve (72) with an implicit solver with time step ∆t use

W
v⃗(t+∆t)− v⃗(t)

∆t
+A v⃗(t+∆t) = M f⃗(t+∆t)

(W +∆tA) v⃗(t+∆t) = W v⃗(t) + ∆tM f⃗(t+∆t)

v⃗(t+∆t) = (W +∆tA)−1
(
W v⃗(t) + ∆tM f⃗(t+∆t)

)
.

7.6.3 A Crank–Nicolson time step

In Section 6.8.1 (page 165) the algorithm of Crank–Nicolson is presented as time stepper. With the above notation a time
step is given by

W
v⃗(t+∆t)− v⃗(t)

∆t
+A

v⃗(t+∆t) + v⃗(t)

2
= M f⃗(t+∆t/2)(

W +
∆t

2
A

)
v⃗(t+∆t) = +

(
W − ∆t

2
A

)
v⃗(t) + ∆tM f⃗(t+∆t/2) .

This is the default time stepper used in FEMoctave.

7.6.4 An L–stable Runge–Kutta solver, DIRK

This is a diagonally implicit Runge–Kutta method or a DIRK method. Find more details in [Butc03, §361]. The Butcher
table of the algorithm is given by

θ θ 0

1 1− θ θ

yn+1 1− θ θ

with θ = 1− 1√
2

, i.e.

1− 1√
2

1− 1√
2

0

1 1√
2

1− 1√
2

yn+1
1√
2

1− 1√
2

.

To apply this algorithm to the ODE W d
dt u⃗(t) = −A u⃗(t) +M f⃗(t) use the above Butcher table.

W k⃗1 = −A (u⃗n + θ∆t k⃗1) +M f⃗(tn + θ∆t)

W k⃗2 = −A (u⃗n +∆t ((1− θ) k⃗1 + θ k⃗2)) +M f⃗(tn + 1∆t)

u⃗n+1 = u⃗n +∆t ((1− θ) k⃗1 + θ k⃗2)

With 1
2 − θ = θ (1 − θ) = θ√

2
and tedious algebra (spelled out in [Stah08, §4.5.8]) this leads to two linear systems to be

solved, with the same matrix W + θ∆tA. Thus only one LU factorization is necessary for the time stepper.

(W + θ∆tA) k⃗1 = −A u⃗n +M f⃗(tn + θ∆t) (73)

(W + θ∆tA) u⃗n+1 = (W −∆t
1√
2
A) u⃗n − (∆t)2 (

1

2
− θ)A k⃗1 + (74)

+∆tM
(
(1− θ) f⃗(tn + θ∆t) + θ f⃗(tn +∆t)

)

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 179

7.6.5 A solver for semilinear dynamic problems

A semilinear initial boundary value problem with one space dimension is given by

w(x)
∂

∂t
u(x, t)− (a(x)u′(x, t))

′
+ b(x)u′(x, t) + c(x)u(x, t) = d(x) f(x, t, u(x, t)) (75)

For the function f on the right hand side the partial derivative with respect to u has to be known and a linear approximation
is used during the time steppers29. Use the linear approximation

fu(x, t, u) =
∂

∂u
fu(x, t, u) and f(x, t, u+ ϕ) ≈ f(x, t, u) + fu(x, t, u)ϕ .

The first step is to solve

w(x)
∂

∂t
uB(x, t)− (a(x)u′B(x, t))

′
+ b(x)u′B(x, t) + c(x)uB(x, t) = 0

with the possibly nonhomogenous boundary conditions. Then the function v(x, t) = u(x, t)−uB(x) satisfies zero boundary
conditions and is a solution of

w(x)
∂

∂t
v(x, t)− (a(x) v′(x, t))

′
+ b(x) v′(x, t) + c(x) v(x, t) = d(x) f(x, t, v(x, t) + uB(x), u

′(x, t) + u′B(x)) (76)

Discretizing with respect to the space variable x and a Crank–Nicolson time stepper for the system of ODEs

W
d

dt
v⃗(t) +A v⃗(t) = M f⃗(t, v⃗(t) + u⃗B)

leads to a nonlinear system of equations for each time step v⃗(t) = v⃗n → v⃗(t+∆t) = v⃗n+1.

W
v⃗n+1 − v⃗n

∆t
+A

v⃗n+1 + v⃗n
2

=
1

2
M (f⃗(t, v⃗n + u⃗B) + f⃗(t+∆t, v⃗n+1 + u⃗B))

W v⃗n+1 +
∆t

2
A v⃗n+1 −

∆t

2
M (f⃗(t+∆t, v⃗n+1 + u⃗B)) = +W v⃗n −

∆t

2
A v⃗n +

∆t

2
M f⃗(t, v⃗n + u⃗B) =: G(v⃗n)

f⃗(t+∆t, v⃗n+1 + u⃗B + ϕ⃗) ≈ f⃗(t+∆t, v⃗n+1 + u⃗B) + f⃗u(t+∆t, v⃗n+1 + u⃗B) ϕ⃗

W ϕ⃗+
∆t

2
A ϕ⃗− ∆t

2
M fu(t+∆t, v⃗n+1 + u⃗B) ϕ⃗ = G(v⃗n)−W v⃗n+1 −

∆t

2
A v⃗n+1 +

+
∆t

2
M f⃗(t+∆t, v⃗n+1 + u⃗B)(

W +
∆t

2
A− ∆t

2
M fu(t+∆t, v⃗n+1 + u⃗B)

)
ϕ⃗ = G(v⃗n)−W v⃗n+1 −

∆t

2
A v⃗n+1 +

+
∆t

2
M f⃗(t+∆t, v⃗n+1 + u⃗B)

v⃗n+1 → v⃗n+1 + ϕ⃗ and iterate until ∥ϕ⃗∥ small

As initial guess for v⃗n+1 the previous solution v⃗n is used. For small time steps this is very good approximation and thus
Newton’s method should converge after very few steps. This algorithm is implemented in IBVP1DNL().

7.7 The second order dynamic problem
The approach to solve the dynamic problem (67)

w2(x)
∂2

∂t2
u(x, t) + 2w1(x)

∂

∂t
u(x, t)− (a(x)u′(x, t))

′
+ b(x)u′(x, t) + c(x)u(x, t) + d(x) f(x, t) = 0

is very similar to the 2D approach presented in Section 6.8.3. The first step is to solve the static problem

− (a(x)u′B(x))
′
+ b(x)u′B(x) + c(x)uB(x) = 0 with uB(xi) = gD or a(xi)u

′
B(xi) = gN1 + gN2 uB(xi)

29The algorithm could also be implemented for functions f(x, t, u, u′) depending on the derivative u′. Since I did not find good examples this is not
done (yet).

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 180

Then the new function30 v(x, t) = u(x, t) − uB(x) is a solution of an initial boundary value problem with no constant
boundary contributions, i.e. at the boundary points xi

v(xi, t) = 0 or a(xi) v
′(xi, t) = 0 + gN2(xi) v(xi, t)

and the initial condition v(x, t0) = u0(x)− uB(x). This problem is then discretized with respect to x, leading to a system
of ordinary differential equations or order 2, similar to equation (58).

W2
d2

dt2
v⃗(t) + 2W1

d

dt
v⃗(t) +A v⃗(t) = M f⃗(t) with v⃗(t0) = u⃗0 − u⃗B and

d

dt
v(t0) = v⃗0 (77)

For this second order system of ordinary differential equations two algorithms are examined: an implicit and an explicit
solver.

7.7.1 An implicit solver

The implementation assumes that the coefficient functions w2, w1, a, b, c and d depend x only, while f may depend on time
t and position x. Then use an implicit approximation to advance the solution from time t−∆t and t to t+∆t.

W2
d2

dt2
v⃗(t) = −2W1

d

dt
v⃗(t)−A v⃗(t) +M f⃗(t)

W2
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −2W1

v⃗(t+∆t)− v⃗(t−∆t)

2∆t
−

−A v⃗(t−∆t) + 2 v⃗(t) + v⃗(t+∆t)

4
+M f⃗(t)(

+W2 +∆tW1 +
(∆t)2

4
A

)
v⃗(t+∆t) = −

(
W2 −∆tW1 +

(∆t)2

4
A

)
v⃗(t−∆t) +

+

(
2W2 −

(∆t)2

2
A

)
v⃗(t) + (∆t)2 M f⃗(t)

This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time advances.
Thus use again a sparsity preserving LU factorization for the time stepping.

To construct the solution at the initial time t0 +∆t use the initial value u0 and initial velocity v0 and a scheme with the
same order of consistency, with respect to time. For sake of a shorter notation the derivation uses t0 = 0.

d

dt
v⃗(0) = v⃗0 ≈

v⃗(∆t)− v⃗(−∆t)
2∆t

=⇒ v⃗(−∆t) ≈ v⃗(∆t)− 2∆t v⃗0(
+W2 +∆tW1 +

(∆t)2

4
A

)
v⃗(+∆t) = −

(
W2 −∆tW1 +

(∆t)2

4
A

)
v⃗(−∆t) +

+

(
2W2 −

(∆t)2

2
A

)
v⃗(0) + (∆t)2 M f⃗(0)

= −
(
W2 −∆tW1 +

(∆t)2

4
A

)
(v⃗(+∆t)− 2∆t v⃗0) +

+

(
2W2 −

(∆t)2

2
A

)
v⃗(0) + (∆t)2 M f⃗(0)

2

(
+W2 +

(∆t)2

4
A

)
v⃗(+∆t) = +2∆t

(
W2 −∆tW1 +

(∆t)2

4
A

)
v⃗0 +

+2

(
W2 −

(∆t)2

4
A

)
v⃗(0) + (∆t)2 M f⃗(0)(

+W2 +
(∆t)2

4
A

)
v⃗(+∆t) = ∆t

(
W2 −∆tW1 +

(∆t)2

4
A

)
v⃗0 +

+

(
W2 −

(∆t)2

4
A

)
v⃗(0) +

(∆t)2

2
M f⃗(0) .

If there is no damping (W1 = 0) a linear system of the same type as for the time stepper has to be solved.
30Observe that v(x, t) is not the velocity, sorry for the inconvenient notation, but it is consistent with other parts of these notes.

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 181

7.7.2 An explicit solver

To construct an explicit solver for the system of ODEs (77)

W2
d2

dt2
v⃗(t) + 2W1

d

dt
v⃗(t) +A v⃗(t) = M f⃗(t)

use the finite difference approximations

W2
d2

dt2
v⃗(t) ≈ W2

v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2

W1
d

dt
v⃗(t) ≈ W1

−v⃗(t−∆t) + v⃗(t+∆t)

2∆t
.

These approximations lead to(
W2

(∆t)2
− W1

2∆t

)
v⃗(t−∆t) +

(
− 2W2

(∆t)2
+A

)
v⃗(t) +

(
W2

(∆t)2
+

W1

2∆t

)
v⃗(t+∆t) = M f⃗(t) .

For given v⃗(t−∆t and v⃗(t) solve for v⃗(t+∆t).(
W2

(∆t)2
+

W1

2∆t

)
v⃗(t+∆t) =

(
2W2

(∆t)2
−A

)
v⃗(t)−

(
W2

(∆t)2
− W1

2∆t

)
v⃗(t−∆t) +M f⃗(t)(

W2 +
∆t

2
W1

)
v⃗(t+∆t) =

(
2W2 − (∆t)2A

)
v⃗(t)−

(
W2 −

∆t

2
W1

)
v⃗(t−∆t) + (∆t)2M f⃗(t)

The initial conditions
v⃗(t0) = u⃗0 − u⃗B and

d

dt
v(t0) = v⃗0

are implemented by

v⃗0 ≈
v⃗(t0 +∆t)− v⃗(t0 −∆t)

2∆t
or v⃗(t0 −∆t) ≈ v⃗(t0 +∆t)− 2∆t v⃗0

and thus the first time step is given by(
W2 +

∆t

2
W1

)
v⃗(t0 +∆t) =

(
2W2 − (∆t)2A

)
v⃗(t0)−

(
W2 −

∆t

2
W1

)
v⃗(t0 −∆t) + (∆t)2M f⃗(t0)

2W2 v⃗(t0 +∆t) =
(
2W2 − (∆t)2A

)
v⃗(t0) + 2

(
∆tW2 − (∆t)2W1

)
v⃗0 + (∆t)2M f⃗(t0) .

This scheme is conditionally stable with the stability condition

λ ≤ 4

(∆t)2
or ∆t ≤ 2√

λ
for all generalized eigenvalues of A u⃗ = λW2 u⃗ .

7.8 Nonlinear boundary value problems, Newton’s method and partial substitution
For smooth functions a(x, u, u′) and f(x, u, u′) examine a nonlinear boundary value problem of the form (68)

− (a(x, u(x), u′(x))u′(x))
′
+ b(x)u′(x) + c(x)u(x) = d(x) f(x, u(x), u′(x)) , (78)

with linear, constant boundary conditions, Dirichlet or Neumann. The essential tool is Newton’s method, combined with a
partial substitution. For this use a linear Taylor approximation of the nonlinear function f(x, u, u′)

f(x, u+ ϕ, u′ + ϕ′) ≈ f(x, u, u′) + fu(x, u, u
′)ϕ+ fu′(x, u, u′)ϕ′

with the notations fu = ∂ f
∂u and fu′ = ∂ f

∂u′ . For an approximate solution un(x) search a solution of the form un(x) +ϕ(x).
Examine the linear boundary value problem for the perturbation ϕ.

− (a u′n + ϕ′)
′
+ b (u′n + ϕ′) + c (un + ϕ) = d · (f(·, un, u′n)+

+fu(·, un, u′n)ϕ+ fu′(·, un, u′n)ϕ′)
− (aϕ′)

′
+ (b− d · fu′(·, un, u′n))ϕ′ + (c− d · fu(·, un, u′n))ϕ = +(a u′n)

′ − b u′n − c un + d · f(·, un, u′n)

SHA 15-5-24

7 THE ALGORITHMS FOR 1D FEM 182

and then update the solution to un+1 = un + ϕ. For the perturbation ϕ use zero boundary conditions, assuming that u0
satisfied the boundary conditions. For an initial guess u0(x) close enough to an isolated solution the Newton based algorithm
will converge.

To implement the above algorithm in FEMoctave start out with an initial function u(x) = u0(x), hopefully close to
the true solution.

• Start with the function u0(x) and evaluate (if necessary) f0 = f(x, u0(x)), or f0 = f(x, u0(x), u
′
0(x)) at the nodes.

Evaluate at the Gauss points (if necessary)

a0 = a(x, u0(x), u
′
0(x)) , b0 = b(x) and c0 = c(x) .

• Solve the boundary value problem for un

− (a0 u
′
n(x))

′
+ b0 u

′
n(x) + c0 un(x) = d · f0

with the correct boundary conditions.

• Repeat

– Store the current solution uold = un.
– If a depends on u or u′ evaluate

an = x(x, un(x), u
′
n(x)) at the Gauss points.

If a does not depend on u and u′, reuse an = a0.
– If f depends on u or u′ evaluate

fn = f(x, un(x), u
′
n(x)) at the nodes

fu =
∂

∂u
f(x, un(x), u

′
n(x)) at the Gauss points

fu′ =
∂

∂u′
f(x, un(x), u

′
n(x)) at the Gauss points

– Evaluate
RHSn = −(an u′n)′ + b0 u

′
n + c0 un − d · fn

This can be done with a matrix multiplication.
– Solve the boundary value problem for the perturbation ϕ

− (an ϕ
′(x))

′
+ (b0 − d · fu′)ϕ′(x) + (c0 − d · fu)ϕ(x) = −RHSn

with homogeneous boundary conditions.
– Update un −→ un + ϕ.
– If f depends on u or u′ evaluate at the nodes.

fn = f(x, un(x), u
′
n(x))

– If a depends on u or u′ evaluate

an = x(x, un(x), u
′
n(x)) at the Gauss points.

If a does not depend on u, reuse an = a0.
– Solve the boundary value problem for un

− (a0 u
′
n(x))

′
+ b0 u

′(x) + c0 un(x) = d · fn

with the correct boundary conditions.

• until ∥un − uold∥ small enough or too many iterations.

For the convergence test absolute and relative values are use, if one of them is small enough the algorithm stops.

This is not a pure Newton’s approach, but a combination with a (partial) substitution method.

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 183

8 The Algorithms for Plane Elasticity and Axially Symmetric Elasticity
Find the description of the plane elasticity problems in Section 2.14, starting on page 13.

8.1 The plane stress problem
For a plane stress problem it is assumed that there are no stresses in z–direction, i.e. σz = τxz = τyz = 0 . The elastic
energy density is given by equation (21), i.e.

Wstress =
E

2 (1− ν2)
(
ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy

)
.

With FEMoctave examine plane stress deformations with (only) three types of boundary conditions.

u⃗ = g⃗D on Dirichlet boundary Γ1, i.e. prescibed displacement

force density = g⃗N on Neumann boundary Γ2, i.e. prescibed force density

force density = 0⃗ on free boundary Γ3

(79)

With this the total energy of a plane stress problem can be written in the form31

U(u⃗) = Uelast + UV ol + USurf (80)

=

∫∫
Ω

1

2

E

(1− ν2)
⟨


1 ν 0

ν 1 0

0 0 2 (1− ν)

 ·


εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩ dA−
−
∫∫
Ω

f⃗ · u⃗ dA−
∫
Γ2

g⃗N · u⃗ ds .

Using the Bernoulli principle this energy has to be minimized, leading to the Euler–Lagrange equations (23). A discretiza-
tion of the displacements u1(x, y) and u2(x, y) leads to a vector u⃗ = (u⃗1, u⃗2) and the above total energy has to be written
in the form

1

2
⟨u⃗,Au⃗⟩+ ⟨u⃗,Wf⃗⟩ .

Then the approximate minimizer is given as solution of the linear system Au⃗ = −Wf⃗ . This setup is very similar to the
connections shown in Figure 70 on page 133.

Another approach is to use perturbed displacements u1 +ϕ1 and u2 +ϕ2 and dropping higher order contributions in ϕi.
Use the approximations

εxx =
∂ (u1 + ϕ1)

∂x
=
∂ u1
∂x

+
∂ ϕ1
∂x

, εyy =
∂ (u2 + ϕ2)

∂y
=
∂ u2
∂y

+
∂ ϕ2
∂y

ε2xx = (
∂ (u1 + ϕ1)

∂x
)2 ≈ (

∂ u1
∂x

)2 + 2 (
∂ u1
∂x

) (
∂ ϕ1
∂x

)

ε2yy ≈ (
∂ u2
∂y

)2 + 2 (
∂ u2
∂y

) (
∂ ϕ2
∂y

)

εxxεyy ≈ ∂ u1
∂x

∂ u2
∂y

+
∂ u1
∂x

∂ ϕ2
∂y

+
∂ u2
∂y

∂ ϕ1
∂x

2 εxy =
∂ (u1 + ϕ1)

∂y
+
∂ (u2 + ϕ2)

∂x
=

∂ u1
∂y

+
∂ ϕ1
dy

+
∂ u2
∂x

+
∂ ϕ2
∂x

4 ε2xy ≈ (
∂ u1
∂y

)2 + (
∂ u2
∂x

)2 + 2
∂ u1
∂y

(
∂ ϕ1
∂y

+
∂ ϕ2
∂x

) + 2
∂ u2
∂x

(
∂ ϕ1
∂y

+
∂ ϕ2
∂x

)

= (
∂ u1
∂y

+
∂ u2
∂x

)2 + 2
∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

) + 2
∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

31We quietly dropped the constant thickness H from all expressions.

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 184

Based on 2 (1−ν2)
E W (u) = ε2xx + ε2yy + 2 ν εxx εyy + 2 (1− ν) ε2xy conclude

2 (1− ν2)
E

(
W (u⃗+ ϕ⃗)−W (u⃗)

)
≈ 2

∂ u1
∂x

∂ ϕ1
∂x

+ 2
∂ u2
∂y

∂ ϕ2
∂y

+

+2 ν (
∂ u1
∂x

∂ ϕ2
∂y

+
∂ u2
∂y

∂ ϕ1
∂x

) +

+
4

4
(1− ν)

(
∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

) +
∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
and use ∫∫

Ω

f⃗ · (u⃗+ ϕ⃗) dA =

∫∫
Ω

f⃗ · u⃗ dA+

∫∫
Ω

f1 ϕ1 + f2 ϕ2 dA∫
Γ2

g⃗N · (u⃗+ ϕ⃗) ds =

∫
Γ2

g⃗N · u⃗ ds+
∫
Γ2

g1 ϕ1 + g2 ϕ2 ds .

This leads to

U(u⃗+ ϕ⃗)− U(u⃗) ≈ +

∫∫
Ω

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ1 f1 dA+

+

∫∫
Ω

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ2 f2 dA−

−
∫
Γ2

ϕ1 g1 + ϕ2 g2 ds = 0 . (81)

Using Bernoulli’s principle this expression should vanish for all perturbations ϕ⃗. Use discrete approximations of the func-
tions ui and ϕi to write the vanishing condition for expression (81) in the form

⟨ϕ⃗,Au⃗+Wf⃗⟩ = 0 for all ϕ⃗ .

8.2 The plane stress eigenvalue and dynamic problem
For the eigenvalue problem (25)

−div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
= λ ρu1

−div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
= λ ρu2

use the equation

0 = +

∫∫
Ω

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ1 λ ρu1 dA+

+

∫∫
Ω

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
− ϕ2 λ ρu2 dA

for all smooth test functions ϕ1 and ϕ2. Write this in the form ⟨ϕ⃗ , Au⃗ − λWu⃗⟩ = 0 to lead to a generalized eigenvalue
problem Au⃗ = λWu⃗. FEMoctave allows to determine a few of the smallest eigenvalues λ and the corresponding eigen
modes.

For the dynamic problem (24)

−div

(
E

1−ν2

(
∂ u1

∂x + ν ∂ u2

∂y
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)

))
+ f1 = ρ ∂2

∂t2 u1

− div

(
E

1−ν2

(
1−ν
2 (∂ u1

∂y + ∂ u2

∂x)
∂ u2

∂y + ν ∂ u1

∂x

))
+ f2 = ρ ∂2

∂t2 u2

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 185

use the equation

0 = +

∫∫
Ω

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
+ ϕ1 f1 − ϕ1 ρ

∂2

∂t2
u1 dA+

+

∫∫
Ω

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
+ ϕ2 f2 − ϕ2 ρ

∂2

∂t2
u2 dA

for all smooth test functions ϕ1 and ϕ2. This will lead to a dynamic problem of the form

⟨ϕ⃗ , A u⃗−Wf f⃗ +Wρ
d2

dt2
u⃗⟩ = 0 for all ϕ⃗ .

The matrices A, Wρ and Wf have to take the active degrees of freedom into account, leading to a vector v⃗, the active
contribution of u⃗. These matrices are generated by the codes PStressEquation*WM.m for elements of order 1, 2 and 3.
As consequence the dynamic problem to be solved is a system of ODEs

Wρ
d2

dt2
u⃗(t) +A u⃗(t) = Wf f⃗(t) (82)

with appropriate initial conditions u⃗(t0) = u⃗0 − u⃗B and d
dt u⃗(t0) = v⃗0. Algorithms to solve this problem are spelled out in

Section 7.7, used for the wave equation (77) with one space variable. An implicit and an explicit solver are used for dynamic
plane stress and strain problems.

For the implicit approximation adapt the notation from Section 7.7, leading to the result

Wρ
d2

dt2
v⃗(t) = −A v⃗(t) +Wf f⃗(t)

Wρ
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −A v⃗(t−∆t) + 2 v⃗(t) + v⃗(t+∆t)

4
+Wf f⃗(t)(

+Wρ +
(∆t)2

4
A

)
v⃗(t+∆t) = −

(
Wρ +

(∆t)2

4
A

)
v⃗(t−∆t) +

+

(
2Wρ −

(∆t)2

2
A

)
v⃗(t) + (∆t)2 Wf f⃗(t) .

For the first step use v⃗(t0 −∆t) ≈ v⃗(t0 +∆t)− 2∆t v⃗0, leading to(
+Wρ +

(∆t)2

4
A

)
v⃗(t0 +∆t) = ∆t

(
Wρ +

(∆t)2

4
A

)
v⃗0 +

(
Wρ −

(∆t)2

4
A

)
(u⃗0 − u⃗B) +

(∆t)2

2
Wf f⃗(0)

where u⃗B is the steady state contribution with inhomogeneous boundary contributions.

For the explicit solver of the ODE (82) use

Wρ
d2

dt2
v⃗(t) = −A v⃗(t) +Wf f⃗(t)

Wρ
v⃗(t−∆t)− 2 v⃗(t) + v⃗(t+∆t)

(∆t)2
= −A v⃗(t) +Wf f⃗(t)

Wρv⃗(t+∆t) = −Wρ v⃗(t−∆t) +
(
2Wρ − (∆t)2 A

)
v⃗(t) + (∆t)2 Wf f⃗(t)

and for the first step use again the approximation y⃗(−∆t) ≈ v⃗(+∆t)− 2∆t v⃗0, leading to

Wρ v⃗(+∆t) = −Wρ (v⃗(+∆t)− 2∆t v⃗0) +
(
2Wρ − (∆t)2 A

)
v⃗(0) + (∆t)2 Wf f⃗(0)

2Wρ v⃗(+∆t) = +2∆tWρ v⃗0 +
(
2Wρ − (∆t)2 A

)
v⃗(0) + (∆t)2 Wf f⃗(0)

Wρ v⃗(+∆t) = +∆tWρ v⃗0 +

(
Wρ −

(∆t)2

2
A

)
(u⃗0 − u⃗B) +

(∆t)2

2
Wf f⃗(0) .

This explicit scheme is conditionally stable with the stability condition

λ ≤ 4

(∆t)2
or ∆t ≤ 2√

λ
for all generalized eigenvalues of A u⃗ = λWρ u⃗ .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 186

8.3 Construction of first order elements
The algorithm in this section is based on the results in Section 6.4 (p. 138), with the expressions in equation (81) to be
integrated over a triangle T . The approximation consists of piecewise linear, triangular segments. Thus the first order partial
derivatives are constant on each triangle. Consequently the strains are constant on each triangle. This is the reason for the
name Constant Strain Triangle, short CST.

8.3.1 Integration of f1 ϕ1 + f2 ϕ2

• If the values of the functions f1 and f2 at the Gauss points are denoted by the vectors f⃗1 and f⃗2, then use the
approximation ∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
3

(
⟨M ϕ⃗1 , f⃗1⟩+ ⟨M ϕ⃗2 , f⃗2⟩

)
=

area(T)
3

(
⟨ϕ⃗1 , MT f⃗1⟩+ ⟨ϕ⃗2 , MT f⃗2⟩

)
.

M ∈ R3×3 is the matrix for interpolation from the nodes to the Gauss points, given by

M =
1

6


4 1 1

1 4 1

1 1 4

 = MT .

• If the values of the functions f1 and f2 at the nodes are denoted by the vectors f⃗1 and f⃗2, then use the approximation∫∫
T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
3

(
⟨M ϕ⃗1 , M f⃗1⟩+ ⟨M ϕ⃗2 , M f⃗2⟩

)
=

area(T)
3

(
⟨ϕ⃗1 , MTM f⃗1⟩+ ⟨ϕ⃗2 , MTM f⃗2⟩

)
Thus find one contribution to (81). With a block matrix notation the above can be written in the form

area(T)
3

⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT 0

0 MT

](
f⃗1

f⃗2

)
⟩ or

area(T)
3

⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MTM 0

0 MTM

](
f⃗1

f⃗2

)
⟩ .

8.3.2 Integration of the terms involving derivatives of ϕ1 and ϕ2

For linear elements the gradient of the functions ui and ϕi are constant and using equation (37) given by

∇u =
−1

2 area(T)

[
(y3 − y2) (y1 − y3) (y2 − y1)
(x2 − x3) (x3 − x1) (x1 − x2)

]
· u⃗ =

[
Gx

Gy

]
u⃗ .

Evaluate the coefficients E and ν at the Gauss points g⃗i and define the averaged values

a1 =
1

3

3∑
i=1

E(g⃗i)

1− ν2(g⃗i)
, a2 =

1

3

3∑
i=1

ν(g⃗i)E(g⃗i)

1− ν2(g⃗i)
and a3 =

1

3

3∑
i=1

E(g⃗i)

2 (1 + ν(g⃗i))
.

This leads to the approximations

Iϕ1
=

∫∫
T

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ a1 ⟨Gxϕ⃗1,Gxu⃗1⟩+ a2 ⟨Gxϕ⃗1,Gyu⃗2⟩+ a3 ⟨Gyϕ⃗1,Gyu⃗1 +Gxu⃗2⟩
= a1 ⟨ϕ⃗1,GT

xGxu⃗1⟩+ a2 ⟨ϕ⃗1,GT
xGyu⃗2⟩+ a3 ⟨ϕ⃗1,GT

y Gyu⃗1 +GT
y Gxu⃗2⟩

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 187

Iϕ2
=

∫∫
T

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ a1 ⟨Gyϕ⃗2,Gyu⃗2⟩+ a2 ⟨Gyϕ⃗2,Gxu⃗1⟩+ a3 ⟨Gxϕ⃗2,Gyu⃗1 +Gxu⃗2⟩
= a1 ⟨ϕ⃗2,GT

y Gyu⃗2⟩+ a2 ⟨ϕ⃗2,GT
y Gxu⃗1⟩+ a3 ⟨ϕ⃗2,GT

xGyu⃗1 +GT
xGxu⃗2⟩

With a block matrix notation write the above in the form

Iϕ⃗ ≈ ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
a1G

T
xGx + a3G

T
y Gy a2G

T
xGy + a3G

T
y Gx

a2G
T
y Gx + a3G

T
xGy a1G

T
y Gy + a3G

T
xGx

](
u⃗1

u⃗2

)
⟩ =: ⟨

(
ϕ⃗1

ϕ⃗2

)
,G

(
u⃗1

u⃗2

)
⟩ .

The symmetric 6 × 6 matrix G ∈ R6×6 is the element stiffness matrix for the triangle T , containing contributions to the
integrals in (81).

8.3.3 The boundary integral

The boundary integral is similar to (38) on page 143. With α = 1−1/
√
3

2 use the symmetric interpolation matrix from nodes
to Gauss points

Mb =

[
1− α α

α 1− α

]
and the length L of the edge segment for the approximate integral∫

edge
g⃗N · ϕ⃗ ds =

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈
L

2
⟨ϕ⃗1,Mb g⃗1⟩+

L

2
⟨ϕ⃗2,Mb g⃗2⟩ ,

where the functions g1 and g2 are evaluated at the Gauss points.

8.3.4 Construct a weight matrix W

For eigenvalue and dynamic problems it is necessary to evaluate∫∫
Ω

ρ(x, y) (f1(x, y)ϕ1(x, y) + f2(x, y)ϕ2(x, y) dA ≈ ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
W1 0

0 W2

](
f⃗1

f⃗2

)
⟩ ,

where ϕ⃗i and f⃗i are evaluated at the nodes. For a weight function ρ(x, y) construct the matrix WT for a given triangle with
the values of ρ(x, y) at the Gauss points by

WT =


ρ(g⃗1) 0 0

0 ρ(g⃗2) 0

0 0 ρ(g⃗3)


and then use the interpolation matrix M from nodes to Gauss points.∫∫

T

ρ (f1 ϕ1 + f2 ϕ2) dA ≈ area(T)
3

(
⟨WTM ϕ⃗1 , Mf⃗1⟩+ ⟨WTM ϕ⃗2 , Mf⃗2⟩

)
=

area(T)
3

(
⟨ϕ⃗1 , MTWTMf⃗1⟩+ ⟨ϕ⃗2 , MTWTMf⃗2⟩

)
=

area(T)
3

⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MTWTM 0

0 MTWTM

](
f⃗1

f⃗2

)
⟩

For the constant function ρ(x, y) = 1 obtain

MTWM = M2 =
1

4


2 1 1

1 2 1

1 1 2

 .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 188

8.4 Construction of second order elements
The algorithm in this section is based on the results in Section 6.5 (p. 144), with the expressions in equation (81) to be
integrated over a triangle T . The approximation consists of piecewise quadratic, triangular segments. Thus the first order
partial derivatives are linear on each triangle.

8.4.1 Integration of f1 ϕ1 + f2 ϕ2

Use the Gauss weights w⃗ ∈ R7 from equation (34) on page 138 for the approximate integration over one triangle T .

• If the values of the functions f1 and f2 at the seven Gauss points are denoted by the vectors f⃗1 and f⃗2 ∈ R7, then use
the approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
(
⟨M ϕ⃗1 , diag(w⃗) f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗) f⃗2⟩

)
= area(T)

(
⟨ϕ⃗1 , MT diag(w⃗) f⃗1⟩+ ⟨ϕ⃗2 , MT diag(w⃗) f⃗2⟩

)
= area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT diag(w⃗) 0

0 MT diag(w⃗)

](
f⃗1

f⃗2

)
⟩ .

M ∈ R7×6 is the matrix for interpolation from the nodes to the Gauss points, given in equation (41) on page 146.

• If the values of the functions f1 and f2 at the nodes are denoted by the vectors f⃗1 and f⃗2 ∈ R6, then use the
approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
(
⟨M ϕ⃗1 , diag(w⃗)M f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗)M f⃗2⟩

)
= area(T)

(
⟨ϕ⃗1 , MT diag(w⃗)M f⃗1⟩+ ⟨ϕ⃗2 , MT diag(w⃗)M f⃗2⟩

)
= area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT diag(w⃗)M 0

0 MT diag(w⃗)M

](
f⃗1

f⃗2

)
⟩ .

Thus find one contribution to (81). Observe that MT diag(w⃗)M is a 6× 6 matrix, independent on the triangle T .

8.4.2 Integration of the terms involving derivatives of ϕ1 and ϕ2

Using the results from Section 6.5 the partial derivatives at the nodes of functions ϕ given at the notes find for the first
component φx = ∂ φ

∂x of the gradient at the Gauss points
φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

]
· ϕ⃗ =: Gx ϕ⃗

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)MT

ν

]
· ϕ⃗ =: Gy ϕ⃗ .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 189

Evaluate the coefficients E and ν at the Gauss points gi and multiply by the Gauss integration weights wi to obtain the three
diagonal matrices

A1 = diag


w1

E(g⃗1)
1−ν2(g⃗1)

w2
E(g⃗2)

1−ν2(g⃗2)

...

w7
E(g⃗7)

1−ν2(g⃗7)

 , A2 = diag


w1

ν(g⃗1)E(g⃗1)
1−ν2(g⃗1)

w2
ν(g⃗2)E(g⃗2)
1−ν2(g⃗2)

...

w7
E(ν(g⃗7) g⃗7)
1−ν2(g⃗7)

 and A3 = diag


w1

E(g⃗1)
2 (1+ν(g⃗1))

w2
E(g⃗2)

2 (1+ν(g⃗2))

...

w7
E(g⃗7)

2 (1+ν(g⃗7))

 .

This leads to the approximations

Iϕ1

area(T)
=

1

area(T)

∫∫
T

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ ⟨A1 Gxϕ⃗1,Gxu⃗1⟩+ ⟨diagA2 Gxϕ⃗1,Gyu⃗2⟩+ ⟨A3 Gyϕ⃗1,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗1,GT

xA1Gxu⃗1⟩+ ⟨ϕ⃗1,GT
xA2Gyu⃗2⟩+ ⟨ϕ⃗1,GT

y A3Gyu⃗1 +GT
y A3Gxu⃗2⟩

Iϕ1

area(T)
=

1

area(T)

∫∫
T

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ ⟨A1Gyϕ⃗2,Gyu⃗2⟩+ ⟨A2Gyϕ⃗2,Gxu⃗1⟩+ ⟨A3Gxϕ⃗2,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗2,GT

y A1Gyu⃗2⟩+ ⟨ϕ⃗2,GT
y A2Gxu⃗1⟩+ ⟨ϕ⃗2,GT

xA3Gyu⃗1 +GT
xA3Gxu⃗2⟩ .

With a block matrix notation write the above in the form

Iϕ⃗ = Iϕ1
+ Iϕ2

≈ area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
GT

xA1Gx +GT
y A3Gy GT

xA2Gy +GT
y A3Gx

GT
y A2Gx +GT

xA3Gy GT
y A1Gy +GT

xA3Gx

](
u⃗1

u⃗2

)
⟩

=: area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,G

(
u⃗1

u⃗2

)
⟩ .

The symmetric 12 × 12 matrix G ∈ R12×12 is the element stiffness matrix for the triangle T , containing contributions to
the integrals in (81).

8.4.3 The boundary integral

The boundary integral is similar to (47) on page 152, i.e. based on∫ h/2

−h/2

f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)
.

If the values of a function f at the two endpoints and the midpoint are denoted by (f1, f2, f3) use a quadratic interpolation
to find the values at the three Gauss integration points, given by

f(p⃗1)

f(p⃗2)

f(p⃗3)

 = MB


f1

f2

f3

 ≈


+0.68730 0.4 −0.08730
0 1 0

−0.08730 0.4 +0.68730




f1

f2

f3


and with the length L of the segment on the edge obtain the approximate integral

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L

18
⟨MBϕ⃗1 ,


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨MBϕ⃗2 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩

=
L

18
⟨ϕ⃗1 , MT

B


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨ϕ⃗2 , MT

B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩
SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 190

The integration weights can be combined with the interpolation matrix MB by

MBC =
1

18
MT

B


5 0 0

0 8 0

0 0 5

 ≈


0.1909 0 −0.0242
0.1111 0.4444 0.1111

−0.0242 0 0.1909

 .

This matrix MBC does not depend on the current edge segment and now use

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L ⟨ϕ⃗1 , MBC


g1(p⃗1)

g1(p⃗2)

g1(p⃗3)

⟩+ L ⟨ϕ⃗2 , MBC


g2(p⃗1)

g2(p⃗2)

g2(p⃗3)

⟩ .
The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the
end of Section 6.5.8.

8.4.4 Construct a weight matrix W

Use the same approach as for first order elements in Section 8.3.4 to approximate∫∫
Ω

ρ(x, y) (f1(x, y)ϕ1(x, y) + f2(x, y)ϕ2(x, y) dA ≈ ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
W1 0

0 W2

](
f⃗1

f⃗2

)
⟩ ,

where ϕ⃗i and f⃗i are evaluated at the nodes. With the Gauss weights wi and the values ρ(g⃗i) at the Gauss points g⃗i construct

WT = diag


w1 ρ(g⃗1)

w2 ρ(g⃗2)
...

w7 ρ(g⃗7)

 =


w1 ρ(g⃗1)

w2 ρ(g⃗2)

. . .

w7 ρ(g⃗7)

 ∈ R7×7 .

Use the interpolation matrix M ∈ R7×6 from equation (41) to interpolate from the six nodes to the seven Gauss points. This
leads to ∫∫

T

ρ (f1 ϕ1 + f2 ϕ2) dA ≈ ⟨WTM ϕ⃗1 , Mf⃗1⟩+ ⟨WTM ϕ⃗2 , Mf⃗2⟩

= ⟨ϕ⃗1 , MWTMf⃗1⟩+ ⟨ϕ⃗2 , MWTMf⃗2⟩

= ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MTWTM 0

0 MTWTM

](
f⃗1

f⃗2

)
⟩

Thus the matrix to use is MTWTM ∈ R6×6.

8.5 Construction of third order elements
The methods in this section are a combination of the tools used to construct third order elements for elliptic problems
(Section 6.6) and the methods in the previous Section 8.4 to construct second order elements.

8.5.1 Integration of f1 ϕ1 + f2 ϕ2

Use the Gauss weights w⃗ ∈ R7 from equation (34) on page 138 for the approximate integration over one triangle T .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 191

• If the values of the functions f1 and f2 at the seven Gauss points are denoted by the vectors f⃗1 and f⃗2 ∈ R7, then use
the approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
(
⟨M ϕ⃗1 , diag(w⃗) f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗) f⃗2⟩

)
= area(T)

(
⟨ϕ⃗1 , MT diag(w⃗) f⃗1⟩+ ⟨ϕ⃗2 , MT diag(w⃗) f⃗2⟩

)
= area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MT diag(w⃗) 0

0 MT diag(w⃗)

](
f⃗1

f⃗2

)
⟩ .

M ∈ R7×10 is the matrix for interpolation from the nodes to the Gauss points, given in equation (52) on page 155.

• If the values of the functions f1 and f2 at the nodes are denoted by the vectors f⃗1 and f⃗2 ∈ R10, then use the
approximation∫∫

T

f1 ϕ1 + f2 ϕ2 dA ≈ area(T)
(
⟨M ϕ⃗1 , diag(w⃗)M f⃗1⟩+ ⟨M ϕ⃗2 , diag(w⃗)M f⃗2⟩

)
= area(T)

(
⟨ϕ⃗1 , MT diag(w⃗)M f⃗1⟩+ ⟨ϕ⃗2 , MT diag(w⃗)M f⃗2⟩

)
.

Thus find one contribution to (81). Observe that MT diag(w⃗)M is a 10× 10 matrix, independent on the triangle T .

8.5.2 Integration of the terms involving derivatives of ϕ1 and ϕ2

Using the results from Section 6.6 the partial derivatives at the nodes of functions ϕ given at the notes find for the first
component φx = ∂ φ

∂x of the gradient at the Gauss points
φx(x⃗1)

φx(x⃗2)
...

φx(x⃗7)

 =
1

det(T)

[
(+y3 − y1)MT

ξ + (−y2 + y1)M
T
ν

]
· ϕ⃗ =: Gx ϕ⃗

and for the second component of the gradient
φy(x⃗1)

φy(x⃗2)
...

φy(x⃗7)

 =
1

det(T)

[
(−x3 + x1)M

T
ξ + (+x2 − x1)MT

ν

]
· ϕ⃗ =: Gy ϕ⃗ ,

using the interpolation matrices Mξ and Mν in equation (55) for the partial derivatives and the transformation rule (43) for
the gradient. The matrices Gx and Gy are of size 7× 10 and depend on the actual element, i.e. the triangle T .

Evaluate the coefficients E and ν at the Gauss points g⃗i and multiply by the Gauss integration weights wi to obtain the
three diagonal matrices

A1 = diag


w1

E(g⃗1)
1−ν2(g⃗1)

w2
E(g⃗2)

1−ν2(g⃗2)

...

w7
E(g⃗7)

1−ν2(g⃗7)

 , A2 = diag


w1

ν(g⃗1)E(g⃗1)
1−ν2(g⃗1)

w2
ν(g⃗2)E(g⃗2)
1−ν2(g⃗2)

...

w7
E(ν(g⃗7) g⃗7)
1−ν2(g⃗7)

 and A3 = diag


w1

E(g⃗1)
2 (1+ν(g⃗1))

w2
E(g⃗2)

2 (1+ν(g⃗2))

...

w7
E(g⃗7)

2 (1+ν(g⃗7))

 .

This leads to the approximations

Iϕ1

area(T)
=

1

area(T)

∫∫
T

E

1− ν2

(
∂ ϕ1
∂x

(
∂ u1
∂x

+ ν
∂ u2
∂y

) +
1− ν
2

∂ ϕ1
∂y

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 192

≈ ⟨A1 Gxϕ⃗1,Gxu⃗1⟩+ ⟨diagA2 Gxϕ⃗1,Gyu⃗2⟩+ ⟨A3 Gyϕ⃗1,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗1,GT

xA1Gxu⃗1⟩+ ⟨ϕ⃗1,GT
xA2Gyu⃗2⟩+ ⟨ϕ⃗1,GT

y A3Gyu⃗1 +GT
y A3Gxu⃗2⟩

Iϕ2

area(T)
=

1

area(T)

∫∫
T

E

1− ν2

(
∂ ϕ2
∂y

(
∂ u2
∂y

+ ν
∂ u1
∂x

) +
1− ν
2

∂ ϕ2
∂x

(
∂ u1
∂y

+
∂ u2
∂x

)

)
dA

≈ ⟨A1Gyϕ⃗2,Gyu⃗2⟩+ ⟨A2Gyϕ⃗2,Gxu⃗1⟩+ ⟨A3Gxϕ⃗2,Gyu⃗1 +Gxu⃗2⟩
= ⟨ϕ⃗2,GT

y A1Gyu⃗2⟩+ ⟨ϕ⃗2,GT
y A2Gxu⃗1⟩+ ⟨ϕ⃗2,GT

xA3Gyu⃗1 +GT
xA3Gxu⃗2⟩ .

With a block matrix notation write the above in the form

Iϕ⃗ = Iϕ1
+ Iϕ2

≈ area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
GT

xA1Gx +GT
y A3Gy GT

xA2Gy +GT
y A3Gx

GT
y A2Gx +GT

xA3Gy GT
y A1Gy +GT

xA3Gx

](
u⃗1

u⃗2

)
⟩

=: area(T) ⟨

(
ϕ⃗1

ϕ⃗2

)
,G

(
u⃗1

u⃗2

)
⟩ .

The symmetric 20 × 20 matrix G ∈ R20×20 is the element stiffness matrix for the triangle T , containing contributions to
the integrals in (81).

8.5.3 The boundary integral

The boundary integral is similar to (6.6.7) on page 161, i.e. based on∫ h/2

−h/2

f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)
.

If the values of a function f at the two endpoints and the two points on the edge are denoted by (f−2, f−1, f+1, f+2) use a
cubic interpolation to find the values at the three Gauss integration points, given by

u(p⃗1)

u(p⃗2)

u(p⃗3)

 = MB


f−2

f−1

f+1

f+2

 ≈


0.4880 0.7479 −0.2979 0.06199

−0.0625 0.5625 0.5625 −0.0625
0.06199 −0.2979 0.7479 0.4880




f−2

f−1

f+1

f+2


and with the length L of the segment on the edge obtain the approximate integral

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L

18
⟨MBϕ⃗1 ,


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨MBϕ⃗2 ,


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩

=
L

18
⟨ϕ⃗1 , MT

B


5 g1(p⃗1)

8 g1(p⃗2)

5 g1(p⃗3)

⟩+ L

18
⟨ϕ⃗2 , MT

B


5 g2(p⃗1)

8 g2(p⃗2)

5 g2(p⃗3)

⟩ .
The integration weights can be combined with the interpolation matrix MB by

MBC =
1

18
MT

B


5 0 0

0 8 0

0 0 5

 ≈


0.1356 −0.0278 0.0172

0.2077 0.2500 −0.0827
−0.0827 0.2500 0.2077

0.0172 −0.0278 0.1356

 .

This matrix MBC does not depend on the current edge segment and leads to

∫
edge

g1 ϕ1 + g2 ϕ2 ds ≈ L ⟨ϕ⃗1 , MBC


g1(p⃗1)

g1(p⃗2)

g1(p⃗3)

⟩+ L ⟨ϕ⃗2 , MBC


g2(p⃗1)

g2(p⃗2)

g2(p⃗3)

⟩ .
SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 193

The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the
end of Section 6.6.7.

8.5.4 Construct a weight matrix W

Use the same approach as for first or second order elements in Sections 8.3.4 and 8.4.4. Use the interpolation matrix
M ∈ R7×10 from equation (52) to interpolate from the ten nodes to the seven Gauss points. This leads to∫∫

T

ρ (f1 ϕ1 + f2 ϕ2) dA ≈ ⟨WTM ϕ⃗1 , Mf⃗1⟩+ ⟨WTM ϕ⃗2 , Mf⃗2⟩

= ⟨ϕ⃗1 , MTWTMf⃗1⟩+ ⟨ϕ⃗2 , MTWTMf⃗2⟩

= ⟨

(
ϕ⃗1

ϕ⃗2

)
,

[
MTWTM 0

0 MTWTM

](
f⃗1

f⃗2

)
⟩

Thus the matrix to use is MTWTM ∈ R10×10.

8.6 The plane strain problem
For a plane strain problem it is assumed that there are no strains in z–direction, i.e.

εxz = εyz = εz = 0 .

With the modified material parameters in equation (27) ν⋆ = ν
1−ν and E⋆ = E

1−ν2 this leads to a simplification of Hooke’s
law. 

σx

σy

τxy

 =
E

(1 + ν) (1− 2 ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2 ν




εxx

εyy

εxy



=
E⋆

(1− ν⋆) (1 + ν⋆)


1 ν⋆ 0

ν⋆ 1 0

0 0 1− ν⋆




εxx

εyy

εxy


σz =

E ν (εxx + εyy)

(1 + ν) (1− 2 ν)

This is very similar to Hooke’s law (20) for the plane stress situation, but with E⋆ and ν⋆ instead of E and ν. The energy
density is in this case given by

Wstrain =
1

2

E

(1 + ν) (1− 2 ν)
⟨


1− ν ν 0

ν 1− ν 0

0 0 2 (1− 2 ν)




εxx

εyy

εxy

 ,


εxx

εyy

εxy

⟩
=

E (1− ν)
2 (1 + ν) (1− 2 ν)

(
ε2xx + ε2yy + 2

ν

1− ν
εxxεyy + 2

1− 2 ν

1− ν
ε2xy

)
=

E⋆

2 (1− (ν⋆)2)

(
ε2xx + ε2yy + 2 ν⋆ εxxεyy + 2 (1− ν⋆) ε2xy

)
(83)

This is very similar to the elastic energy density (21) for plane stress problems.

As a consequence of the similarity of the plane strain and plane stress problem there is no need for extensive new codes
for plane strain problems. It is sufficient to write a wrapper to modify the material parameters.

E → E⋆ =
E

1− ν2
≥ E and ν → ν⋆ =

ν

1− ν
≥ ν

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 194

8.7 Elasticity for axially symmetric setups
For functions ur(r, z) and uz(r, z) examine displacements of the form

u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

 =


ur(r, z) cosφ

ur(r, z) sinφ

uz(r, z)

 .

and the total energy to be minimized is given by expression (29) on page 19.

U(u⃗) = Uelast + UV ol + USurf

=

∫∫
Ω

2π r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) (ε2rr + ε2zz +

1

r2
u2r) + 2 ν (εrrεzz +

1

r
ur (εrr + εzz))

)
dA+

+

∫∫
Ω

2π r E

1 + ν
ε2rz dA−

∫∫
Ω

2π r f⃗ · u⃗ dA−
∫
Γ2

2π r g⃗N · u⃗ ds .

Use the strains 
εrr

εϕϕ

εzz

εrz

 =


∂ ur

∂r
1
r ur
∂ uz

∂z
1
2 (

∂ ur

∂z + ∂ uz

∂r)


to rewrite the above with the displacement functions ur and uz in the form

U(u⃗)

2π
=

∫∫
Ω

r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) ((∂ ur

∂r
)2 + (

∂ uz
∂z

)2 +
1

r2
u2r)+

+2 ν ((
∂ ur
∂r

)(
∂ uz
∂z

) +
1

r
ur (

∂ ur
∂r

+
∂ uz
∂z

))

)
dA+

+

∫∫
Ω

r E

1 + ν

1

4
(
∂ ur
∂z

+
∂ uz
∂r

)2 dA−

−
∫∫
Ω

r (fr ur + fz uz) dA−
∫
Γ2

r (gNr ur + gNz uz) ds .

Expanding and ignoring quadratic terms of the perturbation ϕ⃗ leads to

U(u⃗+ ϕ⃗)

2π
≈ U(u⃗)

2π
+

∫∫
Ω

r E

(1 + ν) (1− 2 ν)

(
(1− ν)

(
∂ ur
∂r

∂ ϕr
∂r

+
∂ uz
∂z

∂ ϕz
∂z

+
1

r2
ur ϕr

)
+

+ν

(
(
∂ ur
∂r

)(
∂ ϕz
∂z

) + (
∂ ϕr
∂r

)(
∂ uz
∂z

) +
1

r
ur (

∂ ϕr
∂r

+
∂ ϕz
∂z

) +
1

r
ϕr (

∂ ur
∂r

+
∂ uz
∂z

)

))
dA+

+

∫∫
Ω

r E

1 + ν

1

2

(
∂ ur
∂z

∂ ϕr
∂z

+
∂ uz
∂r

∂ ϕz
∂r

+
∂ ur
∂z

∂ ϕz
∂r

+
∂ ϕr
∂z

∂ uz
∂r

)
dA−

−
∫∫
Ω

r (fr ϕr + fz ϕz) dA−
∫
Γ2

r (gNr ϕr + gNz ϕz) ds .

These integrals can be separated into contributions with ϕr, ϕz , f and gN .

U(u⃗+ ϕ⃗)

2π
≈ U(u⃗)

2π
+ Iϕr

+ Iϕz
+ If + Ig (84)

Iϕr
=

∫∫
Ω

r E

(1 + ν) (1− 2 ν)

(
(1− ν) (∂ ur

∂r

∂ ϕr
∂r

+
1

r2
ur ϕr)+ (85)

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 195

+ν

(
∂ uz
∂z

∂ ϕr
∂r

+
1

r
ur
∂ ϕr
∂r

+
1

r
ϕr (

∂ ur
∂r

+
∂ uz
∂z

)

))
+

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕr
∂z

dA

Iϕz
=

∫∫
Ω

r E

(1 + ν) (1− 2 ν)

(
(1− ν) ∂ uz

∂z

∂ ϕz
∂z

+ ν (
∂ ur
∂r

∂ ϕz
∂z

+
1

r
ur
∂ ϕz
∂z

)

)
+ (86)

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕz
∂r

dA

If = −
∫∫
Ω

r (fr ϕr + fz ϕz) dA (87)

Ig = −
∫
Γ2

r (gNr ϕr + gNz ϕz) ds (88)

Using these integrals derive the FEM algorithm for elements of order 1, 2 and 3.

8.8 Construction of first order elements
This is similar to the computations in Section 8.3, starting in page 186. In this section the element stiffness matrix is
constructed. Then use the procedure in Section 6.4 (page 138) to determine the global stiffness matrix.

8.8.1 Integration of r (fr ϕr + fz ϕz)

Evaluate the radius r at the three Gauss points of the triangle T , leading to the diagonal matrix R = diag([r1, r2, r3]) and
use the interpolation matrix from the corners to the Gauss points

M =
1

6


4 1 1

1 4 1

1 1 4

 .

• If the values of the functions fr and fz at the Gauss points are denoted by the vectors f⃗r and f⃗z , then use the
approximation ∫∫

T

r (fr ϕr + fz ϕz) dA ≈ area(T)
3

(
⟨M ϕ⃗r , Rf⃗r⟩+ ⟨M ϕ⃗z , Rf⃗z⟩

)
=

area(T)
3

(
⟨ϕ⃗r , MTRf⃗r⟩+ ⟨ϕ⃗z , MTRf⃗z⟩

)
.

• If the values of the functions fr and fz at the nodes are denoted by the vectors f⃗r and f⃗z , then use the approximation∫∫
T

r (fr ϕr + fz ϕz) dA ≈ area(T)
3

(
⟨M ϕ⃗r , RM f⃗r⟩+ ⟨M ϕ⃗z , RM f⃗z⟩

)
=

area(T)
3

(
⟨ϕ⃗r , MTRM f⃗r⟩+ ⟨ϕ⃗z , MTRM f⃗z⟩

)
With the above the contributions in (87) for each element stiffness matrix can be determined.

8.8.2 Integration of the terms involving derivatives of ϕz and ϕz

For linear elements the gradient of the functions ui and ϕi are constant and using equation (37) given by

∇u =
−1

2 area(T)

[
(z3 − z2) (z1 − z3) (z2 − z1)
(r2 − r3) (r3 − r1) (r1 − r2)

]
· u⃗ =

[
Gr

Gz

]
u⃗ .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 196

Evaluate the coefficients E and ν at the Gauss points g⃗i and define the average values aj , vector a⃗4 and the diagonal
matrix A2. Since the derivatives of order one of the displacements are piecewise constant, some of the expressions require
less computational effort to determine.

a1 =
area(T)

3

3∑
i=1

r(g⃗i)E(g⃗i) (1− ν(g⃗i))
(1 + ν(g⃗i)) (1− 2 ν(g⃗i))

A2 =
area(T)

3
diag(

E(g⃗i) (1− ν(g⃗i))
r(g⃗i) (1 + ν(g⃗i)) (1− 2 ν(g⃗i))

)

a3 =
area(T)

3

3∑
i=1

r(g⃗i)E(g⃗i) ν(g⃗i)

(1 + ν(g⃗i)) (1− 2 ν(g⃗i))

(⃗a4)i =
area(T)

3

E(g⃗i) ν(g⃗i)

(1 + ν(g⃗i)) (1− 2 ν(g⃗i))

a5 =
area(T)

3

3∑
i=1

r(g⃗i)E(g⃗i)

2 (1 + ν(g⃗i))

This leads to the approximate integrals

Iϕr
=

∫∫
T

r E

(1 + ν) (1− 2 ν)

(
(1− ν) (∂ ur

∂r

∂ ϕr
∂r

+
1

r2
ur ϕr)+

+ν

(
∂ uz
∂z

∂ ϕr
∂r

+
1

r
ur

∂ ϕr
∂r

+
1

r
ϕr (

∂ ur
∂r

+
∂ uz
∂z

)

))
+

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕr
∂z

dA

≈ a1 ⟨Grϕ⃗r,Gru⃗r⟩+ ⟨Mϕ⃗r,A2Mu⃗r⟩+ a3 ⟨Grϕ⃗r,Gzu⃗z⟩+
+⟨⃗a4Grϕ⃗r,Mu⃗r⟩+ ⟨Mϕ⃗r, a⃗4 (Gru⃗r +Gzu⃗z)⟩+ a5 ⟨Gzϕ⃗r, (Gzu⃗r +Gru⃗z)⟩

= a1 ⟨ϕ⃗r,GT
r Gru⃗r⟩+ ⟨ϕ⃗r,MTA2Mu⃗r⟩+ a3 ⟨ϕ⃗r,GT

r Gzu⃗z⟩+
+⟨ϕ⃗r, (⃗a4Gr)

TMu⃗r⟩+ ⟨ϕ⃗r,MT a⃗4 (Gru⃗r +Gzu⃗z)⟩+ a5 ⟨ϕ⃗r,GT
z (Gzu⃗r +Gru⃗z)⟩

= ⟨a1 GT
r Gru⃗r +MTA2Mu⃗r + a3 G

T
r Gzu⃗z + (⃗a4Gr)

TMu⃗r, ϕ⃗r⟩+
+⟨MT a⃗4 (Gru⃗r +Gzu⃗z) + a5 G

T
z (Gzu⃗r +Gru⃗z), ϕ⃗r⟩

= ⟨
(
a1 G

T
r Gr +MTA2M+ (⃗a4Gr)

TM+MT a⃗4 Gr + a5 G
T
z Gz

)
u⃗r, ϕ⃗r⟩

+⟨
(
a3 G

T
r Gz +MT a⃗4 Gz + a5 G

T
z Gr

)
u⃗z, ϕ⃗r⟩

and

Iϕz
=

∫∫
T

r E

(1 + ν) (1− 2 ν)

(
(1− ν) ∂ uz

∂z

∂ ϕz
∂z

+ ν (
∂ ur
∂r

∂ ϕz
∂z

+
1

r
ur

∂ ϕz
∂z

)

)
+

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕz
∂r

dA

≈ a1 ⟨Gzϕ⃗z,Gzu⃗z⟩+ a3 ⟨Gzϕ⃗z,Gru⃗r⟩+ ⟨⃗a4Gzϕ⃗z,Mu⃗r⟩+ a5 ⟨Grϕ⃗z, (Gzu⃗r +Gru⃗z)⟩
= a1 ⟨ϕ⃗z,GT

z Gzu⃗z⟩+ a3 ⟨ϕ⃗z,GT
z Gru⃗r⟩+ ⟨ϕ⃗z, (⃗a4Gz)

TMu⃗r⟩+ a5 ⟨ϕ⃗z,GT
r (Gzu⃗r +Gru⃗z)⟩

= ⟨a1 GT
z Gzu⃗z + a3 G

T
z Gru⃗r + (⃗a4Gz)

TMu⃗r + a5 G
T
r (Gzu⃗r +Gru⃗z), ϕ⃗z⟩

= ⟨
(
a3 G

T
z Gr + (⃗a4Gz)

TM+ a5 G
T
r Gz

)
u⃗r, ϕ⃗z⟩+ ⟨

(
a1 G

T
z Gz + a5 G

T
r Gr

)
u⃗z, ϕ⃗z⟩

All of the above contributions are of the form ⟨Aru⃗r,z, ϕ⃗r⟩ or ⟨Azu⃗r,z, ϕ⃗z⟩ and thus contributions to the element stiffness
matrix A ∈M6×6.

⟨A

(
u⃗r

u⃗z

)
,

(
ϕ⃗r

ϕ⃗z

)
⟩ = ⟨

[
Ar,r Ar,z

Az,r Az,z

](
u⃗r

u⃗z

)
,

(
ϕ⃗r

ϕ⃗z

)
⟩

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 197

The 3 × 3 submatrices (e.g. Ar,z) satisfy Ar,z = AT
r,z and Ar,r, Az,z are symmetric. For sake of completeness the

symmetric 6× 6 element stiffness matrix.

A =

[
a1G

T
r Gr +MTA2M+ (⃗a4Gr)

TM+MT a⃗4Gr + a5G
T
z Gz a3G

T
r Gz +MT a⃗4Gz + a5G

T
z Gr

a3G
T
z Gr + (⃗a4Gz)

TM+ a5G
T
r Gz a1G

T
z Gz + a5G

T
r Gr

]

8.8.3 The boundary integral

The boundary integral is similar to (38) on page 143. With α = 1−1/
√
3

2 use the symmetric interpolation matrix from nodes
to Gauss points

Mb =

[
1− α α

α 1− α

]
= MT

b

to find the two Gauss points p⃗1 and p⃗2 and to evaluate the radius r at the Gauss points, leading to the diagonal matrix
R = diag([r(p⃗1), r(p⃗2)]) . Then use the length L of the edge segment for the approximate integral∫

edge
r (gNr ϕr + gNz ϕz) ds ≈ L

2
⟨Mbϕ⃗r,R g⃗Nr⟩+

L

2
⟨Mbϕ⃗z,R g⃗Nz⟩

=
L

2
⟨ϕ⃗r,Mb,R g⃗Nr⟩+

L

2
⟨ϕ⃗z,Mb R g⃗Nz⟩ ,

where the functions gNr and gNz are evaluated at the Gauss points.

8.9 Construction of second order elements
To construct elements of order 2 combine procedures from Section 8.4 for second order elements for plane stress problems
and the previous section 8.8 where first order elements are generated for axisymmetric problems.

8.9.1 Integration of r (fr ϕr + fz ϕz)

Use the Gauss weights w⃗ ∈ R7 from equation (34) on page 138 for the approximate integration over one triangle T and the
vector r⃗ = (r1, r2, . . . , r7)

T of the radii at the Gauss points. With these construct the diagonal matrix

RW = diag([r1w1, r2w2, . . . , r7w7]) ∈M7×7 .

• If the values of the functions fr and fz at the seven Gauss points are denoted by the vectors f⃗r and f⃗z ∈ R7, then use
the approximation∫∫

T

r (fr ϕr + fz ϕz) dA ≈ area(T)
(
⟨M ϕ⃗r , diag(w⃗) f⃗r⟩+ ⟨M ϕ⃗z , RW f⃗z⟩

)
= area(T)

(
⟨ϕ⃗r , MTRW f⃗r⟩+ ⟨ϕ⃗z , MTRW f⃗z⟩

)
= area(T) ⟨

(
ϕ⃗r

ϕ⃗z

)
,

[
MTRW 0

0 MTRW

](
f⃗r

f⃗z

)
⟩ .

M ∈ R7×6 is the matrix for interpolation from the nodes to the Gauss points, given in equation (41) on page 146.

• If the values of the functions fr and fz at the nodes are denoted by the vectors f⃗r and f⃗r ∈ R6, then use the
approximation∫∫

T

r (fr ϕr + fz ϕz) dA ≈ area(T)
(
⟨M ϕ⃗r , RWM f⃗r⟩+ ⟨M ϕ⃗z , RWM f⃗z⟩

)
= area(T)

(
⟨ϕ⃗r , MTRWM f⃗r⟩+ ⟨ϕ⃗z , MTRWM f⃗z⟩

)
= area(T) ⟨

(
ϕ⃗r

ϕ⃗z

)
,

[
MTRWM 0

0 MTRWM

](
f⃗r

f⃗z

)
⟩ .

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 198

With the above the contributions in (87) for each element stiffness matrix can be determined. Observe that MTRWM is a
6× 6 matrix, independent on the triangle T .

8.9.2 Integration of the terms involving derivatives of ϕr and ϕz

Using the results from Section 6.5 the partial derivatives at the nodes of functions ϕ given at the notes find for the first
component of the gradient at the Gauss points

∂

∂r
ϕ⃗ =

1

det(T)

[
(+z3 − z1)MT

ξ + (−z2 + z1)M
T
ν

]
· ϕ⃗ =: Gr ϕ⃗

and for the second component of the gradient

∂

∂z
ϕ⃗ =

1

det(T)

[
(−r3 + r1)M

T
ξ + (+r2 − r1)MT

ν

]
· ϕ⃗ =: Gz ϕ⃗ .

Observe that the matrices Gr and Gz depend on the triangle T . Evaluate the coefficients E and ν at the Gauss points g⃗i and
define diagonal matrices Aj .

A1 = area(T) diag(
wi r(g⃗i)E(g⃗i) (1− ν(g⃗i))
(1 + ν(g⃗i)) (1− 2 ν(g⃗i))

)

A2 = area(T) diag(
wiE(g⃗i) (1− ν(g⃗i))

r(g⃗i) (1 + ν(g⃗i)) (1− 2 ν(g⃗i))
)

A3 = area(T) diag(
wi r(g⃗i)E(g⃗i) ν(g⃗i)

(1 + ν(g⃗i)) (1− 2 ν(g⃗i))
)

A4 = area(T) diag(
wiE(g⃗i) ν(g⃗i)

(1 + ν(g⃗i)) (1− 2 ν(g⃗i))
)

A5 = area(T) diag(
wi r(g⃗i)E(g⃗i)

2 (1 + ν(g⃗i))
)

This leads to the approximate integrals

Iϕr
=

∫∫
T

r E

(1 + ν) (1− 2 ν)

(
(1− ν) (∂ ur

∂r

∂ ϕr
∂r

+
1

r2
ur ϕr)+

+ν

(
∂ uz
∂z

∂ ϕr
∂r

+
1

r
ur

∂ ϕr
∂r

+
1

r
ϕr (

∂ ur
∂r

+
∂ uz
∂z

)

))
+

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕr
∂z

dA

≈ ⟨Grϕ⃗r,A1Gru⃗r⟩+ ⟨Mϕ⃗r,A2Mu⃗r⟩+ ⟨Grϕ⃗r,A3Gzu⃗z⟩+
+⟨Grϕ⃗r,A4Mu⃗r⟩+ ⟨Mϕ⃗r,A4(Gru⃗r +Gzu⃗z)⟩+ ⟨Gzϕ⃗r,A5(Gzu⃗r +Gru⃗z)⟩

= ⟨ϕ⃗r,GT
r A1Gru⃗r⟩+ ⟨ϕ⃗r,MTA2Mu⃗r⟩+ ⟨ϕ⃗r,GT

r A3Gzu⃗z⟩+
+⟨ϕ⃗r,GT

r A4Mu⃗r⟩+ ⟨ϕ⃗r,MTA4(Gru⃗r +Gzu⃗z)⟩+ ⟨ϕ⃗r,GT
z A5(Gzu⃗r +Gru⃗z)⟩

= ⟨GT
r A1Gru⃗r +MTA2Mu⃗r +GT

r A3Gzu⃗z +GT
r A4Mu⃗r, ϕ⃗r⟩+

+⟨MTA4 (Gru⃗r +Gzu⃗z) +GT
z A1(Gzu⃗r +Gru⃗z), ϕ⃗r⟩

= ⟨
(
GT

r A1Gr +MTA2M+GT
r A4M+MTA4 Gr +GT

z A5Gz

)
u⃗r, ϕ⃗r⟩

+⟨
(
GT

r A3Gz +MTA4 Gz +GT
z A5Gr

)
u⃗z, ϕ⃗r⟩

and

Iϕz =

∫∫
T

r E

(1 + ν) (1− 2 ν)

(
(1− ν) ∂ uz

∂z

∂ ϕz
∂z

+ ν (
∂ ur
∂r

∂ ϕz
∂z

+
1

r
ur

∂ ϕz
∂z

)

)
+

+
r E

2 (1 + ν)

(
∂ ur
∂z

+
∂ uz
∂r

)
∂ ϕz
∂r

dA

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 199

≈ ⟨Gzϕ⃗z,A1Gzu⃗z⟩+ ⟨Gzϕ⃗z,A3Gru⃗r⟩+ ⟨A4Gzϕ⃗z,Mu⃗r⟩+ ⟨Grϕ⃗z,A5(Gzu⃗r +Gru⃗z)⟩
= ⟨ϕ⃗z,GT

z A1Gzu⃗z⟩+ ⟨ϕ⃗z,GT
z A3Gru⃗r⟩+ ⟨ϕ⃗z,GT

z A4Mu⃗r⟩+ ⟨ϕ⃗z,GT
r A5(Gzu⃗r +Gru⃗z)⟩

= ⟨GT
z A1Gzu⃗z +GT

z A3Gru⃗r +GT
z A4Mu⃗r +GT

r A5(Gzu⃗r +Gru⃗z), ϕ⃗z⟩
= ⟨

(
GT

z A3Gr +GT
z A4M+GT

r A5Gz

)
u⃗r, ϕ⃗z⟩+ ⟨

(
GT

z A1Gz +GT
r A5Gr

)
u⃗z, ϕ⃗z⟩ .

All of the above contributions are of the form ⟨Aru⃗r,z, ϕ⃗r⟩ or ⟨Azu⃗r,z, ϕ⃗z⟩ and thus contributions to the symmetric element
stiffness matrix A ∈M12×12, where e.g. Ar,z ∈M6×6. For sake of completeness the symmeytric 12×12 element stiffness
matrix A is given by

A =

[
GT

r A1Gr +MTA2M+GT
r A4M+MTA4Gr +GT

z A5Gz GT
r A3Gz +MTA4Gz +GT

z A5Gr

GT
z A3Gr +GT

z A4M+GT
r A5Gz GT

z A1Gz +GT
r A5Gr

]
.

8.9.3 The boundary integral

The boundary integral is constructed similar to the procedures in Section 8.4.3, i.e. building on∫ h/2

−h/2

f(x) dx ≈ h

18

(
5 f(−

√
3

2
√
5
h) + 8 f(0) + 5 f(

√
3

2
√
5
h)

)
.

If the values of a function f at the two endpoints and the midpoint are denoted by f⃗ = (f1, f2, f3)
T use a quadratic

interpolation to find the values at the three Gauss integration points, given by MB f⃗ and evaluate the radii ri at the Gauss
points. With the length L of the segment on the edge obtain the approximate integral

∫
edge

r (gr ϕr + gz ϕz) ds ≈ L

18
⟨MBϕ⃗r ,


5 r1 gr(p⃗1)

8 r2 gr(p⃗2)

5 r3 gr(p⃗3)

⟩+ L

18
⟨MBϕ⃗z ,


5 r1 gz(p⃗1)

8 r2 gz(p⃗2)

5 r3 gz(p⃗3)

⟩

=
L

18
⟨ϕ⃗r , MT

B


5 r1 gr(p⃗1)

8 r2 gr(p⃗2)

5 r3 gr(p⃗3)

⟩+ L

18
⟨ϕ⃗z , MT

B


5 r1 gz(p⃗1)

8 r2 gz(p⃗2)

5 r3 gz(p⃗3)

⟩ .
The integration weights can be combined with the interpolation matrix MB by

MBC =
1

18
MT

B


5 0 0

0 8 0

0 0 5

 ≈


0.1909 0 −0.0242
0.1111 0.4444 0.1111

−0.0242 0 0.1909

 .

This matrix MBC does not depend on the current edge segment and leads to

∫
edge

r (gr ϕr + gz ϕz) ds ≈ L ⟨ϕ⃗r , MBC


r1 gr(p⃗1)

r2 gr(p⃗2)

r3 gr(p⃗3)

⟩+ L ⟨ϕ⃗z , MBC


r1 gz(p⃗1)

r2 gz(p⃗2)

r3 gz(p⃗3)

⟩ .
The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the
end of Section 6.5.8.

8.10 Construction of third order elements
To construct elements of order 3 combine procedures from Section 8.5 for third order elements for plane stress problems
and the previous section 8.9 where second order elements are generated for axisymmetric problems.

SHA 15-5-24

8 THE ALGORITHMS FOR PLANE ELASTICITY AND AXIALLY SYMMETRIC ELASTICITY 200

8.10.1 Integration of r (fr ϕr + fz ϕz)

The computations are identical to Section 8.9.1 for second order elements. The only difference is the interpolation matrix
M ∈ M7×10, which has to interpolate from the 10 nodes to the 7 Gauss points. See equation (52) on page 155. The
contributions in (87) for each element stiffness matrix can be determined. The matrix MTRWM is a 10 × 10 matrix,
independent on the triangle T .

8.10.2 Integration of the terms involving derivatives of ϕz and ϕz

The algorithm is extremely similar to Section 8.9.2 for second order elements, but the matrices Mξ and Mν are of size
7 × 10. This leads to the matrices Gx and Gy ∈ M7×10 to evaluate the partial derivatives at the nodes, using the values
of the function at the nodes. The resulting matrices Ar,z and similar are of size 10 × 10, leading to the element stiffness
matrix A ∈M20×20.

8.10.3 The boundary integral

The algorithm is extremely similar to Section 8.9.3 for second order elements. The effect of the boundary integral on the
global stiffness matrix and the vector is very similar to the approach shown at the end of Section 6.6.7.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 201

9 Examples, Examples, Examples

9.1 An elliptic problem with variable coefficients
The elliptic BVP in Section 5.5 is

−∇
(
(1 + x2)∇u(x, y)

)
= −4 (1 + x2) exp(−2 y) for (x, y) ∈ Ω

∂ u(0,y)
∂x = 0 for 1 ≤ y ≤ 2

u(x, y) = exp(−2 y) on other sections of the boundary

.

on the domain shown in Figure 80(a). The exact solution is given by ue(x, y) = exp(−2 y). To solve this BVP with
FEMoctave use the following steps:

1. Use CreateMeshTriangle() to generate a mesh on the rectangle 1 ≤ r ≤ 2 and 0 ≤ φ ≤ π/2.

2. With the polar coordinates use (
x

y

)
=

(
r cosφ

r sinφ

)
to generate the mesh on the section of a ring, visible in Figure 80(a) with the help of an appropriate function
Deform() and the function MeshDeform().

3. Then use MeshUpgrade() to generate a mesh with third order elements.

4. Define the coefficient functions a(x, y) = 1 + x2 and the right hand side f(x, y) = −4 (1 + x2) exp(−2 y) with
Octave functions.

5. Call the function BVP2Dsym() with appropriate arguments to calculate the approximate solution u(x, y).

6. Use FEMtrimesh() to display the solution visible in Figure 80(b) and then use FEMIntegrate() to determine
the L2–error ∫∫

Ω

|u(x, y)− uexact(x, y)|2 dA

1/2

≈ 3.3 · 10−6 .

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

(a) the mesh (b) the solution

Figure 80: The mesh and the solution of an elliptic problem with variable coefficients

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 202

DeformVariableCoeff.m
clear *
h = 0.1
function xy_new = Deform(xy)
xy_new = [xy(:,1).*cos(xy(:,2)), xy(:,1).*sin(xy(:,2))];

endfunction

function u = f_u_exact(xy)
u = exp(-2*xy(:,2));

endfunction

function u = f_DDu_exact(xy)
u = -4*(1+xy(:,1).ˆ2).*exp(-2*xy(:,2));

endfunction

function a = f_a(xy)
a = 1 + xy(:,1).ˆ2;

endfunction

FEMmesh = CreateMeshTriangle('Test',[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],hˆ2);
FEMmesh = MeshDeform(FEMmesh,'Deform');
figure(1); FEMtrimesh(FEMmesh)
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
u = BVP2Dsym(FEMmesh,'f_a',0,'f_DDu_exact','f_u_exact',0,0);
figure(2); FEMtrimesh(FEMmesh,u)

xlabel('x'); ylabel('y'); zlabel('u'); view([-150,30])
u_exact = f_u_exact(FEMmesh.nodes);
L2Error = sqrt(FEMIntegrate(FEMmesh,(u-u_exact).ˆ2))
-->
L2Error = 3.3205e-06

9.2 An animated wave
With a narrow Gauss bell surface around (x, y) ≈ (1, 0) as initial value and zero initial velocity observe the waves traveling
away from the initial location and the different types of reflections at the boundaries. Figure 81 shows the final status.

WaveAnimation.m
if 0 %% linear elements
FEMmesh = CreateMeshRect(linspace(0,pi,101),linspace(-pi,pi,101),-1,-2,-2,-2);

else %% quadratic elements
FEMmesh = CreateMeshRect(linspace(0,pi,51),linspace(-pi,pi,51),-1,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh);

endif
x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);

m=1; alpha=0.0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
t0=0; tend=3 ; steps = [150,10];

u0 = exp(-25*((x-1).ˆ2+(y-0).ˆ2));
v0 = zeros(length(FEMmesh.nodes),1);
[u_dyn,t] = I2BVP2D(FEMmesh,m,alpha,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);

figure(1) % show animation
for t_ii = 1:length(t)
FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
axis([0 pi -pi pi -0.2 0.4]); xlabel('x'); ylabel('y')
drawnow();

endfor

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 203

Figure 81: Traveling waves on a rectangle

9.3 An elliptic problem with radial symmetry, superconvergence
The Bessel function

u(x, y) = f(x, y) = J0(
√
x2 + y2)

is an exact solution of the BVP

−∆u+ u = 2 f for 0 < x, y < 1

u = f for (1, y) and (x, 1)
∂ u
∂n = 0 for (0, y) and (x, 0)

.

A solution is shown in Figure 82. This BVP is solved by two slightly different approaches, and then the difference to the
known exact solution is displayed in Figure 83. In both cases first a mesh with linear elements is generated, then upgraded to
a mesh with quadratic elements, using MeshUpgrade(). Then a mesh with identical nodes and DOF with linear elements
is generated by MeshQuad2Linear().

1. Use a uniform mesh generated by CreateMeshRect, leading to 400 degrees of freedom. The result in Figure 83(a)
shows the effect of super-convergence. Caused by the extremely regular structure of the grid points the differences
are smaller than can reasonably be expected.

2. Use a non-uniform mesh generated by CreateMeshTriangle, leading to 432 degrees of freedom. Thus one
expects to obtain similar accuracy. The result in Figure 83(b) confirms this.

N = 10; Triangle = 1
if Triangle
FEMmesh = CreateMeshTriangle('test1',[0 0 -2;1 0 -1; 1 1 -1; 0 1 -2],0.75/Nˆ2);
FEMmesh = MeshUpgrade(FEMmesh);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 204

Figure 82: The radial Bessel function as solution of a BVP

FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFTri = [FEMmesh.nDOF, FEMmesh1.nDOF]

else
FEMmesh = CreateMeshRect(linspace(0,1,N+1),linspace(0,1,N+1),-2,-1,-2,-1);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFRect = [FEMmesh.nDOF, FEMmesh1.nDOF]

endif

x y

-3e-06

-2e-06

0 1

-1e-06

0

1e-06

2e-06

0.8

error, quadratic elements

0.2
0.4 0.6

3e-06

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-4e-06

-2e-06

0

2e-06

0
0.2

1
0.8

error, quadratic elements

4e-06

0.4 0.6

6e-06

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 83: Difference to the exact solution of a BVP

To generate Figure 84 the command FEMgriddata() is used to evaluate the functions on a much finer grid (not
recomputing, just evaluation) and then display the difference between the approximate and exact solution. Observe that the
error is considerably larger, compared to evaluation at the nodes only. This illustrates that the effect of superconvergence
does not provide additional accuracy one can reliably count on.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 205

(a) uniform grid (b) nonumiform grid

Figure 84: Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid.

The gradient of this solution u can be determined using ∂
∂r J0(r) = −J1(r) and(

∂ u
∂x
∂ u
∂y

)
=

(
cosϕ

sinϕ

)
∂ u

∂r
+

(
− sinϕ

cosϕ

)
∂ u

∂ϕ
= −

(
cosϕ

sinϕ

)
J1(r) .

Using the above FEM results compare the true partial derivative ∂ u
∂x with the one obtained by FEM with second order

elements. Find the result in Figure 85. Observe the structure of the difference for the uniform mesh.

x y

-0.0006

-0.0004

0 1

-0.0002

0

0.0002

0.0004

error u
x
, quadratic elements

0.2
0.4

0.8
0.6

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-0.0006

-0.0004

0 1

-0.0002

0

0.0002

0.0004

0.2

error u
x
, quadratic elements

0.4
0.8

0.6
0.6 0.4

0.8 0.2
1 0

(b) nonumiform grid

Figure 85: Difference of ∂ u
∂x to the exact solution, using second order elements

The above can be repeated using first order elements, leading to Figure 86. The size of the elements was set such that
the same number of degrees of freedom are used. Observe that superconvergence strikes again. In this case I have a solid
argument for the structural difference along the border.

Find more information on superconvergence in [Zien13, §15.2] or a short demo in [Stah08, §6.8.2].

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 206

x y

-0.015

-0.01

-0.005

0 1
0.2 0.8

0

0.005

0.01

0.4 0.6

error u
x
, linear elements

0.6 0.4
0.8 0.2

1 0

(a) uniform grid

yx

-0.015

-0.01

-0.005

0

0.005

0.2 0.8
1

error u
x
, linear elements

0
0.4 0.6

0.01

0.6 0.4
0.8 0.2

1 0

(b) nonumiform grid

Figure 86: Difference of ∂ u
∂x to the exact solution, using first order elements

9.4 An example with limited regularity
Let Ω ∈ R2 be the unit square −1 < x, y < 1, with the fourth quadrant (x > 0, y < 0) cut out. For some of the calculations
identify (x, y) ∈ R2 with z = x+ i y ∈ C. Examine the functions

w(z) = z2/3 =
(
r eiϕ

)2/3
= r2/3 eiϕ 2/3 = r2/3 (cos(ϕ 2/3) + i sin(ϕ 2/3))

u(z) = r2/3 sin(ϕ 2/3)

u(x, y) = (x2 + y2)1/3 sin(
2

3
atan2(y, x)) .

This function satisfies −∆u = 0 and u(t, 0) = u(0,−t) = 0 for t > 0. Since ∂
∂r u = 2

3 r
−1/3 sin(23 ϕ) and ∂

∂ϕ u =
2
3 r

2/3 cos(23 ϕ) the partial derivatives of this function have a singularity at the origin. Compute

∥∇u∥2 = |∂ u
∂r
|2 + |1

r

∂ u

∂ϕ
|2 =

4

9
r−2/3 +

4

9

1

r2
cos2(

2

3
ϕ)∫∫

Ω

∥∇u∥2 dA =
4

9

∫ 1

0

(∫ 3π/2

0

r−2/3 + r−2 cos2(
2

3
ϕ) dϕ

)
r dr

=
4

9

∫ 1

0

(
3π

2
r−2/3 + r−2 3π

4

)
r dr =

2π

3

∫ 1

0

r1/3 dr +
π

3

∫ 1

0

1

r
dr = ∞

to observe that the gradient is not bounded in the L2 sense. Thus the standard error estimates based on Céa’s Lemma do
not apply. Expect approximation and convergence problems close to the origin. This is confirmed by the code below and
the resulting Figure 87. This example illustrates that non-convex domains with sharp corners might cause convergence
problems.

SingularDisc.m
x_p = [0;1;1;-1;-1;0]; y_p = [0;0;1;1;-1;-1];

FEMmesh = CreateMeshTriangle("circle34",[x_p,y_p,-ones(size(x_p))], 0.01);
FEMmesh = MeshUpgrade(FEMmesh);

function res = gD(xy)
phi = mod(atan2(xy(:,2),xy(:,1)),2*pi);
res = (xy(:,1).ˆ2+ xy(:,2).ˆ2).ˆ(1/3).*sin(2/3*phi);

endfunction

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 207

u = BVP2Dsym(FEMmesh,1,0,0,'gD',0,0);
figure(1); FEMtrimesh(FEMmesh,u);

xlabel("x"); ylabel("y"); title('FEM solution'); view([30,30])

u_exact = gD(FEMmesh.nodes);
figure(2); FEMtrimesh(FEMmesh,-u+u_exact);
xlabel("x"); ylabel("y"); title('Error of FEM solution'); view([30,30])

Figure 87: A solution with singular partial derivatives at the origin

The gradient in Cartesian coordinates can be determined by(
∂ u
∂x
∂ u
∂y

)
=

(
cosϕ

sinϕ

)
∂ u

∂r
+

(
− sinϕ

cosϕ

)
∂ u

∂ϕ

=

(
cosϕ

sinϕ

)
2

3
r−1/3 sin(ϕ 2/3) +

(
− sinϕ

cosϕ

)
2

3
r+2/3 cos(ϕ 2/3)

and then visualized, leading to Figure 88. It is clearly visible that the FEM solution is not accurate where the gradient has a
singularity.

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(3); FEMtrimesh(FEMmesh,ux);

xlabel("x"); ylabel("y"); title('FEM solution, u_x'); view([30,30])

figure(4); FEMtrimesh(FEMmesh,uy);
xlabel("x"); ylabel("y"); title('FEM solution, u_y'); view([30,30])

figure(5); FEMtrimesh(FEMmesh,sqrt(ux.ˆ2+uy.ˆ2));
xlabel("x"); ylabel("y"); title('FEM solution, norm of gradient');
view([30,30])

Singularities can show up in mechanical problems, e.g. for the washer fastener example in Section 9.36.

9.5 A potential flow problem
Consider a laminar flow between two plates with an obstacle between the two plates. Assume that the situation is indepen-
dent on one of the spatial variables and consider a cross section shown in Figure 89. The goal is to find the velocity field v⃗
of the fluid.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 208

Figure 88: A solution with singular partial derivatives, graphs of ∂ u
∂x and ∥∇u∥

This problem is solved by introducing a velocity potential Φ(x, y). The velocity vector v⃗ is then given by

v⃗ =

(
vx

vy

)
= −

(
∂ Φ
∂x
∂ Φ
∂y

)
.

The flow is assumed to be uniform far away from the obstacle. Thus set the potential to Φ = 1 (resp. Φ = 0) at the left (resp.
right) end of the plates. Since the fluid can not flow through the boundaries of the plates use that the normal component of
the velocity has to vanish at the upper and lower boundary. The differential equation to be satisfied by Φ is

∆Φ = div (gradΦ) = 0

In Figure 90 the resulting flow is visualized. Observe the unrealistic velocities at the corners of the domain. The model of
laminar flow is not appropriate in this situation. Selecting a finer mesh is no solution to this problem. Mathematically the
effect is related to the effect illustrated in Section 9.4.

-

6

@
@@

-
-
-
-
-
-
-

-
-
-
-
-
-
-

Φ = 1 Φ = 0

Figure 89: Fluid flow between two plates, the setup

The results are generated by the code below.

PotentialFlow.m
%% define the domain
xy = [0 0 -2; 5 0 -1;5 2 -2; 3 2 -2; 3 0.5 -2; 2 0.5 -2; 1 2 -2; 0 2 -1];
if 1 %% linear elements
FEMmesh = CreateMeshTriangle('PotentialFlow',xy,0.003);

elseif 1 %% quadratic elements
FEMmesh = CreateMeshTriangle('PotentialFlow',xy,4*0.003);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

else %% cubic elements

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 209

0 1 2 3 4 5

0

0.5

1

1.5

2

y

x

(a) field of velocity vectors

0 1 2 3 4 5
0

0.5

1

1.5

2

y

x

(b) velocity contours

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

ho
riz

on
ta

l v
el

oc
ity

x

(c) horizontal speed profile along y = 0.25 (d) the velocity

Figure 90: Velocity field of an ideal fluid

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 210

FEMmesh = CreateMeshTriangle('PotentialFlow',xy,9*0.003);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

endif

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = gD(xy) res = 1-xy(:,1)/5; endfunction
u = BVP2Dsym(FEMmesh,1,0,0,'gD',0,0);
figure(1); FEMtrimesh(FEMmesh,u)

xlabel('x'); ylabel('y'); zlabel('potential')

[xx,yy] = meshgrid(linspace(0,5-0.01,25),linspace(0,2-0.01,21));
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u, xx, yy);

figure(2); quiver(xx,yy,ux_int,uy_int)
xlabel('x'); ylabel('y');
hold on; plot([xy(:,1);0],[xy(:,2);0],'k'); hold off; axis equal

xx = linspace(0,5,101); yy = 0.25*ones(101,1);
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u,xx,yy);
figure(3); plot(xx,ux_int)

xlabel('x'); ylabel('horizontal velocity'); ylim([0 0.5])

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
figure(4); FEMtrimesh(FEMmesh,sqrt(ux.ˆ2+ uy.ˆ2))

xlabel('x'); ylabel('y'); zlabel('v=|grad u|'); zlim([0 0.5])

figure(5); FEMtricontour(FEMmesh,sqrt(ux.ˆ2+ uy.ˆ2),21)
xlabel('x'); ylabel('y'); zlabel('| grad u|')
hold on; plot([xy(:,1);0],[xy(:,2);0],'k'); hold off
xlim([0 5]); ylim([0 2]); axis equal

By integrating the horizontal velocities along vertical cuts observe the flux conservation, i.e whats coming in on the left
has to flow through the canal and leave on the right.

flux at inlet x = 0.0 ≈ 0.18337

flux in middle x = 2.5 ≈ 0.18328

flux at outlet x = 5.0 ≈ 0.18333

Selecting a finer mesh or using quadratic elements will make the differences smaller.

yy = linspace(0,2); xx = zeros(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_inlet_ = trapz(yy,vx)
yy = linspace(0,0.5); xx = 2.5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux,xx,yy); Flux_middle = trapz(yy,vx)
yy = linspace(0,2); xx = 5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_outlet = trapz(yy,vx)

9.6 A potential flow problem in a circular pipe
An ideal liquid is flowing through a circular pipe with diminished radius in a central section. The outer radius is given by

R(z) =

{
2 for |z| ≥ 1

2− cos2(π2 z) for |z| ≤ 1
.

The upper half of a section is visible in Figure 91. Assuming that the solution is independent on the angle θ the equation
∆Φ = 0 has to be reformulated in cylindrical coordinates and simplified.

0 = ∆Φ = div(gradΦ) = Φrr +
1

r
Φr +

1

r2
Φθθ +Φzz

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 211

0 = r

(
Φrr +

1

r
Φr +Φzz

)
= rΦrr +Φr + rΦzz =

∂

∂r
(rΦr) +

∂

∂z
(rΦz) .

Setting Φ = +1 at the left edge and Φ = −1 at the right edge, the BVP can be solved for the potential Φ(z, r) with the help
of FEMoctave. The velocity vector is again given by the gradient

v⃗ =

(
vz

vr

)
= −

(
∂ Φ
∂z
∂ Φ
∂r

)
.

Observe that there are no singularities for the velocities, compared to the previous section 9.5, since there are no sharp
corners in the domain.

-2 -1 0 1 2
0

0.5

1

1.5

2

r

z
(a) field of velocity vectors

-2 -1 0 1 2
0

0.5

1

1.5

2

z

r

(b) velocity contours

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

z

ho
riz

on
ta

l v
el

oc
ity

(c) horizontal speed profile along r = 0.5 (d) the velocity

Figure 91: Velocity field of a ideal fluid in a circular pipe

PotentialFlowCircular.m
%% define the domain and mesh
R = 2; R_in = 1.0; area = 0.001;
z = linspace(-1+sqrt(area),1-sqrt(area),21)'; r = R-R_in*cos(pi/2*z).ˆ2;
b = -2*ones(size(z));
zr = [-2 0 -1; -2 R -2; -1 R -2; [z,r,b]; 1 R -2; 2 R -1; 2 0 -2];
if 0 %% linear elements
FEMmesh = CreateMeshTriangle('PotentialFlow',zr,area);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 212

elseif 0 %% quadratic elements
FEMmesh = CreateMeshTriangle('PotentialFlow',zr,4*area);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

else %% cubic elements
FEMmesh = CreateMeshTriangle('PotentialFlow',zr,9*area);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

endif

z = FEMmesh.nodes(:,1); z = FEMmesh.nodes(:,2);
function res = gD(zr) res = -zr(:,1)/2; endfunction
function res = a_coeff(zr) res = zr(:,2); endfunction

u = BVP2Dsym(FEMmesh,'a_coeff',0,0,'gD',0,0);

[zz,rr] = meshgrid(linspace(-2,2-0.01,35),linspace(0,R-0.01,41));
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u, zz, rr);

figure(1); quiver(zz,rr,uz_int,ur_int)
xlabel('z'); ylabel('r');
hold on; plot([zr(:,1);-2],[zr(:,2);0],'k'); hold off
xlim([-2,2]); ylim([0,R]);

[uz,ur] = FEMEvaluateGradient(FEMmesh,u);
figure(2); FEMtrimesh(FEMmesh,sqrt(uz.ˆ2+ ur.ˆ2))

xlabel('z'); ylabel('r'); zlabel('v=|grad u|')
zlim([0 1]); caxis([0,1])

zz = linspace(-2,2,101); rr = 0.5*ones(101,1);
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u,zz,rr);
figure(3); plot(zz,uz_int)

xlabel('z'); ylabel('horizontal velocity');
ylim([0 1.1*max(uz_int)]

figure(4); FEMtricontour(FEMmesh,sqrt(uz.ˆ2+ ur.ˆ2),31)
xlabel('z'); ylabel('r'); zlabel('|grad u|')
hold on; plot([zr(:,1);-2],[zr(:,2);0],'k'); hold off
xlim([-2 2]); ylim([0 R]); axis equal

The total flux accross a vertical line z = const can be determined by the integral

flux =

∫ R(z)

0

vz(r, z) 2π r dr = 2π

∫ R(z)

0

−∂ Φ(z, r)
∂z

r dr .

rr = linspace(0,R); zz = -1.9*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_inlet = trapz(rr,rr.*vz)*2*pi
rr = linspace(0,R-R_in); zz = 0*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz,zz,rr);
Flux_middle = trapz(rr,rr.*vz)*2*pi
rr = linspace(0,R); zz = 1.9*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_outlet = trapz(rr,rr.*vz)*2*pi
-->
Flux_inlet = 3.3115
Flux_middle = 3.2897
Flux_outlet = 3.3115

The accurracy of the numerical results

flux at inlet z = −1.9 ≈ 3.3115

flux in middle x = +0.0 ≈ 3.2897

flux at outlet x = +1.9 ≈ 3.3115

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 213

could be improved by a finer mesh. This would verify the conservation of flux at different z–levels.

9.7 A potential flow around a wing profile
For many years it was common knowledge that the Bernoulli’s law leads to the main force allowing planes to fly. See e.g.
https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/. Now one should know differ-
ently, but the setup is an interesting problem to examine. Thus examine the air flow around a wing profile. The velocity v
along the surface of the wing leads to a pressure proportional to v2.

• Examine a potential flow (https://en.wikipedia.org/wiki/Potential flow) around a wing profile. Find examples of wing
profiles at https://en.wikipedia.org/wiki/NACA airfoil. For an NACAxx profile for 0 ≤ x ≤ 1 with maximal height T
the curves for the upper and lower part are given by

h = ±5 · T · (0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − (0.1015− 0.0021) ∗ x4) .

The correction of the last term assures that the profile satisfies h(1) = 0, i.e. it is a closed curve. This is implemented
as function FoilThickness() and a sample foil is shown in Figure 92. This foils is then rotated by an angle, e.g.
by 10◦ with Angle = -10/180*pi. Using the slopes of the foil function the angles of the normal vectors are
computed along both edges of the foil.

• On a domain −0.5 ≤ x ≤ 2 and −0.6 ≤ y ≤ 0.5 with the hole given by the wing profile the potential equation
∆φ = 0 is solved with boundary conditions φ(x, y) = −x along the two edges at x = −0.5 and x = +2. On the
other boundaries a Neumann condition ∂ φ

∂n⃗ = 0 is used. Thus the gradient ∇φ will be tangential to the boundaries.

• With BVP2Dsym() and FEMEvaluateGradient() the potential φ(x, y) and its partial derivatives are evaluated.

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

(a) the wing profile

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

(b) the mesh with the rotated wing

Figure 92: The wing profile and the mesh with the rotated wing

Wing.m
x = linspace(0,1,200)';
function [height,slope] = FoilThickness(x)
FoilT = 0.10; %% thickness of profile
height = 5*FoilT*(0.2969*sqrt(x)-0.1260*x-0.3516*x.ˆ2+0.2843*x.ˆ3-0.1015*x.ˆ4);
fix = height(end)/(5*FoilT);
height = 5*FoilT*(0.2969*sqrt(x)-0.1260*x-0.3516*x.ˆ2+0.2843*x.ˆ3-(0.1015+fix)*x.ˆ4);
slope = 5*FoilT*(0.2969*0.5./sqrt(x)-0.1260-2*0.3516*x+3*0.2843*x.ˆ2-4*(0.1015+fix)*x.ˆ3);
slope(1) = (2*sqrt(2)-1)*slope(2);

endfunction
[height,slope] = FoilThickness(x);
figure(1); plot(x,[-height,height]); axis equal

SHA 15-5-24

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/
https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/NACA_airfoil

9 EXAMPLES, EXAMPLES, EXAMPLES 214

Angle = -10/180*pi; %% angle of attack
R = [cos(Angle),-sin(Angle);+sin(Angle),cos(Angle)];
Upper = (R*[x,height]')'; Lower = (R*[x,-height]')';
AngleNormalUpper = atan2(+1,-slope)+Angle;
AngleNormalLower = atan2(-1,-slope)+Angle;

DomainHole = [flipud(Upper);Lower(1:end-1,:)];
Hole.name = 'hole';
Hole.border = [DomainHole,-2*ones(length(DomainHole),1)];
Hole.point = [0.1,0];
Borders = [-0.5,-0.6,-2;2,-0.6,-1;2,0.5,-2;-0.5,0.5,-1];
Mesh = CreateMeshTriangle('Wing',Borders,1e-2,Hole);
figure(2); FEMtrimesh(Mesh); axis equal
Mesh = MeshUpgrade(Mesh,'cubic');

function res = gD(xy)
res = -xy(:,1);

endfunction

u = BVP2Dsym(Mesh,1,0,0,'gD',0,0);
[ux,uy] = FEMEvaluateGradient(Mesh,u);

• With the above result the speed v can be evaluated, using v2 = (∂ φ
∂x)

2 + (∂ φ
∂y)

2. According to Bernoulli’s law the
change of pressure p is proportional to −v2. Thus the graphs (Figure 93) and contour lines (Figure 94) of v2 provide
information on the pressure distribution.

• To find the vertical force density on the wing determine the vertical component of the pressure based force by using
the angle of the normal vectors. Find the graphs in Figure 93. For the total vertical force integrate along the upper
and lower edge of the foil using the arc length elements.

Fupper =

∫ 1

0

p cos(αupper(x))
√
1 + (y′(x))2 dx =

∫ 1

0

p cos(αupper(x)) ds

Use ds ≈ ∆s =
√
(∆x)2 + (∆y)2 and the trapezoidal rule trapz() to evaluate the integrals. The difference

Fupper − Flower is an estimate for the total lift.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

p
re
ss
u
re

pupper
-plower

(b)

Figure 93: The surface for v2 and the vertical pressure along the upper and lower edge of the wing

Wing.m
v = sqrt(sum([ux.ˆ2,uy.ˆ2],2));
figure(3); FEMtrimesh(Mesh,v.ˆ2); xlabel('x'); ylabel('y'); zlabel('vˆ2');

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 215

Figure 94: The contour plot for the pressure

zlim([0,2]); caxis([min(v.ˆ2),2])
Levels = [0.5:0.1:2];
figure(4); clf; FEMtricontour(Mesh,v.ˆ2,Levels); xlabel('x'); ylabel('y');

title('contours of vˆ2'); colorbar(); axis equal
hold on; plot(DomainHole(:,1),DomainHole(:,2),'k'); hold off

x = x(1:end-1); Upper = Upper(1:end-1,:); Lower = Lower(1:end-1,:);
AngleNormalUpper = AngleNormalUpper(1:end-1);
AngleNormalLower = AngleNormalLower(1:end-1);

function res = ArcLength(x,y);
dx = diff(x); dy = diff(y); ds = sqrt(dx.ˆ2+dy.ˆ2);
res = [0;cumsum(ds)];

endfunction

dsUpper = ArcLength(Upper(:,1),Upper(:,2));
pUpper = FEMgriddata(Mesh,v.ˆ2,Upper(:,1),Upper(:,2)).*sin(AngleNormalUpper);
ForceUpper = trapz(dsUpper,pUpper)
dsLower = ArcLength(Lower(:,1),Lower(:,2));
pLower = FEMgriddata(Mesh,v.ˆ2,Lower(:,1),Lower(:,2)).*sin(AngleNormalLower);
ForceLower = trapz(dsLower,pLower)

figure(5); plot(dsUpper,pUpper,dsLower,-pLower); ylabel('pressure');
legend('p_{upper}','-p_{lower}','location','north');
xlim([0,1]); ylim([0,max(pUpper)])

• Using the vector field generated by ∇φ the command streamline() will generate the streamlines, leading to
Figure 95.

Wing.m
[xx,yy] = meshgrid(linspace(-0.5,1.5,201),linspace(-0.5,0.5,201));
[ui,uxi,uyi] = FEMgriddata(Mesh,u,xx,yy);

figure(6); clf; NN = 25;
streamline(xx,yy,-uxi,-uyi,-0.5*ones(1,NN),linspace(-0.3,0.2,NN),[0.1,10000]);
hold on; plot(DomainHole(:,1),DomainHole(:,2),'k'); hold off; axis equal

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 216

Figure 95: The flow lines around the wing

9.8 A minimal surface problem
Let u(x, y) be the hight of a surface above the border of a 2-dimensional domain Ω is given by a function g(x, y). Then the
function u representing the surface of minimal with has to solve a nonlinear PDE.

div(
1√

1 + | gradu|2
gradu) = 0 in domain Ω

u = g on Γ = ∂Ω

FEMoctave is not directly capable of solving non linear problems, but a simple iteration will lead to an approximation of

y
x

0

0.2

1

0.4

z

0.6

0.8

1

0.5
0.5 1

0
0-0.5 -0.5

-1 -1

Figure 96: A minimal surface

the solution.

• start with an initial solution u0(x, y) = 0

• repeat until the change in solution is small enough

– compute the coefficient function

a(x, y) =
1√

1 + |∇u(x, y)|2

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 217

– Solve the boundary value problem

div(a(x, y) gradu) = 0 in the domain Ω

u = g on Γ = ∂Ω

The code below implements this algorithm for a square Ω and leads to the result in Figure 96. While iterating the area of
each surface is determined by integrating

area =

∫∫
Ω

√
1 + |∇u|2 dA

and the average difference of subsequent solutions is computed.

MinimalSurface.m
xy = [1,0,-1;0,1,-1;-1,0,-1;0,-1,-1];
FEMmesh = CreateMeshTriangle("square",xy,0.01);
%FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = BC(xy) res = abs(xy(:,1)); endfunction

u = BVP2Dsym(FEMmesh,1,0,0,'BC',0,0);
difference = zeros(5,1); area = difference;
for ii = 1:5
[˜,grad] = FEMEvaluateGP(FEMmesh,u);
coeff = sqrt(1+grad(:,1).ˆ2+ grad(:,2).ˆ2);
area(ii) = FEMIntegrate(FEMmesh,coeff);
u_new = BVP2Dsym(FEMmesh,coeff,0,0,'BC',0,0);
difference(ii) = mean(abs(u_new-u));
u = u_new;

endfor

Area_Difference = [area,difference]
figure(1); FEMtrisurf(FEMmesh,x,y,u)

xlabel('x'); ylabel('y'); zlabel('z')
-->
Area_Difference = 2.30454229746 0.00271116350

2.30609424101 0.00030136719
2.30586894444 0.00003705316
2.30589632291 0.00000508928
2.30589260378 0.00000078521

By choosing quadratic or cubic elements, or a finer mesh, one can observe that the computed minimal area will be
smaller. This should not come as a surprise, the better the resolution, the smaller the minimal area.

9.9 Computing a capacitance
9.9.1 State the problem

Examine a circular plate capacitance as shown in Figure 97. Based on the radial symmetry one should be able to consider a
two dimensional section only for the computations.

Consider the voltage u as unknown. On the upper conductor assume u = 1 and on the lower conductor u = −1. Based
on the symmetry consider a section only and use u = 0 in the plane centered between the conductors. Use the Laplace
operator in cylindrical coordinates. Thus the following boundary value problem has to be solved.

div(x gradu(x, y)) = 0 in domain

u(x, 0) = 0 along edge y = 0

u(x, y) = 1 along edges of upper conductor
∂
∂n u(x, y) = 0 on remaining boundary

(89)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 218

x

y

1 3

45

6

89

2

7

Figure 97: The capacitance and the section used for the modeling

Assume that the domain is embedded in the rectangle 0 ≤ x ≤ R and 0 ≤ y ≤ H . The lower edge of the conductor is at
y = h and 0 ≤ x ≤ r. If h≪ r expect the gradient of u to be 1/h between the plates and zero away from the plates. Thus

flux =

∫∫
disk

n⃗ · gradu dA = 2π

∫ R

0

x
∂ u

∂y
dx ≈ 2π

∫ r

0

x
1

h
dx =

π r2

h
.

Because the electric field will not be homogeneous around the boundaries of the disk expect deviations from the result of
an idealized circular disk. With the divergence theorem and a physical argument one can verify that the flux trough the
midplane is proportional to the capacitance. By applying the following steps compute the capacitance by analyzing the
solution of a boundary value problem.

1. Create a mesh for the domain in question.

2. Define parameters and boundary conditions.

3. Solve the partial differential equation and visualize the solution.

4. Compute the flux through the midplane as an integral to determine the capacitance.

9.9.2 Create the mesh and solve the BVP

According to Figure 97 create a mesh with the following data.

h = 0.2 distance between midplane and lower edge of capacitance

r = 1.0 radius of disk of the capacitance

H = 0.5 height of the enclosing rectangle

R = 2.5 radius of the enclosing rectangle

As input for the mesh generating code triangle (see [www:triangle]) use

• the coordinates of the corner points, numbered according to Figure 97

• a list of all the connecting edges and the type of boundary conditions to be used

• information of the desired area of the triangles to be generated

Then use two different sizes of the triangles since a finer mesh between the plates is required, expecting large variations in
the solution. The file capacitance.poly provides this information. The numbering of the nodes is visible in Figure 97.
With the above use the program triangle to generate a mesh.

triangle -pqa capacitance.poly

The mesh consists of 2189 nodes, forming 4036 triangles.
To solve the BVP (89) one needs a definition of the coefficient function and the Dirichlet boundary function. Then set

up and solve the system of linear equations. This leads to a system for 1937 unknowns. Now generate a plot of the voltage
u(x, y) and its level curves. Find the results in Figure 100.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 219

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Figure 98: A mesh on the domain

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

radius r

he
ig

ht
 z

Figure 99: The contour lines of the resulting voltage

(a) the voltage

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5

6

u z

radius r
(b) vertical field along the horizontal axis

Figure 100: Voltage plot and electric field between the plates of the capacitance

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 220

9.9.3 Compute the capacitance

It remains to compute the flux through the midplane. For this start out by computing the gradient of the voltage u along the
line y = 0. Find the plot of the normal component in Figure 100. The graph confirms that between the plates the gradient
is approximately 1/h = 1/0.2 = 5 and vanishes away from the plate. Then a trapezoidal rule is used to determine the flux
accross the midplane with the integral.

flux =

∫∫
disk

n⃗ · gradu dA = 2π

∫ R

0

x
∂ u

∂y
dx

For the selected values of h, H , r and R obtain a factor of 1.5 between result of the boundary value problem and the
idealized approximation π r2/h. Thus the simple formula is not a good approximation, the distance h is too large compared
to the radius r.

Capacitance.m
FEMmesh = ReadMeshTriangle('capacitance.1');
%% FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment fora quadratic mesh
figure(1); FEMtrimesh(FEMmesh) %% display the generated mesh

function res = a(xy,dummy) res = xy(:,1); endfunction
function res = Volt(xy,dummy) res = xy(:,2)>0.1; endfunction

u = BVP2Dsym(FEMmesh,'a',0,0,'Volt',0,0);
figure(2); FEMtrimesh(FEMmesh,u);

view([38,48]); xlabel('radius r'); ylabel('height z'); zlabel('voltage')
figure(3); FEMtricontour(FEMmesh,u,21);

xlabel('radius r'); ylabel('height z');

[ux,uy] = FEMEvaluateGradient(FEMmesh,u);
xi = linspace(0,2.5,101)'; yi = zeros(101,1);
uy_i = FEMgriddata(FEMmesh,uy,xi,yi);
figure(4); plot(xi,uy_i)

xlabel('radius r'); ylabel('u_z'); ylim([-1,6])
Integral = [2*pi*trapz(xi,xi.*uy_i), pi*1ˆ2/0.2]
-->
Integral = 23.782 15.708

9.10 Torsion of beams, Prandtl stress function
Examine the torsion of a shaft with constant cross section. Based on a few assumtions determine the deformation of the
shaft under torsion. The problem is presented in [VarFEM] and find more details in [Sout73, §12].

9.10.1 The setup with the warp function and the Prandtl stress function

Consider a vertical shaft with constant cross section. The centers of gravity of the cross section are along the z axis and
the bottom of the shaft is fixed. The top surface is twisted by a total torque T . The situation of a circular cross section is
shown in Figure 101. There is no exact specification of the forces and twisting moments applied to the two ends. Based
on Saint-Venant principle (see [Sout73, §5.6]) assume that the stress distribution in the cross sections does not depend on
z, except very close to the two ends. The twisting leads to a rotation of each cross section by an angle β where β = z · α.
The constant α is a measure of the change of angle per unit length of the shaft. Its value α has to be determined, using the
moment T . Based on this determine the horizontal displacements for small angles β by the right part of Figure 101 and a
linear approximation

u1(x, y) = r cos(β + θ)− r cos(θ) ≈ −β r sin θ = −y β = −y z α
u2(x, y) = r sin(β + θ)− r sin(θ) ≈ +β r cos θ = +xβ = +x z α

.

It is assumed that the vertical displacement is independent of z and given by a warping function ϕ(x, y). This leads to the
displacements

u1 = −y z α , u2 = x z α , u3 = αϕ(x, y)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 221

T

z

y

x

- x

6

y

�
�

�
�

�
�
�

�
�

�
�

�
�
�
� (x, y)

(x+ u1, y + u2)

θ

β

Figure 101: Torsion of a shaft

and thus the strain components

εxx = εyy = εzz = εxy = 0 , εxz = −1

2
α y +

1

2
α
∂ ϕ

∂x
, εyz =

1

2
αx+

1

2
α
∂ ϕ

∂y
.

Using Hooke’s law find the stress components

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y + ∂ ϕ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ ϕ

∂y
) .

The problem is neither plane stress (τxz ̸= 0, τyz ̸= 0) nor plane strain (ϕ ̸= 0). Using the stresses determine the horizontal
forces and the torsion along a hypothetical horizontal cross section. Since the origin is the center of gravity of the cross
section Ω the first moments vanish and

T =

∫∫
Ω

x τyz − y τyz dA =
E α

2 (1 + ν)

∫∫
Ω

x (x+
∂ ϕ

∂y
)− y (−y + ∂ ϕ

∂x
) dA

=
E α

2 (1 + ν)

∫∫
Ω

x2 + y2 + x
∂ ϕ

∂y
− y ∂ ϕ

∂x
dA =

E α

1 + ν
J .

Using the torsional rigidity J with

J =

∫∫
Ω

x2 + y2 + x
∂ ϕ

∂y
− y ∂ ϕ

∂x
dA

determine the constant α by

α =
2 (1 + ν)

J E
T

and thus for a shaft of height H the total change of angle β as

β = H · α =
2 (1 + ν)

J E
H · T .

The only difficult part is to determine the function ϕ, then J is determined by an integration.

The above computations allow to compute the energy E in one cross section Ω by

E =

∫∫
Ω

σxz τxz + σyz τyz dA =
E α2

4 (1 + ν)

∫∫
Ω

(−y + ∂ ϕ

∂x
)2 + (x+

∂ ϕ

∂y
)2 dA

=
E α2

4 (1 + ν)

∫∫
Ω

(
∂ ϕ

∂x
)2 + (

∂ ϕ

∂y
)2 − 2 y

∂ ϕ

∂x
+ 2x

∂ ϕ

∂y
+ x2 + y2 dA .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 222

The warp function ϕ has to minimize this expression. Using calculus of variations (e.g. [VarFEM]) one can show that ϕ has
to solve the boundary value problem

div (∇ϕ) = ∆ϕ = 0 in the cross section Ω

n⃗ · ∇ϕ =

(
y

−x

)
· n⃗ on the boundary ∂Ω

. (90)

Since the stress components are given by

σx = σy = σz = τxy = 0 , τxz =
E α

2 (1 + ν)
(−y + ∂ ϕ

∂x
) , τyz =

E α

2 (1 + ν)
(x+

∂ ϕ

∂y
)

the boundary condition can be written as (
τxz

τyz

)
· n⃗ = 0 .

This equation implies that there is no stress on the lateral surface of the shaft. This condition is consistent with the mechan-
ical setup.

The Prandtl stress funktion χ is characterized by

∂χ

∂y
= −y + ∂ϕ

∂x
=

2 (1 + ν)

E α
τxz and − ∂χ

∂x
= x+

∂ϕ

∂y
=

2 (1 + ν)

E α
τyz .

By differentiating the above equations by y (resp. x) and subtracting and using ∂
∂x

∂ ϕ
∂y = ∂

∂y
∂ ϕ
∂x find

∆χ =
∂2χ

∂x2
+
∂2χ

∂y2
= −2 .

To determine the boundary conditions for χ assume that there are no external forces on the boundary.(
τxz

τyz

)
· n⃗ = 0 =⇒

(
∂ χ
∂y

−∂ χ
∂x

)
· n⃗ = ∇χ · t⃗ = 0 ,

where t⃗ is a tangential vector of the boundary curve. Assuming that there are no holes32, this implies that one can work with
χ = 0 on the boundary Γ. Thus the Pandtl stress function is a solution of the boundary value problem

−∆χ = 2 in Ω

χ = 0 on Γ
. (91)

The torsional rigidity is determined by

J =

∫∫
Ω

x2 + y2 + x (−∂ χ
∂x
− x)− y (+∂ χ

∂y
+ y) dA = −

∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA .

For ductile materials the von Mises stress indicates the possible fractures in the material. In this case it is given by

σvM =

√
3

2
(τ2xz + τ2yz) =

E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2
∥∇χ∥ .

9.10.2 On a disk with radius R

On a disk with radius R the solution is given by χ(x, y) = 1
2 (R

2 − x2 − y2). Thus the nonzero stresses are

τxz = +
E α

2 (1 + ν)

∂ χ

∂y
= − E α

2 (1 + ν)
y and τyz = − E α

2 (1 + ν)

∂ χ

∂x
= +

E α

2 (1 + ν)
x .

32This restriction can be removed.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 223

The BVP (90) for the warp function ϕ is

div (∇ϕ) = ∆ϕ = 0 in the cross section Ω

n⃗ · ∇ϕ = 1√
x2+y2

(
y

−x

)
·

(
x

y

)
= 0 on the boundary ∂Ω

with the unique solution ϕ(x, y) = 0, i.e. no warping. The torsional rigidity is given by

J =

∫∫
Ω

x2 + y2 dA = 2π

∫
0

r2 r dr =
π

2
R4

and the von Mises stress is given by

σvM =
E α

2 (1 + ν)

√
3

2

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 =

E α

2 (1 + ν)

√
3

2

√
x2 + y2 =

E α

2 (1 + ν)

√
3

2
r .

9.10.3 On a square

To examine the stiffness of a square cross section with a circular cross section examine a square with the same area as a
circle with radius R = 1. Thus the length of a side is

√
π ≈ 1.77. The code below solves the boundary value problem (91)

and then computes the torsional rigidity by integrating

J = −
∫∫
Ω

x
∂ χ

∂x
+ y

∂ χ

∂y
dA .

The numerical result of J ≈ 1.39 has to be compared to the result of J = π
2 ≈ 1.57 for the disk with Radius 1. Thus the

square cross section leads to less torsional rigidity. Then examine the von Mises stress by plotting

f(x, y) =

√
(
∂ χ

∂x
)2 + (

∂ χ

∂y
)2 = ∥∇χ∥ .

Find the result in Figure 102(a). The maximal value of ≈ 1.20 is larger than the maximal value 1 for the disk. Thus for the
same twisting angle the square is exposed to a larger von Mises stress.

1
0.5

0
y -0.5

-1 -1

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1
0.5

0
x-0.5

(a) on a square

1
0.5

0
y -0.5

-1 -1.5

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1.510.50
x-0.5-1

(b) on a rectangle

Figure 102: The von Mises stress caused by torsion of a bar with square or rectangular cross section

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 224

TorsionSquare.m
N = 10; l = sqrt(pi)/2; al = 1; %%al = sqrt(2); %% use this for the rectangle
Mesh = CreateMeshTriangle('Torsion',
[-al*l -1/al*l -1; al*l -1/al*l -1; al*l 1/al*l -1; -al*l 1/al*l -1],pi/2/Nˆ2);
Mesh = MeshUpgrade(Mesh);

chi = BVP2Dsym(Mesh,1,0,2,0,0,0);

[chiGP,gradChi] = FEMEvaluateGP(Mesh,chi);
xGP = Mesh.GP(:,1); yGP = Mesh.GP(:,2);
f = xGP.*gradChi(:,1) + yGP.*gradChi(:,2);
J = FEMIntegrate(Mesh,-f)

[chi_x,chi_y] = FEMEvaluateGradient(Mesh,chi);
Stress = sqrt(chi_x.ˆ2 + chi_y.ˆ2);
figure(1); FEMtrisurf(Mesh,Stress); xlabel('x'); ylabel('y');

MaxStress = max(Stress)
-->
J = 1.3873

9.10.4 On a rectangle

The above can be repeated for a rectangle with the same are but a ratio of 2 for the length of the sides. The value of J ≈ 1.13
indicates that the rectangle is even softer and the maximal von Mises stress of ≈ 1.16 is slightly smaller than for the square
cross section.

9.11 Dynamic heat conduction problems
The dynamic heat equation with a thermal conductivity a(x, y) is of the form given in equation (4). For the simplified
case with no external heating, no convection and the boundary either insulated or at a given temperature arrive at the initial
boundary value problem

∂
∂t u−∇ · (a∇u) = 0 for (x, y, t) ∈ Ω× (0, T]

u = g for (x, y, t) ∈ Γ1 × (0, T]

n⃗ · (a∇u) = 0 for (x, y, t) ∈ Γ2 × (0, T]

u = u0 on Ω at t = 0

. (92)

In Figure 103 the upper half of the domain is shown, at the lower edge the symmetry constraint ∂
∂n u = 0 is used. Assume

insulation on all of the boundary, except the left edge Γ1 at x = 0, where the temperature equals 1 . As initial temperature
we use u0(x, y) = 0 and observe how the domain is warming up as time advances.

9.11.1 With a narrow section in the domain

The first case to be examined uses a narrow section between to bigger sections. The dimension of the narrow section can be
changed by modifying the parameters h = 0.2 and l = 0.5.

• In Figure 104 observed the delayed heating of the section on the right.

• In Figure 105 the temperature along the edge y = 0 for 0 ≤ x ≤ 2.5 and 0 ≤ t ≤ 10 is shown, as surface and contour
lines.

• In Figure 106 the temerature at the corner (x, y) = (2.5 , 0) is shown as function of time.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 225

0 0.5 1 1.5 2 2.5

0

0.5

1

y

x

Figure 103: The mesh for a dynamic heat problem

(a) at t = 2 (b) at t = 5

0

0.2

0.4
te

m
pe

ra
tu

re
0.6

0.8

1

1
0.8

0.6
y

0

t = 10.00

0.4
0.2

00.5 1
x

1.5 2 2.5

(c) at t = 10

Figure 104: The evolution of the temperature surface at different times

(a) surface along the edge y = 0

0 0.5 1 1.5 2 2.5

2

4

6

8

10

x

t

0.1
0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.
5

0.5

0.6

0.
6

0.6

0.7

0.
7

0.7

0.8

0.
8

0.8

0.
9

0.
9

0.
9

(b) contours along the edge y = 0

Figure 105: The temperature surface at different times along y = 0

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 226

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t
te

m
pe

ra
tu

re
 a

t x
=

en
d

an
d

y=
0

Figure 106: The temperature as function of time at the endpoint (2.5 , 0)

HeatDynamic.m
%% parameters
h = 0.2; l = 0.5; Nt = 60; %% number of time steps
FEMmesh = CreateMeshTriangle('Test',...

[0 0,-2; 2+l 0 -2; 2+l 1,-2; 1+l 1 -2; 1+l h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

figure(1); FEMtrimesh(FEMmesh);
axis equal; xlabel('x'); ylabel('y')

[u t] = IBVP2D(FEMmesh,1,1,0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(end))); zlabel('temperature')

figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/5+1))); zlabel('temperature')

x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
for jj = 2:size(t,2)
u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor

figure(10); mesh(x,t(2:end),u_int)
xlabel('x'); ylabel('t'); zlabel('temperature at y=0')

figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
clabel(c,h);
xlabel('x'); ylabel('t');

figure(12); plot(t(2:end),u_int(:,end))
xlabel('t'); ylabel('temperature at x=end and y=0')

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 227

9.11.2 With a section of lower thermal conductivity

On the modified domain visible in Figure 107 in the middle section the conductivity is considerably smaller than in the two
side section, i.e.

a(x, y) =

{
1 for 0 ≤ x ≤ 1 and x ≥ 1.5
1
6 for 1 < x < 1.5

• In Figure 108 observed the delayed heating of the section on the right.

• In Figure 109 the temperature along the edge y = 0 for 0 ≤ x ≤ 2.5 and 0 ≤ t ≤ 10 is shown, as surface and contour
lines.

• In Figure 110 the temperature at the corner (x, y) = (2.5 , 0) is shown as function of time.

Observe the similar, but not identical, behavior of the two cases examined.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

y

x

Figure 107: The mesh for a dynamic heat problem

(a) at t = 2 (b) at t = 5 (c) at t = 10

Figure 108: The evolution of the temperature surface at different times

HeatDynamicCoefficient.m
%% parameters
h = 1.2; l = 0.5; Nt = 60; %% number of time steps
FEMmesh = CreateMeshTriangle('Test',...

[0 0,-2; 2+l 0 -2; 2+l 1, -2; 1+l 1 -2; 1+l h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
%%FEMmesh = MeshUpgrade(FEMmesh,'cubic');

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 228

(a) surface along the edge y = 0

0 0.5 1 1.5 2 2.5

2

4

6

8

10

t

x

0.1
0.1

0.2

0.2

0.3

0.3

0.4

0.
4

0.4

0.5

0.
5

0.5

0.6

0.
6

0.6

0.7

0.
7

0.7

0.8

0.
8

0.8

0.
9

0.
9

0.
9

(b) contours along the edge y = 0

Figure 109: The temperature surface at different times along y = 0

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

te
m

pe
ra

tu
re

 a
t x

=
en

d
an

d
y=

0

t

Figure 110: The temperature as function of time at the endpoint (2.5 , 0)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 229

figure(1); FEMtrimesh(FEMmesh);
axis equal; xlabel('x'); ylabel('y')

function res = a(xy,dummy)
l = 0.5;
res = ones(size(xy,1),1);
res(find(abs(xy(:,1)-1-l/2)<l/2)) *= 1/6;

endfunction

[u t] = IBVP2D(FEMmesh,1,'a',0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(end))); zlabel('temperature')

figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/5+1))); zlabel('temperature')

x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
for jj = 2:size(t,2)
u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor

figure(10); mesh(x,t(2:end),u_int)
xlabel('x'); ylabel('t'); zlabel('temperature at y=0')

figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
clabel(c,h);
xlabel('x'); ylabel('t');

figure(12); plot(t(2:end),u_int(:,end))
xlabel('t'); ylabel('temperature at x=end and y=0')

9.11.3 Cooling of a cylinder

Examine a cylinder with elliptical cross section and an initial temperature distribution u0(x, y), independent on z. The
boundary temperature is fixed at 0 . The domain and the initial temperature profile are visible in Figure 111. The selected,
nonsymmetric initial temperature is

u0(x, y) = exp(−(x− 0.5)2 − 2 y2) · (4− x2 − y2) .

The initial boundary value problem is solved for times 0 ≤ t ≤ 2. A few snapshots are visible in Figure 112. By looking
at different time slices an animation can be generated.

CylinderCooling.m
R = 2; N = 50; alpha = linspace(0,2*pi*N/(N-1),N)';
Tend = 2; Nt = 60; %% number of shown time steps
FEMmesh = CreateMeshTriangle('circle',[R*cos(alpha),1.5*R*sin(alpha),...

-ones(size(alpha))],0.1);

figure(1); FEMtrimesh(FEMmesh)
xlabel('x') ; ylabel('y'); axis equal

FEMmesh = MeshUpgrade(FEMmesh,'cubic');

function res = u_init(xy)
x = xy(:,1); y = xy(:,2);
res = exp(-(x-0.5).ˆ2-2*y.ˆ2) .* (2ˆ2 -x.ˆ2-y.ˆ2);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 230

-2 0 2

-2

-1

0

1

2

x

y

(a) the elliptical domain (b) the initial temperature

Figure 111: The domain and the initial temperature

(a) at t = 0.5 (b) at t = 1.0 (c) at t = 1.5

Figure 112: The temperature at different times

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 231

endfunction

figure(2); FEMtrimesh(FEMmesh,u_init(FEMmesh.nodes))
xlabel('x'); ylabel('y'); zlabel('temperature');

[u,t] = IBVP2Dsym(FEMmesh,1,1,0, 0, 0, 0, 0, 'u_init',0, Tend, [Nt,10]);

figure(3); FEMtrimesh(FEMmesh,u(:,Nt/4+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(-1.8,-2,0.9,sprintf('t = %4.2f',t(Nt/4+1))); zlabel('temperature')

figure(4); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
text(-1.8,-2,0.9,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')

figure(5); FEMtrimesh(FEMmesh,u(:,3*Nt/4+1))
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
text(-1.8,-2,0.9,sprintf('t = %4.2f',t(3*Nt/4+1))); zlabel('temperature')

figure(11) %% show the animation
steps = 2;
for jj = 0:30
FEMtrimesh(FEMmesh,u(:,jj*steps+1))
text(-1.8,-2,0.9,sprintf('t = %4.2f',t(jj*steps+1))); zlabel('temperature')
xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
pause(0.2)

endfor

Obviously the temperature is decaying as time advances. To examine this behavior determine the tempetarures along
the center line at y = 0, as function of time. In Figure 113.

(a) surface

0 0.5 1 1.5 2
-2

-1

0

1

2

time t

x

(b) contour lines

Figure 113: The temperature at different times along y = 0

x = linspace(-R,R,31); u_center = zeros(length(x),length(t));
for jj = 1:length(t)
u_center(:,jj) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));

endfor
figure(21); mesh(t,x,u_center)

xlabel('time t'); ylabel('x'); zlabel('temperatur')
figure(22); contour(t,x,u_center,51)

xlabel('time t'); ylabel('x');

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 232

The decay of the temperature at the center point (0, 0) is visible in Figure 114, with linear and logarithmic scale. The
exponential decay is clearly displayed in the logarithmic scale. This is consistent with the theoretical result

u(t, x, y) =

∞∑
n=1

cn e
−λn t un(x, y) (93)

where λ1 < λ2 ≤ λ3 ≤ λ4... and un(x, y) are the eigenvalues and eigenfunctions of the boundary value problem

−∇ · ∇un = λn u for (x, y) ∈ Ω

u = 0 for (x, y) ∈ Γ
.

For large times t in equation (93) the first eigenvalue will dominate, i.e.

u(t, x, y) ≈ c1 e−λ1 t u1(x, y) .

Using the Octave command polyfit() with data from the right section in the logarithmic plot in Figure 114 estimate

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

time t

te
m

pe
ra

tu
re

 a
t c

en
te

r

(a) linear scale

0 0.5 1 1.5 2
10-1

100

101

time t

te
m

pe
ra

tu
re

 a
t c

en
te

r

(b) logarithmic scale

Figure 114: The temperature decay at the center (0, 0)

the decay by the exponential exp(−1.06 t). Using BVP2Deig() the exponent is estimated by λ1 ≈ 1.04, i.e. rather close
to the above result by polyfit(), which indicates

log(u(0, 0, t)) ≈ 0.1556− 1.0638 t or u(0, 0, t) ≈ 1.1684 e−1.0638 t for t large.

figure(23); plot(t,u_center(16,:))
xlabel('time t'); ylabel('temperature at center')

figure(24); semilogy(t,u_center(16,:))
xlabel('time t'); ylabel('temperature at center')

p = polyfit(t(40:end),log(u_center(16,40:end)),1)
EigVal = BVP2Deig(FEMmesh,1,0,1,0,3)'
-->
p = -1.0638 0.1556
EigVal = 1.0425 2.1314 3.1506

Observe that λ2 ̸= λ3, since the domain is not circular. If the above computations are rerun on a circle of radius R = 2
obtain λ1 ≈ 1.45 and λ2 = λ3 ≈ 3.68. The first eigenvalue λ1 ≈ 1.45 is larger, thus the cylinder will cool down faster and
the second and third eigenvalues coincide, caused by the circular symmetry of the domain.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 233

9.11.4 Heat waves

In Figure 115 a domain Ω ⊂ R2 is visible. The heat equation (a special case of the IBVP (4)) to be solved is

∂
∂t u(x, y, t)−∆u(x, y, t) = f(x, y, t) for (x, y, t) ∈ Ω× (0, T]

∂
∂n u(x, y, t) = 0 for (x, y, t) ∈ Γ× (0, T]

u(x, y, 0) = 0 on Ω

.

The function f(x, y, t) equals cos(0.5π t) for x ≤ −0.9 and zero otherwise. Thus there is a periodic excitation with period 5
at the very left end of the appendix for −1 ≤ x ≤ −0.9.

-1 0 1 2 3 4
-2

-1

0

1

2

x

y

Figure 115: The domain for a heat wave propagation

The solution is generated by the command IBVP2D() and then evaluated along the slice at height y = 1 for different
values of the time t, using FEMgriddata(). Find the result in Figure 116.

• In Figure 116(a) the periodic behavior of the temperature is clearly visible.

• In Figure 116(b) observe the phase shift as one moves away from the heat source.

Observe that the behavior of the solution is very different from a wave equation in Section 9.12, even if the setup is
comparable.

(a) the surface

0 1 2 3 4
0

5

10

15

20

25

30

t

x
(b) the contour lines

Figure 116: The propagation of a heat wave

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 234

HeatWave.m
l = 1; h = 0.1; L = 4; d = 2; H = 2;
FEMmesh = CreateMeshTriangle('test',...

[-l,0,-2;0 0 -2;0,-d,-2;L,-d,-2; L,H,-2;0,H,-2;0,h,-2;-l,h,-2],0.01);
figure(1); FEMtrimesh(FEMmesh)

xlabel('x'); ylabel('y'); axis equal
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

function res = f(xy,t)
res = cos(0.2*pi*t)*ones(size(xy,1),1);
res(xy(:,1)>-0.9) = 0;

endfunction

function res = u0(xy) res = zeros(size(xy,1),1); endfunction

m = 1; a = 1; b0 = 0; bx = by = 0; f = 0; gn1 = gn2 = 0;
tic();
[u,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,'f',0,gn1,gn2,'u0',0,30,[2*60,10]);
%%[u,t] = IBVP2Dsym(FEMmesh,m,a,b0,'f',0,gn1,gn2,'u0',0,30,[2*60,10]);
SolverTime = toc()

figure(2); FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y'); xlim([0,L]);

umax = 0.3*max([-min(u(:)),max(u(:))]);
figure(3)
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(jj)))
xlim([0,L])
pause(0.1);

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(end)))

endif

x = linspace(0,L,101); u_line = zeros(size(t,1),size(x,2));
for jj = 1:length(t)
u_line(jj,:) = FEMgriddata(FEMmesh,u(:,jj),x,ones(size(x)));

endfor

figure(4); mesh(x,t,u_line)
xlabel('x'); ylabel('t');

figure(5); contour(x,t,u_line,0.003*[-1:0.1:+1])
xlabel('x'); ylabel('t');

9.11.5 Static heat equation in a ball in R3, solved as a 1D problem

The dynamic heat equation in spherical coordinates (r, θ, φ) is given by

ρ c

k

∂

∂t
u = +∆u+ f =

1

r2
∂

∂r
(r2

∂ u

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ u

∂θ
) +

1

r2 sin2 θ

∂2 u

∂φ2
+ f .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 235

Examining a static problem, depending on the radius r only leads to the ordinary differential equation

− ∂

∂r
(r2

∂ u

∂r
) = r2f(t, r) .

At first sight33 FEMoctave is not set up to solve problems depending on one variable only, but one may construct solutions
whose values do not depend on the second variable, i.e. transform a 1D problem artificially to a 2D problem. It has to be
pointed out that this is not computationally efficient. Find the efficient 1D approach at the end of the section.

The BVP − ∂
∂r (r

2 ∂ u
∂r) = 0 with u(1) = 0 and u(R) = 1 is solved by34

u(r) =
R

R− 1

r − 1

r
.

With FEMoctave the solution can be solved by the code below.

• Define the parameters of the system.

• Generate the mesh for 1 ≤ r ≤ R = 3 and the dummy variable −W
2 ≤ y ≤ +W

2 . At the upper and lower edge at
y = ±W

2 apply the Neumann boundary conditions ∂
∂n u = 0. This assures that the solution will depend on r only. At

r = 1 and r = R specify the Dirichlet conditions.

• Define the functions for the parameter a(r) = r2 and the Dirichlet conditions u(1) = 0 and u(R) = 1.

• Solve the BVP with the help of BVP2Dsym().

• Display the solutions. To obtain the graphs with one independent variable r use FEMgriddata() along the axis
y = 0 and 1 ≤ r ≤ R = 3.

• In Figure 117 find the graphs of the solution u, either as function of r and y, or as function of r only.

HeatBall.m
%% solve a static heat problem in a ball, using the radius r only as variable
R = 3; W = 0.1; N = 10;
FEMmesh = CreateMeshRect(linspace(1,R,N+1),[-W/2,+W/2],-2,-2,-1,-1);
%%FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
%%FEMmesh = MeshUpgrade(FEMmesh,'cubic');

function res = a(r) ; res = r(:,1).ˆ2; endfunction
function res = gD(r); res = sign(r(:,1)-1); endfunction

u3D = BVP2Dsym(FEMmesh,'a',0,0,'gD',0,0);

figure(1); FEMtrimesh(FEMmesh,u3D)
xlabel('r'); ylabel('dummy'); zlabel('temperature u')

r = linspace(1,R); u = FEMgriddata(FEMmesh,u3D,r,0*r);
u_exact = R/(R-1)*(r-1)./r;

figure(2); plot(r,u,r,u_exact)
xlabel('radius r'); ylabel('temperature u')
legend('u_{FEM}','u_{exact}','location','northwest')

figure(3); plot(r,u-u_exact)
xlabel('radius r'); ylabel('u_{FEM}-u_{exact}')

For the results in Figure 117 linear elements are used. A simple call of MeshUpgrade() allows to use cubic elements.
In Figure 118 find the differences to the exact solution for linear and cubic elements. Observe that the error for cubic
elements is considerably smaller.

33The command IBVP1D() will solve this problem.
34The ODE ∂

∂r
(r2 ∂ u

∂r
) = 0 implies r2 ∂ u

∂r
= c1, i.e. ∂

∂r
u = c1

r2
. An integration leads to the general solution of the ODE u(r) = c2 − c1

r
. Then

use the two boundary conditions to determine c1 = c2 = R
R−1

and u(r) = R
R−1

r−1
r

.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 236

dummy r

0

0.2

0.06

0.4

0.04

te
m
p
e
ra
tu
re
	u

0.6

0.8

1

2.5
2

30.02
0
-0.02
-0.04 1.5-0.06 1

(a) as function of r and the dummy variable

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

radius	r

te
m
p
e
ra
tu
re
	u

uFEM
uexact

(b) as function of the radius r only

Figure 117: The steady state solution of a heat problem in a ball

1 1.5 2 2.5 3
-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

u
F
E
M
-u
e
xa
c
t

radius	r
(a) with linear elements

1 1.5 2 2.5 3
-1.5e-05

-1e-05

-5e-06

0

5e-06

1e-05

1.5e-05

u
F
E
M
-u
e
xa
c
t

radius	r
(b) with cubic elements

Figure 118: The errors of the steady state solution of a heat problem in a ball

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 237

The above is a problem with one space variable only. Thus it is advisable to use BVP1D(). Find the results of the code
below in Figure 119. Observe the effect of superconvergence

HeatBallRadial.m
R1 = 1; R2 = 3; BCleft = 0; BCright = 1;
interval = linspace(R1,R2,11);
[r,u] = BVP1D(interval,@(r)-r.ˆ2,0,0,1,0,BCleft,BCright);
figure(4); plot(r,u,r,R2/(R2-R1)*(r-R1)./r)

xlabel('radius r'); ylabel('temperature u')
legend('u_{FEM}','u_{exact}','location','northwest')

figure(5); plot(r,u-R2/(R2-R1)*(r-R1)./r,'+-')
xlabel('radius r'); ylabel('temperature u')
legend('difference','location','southeast')

r_fine = linspace(R1,R2,501)'; u_fine = pwquadinterp(r,u,r_fine);
u_exact = R2/(R2-R1)*(r_fine-R1)./r_fine;
figure(6); plot(r_fine,u_fine-u_exact,'k',r,u-R2/(R2-R1)*(r-R1)./r,'b+')

xlabel('radius r'); ylabel('u_{FEM}-u_{exact}')
legend('interpolated','at nodes')

0 1 2 3 4 5
0

2

4

6

8

10

12

14

te
m
p
e
ra
tu
re
	u

radius	r
(a) the solution

1 1.5 2 2.5 3
-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

radius	r

u
F
E
M
-u
e
xa
c
t

interpolated
at	nodes

(b) difference to true solution

Figure 119: The steady state solution of a heat problem in a ball with second order elements, solved as true 1D problem

9.11.6 Dynamic heat equation in a cylinder, solved as a 1D problem

Similar to Section 9.11.5 the dynamic heat equation in cylindical coordinates (r, θ, z) is given by

ρ c

k

∂

∂t
u = +∆u+ f =

1

r

∂

∂r
(r
∂ u

∂r
) +

1

r2
∂2 u

∂θ2
+
∂2 u

∂z2
+ f .

Assuming that the solution depends on time t and radius r only and some rescaling leads to the dynamic equation

r
∂

∂t
u(r, t) =

∂

∂r
(r
∂ u(r, t)

∂r
) + r f(r, t) .

Examine a cylinder of radius R and apply time dependent heating in the inner section r < R
2 of the cylinder, e.g.

f(r, t) =

{
sin(t) for 0 ≤ r < R

2

0 for R
2 ≤ r ≤ R

.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 238

HeatCylinder.m
R = 3; BCleft = [0,0]; BCright = [0,0];
f = @(r,t)sin(1*t)*(r<R/2);
u0 = 0; t0 = 0; t_end = 6*pi; steps = [121,10]; interval = linspace(0,R,21);
r = @(r)r; solver = 'RK';
[r,u,t] = IBVP1D(interval,r,r,0,0,r,f,BCleft,BCright,u0,t0,t_end,steps,'solver',solver);
figure(1); mesh(t,r,u)

xlabel('time t'); ylabel('radius r'); zlabel('temperature u')
figure(2); contour(t,r,u,[-0.5:0.1:+0.5])

xlabel('time t'); ylabel('radius r');
figure(3); plot(t,u(1,:),t,u(end,:))

xlabel('time t'); ylabel('temperature u'); xlim([0,max(t)])
legend('at center r=0','at outer edge r=R','location','south')

As results obtain the temperature u as function of time t and radius r, visible in Figures 120 and 121. The periodic
oscillations of U are clearly visible. In Figures 121 and 122 observe the smaller amplitudes of u with respect to time at the
outer edge r = R and the phase shift.

With the above code HeatCylinder.m it is easy to examine the effects of a different frequency or amplitude in
k sin(ω t).

Figure 120: The temperatur u(r, t) inside the cylinder

0 5 10 15
0

0.5

1

1.5

2

2.5

3

time	t

ra
d
iu
s
	r

Figure 121: The contours of the temperatur u(r, t) inside the cylinder

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 239

0 5 10 15
-1

-0.5

0

0.5

1

time	t

te
m
p
e
ra
tu
re
	u

at	center	r=0
at	outer	edge	r=R

Figure 122: The temperatur u(r, t) at the inner (r = 0) and outer (r = R) edge

9.12 Wave propagation, Kirchhoff diffraction
In Figure 123 half of a domain Ω ⊂ R2 is visible, the lower half is generated by a reflection at the lower edge. For the
computation this is taken into account by the symmetry boundary condition ∂ u

∂n = 0. The wave equation (a special case of
the IBVP (6)) to be solved is

∂2

∂t2 u(x, y, t)−∆u(x, y, t) = f(x, y, t) for (x, y, t) ∈ Ω× (0, T]
∂
∂n u(x, y, t) = 0 for (x, y, t) ∈ Γ× (0, T]

u(x, y, 0) = ∂
∂t u(x, y, 0) = 0 on Ω

. (94)

The function f(x, y, t) equals sin(3π t) for x ≤ −0.9 and zero otherwise. Thus there a periodic excitation at the very left
end of the appendix for −1 ≤ x ≤ −0.9. The wave speed equals 1 and the appendix (more precise: the two appendices) is
a source of waves.

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

y

x

Figure 123: The domain for the wave propagation

Figure 124 shows the solution u(x, y, 11) at time t = 11.

• The wave speed equals 1, thus at t = 11 the first waves are about to arrive at x = 10 for y = 0 and at y = +10 for
x = 0.

• In the top right section the unperturbed waves generated by the outlet of the appendix at y = 0 are visible.

• In the top left corner the upward moving waves interfere with the waves reflected at the upper edge at y = 9.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 240

• At the lower edge at y = −2 the waves are reflected leading to interference. The result is identical to the situation of
a second source at y = −4.

• In the lower part of the figure observe the result of the classical double–slit diffraction pattern by Kirchhoff, see e.g.
en.wikipedia.org/wiki/Double-slit experiment.

Figure 124: Wave propagation, leading to a Kirchhoff diffraction pattern

Observe that the behavior of the solution is very different from a heat equation in 9.11.4, even is the setup is comparable.
In the code below you can play with the different parameters and select whether an animation is shown on the screen or

the final snapshot only.

WavePropagation.m
l = 1; h = 0.1; L = 10; d = 2; H = 9;
FEMmesh = CreateMeshTriangle('test',...

[-l,0,-2;0 0 -2;0,-d,-2;L,-d,-2; L,H,-2;0,H,-2;0,h,-2;-l,h,-2],0.01);
figure(1); FEMtrimesh(FEMmesh)

xlabel('x'); ylabel('y'); axis equal
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

function res = f(xy,t)
res = sin(3*pi*t)*ones(size(xy,1),1);

SHA 15-5-24

https://en.wikipedia.org/wiki/Double-slit_experiment

9 EXAMPLES, EXAMPLES, EXAMPLES 241

res(xy(:,1)>-0.9) = 0;
endfunction
function res = v0(xy); res = zeros(size(xy,1),1); endfunction
function res = u0(xy) res = zeros(size(xy,1),1); endfunction

m = 1; a = 1; b0 = 0; bx = by = 0; f = 0; gn1 = gn2 = 0;
tic();
[u,t] = I2BVP2D(FEMmesh,m,0,a,b0,bx,by,'f',0,gn1,gn2,'u0','v0',0,11,[56,10]);
SolverTime = toc()

umax = 0.3*max([-min(u(:)),max(u(:))]);
figure(2)
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(jj)))
view(0,90); xlim([0,L]); ylim([-d,H]);
pause(0.1);

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(end)))
view(0,90); xlim([0,L]); ylim([-d,H]);

endif

9.13 Sound waves in R2 and R3

The standard wave equation ∂2

∂t2 u−∆u = 0 can be written in cylindrical

∂2

∂t2
u(ρ, ϕ, z, t) =

1

ρ

∂

∂ρ
(ρ
∂u

∂ρ
) +

1

ρ2
∂2

∂ϕ2
u+

∂2

∂z2
u

or spherical coordinates

∂2

∂t2
u(r, ϕ, θ, t) =

1

r2
∂

∂r
(r2

∂ u

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ u

∂θ
) +

1

r2 sin2 θ

∂2 u

∂ϕ2
.

This allows to reduce some problems to two space dimensions.

9.13.1 A sound wave in R3 with cylindrical coordinates

Assuming that the solution u(ρ, z, t) is independent on ϕ and multiplying the wave equation by ρ arrive at

ρ
∂2

∂t2
u(ρ, z, t)− ∂

∂ρ
(ρ
∂u

∂ρ
)− ∂

∂z
(ρ
∂ u

∂z
) = 0 (95)

and thus it is in the from of the general hyperbolic equation (6) and can be solved numerically with I2BVP2D(). On a
domain 0 ≤ ρ ≤ R and 0 ≤ θ ≤ π we assume zero initial velocity d

dt u(ρ, z, 0) = 0 and initial displacement

u(ρ, z, 0) =

{
1 + cos(10 r) for 0 ≤ r ≤ π

10

0 for π
10 ≤ r

.

where we use r =
√
ρ2 + z2. The result of solving this initial boundary value problem will be a spherical wave moving

with speed 1 and a decaying amplitude. Find the result at time t = 1.75 in Figure 127. Using an energy argument the
amplitude of the wave front is expected to decay like c 1

t . Using linear regression this is confirmed in Figure 127.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 242

(a) the spherical wave

0 0.5 1 1.5
0

0.5

1

1.5

2

am
pl

itu
de

time t

amplitude
best fit

(b) decay of the ampltude

Figure 125: A spherical sound wave at time t = 1.75, and the decaying amplitude with the best fitting c
t

SoundWaveSpherical.m
R = 2; H = 2; N = 60;
FEMmesh = CreateMeshRect(linspace(0,R,N),linspace(0,H,N),-2,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

function res = u_0(xy)
r = sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2);
res = 1+cos(10*r); res(r>pi/10) = 0;

endfunction
function res = rho(xy,dummy); res = xy(:,1); endfunction;
function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction

tic();
[u,t] = I2BVP2D(FEMmesh,'rho',0,'rho',0,0,0,0,0,0,0,'u_0','v_0',0,1.75,[100,10]);
ComputationTime = toc()

figure(1); clf
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel('rho'); ylabel('z'); zlim([-0.5 0.5]); caxis(0.1*[-0.5,0.5])
pause(0.1)

endfor
else
FEMtrimesh(FEMmesh,u(:,end))
xlabel('\rho'); ylabel('z')

endif

max_u = max(u) - min(u); t_start = find(t>0.6,1); t_tail = t(t_start:end)';

[p,˜,˜,p_var] = LinearRegression(1./t_tail,max_u(t_start:end)');
figure(2); plot(t,max_u,t_tail, p./t_tail)

xlabel('time t'); ylabel ('amplitude'); legend('amplitude','best fit')

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 243

9.13.2 A sound wave in R2

In a rectangle 0 ≤ x, y ≤ R solve the standard wave equation

∂2 u

∂t2
− ∂2 u

∂x2
− ∂2 u

∂y2
= 0

with Neumann boundary conditions ∂ u
∂n = 0, initial zero velocity and initial displacement

u(x, y, 0) =

{
1 + cos(10 r) for 0 ≤ r ≤ π

10

0 for π
10 ≤ r

.

where we use r =
√
x2 + y2. The result of solving this initial boundary value problem will be a circular wave moving with

speed 1 and a decaying amplitude. Find the result at time t = 4 in Figure 126. Using an energy argument the amplitude of
the wave front is expected to decay like c 1√

t
. Using linear regression this is confirmed in Figure 126.

(a) the wave

0 1 2 3 4
0

0.5

1

1.5

2

time t

am
pl

itu
de

amplitude
best fit

(b) decay of the amplitude

Figure 126: A circular sound wave at time t = 4 and the decaying amplitude with the best fitting c√
t

SoundWave.m
R = 4.5; H = 4.5; N = 60;
FEMmesh = CreateMeshRect(linspace(0,R,N),linspace(0,H,N),-2,-2,-2,-2);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

function res = u_0(xy)
r = sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2);
res = 1+cos(10*r);
res(r>pi/10) = 0;

endfunction
function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction
tic();
[u,t] = I2BVP2D(FEMmesh,1,0,1,0,0,0,0,0,0,0,'u_0','v_0',0,4,[100,10]);
ComputationTime = toc()

figure(3); clf
if 0 %% animation
for jj = 1:length(t)
FEMtrimesh(FEMmesh,u(:,jj))
xlabel('x'); ylabel('y');
zlim(0.1*[-2 2]); caxis(0.5*[-2 2])

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 244

pause(0.1)
endfor

else
FEMtrimesh(FEMmesh,u(:,end))
xlabel('x'); ylabel('y')

endif

max_u = max(u) - min(u); t_start = find(t>1,1); t_tail = t(t_start:end)';
[p,˜,˜,p_var] = LinearRegression(1./sqrt(t_tail),max_u(t_start:end)');
figure(12); plot(t,max_u,t_tail, p./sqrt(t_tail))

xlabel('time t'); ylabel ('amplitude'); legend('amplitude','best fit')

9.13.3 Sound waves in R3 and R2 as 1D problems

• As spherical wave:
If a solution u of the wave equation ∂2

∂t2 u = ∆u depends on the radius r =
√
x2 + y2 + z2 only the IBVP is given

by
r2 ∂2

∂t2 u(r, t) = ∂
∂r

(
r2 ∂

∂r u(r, t)
)

for 0 < r < R and t > 0

u(r, 0) = u0(r) for 0 < r < R
∂
∂t u(r, 0) = u1(r) for 0 < r < R

For a zero initial velocity u1(r) = 0 and initial amplitude

u(r, 0) = u0(r) =

{
1 + cos(10 r) for 0 ≤ r ≤ π

10

0 for π
10 ≤ r

and Neumann boundary conditions at r = 0 and r = R the problem can be solved by I2BVP1D() with the code
SoundWaveSpherical1D.m below. Find the result in Figure 127. Observe that for advanced time t the solution
is equal to zero at the origin r = 0.

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6

a
m
p
lit
u
d
e
	u

radius	r

t=0.0
t=0.5
t=1.0
t=1.5
t=2.0
t=2.5

Figure 127: A spherical wave as function of time t and radius r =
√
x2 + y2 + z2

SoundWaveSpherical1D.m
N = 2*60; R = 3; interval = linspace(0,R,N)';
f_r2 = @(r)r.ˆ2;
u0 = @(r)(1+cos(10*r)).*(r<pi/10); u1 = 0;
w2 = f_r2; w1 = 0; a = f_r2; b = 0; c = 0; d = 1; f = 0;
BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 2.5; steps = [100,10];
[r,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 245

figure(1); mesh(t,r,u); xlabel('time t'); ylabel('radius r'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(r),max(r)])

[t05,t05_ind] = find(abs(t-0.5)<1e-5); [t1,t1_ind] = find(abs(t-1)<1e-5);
[t15,t15_ind] = find(abs(t-1.5)<1e-5); [t2,t2_ind] = find(abs(t-2)<1e-5);
[t25,t25_ind] = find(abs(t-2.5)<1e-5);

figure(2); plot(r,u(:,1),r,u(:,t05_ind),r,u(:,t1_ind),r,u(:,t15_ind),...
r,u(:,t2_ind),r,u(:,t25_ind));

ylabel('amplitude u'); ylim([-0.5,0.7]); xlabel('radius r');
legend('t=0.0','t=0.5','t=1.0','t=1.5','t=2.0','t=2.5',...

'location','northeast')

• As cylindrical wave:
If a solution u of the wave equation ∂2

∂t2 u = ∆u depends on the radius r =
√
x2 + y2 only the IBVP is given by

r ∂2

∂t2 u(r, t) = ∂
∂r

(
r ∂

∂r u(r, t)
)

for 0 < r < R and t > 0

u(r, 0) = u0(r) for 0 < r < R
∂
∂t u(r, 0) = u1(r) for 0 < r < R

For a zero initial velocity u1(r) = 0 and the same initial amplitude u0(r) as above and Neumann boundary condi-
tions at r = 0 and r = R the problem can be solved with the code SoundWaveSpherical1D.m below, using
I2BVP1D(). Find the result in Figure 128. Observe that for advanced time t the solution is not equal to zero at the
origin r = 0. The amplitudes at t > 0 are larger than for the above spherical case. This can be derived analytically,
using a conservation of energy argument.

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6

radius	r

a
m
p
lit
u
d
e
	u

t=0.0
t=0.5
t=1.0
t=1.5
t=2.0
t=2.5

Figure 128: A cylindrical wave as function of time t and radius r =
√
x2 + y2

SoundWaveCylindrical1D.m
N = 2*60; R = 3; interval = linspace(0,R,N)';
f_r = @(r)r;
u0 = @(r)(1+cos(10*r)).*(r<pi/10); u1 = 0;
w2 = f_r; w1 = 0; a = f_r; b = 0; c = 0; d = 1; f = 0;
BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 2.5; steps = [100,10];
[r,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);

figure(1); mesh(t,r,u); xlabel('time t'); ylabel('radius r'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(r),max(r)])

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 246

[t05,t05_ind] = find(abs(t-0.5)<1e-5); [t1,t1_ind] = find(abs(t-1)<1e-5);
[t15,t15_ind] = find(abs(t-1.5)<1e-5); [t2,t2_ind] = find(abs(t-2)<1e-5);
[t25,t25_ind] = find(abs(t-2.5)<1e-5);

figure(2); plot(r,u(:,1),r,u(:,t05_ind),r,u(:,t1_ind),r,u(:,t15_ind),...
r,u(:,t2_ind),r,u(:,t25_ind));

ylabel('amplitude u'); ylim([-0.5,0.75]); xlabel('radius r');
legend('t=0.0','t=0.5','t=1.0','t=1.5','t=2.0','t=2.5',...

'location','northeast')

9.14 Reflection and transmission of a wave by a change of impedance
A change of impedance will cause an incoming wave to be partially reflected. Examine the initial boundary value problem

∂2

∂t2 u(x, t) = ∂
∂x

(
a(x) ∂

∂x u(x, t)
)

for 0 < x < 12 and t > 0
∂
∂x u(0, t) = ∂

∂x u(12, t) = 0 for t > 0

u(x, 0) = u0(x) for 0 < x < 12
∂
∂t u(x, 0) = u1(x) for 0 < x < 12

with the discontinuous coefficient a(x)

a(x) =

{
1 for 0 ≤ x ≤ 4

2 for 4 < x

and the initial values

u0(x) =

{
sin(π x) for 0 ≤ x ≤ 1

0 for 1 < x
and u1(x) =

{
−π cos(π x) for 0 ≤ x ≤ 1

0 for 1 < x
.

The sin–shaped pulse will travel in the positive x–direction with speed 1 and then at x = 4 a part will be reflected and
traveling back with speed 1 and another part will continue, but with speed

√
2. In Figure 129 find the plot of the surface and

in Figure 130 a plot of the solutions at times t = 0, 2, 4, 6 and 8, and the contour plot.

Figure 129: The amplitude u(x, t) for a reflected pulse

Reflection.m
interval = linspace(0,14,301)';
a = @(x) 1+1*(x>4);
b = 0; c = 0; d = 1; f = 0;

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 247

(a) slices at t = 0, 2, 4, 6 and 8

0 2 4 6 8
0

2

4

6

8

10

12

14

p
o
si
tio
n
	x

time	t
(b) the contours at u(x, t) = ±0.1

Figure 130: Waterfall plot and contour plot for the amplitude u(x, t) for a reflected pulse

w2 = 1; w1 = 0; ; BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 9; steps = [90,100];
u0 = @(x)sin(pi*x).*(x<=1); u1 = @(x)-pi*cos(pi*x).*(x<=1);

[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);

figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(x),max(x)]); view([-20,10])

t_ind = [1 21 41 61 81];
figure(2); H = waterfall(x,t(t_ind),u(:,t_ind)'); view([-177,20])

xlabel('position x'); zlabel('u')
set(H, 'edgecolor', [0,0.0,1]); set(H, 'linewidth', 3)

figure(3); contour(t,x,u,[-0.1,0.1]); xlabel('time t'); ylabel('position x');

9.15 The Black–Scholes equation of mathematical finance
To determine the value of a stock option the partial differential equation of Black, Scholes and Merton can be used,
see [Seyd00], [Seyd11] or [Stew13]. A call option on a stock gives you the right (but not the obligation) to buy the stock
at the maturity time T at a given strike price K. If the actual price S is above the strike K, you call the option and gain
S−K. If the actual price S is below the strike K you let the option expire. For this right to buy you have to pay a fair price
V , the value of this call option. To determine the fair price of the option the possible evolution of the value of the stock is
taken into account, assuming that it is a Brownian motion. For the Black–Scholes equation use the symbols in Table 17.
The Black–Scholes PDE is given by

∂

∂τ
V (z, τ) =

σ2

2

∂2

∂z2
V (z, τ) + r

∂

∂z
V (z, τ)− r0 V (z, τ) (96)

with the boundary conditions for a call option

V (S, τ) ≈ 0 for S very small and V (S, τ) ≈ S for S very large

leading to

lim
z→−∞

V (z, τ) ≈ 0 and lim
z→+∞

1

ez
V (z, τ) ≈ 1 .

To respect the compatibility condition at maturity use V (t, b) = S−K = eb−K for b≫ 1. The initial conditions at τ = 0
or t = T are

V (z, 0) = max{0, S −K} = max{0, ez −K} .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 248

Symbol

value of stock S = ez

logarithm of value of stock z = ln(S)

time to maturity 0 ≤ τ ≤ T
value of option at time τ at stock value S = ez V (z, τ)

safe interest rate r0

expected return of stock r

volatility σ

strike K

forward time t = T − τ > 0

Table 17: Variables for the Black–Scholes PDE

This initial boundary value problem can be solved by FEMoctave with the command IBVP1D(). The FEMoctave
code in BlackScholesCall.m below generates Figure 131. In this figure of information for a call option with strike
K = 120.

• If the value of the stock is S = 110 half a year before the maturity time, then the fair value of the call option is
V (110, 0.5) ≈ 2.1 .

• If the value of the stock is S = 130 half a year before the maturity time, then the fair value of the call option is
V (130, 0.5) ≈ 15.4 .

• If the value of the stock is S = 110 one year before the maturity time, then the fair value of the call option is
V (110, 1) ≈ 5.6 .

• If the value of the stock is S = 130 one year before the maturity time, then the fair value of the call option is
V (130, 1) ≈ 20.5 .

100 110 120 130 140
0

5

10

15

20

25

30

S

V
(S
,τ
)

at	τ=0
at	τ=T/2
at	τ=T

Figure 131: The value V of a European call option as function of time τ and the value of the stock S

BlackScholesCall.m
%% script file to solve Black-Scholes for a European call option
K = 120; % strike
r = 0.076; % annual gain of stock
sigma = 0.13; % volatility
r0 = r+sigmaˆ2/2; % safe interest rate
T = 1.0; % maximal time to maturity

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 249

%%%%%%%%%%%%%%%
a = -0.5; b = +0.5; interval = log(K)+linspace(a,b,101)';
BCleft = 0; BCright = exp(max(interval))-K;
u0 = @(z)max(0,exp(z)-K);
[z,V,tau] = IBVP1D(interval,1,sigmaˆ2/2,-r,+r0,0,0,BCleft,BCright,u0,0,T,[10,10]);

figure(1); mesh(tau,exp(z),V); xlabel('\tau'); ylabel('S'); zlabel('V(S,\tau)')
xlim([0,T]); ylim([90,135]); zlim([0,30]); caxis([0,25]); view([70,30])

S = linspace(90,140,101)';
V0 = interp1(exp(z),V(:,1),S); Vend = interp1(exp(z),V(:,end),S);
t_ind = find(abs(tau-T/2)<100*eps); Vmid = interp1(exp(z),V(:,t_ind),S);
figure(2); plot(S,V0,S,Vmid,S,Vend); xlabel('S'); ylabel('V(S,\tau)')

legend('at \tau=0','at \tau=T/2','at \tau=T','location','northwest')

The above results are about a European call option, but there are similar put options. A put option on a stock gives you
the right (but not the obligation) to sell the stock at the maturity time T at a given strike price K. If the actual price S is below
the strike K you buy on the market at price S and use the put option to sell at price K. You gain K - S. If the actual price S is
above the strike K you let the option expire. For this right to sell you have to pay a fair price V, the value of this call option.
Determine the value of a put option use the Black–Scholes PDE (96) again, but with the boundary conditions

V (S, τ) ≈ K − S for S very small and V (S, τ) ≈ 0 for S very large.

To respect the compatibility condition at maturity use V (t, a) = K − S = K − ea for ea ≪ 1. The initial conditions at
τ = 0 or t = T are

V (z, 0) = max{0,K − S} = max{0,K − ez} .
This initial boundary value problem can be solved by FEMoctave with the command IBVP1D(). The FEMoctave
code in BlackScholesPut.m below generates Figure 132. In this figure read of information for a put option with strike
K = 120.

• If the value of the stock is S = 110 half a year before the maturity time, then the fair value of the put option is
V (110, 0.5) ≈ 7.12 .

• If the value of the stock is S = 130 half a year before the maturity time, then the fair value of the put option is
V (130, 0.5) ≈ 0.48 .

• If the value of the stock is S = 110 one year before the maturity time, then the fair value of the put option is
V (110, 1) ≈ 5.85 .

• If the value of the stock is S = 130 one year before the maturity time, then the fair value of the put option is
V (130, 1) ≈ 0.76 .

BlackScholesPut.m
%% script file to solve Black-Scholes for a European put option
K = 120; % strike
r = 0.076; % annual gain of stock
sigma = 0.13; % volatility
r0 = r+sigmaˆ2/2; % safe interest rate
T = 1.0; % maximal time to maturity
%%%%%%%%%%%%%%%
a = -0.5; b = +0.5; interval = log(K)+linspace(a,b,101)';
BCright = 0; BCleft = K-exp(min(interval));
u0 = @(z)max(0,K-exp(z));
[z,V,tau] = IBVP1D(interval,1,sigmaˆ2/2,-r,+r0,0,0,BCleft,BCright,u0,0,T,[10,10]);

figure(1); mesh(tau,exp(z),V); xlabel('\tau'); ylabel('S'); zlabel('V(S,\tau)')
xlim([0,T]); ylim([100,135]); zlim([0,30]); caxis([0,25]); view([140,30])

S = linspace(100,140,101)';
V0 = interp1(exp(z),V(:,1),S); Vend = interp1(exp(z),V(:,end),S);
t_ind = find(abs(tau-T/2)<100*eps); Vmid = interp1(exp(z),V(:,t_ind),S);
figure(2); plot(S,V0,S,Vmid,S,Vend); xlabel('S'); ylabel('V(S,\tau)')

legend('at \tau=0','at \tau=T/2','at \tau=T','location','northeast')

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 250

100 110 120 130 140
0

5

10

15

20

S

V
(S
,τ
)

at	τ=0
at	τ=T/2
at	τ=T

Figure 132: The value V of a European put option as function of time τ and the value of the stock S

The above codes use an initial boundary value problem to determine the fair price of an European call or put option. For
this very simple option this is not necessary. It is possible to express the solution in terms of error function or the cumulative
distribution function normcdf() for the normal distribution. The Octave package financial does implement this
approach.

pkg load financial
S = 130; tau = T/2;
[Call,Put] = blsprice(S,K,r+sigmaˆ2/2,tau,sigma ,0);
disp(sprintf("For S = %g obtain Call = %g or put = %g at time tau = %g",S,Call,Put,tau))
-->
For S = 130 obtain Call = 15.4411 or Put = 0.479557 at time tau = 0.5

9.16 Schrödinger’s harmonic oscillator
The dynamic Schrödinger equation is given by35

i ℏ
∂

∂t
Ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t) .

Searching for solutions of the form Ψ(x, t) = f(t)ψ(x) leads to

i ℏ
d

dt
f(t)ψ(x) =

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
f(t)ψ(x)

E = i ℏ
d
dt f(t)

f(t)
=

1

ψ(x)

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(x)

d

dt
f(t) =

E

i ℏ
f(t) =⇒ f(t) = C exp(−iE

ℏ
t) .

With the potential V (x) = 1
2 mω2 x2 for a harmonic oscillator Schrödinger’s eigenvalue equation for a harmonic oscillator

is given by

− ℏ2

2m

∂2 ψ

∂x2
+

1

2
mω2 x2 ψ = E ψ . (97)

35Source: Wikipedia en.wikipedia.org/wiki/Schroedinger equation

SHA 15-5-24

https://en.wikipedia.org/wiki/Schroedinger_equation

9 EXAMPLES, EXAMPLES, EXAMPLES 251

A simple rescaling with z =
√

ℏ
mω x and u(x) := ψ(z) = ψ(

√
ℏ

mω x) leads to

−∂
2 u(x)

∂x2
+ x2 u(x) = −∂

2 ψ(z)

∂z2
ℏ
mω

+
mω

ℏ
z2 ψ(z)

=
2

ω ℏ

(
− ℏ2

2m

∂2 ψ(z)

∂z2
+
mω2

2
z2 ψ(z)

)
=

2

ω ℏ
E ψ(z) = λu(x) .

Thus the eigenvalue problem to be solved is

− ∂2

∂x2
u(x) + x2 u(x) = λu(x) with u(±∞) = 0 .

Then the eigenvalues of the Schrödinger equation (97) are given by E = ω ℏ
2 λ .

The code below uses the command BVP1Deig() to approximate the first six eigenvalues. The numerical result con-
firms that the eigenvalues of the Schrödinger equation (97) are given by

En =
ω ℏ
2

λn =
ω ℏ
2

(2n+ 1) for n = 0, 1, 2, 3, 4, . . .

Figure 133 shows the shape of the corresponding eigenfunctions un(x). The exact formulas for the eigenfunctions use the
physicist’s Hermite polynomials and exponential functions36.

The probability density function for the location of the particle is given by the square of the eigenfunction. Find the
graphs for the PDF (probability density function) in Figure 134.

SchroedingerHarmonic.m
x_max = 6; interval = linspace(-x_max,x_max,100)';
BCleft = 0; BCright = 0;
[x, eVal, eVec] = BVP1Deig(interval,1,0,@(x)x.ˆ2,1,BCleft,BCright,6);

Eigenvalues = eVal'
figure(1); plot(x,eVec(:,1:3)); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])

legend('1','2','3')
figure(2); plot(x,eVec(:,4:6)); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])

legend('4','5','6')

figure(11); plot(x,eVec(:,1:3).ˆ2); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])
legend('1','2','3'); xlim(3.5*[-1,1])

figure(12); plot(x,eVec(:,4:6).ˆ2); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])
legend('4','5','6'); xlim(3.5*[-1,1])

-->
Eigenvalues = 1.0000 3.0000 5.0000 7.0000 9.0001 11.0001

9.17 The EIT forward problem
For a conductivity σ on a bounded domain Ω ⊂ R2 consider the PDE

∇ · (σ∇u) = 0 in Ω ⊂ R2 (98)

• Apply a voltage u on the boundary and measure the resulting current density J

J(z) = σ(z)
∂ u(z)

∂n
for z ∈ ∂Ω

36

ψn(x) =
1

√
2n n!

(mω

π ℏ

)1/4
e−

mω x2

2 ℏ Hn(

√
mω

ℏ
x) where Hn(z) = (−1)n e(z

2) dn

dxn

(
e(−z2)

)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 252

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1

u

x

1
2
3

(a) the first three eigenfunctions

-6 -4 -2 0 2 4 6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u

x

4
5
6

(b) the next three eigenfunctions

Figure 133: The first six eigenfunctions of the harmonic Schrödinger operator

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u

1
2
3

(a) the first three modes

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

u

4
5
6

(b) the next three modes

Figure 134: The PDF for the first six modes of the harmonic Schrödinger operator

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 253

to obtain the Dirichlet to Neumann map

Λσ : u → σ
∂ u

∂n
on ∂Ω (99)

also called voltage to current density map.

• Apply a current density J on the boundary and measure the resulting voltage u. For a static situation the total current
into Ω has to be zero, i.e. ∮

∂Ω

J(s) ds =

∮
∂Ω

σ
∂ u

∂n
ds = 0

to obtain the Neumann to Dirichlet map

Rσ : σ
∂ u

∂n
→ u on ∂Ω (100)

also called current density to voltage map.

Figure 135: The conductivity with the conducting “heart” on the left and the insulating “lung” on the right

From either one of these maps it is possible to determine the conductivity σ in the domain. This method is called Elec-
trical Impedance Tomography, or short EIT. For a good, readable introduction consider the book [MuelSilt12] or the ar-
ticle [MuelSilt20]. The Neumann to Dirichlet map Rσ is more reliable to measure, based on less susceptibility to noise.
Using FEM examine the forward problem, i.e. apply a known current pattern and determine the resulting voltage u on the
boundary. In real live this is performed by measurements. Examine the domain (a very theoretical chest cross section) in
Figure 135 with the graph of the conductivity σ shown. On the left observe a simple heart with high conductivity, caused by
the blood. On the right observe a section with very low conductivity, caused by the air filled lung. Then two current patterns
are examined:

1. A current input at the lower edge of the cross section in Figure 136 and a matching current sink at an angle of
approximately 120◦. Thus the current is expected to go through the heart, mainly.

2. A similar current input at the lower edge and a matching current sink at an angle of approximately 60◦. Thus the
current is expected to go through the lung, mainly.

The boundary Γ of the domain Ω is given by(
Rx cosα

Ry sinα

)
for 0 ≤ α ≤ 2π with Rx = 1 and Ry = 0.5 ,

with a conductivity of σ = 1. A simple calculation on the ellipse leads to an arc length of

ds =
√
R2

x sin
2 α+R2

y cos
2 α dα .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 254

The “heart” is given by
(x+ 0.5)2 + y2 ≤ 0.252 with conductivity σ = 4

and the “lung” is given by

(x− 0.4)2 + y2 ≤ 0.352 with conductivity σ =
1

4
.

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x

y

(a) current sink at angle 120◦

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
y

(b) current sink at angle 60◦

Figure 136: Contours of the voltages

FEMoctave is used twice to determine the voltage u in the domain, leading to the level curves in Figure 136. Observe
that the two setups are rather similar, but not exactly symmetrical.

Since the normal derivative ∂ u
∂n on all of the boundary is specified, the BVP does not have a unique solution. An arbitrary

constant can be added and consequently the standard FEMoctave code will fail. If the additional condition

umean =
1

area(Ω)

∫∫
Ω

u dA = 0

is required, the problem has a unique solution again, and there is hope to obtain a good aproximation by FEM. To get around
this problem use the open and free source code of FEMoctave and modify the solver in BVP2Dsym.m . Add an additional
equation

n∑
i=1

ui = 0

by one additional line, containing n=size(A,1); A(n+1,:)=1; b(n+1)=0; . It is a good idea to rename the
function, e.g. to BVP2DsymMean.m.

BVP2DsymMean.m
function u = BVP2DsymMean(Mesh,a,b0,f,gD,gN1,gN2)
if nargin ˜= 7 print_usage(); endif
switch Mesh.type
case 'linear' %% first order elements
[A,b] = FEMEquation (Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code

case 'quadratic' %% second order elements
[A,b] = FEMEquationQuad(Mesh,a,b0,0,0,f,gD,gN1,gN2);

case 'cubic' %% third order elements
[A,b] = FEMEquationCubic(Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code

endswitch
%% add the zero mean condition
n = size(A,1); A(n+1,:) = 1; b(n+1) = 0;
u = FEMSolve(Mesh,A,b,gD); %% solve the linear system

endfunction

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 255

Using the current density J⃗ = −σ∇u the vector fields in Figure 137 can be determined. With FEMgriddata()
determine∇u and then multiply by the conductivity σ to obtain the current density J⃗ . Using the same starting points along
y = −0.4 a few streamlines are shown.

• In Figure 137(a) the current takes the path of least resistance and is attracted by the highly conducting “heart”.

• In Figure 137(b) the current tries to avoid the “lung” section with the low conductivity.

If the conductivity would be constant in all of the domain Ω, then the two graphics in Figure 137 would be perfectly
symmetric.

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

x
(a) current sink at angle 120◦

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

y

(b) current sink at angle 60◦

Figure 137: The vector field for the current density J⃗ and a few streamlines

As a reference the situation of constant σ = 1 is computed too and the resulting voltages on the boundary are shown in
Figure 138. The deviations from the reference on the boundary Γ contain information about the conductivity inside of the
domain Ω. The deviations from the reference are shown in Figure 139. Many of those “measurements” allow to determine
the Neumann to Dirichlet map, leading to the conductivity σ by an EIT algorithm.

0 100 200 300
-0.2

-0.1

0

0.1

0.2

0.3

0.4

u

angle [deg]

true
reference

(a) at angle 120◦

0 100 200 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

angle [deg]

u

true
reference

(b) at angle 60◦

Figure 138: Voltage along the boundary

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 256

0 100 200 300
-0.03

-0.02

-0.01

0

0.01

0.02

u-
u 0

angle [deg]

true-reference

(a) at angle 120◦

0 100 200 300
-0.1

-0.05

0

0.05

0.1

0.15

angle [deg]

u-
u 0

true-reference

(b) at angle 60◦

Figure 139: Differences of the voltage and the reference voltage

EITforward.m
global Rx Ry dalpha my_angle
N = 2*64; %% number of angle segments
alpha = linspace(0,2*pi*(N-1)/N,N)'; Rx = 1; Ry = 0.5;
dalpha = 2*(alpha(2)-alpha(1));
x = Rx*cos(alpha); y = Ry*sin(alpha);
BC = -2*ones(size(x));
my_angle = 120 %% select the configuration, use 60 or 120

function res = sigma(xy,dummy) %% the conductivity
x = xy(:,1); y = xy(:,2);
res = ones(size(x));
res((x+0.5).ˆ2+y.ˆ2<=0.25ˆ2) *= 4 ; %% heart on the left
res((x-0.4).ˆ2+y.ˆ2<=0.35ˆ2) *= 1/4; %% lung on the right

endfunction

FEMmesh = CreateMeshTriangle('EIT',[x,y,BC],0.003);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');

figure(1); FEMtrimesh(FEMmesh,sigma(FEMmesh.nodes)); %% show the conductivity
xlabel('x'); ylabel('y'); zlabel('\sigma'); view(20,50)

function res = flux_n(xy) %% define the current density on the boundary
global dalpha my_angle Rx Ry
alpha = atan2(xy(:,2)/Ry,xy(:,1)/Rx); %% assure correct angle
res = zeros(size(alpha));
res(abs(alpha+pi/2) < dalpha) = -1;
switch my_angle
case 60
res(abs(alpha-pi/3) < dalpha) = +1;

case 120
res(abs(alpha-pi*2/3) < dalpha) = +1;

endswitch
res = res./sqrt(Rxˆ2*sin(alpha).ˆ2 + Ryˆ2*cos(alpha).ˆ2);%% adjust for the arc length

endfunction

u_0 = BVP2DsymMean(FEMmesh, 1 ,0,0,0,'flux_n',0); %% the reference result
u = BVP2DsymMean(FEMmesh,'sigma',0,0,0,'flux_n',0); %% the actual result

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 257

figure(2); FEMtrimesh(FEMmesh,u) %% show the solution
xlabel('x'); ylabel('y');

figure(3); clf; FEMtricontour(FEMmesh,u,41) %% show the contour levels
hold on;
plot([x;x(1)],[y;y(1)],'k'); %% add the boundary
hold off; xlabel('x'); ylabel('y'); axis equal

u_boundary = FEMgriddata(FEMmesh,u, x,y);
u_0_boundary = FEMgriddata(FEMmesh,u_0,x,y);

figure(4); plot(alpha*180/pi,u_boundary,alpha*180/pi,u_0_boundary)
xlabel('angle [deg]'); ylabel('u'); xlim([0,360])
legend('true','reference') %% show the voltages on the boundary

figure(5); plot(alpha*180/pi,u_boundary-u_0_boundary)
xlabel('angle [deg]'); ylabel('u-u_0'); xlim([0,360])
legend('true-reference') %% show the difference

%% create the vector field for the current density
[xx,yy] = meshgrid(linspace(-Rx,Rx,21),linspace(-0.8*Ry,0.8*Ry,21));
[ui,uxi,uyi] = FEMgriddata(FEMmesh,u,xx,yy);
conductivity = reshape(sigma([xx(:),yy(:)]),size(xx));
uxi = conductivity.*uxi; uyi = conductivity.*uyi;

figure(6); quiver(xx,yy,uxi,uyi,2) %%% show the vector field
xlabel('x'); ylabel('y')
hold on; plot([x;x(1)],[y;y(1)],'k'); hold off%% add the boundary

%% create and show the streamlines
streamline(xx,yy,uxi,uyi,[-0.3 -0.2,-0.1,0,0.1,0.2 0.3],-0.8*Ry*ones(1,7));

Since the condition ∮
∂Ω

J(s) ds =

∮
∂Ω

σ
∂ u

∂n
ds = 0

is critical it is a good idea to examine the numerical approximation of the flux through the boundary. For this use the nornal
vector

n⃗ =
1√

R2
x sin

2 α+R2
y cos

2 α

(
Ry cosα

Rx sinα

)

and then integrate over the segements where the flux is not zero∫
section

⟨n⃗,∇u⟩ ds .

To evaluate this numerically use FEMgriddata() to determine the values of the gradient (∂ u
∂x ,

∂ u
∂y) and then trapz()

to perform a numerical integration. Observe that along the boundary the length segment is given by

ds =
√
R2

x sin
2 α+R2

y cos
2 α dϕ .

The code below leads to in inlet flux of ≈ 0.1975 and to outlet fluxes at either ≈ 0.1980 at 60◦ or ≈ 0.1964 at 120◦.

AnalyzeBoundary.m
%% script to analyze the flux on the boundary
%% assumes that EITforward.m was run before
Angle = -90 % use 60, 120 or -90
Angle = deg2rad(Angle);
Section = pi/20; phi = Angle + linspace(-Section,+Section,100)';
x_b = 0.999*Rx*cos(phi); y_b = 0.999*Ry*sin(phi);

[u_boundary,ux_boundary,uy_boundary] = FEMgriddata(FEMmesh,u,x_b,y_b);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 258

50 55 60 65 70
-0.5

0

0.5

1

1.5
flu

x
de

ns
ity

φ [deg]
(a) outlet at angle +60◦

-100 -95 -90 -85 -80
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

φ [deg]

flu
x

de
ns

ity

(b) inlet at angle −90◦

Figure 140: Flux density at inlet and outlet

ds = sqrt(Rxˆ2*sin(phi).ˆ2 + Ryˆ2*cos(phi).ˆ2);
n = [Ry*cos(phi)./ds, Rx*sin(phi)./ds];

flux = (ux_boundary.*n(:,1) + uy_boundary.*n(:,2));
figure(1); plot(rad2deg(phi),flux)

xlabel('\phi [deg]'); ylabel('flux density')
TotalFlux = trapz(phi,flux.*ds)

9.18 A Catenary
A catenary is a curve describing the shape of a flexible, hanging cable, e.g. [AgarHodiRega19]. A boundary value problem
describing a catenary is

−u′′(x) = −mg

T

√
1 + (u′(x))

2 with u(−1) = u(1) = 0,

where m is the mass per unit length and T the horizontal tension. The exact solution is given by

uexact(x) =
T

mg

(
cosh(

mg

T
x)− cosh(

mg

T
)
)
.

With BVP1DNL() this nonlinear boundary value problem can be solved, see the code Catenary.m below.

• A grid with 50 elements of order 2 is used.

• To use BVP1DNL() the function for the RHS and its derivatives are required, i.e.

f(x, u, u′) =
mg

T

√
1 + (u′)2 ,

∂

∂u
f(x, u, u′) = 0 and

∂

∂u′
f(x, u, u′) =

mg

T

u′√
1 + (u′)2

.

• As initial guess the naive approach u(x) = 0 is used.

• With the option Tol at 10−12 a very low (absolute or relative) tolerance is asked for. Observe that this is the tolerance
for the nonlinear solver in BVP1DNL() and not the difference to the exact solution. If a more accurate solution is
required a finer grid has to be used. Figure 141 shows that the absolute discretization error is of the order 10−5, while
the absolute error for the solution of the discretized problem is of the order 10−11.

• With the option Display as iter the progress of Newton’s algorithm is displayed and the quadratic convergence
can be observed.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 259

Catenary.m
m = 1; g = 9.81; T = 2; Interval = linspace(-1,1,51)';
f = {@(x,u,du)m*g/T*sqrt(1+du.ˆ2), @(x,u,du)0, @(x,u,du)m*g/T*du./sqrt(1+du.ˆ2)};
[x,u,inform] = BVP1DNL(Interval,1,0,0,-1,f,0,0,0, 'Tol',1e-12, 'Display','iter');
inform
figure(1); plot(x,u); xlabel('x'); ylabel('u(x)');

u_exact = @(x)T/(m*g)*(-cosh(m*g/T) + cosh(m*g/T*x));
figure(2); plot(x,u-u_exact(x)); xlabel('x'); ylabel('u_{FEM} - u_{exact}');
-->
iteration 1, RMS(correction) = 9.222842e+00, RMS(phi) = 9.009386e+00
iteration 2, RMS(correction) = 4.310253e-01, RMS(phi) = 4.310159e-01
iteration 3, RMS(correction) = 1.614119e-05, RMS(phi) = 1.614119e-05
iteration 4, RMS(correction) = 8.842381e-12, RMS(phi) = 8.834653e-12

inform = scalar structure containing the fields:
info = 1
iter = 4
AbsError = 8.8424e-12

-1 -0.5 0 0.5 1
-14

-12

-10

-8

-6

-4

-2

0

x

u
F
E
M
(x
)

(a) the FEM solution

-1 -0.5 0 0.5 1
-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

x

u
F
E
M
	-
	u
e
xa
c
t

(b) difference to the exact solution

Figure 141: A catenary, the FEM solution and the difference to the exact solution

To find the length L of the catenary use the integral

L =

∫ +1

−1

√
1 + (u′(x))2 dx =

∫ +1

−1

√
1 + sinh2(

mg

T
x) dx =

∫ +1

−1

cosh(
mg

T
x) dx =

2T

mg
sinh(

mg

T
) .

Using the command FEM1DIntegrate() this can be evaluated numerically, using Simpson’s rule. The numerical result
is rather close to the exact integral.

Catenary.m
du = FEM1DEvaluateDu(x,u);
Length = [FEM1DIntegrate(x,sqrt(1+du.ˆ2)),2*T/(m*g)*sinh(m*g/T)]
-->
Length = [27.514 27.514]

9.19 Stretching of a beam
A beam with variable cross section A(x) is stretched by a force F applied to the right endpoint at x = L. With Young’s
modulus of elasticity E the boundary value problem to be solved is

d

dx
(E A(x)

d u(x)

dx
) = F with u(0) = 0 and EA(L)

d u(L)

dx
= F .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 260

The solution is the displacement function u(x). The resulting strain is given by the first derivative d u(x)
dx . For a beam with

a thinner midsection examine
EA(x) =

1

2

(
2− sin(

xπ

L
)
)
.

In Figure 142 find the displacement u(x) and the resulting strain d u(x)
dx , determined by 10 elements of equal length. It is

clearly visible that the strain u′(x) is a piece-wise linear function. Thus just evaluating u′(x) at more grid points will not
improve the appearance of the solution. Rerunning the code below with more elements (e.g. N = 50) will improve the
situation.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

position	x

d
is
p
la
ce
m
e
n
t	
u

(a) the displacement u(x)

0 0.5 1 1.5 2 2.5 3
0.15

0.2

0.25

0.3

0.35

0.4

position	x
st
ra
in
	d
u
/d
x

at	nodes
fine	grid

(b) the strain u′(x)

Figure 142: Displacement and strain for a beam with thinner midsection

BeamStretch.m
L = 3; F = 0.2; N = 10; EA = @(x) (2-sin(x/L*pi))/2;
[x,u] = BVP1D(linspace(0,L,N),EA,0,0,0,0,0,[F,0]);
figure(1); plot(x,u)

xlabel('position x'); ylabel('displacement u')
[u2,strain] = pwquadinterp(x,u,x); %% evaluation at nodes
x_fine = linspace(0,L,501);
[u_fine,strain_fine] = pwquadinterp(x,u,x_fine); %% interpolation to a fine grid
figure(2); plot(x,strain,x_fine,strain_fine)

xlabel('position x'); ylabel('strain du/dx')
legend('at nodes', 'fine grid')

9.20 How a Fata Morgana is appearing
In calm weather, a layer of significantly warmer air may rest over colder dense air. Thus the density of the air and the index
of refraction decrease as one moves up. This leads to a higher speed of light at higher altitude u. As very simple assumption
use the linear approximation for the index of refraction n(u) = 1 − αu for some postive constant α. Examine the height
u(x) of a ray of light as function of the position a ≤ x ≤ b. Use

ds

dt
= v(u) =

1

n(u)
=

1

1− αu

for the speed of light. With the arc length ds =
√
1 + (u′(x))2 dx determine the time of flight T (u) for a path u(x) of the

ray from x = a to x = b.

T (u) =

∫ b

a

1

v(x)

ds

dx
dx =

∫ b

a

(1− αu(x)
√
1 + (u′(x))2 dx =

∫ b

a

g(u(x), u′(x)) dx

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 261

Based on Fermat’s principle the shape u(x) of the ray is such that the time of flight is minimal. The Euler–Lagrange equation
of the calculus of variations lead to an ODE describing this situation. Use the partial derivatives

∂

∂u
g(u, u′) = −α

√
1 + (u′)2 and

∂

∂u′
g(u, u′) = (1− αu) u′√

1 + (u′)2

to conclude

− d

dx

∂

∂u′
g(u, u′) = − ∂

∂u
g(u, u′)

− d

dx

(
1− αu√
1 + (u′)2

u′

)
= +α

√
1 + (u′)2

To use the algorithm of BVP1DNL() work with a(u, u′) = 1−αu√
1+(u′)2

and

f(u, u′) = α
√
1 + (u′)2 ,

∂

∂u
f(u, u′) = 0 and

∂

∂u′
f(u, u′) = α

u′√
1 + (u′)2

Then find the ray connecting the points (0, 0 and (1, 0) by the code FataMorgana.m below, leading to Figure 143.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 143: Fata Morgana: the ray of light for a point on the ground

FataMorgana.m
Interval = linspace(0,1,21)';
alpha = 0.2;
f = {@(x,u,v)alpha*sqrt(1+v.ˆ2),

@(x,u,v)0*u;
@(x,u,v)alpha*v./sqrt(1+v.ˆ2)};

a = @(x,u,v)(1+alpha*u)./sqrt(1+v.ˆ2);
[x,u] = BVP1DNL(Interval,a,0,0,1,f,0,0,0);
figure(1); plot(x,u,'b');

To find out where an object of height 0.05 at x = 1 is appearing use the same idea to find the rays form (0, 0) to (1, 0) and
(1, 05). Determine the slopes at x = 0 and then draw the tangent lines of the rays. The resulting Figure 144 shows the object
seemingly floating in the air. This is the physics behind a Fata Morgana, see en.wikipedia.org/wiki/Fata Morgana (mirage).

FataMorgana.m
du = FEM1DEvaluateDu(x,u); du1 = du(1);
[x,u2] = BVP1DNL(Interval,a,0,0,1,f,0,0.05,0);
du = FEM1DEvaluateDu(x,u2); du2 = du(1);
figure(2); plot(x,u,'b',[0,1],[0,du1],'g',x,u2,'b',[0,1],[0,du2],'g')

legend('true','visual','location','northwest')

SHA 15-5-24

https://en.wikipedia.org/wiki/Fata_Morgana_(mirage)

9 EXAMPLES, EXAMPLES, EXAMPLES 262

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
true
visual

Figure 144: Fata Morgana: how the image of two points appear to the observer

9.21 Keller’s nonlinear boundary value problems
In [Kell92, p. 317] the boundary value problem

−u′′(x) = −eu(x) with u(−1) = u(1) = 0

is examined. The exact solution is given by

u(x) = ln

(
c2

1 + cos(c x)

)
,

where the value of the constant c is determined as solution of the equation c2 = 1 + cos c . Use Newton’s method to find
c ≈ 1.1765019 . There are two possible approaches to solve this nonlinear boundary value problem, partial successive
substitution or Newton’s method. The command BVP1DNL() is based on Newton’s method.

9.21.1 Partial successive substitution

Start with an initial guess, e.g. u0(x) = 0, leading to − exp(u0) = −1. Then use the iteration

−u′′n+1(x) = −eun(x) .

The coding in FEMoctave is rather straightforward, shown in the code below. Find the solution by (partial) successive
substitution in Figure 145(a) and the difference to the exact solution after 5 iterations in Figure 145(b).

Keller.m
%% successive substitution
N = 51; interval = linspace(-1,1,N)';
c = 1.176501939901833; %% or use the solver
opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c)1+cos(c)-cˆ2,1,opt);

[x,u] = BVP1D(interval,1,0,0,1,-1,0,0);
u_exact = log(cˆ2./(1+cos(c*x)));
figure(1); plot(x,u); xlabel('x'); ylabel('u_1')
for jj = 1:4;
[x,u] = BVP1D(interval,1,0,0,1,-exp(u),0,0);
figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')

legend('FEM','exact', 'location','north')
figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')

legend('FEM-exact')
pause(0.2)

endfor

9.21.2 Newton’s method

With an approximate initial guess u0(x) (start with u0(x) = 0) search a sequence of new solutions of the form un+1(x) =

un(x) + ϕ(x). Use the idea of a linear approximation to solve 0 = f(xn + ϕ) ≈ f(xn) + f ′(xn)ϕ to find ϕ = − f(x)
f ′(x) ,

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 263

-1 -0.5 0 0.5 1
-0.4

-0.3

-0.2

-0.1

0

x

u

FEM
exact

(a) the solution

-1 -0.5 0 0.5 1
-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

x

u

FEM-exact

(b) error of successive substitution

-1 -0.5 0 0.5 1
-1e-05

0

1e-05

2e-05

3e-05

4e-05

x

u

FEM-exact

(c) error of Newton’s method

Figure 145: The solution of Keller’s boundary value problem and the difference of the approximations by successive sub-
stitution and Newton’s method

leading to the usual iteration formula xn+1 = xn + ϕ = xn − f(xn)
f ′(xn)

. Examine the linear boundary value problem for the
unknown function ϕ(x). The Taylor approximation eu+ϕ ≈ eu + euϕ = eu(1 + ϕ) leads to the BVP for ϕ(x).

−u′′n(x)− ϕ′′(x) = −eun(x)+ϕ(x) ≈ −eun(x) (1 + ϕ(x))

−ϕ′′(x) + eun(x)ϕ(x) = u′′n(x)− eun(x) with ϕ(−1) = ϕ(1) = 0

Use [du,ddu] = FEM1DEvaluateDu(xn,u) to find the values of the first and second derivatives at the nodes.
The coefficient eun(x) of the term ϕ(x) depends on the previous solution un(x) and its values have to be known at
the Gauss integration points. Find the Gauss points with the help of the function FEM1DGaussPoints() and use
uGauss=pwquadinterp(xn,u,xGauss) to evaluate un(x) at the Gauss points. Find the solution by Newton’s
method in Figure 145(a) and the difference to the exact solution after 5 iterations in Figure 145(c).

Keller.m
%% Newton's method
N = 51; interval = linspace(-1,1,N)';
c = 1.176501939901833; %% or use the solver
opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c)1+cos(c)-cˆ2,1,opt);

[x,u] = BVP1D(interval,1,0,0,1,-1,0,0);
u_exact = log(cˆ2./(1+cos(c*x)));
figure(1); plot(x,u); xlabel('x'); ylabel('u_1')
xGauss = FEM1DGaussPoints(x);
for jj = 1:4
[du,ddu] = FEM1DEvaluateDu(x,u);
RHS = + ddu - exp(u);
uGauss = pwquadinterp(x,u,xGauss); %% evaluate u at Gauss points
u_coeff = exp(uGauss);
[x,phi] = BVP1D(interval,1,0,u_coeff,1,RHS,0,0);
disp(sprintf('max(abs(phi)) = %g, max(abs(RHS)) = %g',max(abs(phi)), max(abs(RHS))))
u = u + phi;
figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')

legend('FEM','exact','location','north')
figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')

legend('FEM-exact')
pause(0.2)

endfor

9.21.3 Using BVP1DNL()

Newton’s method can be used with very few lines of code. To use BVP1DNL() provide the partial derivative

∂

∂u
f(x, u) =

∂

∂u
(− exp(u)) = − exp(u)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 264

and start with the naive initial guess u0(x) = 0. The graphical result and the information provided in the return variable
inform indicate that the algorithm converged with 4 iterations and the size of the last correction was of the order 1.4 ·10−6.
The RMS of the error is approximately 3 · 10−8, only computable since we know the exact solution. The graph shows an
actual maximal error of ≈ 2 · 10−9.

Keller.m
%% use BVP1DNL
N = 51; interval = linspace(-1,1,N)';
c = 1.176501939901833; %% or use the solver
opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c)1+cos(c)-cˆ2,1,opt);

f = {@(x,u)-exp(u) , @(x,u)-exp(u)};
[x,u,inform] = BVP1DNL(interval,1,0,0,1,f,0,0,0,'Tol',1e-5,'display','iter');
u_exact = log(cˆ2./(1+cos(c*x)));
figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')

legend('FEM','exact','location','north')
figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')

legend('FEM-exact')
inform
RMS_difference = norm(u-u_exact)/sqrt(length(u))
-->
iteration 1, RMS(correction) = 9.323090e-02, RMS(phi) = 9.468330e-02
iteration 2, RMS(correction) = 3.300574e-04, RMS(phi) = 3.300764e-04
iteration 3, RMS(correction) = 4.332861e-09, RMS(phi) = 4.332859e-09

inform = scalar structure containing the fields:
info = 1
iter = 3
AbsError = 4.3329e-09

RMS_difference = 1.6647e-09

9.21.4 A similar problem with multiple solutions

At first sight the nonlinear boundary value problem

−u′′(x) = 1

2
eu(x) with u(−1) = u(1) = 0

found in [Kell92, p. 150] is very similar to the above. But it turns out37 that this problem has two solutions, one with
u(0) ≈ 0.3 and another solution with u(0) ≈ 3. By selecting appropriate initial functions u0(x) = u0 (1 − x2) the
algorithm used in BVP1DNL() will determine either one of these two solutions.

Keller2.m
y01 = 0.3 %% more accurate y0 = 0.3290;
y02 = 3.0 %% more accurate y0 = 2.8955;
RHS = {@(x,y)0.5*exp(y), @(x,y)0.5*exp(y)};
interval = linspace(-1,1,21);
BCleft = 0; BCright = 0;
[x1,y1] = BVP1DNL(interval,1,0,0,1,RHS,BCleft,BCright,@(x)y01*(1-x.ˆ2),

'MaxIter',30,'Display','iter');
[x2,y2] = BVP1DNL(interval,1,0,0,1,RHS,BCleft,BCright,@(x)y02*(1-x.ˆ2),

'MaxIter',30,'Display','iter');
figure(1); plot(x1,y1,x2,y2); xlabel('x'); ylabel('y(x)')

37Examine the initial value problem u′′(x) = − 1
2
exp(u(x)) with u′(0) = 0 and u(0) = u0. Examine the value u(1) as function of u0 and use a

graph or fsolve() to find two zeros at u0 ≈ 0.32895 and u0 ≈ 2.8955 .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 265

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y(
x)

x

Figure 146: Two solutions of −u′′(x) = 1
2 exp(u(x)) with u(−1) = u(+1) = 0

9.22 A pendulum problem
With what angular velocity does a pendulum have to start at the lowest point with angle u(0) = 0 to reach the maximal
angle at time t = T ? What is the resulting maximal angle? A boundary value problem leading to the answers is

ü(t) = − sin(u(t)) with u(0) = 0 and
d

dt
u(T) = 0 . (101)

This BVP always has the trivial solution u(t) = 0. Since sin(u) ≤ u for u ≥ 0 the acceleration for the pendulum is smaller
than the one for the linearized pendulum equation ü(t) = −u(t). The solution of the linearized equation is u(t) = c sin(t).
As consequence require T > π

2 to obtain a nontrivial solution for the BVP (101). Conservation of energy38 requires

initial kinetic energy =
1

2
(u̇(0))2 = (1− cos(u(T)) = final potential energy.

The code Pendulum.m shown below solves the BVP (101) for T = 2 and the conservation of energy is verified.

Pendulum.m
N = 1001; interval = linspace(0,T,N)';
T = 2.0; BCleft = 0; BCright = [0,0];
f = {@(t,u)sin(u), @(t,u)cos(u)};
[t,u] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,@(t)t, 'Display','off','Tol',1e-8);

figure(1); plot(t,u); xlabel('time t'); ylabel('angle u')
v = FEM1DEvaluateDu(t,u);
disp(sprintf('For T = %g: initial angular velocity v(0) = %g, maximal angle u(T) = %g',

T,v(1),u(end)))
KineticEnergy = v(1)ˆ2/2; Potential = 1-cos(u(end));
disp(sprintf('Kinetic energy at t=0: %g, potential energy at t=T: %g, difference: %g',

KineticEnergy,Potential,KineticEnergy-Potential))
-->

38Conservation of energy can be used directly to determine the maximal angle as function of the initial velocity. The travel time T is then given by a
singular integral.

1

2
v2 = (1− cos(umax))− (1− cos(u)) = cos(u)− cos(umax)

d u

dt
= v(u) =

√
2 (cos(u)− cos(umax))

T =

∫ umax

0

1

v(u)
du =

∫ umax

0

1√
2 (cos(u)− cos(umax))

du

The code in Pendulum.m evaluates this integral.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 266

For T = 2: initial angular velocity v(0) = 1.60481, maximal angle u(T) = 1.86263
Kinetic energy at t=0: 1.2877, potential energy at t=T: 1.2877, difference: 8.5831e-07

9.23 A BVP with multiple nonlinear contributions
In [AtkiHan09] find Exercise 5.4.1 on page 241, a nonlinear boundary value problem with multiple nonlinear contributions.

−u′′(x) + u′(x)u(x) + u3(x) = ex

u(0) = 1 , u′(2) = 2

A first attempt at solving this BVP with BVP1DNL() directly will fail. The algorithm does not converge, caused by the
naive initial guess u0(x) = 0, which should be close to the solution. It turns out that the contribution u3(x) leads to the
blowup of the Newton algorithm. One possible way to solve this BVP is to parameterize the critical contribution. Introduce
a parameter 0 ≤ α ≤ 1 and examine

−u′′(x) = fα(x, u(x), u
′(x)) := −u′(x)u(x)− αu3(x) + ex

fα(x, u, u
′) = −u′ u− αu3 + ex

∂

∂u
fα(x, u, u

′) = −u′ − α 3u2

∂

∂u′
fα(x, u, u

′) = −u

Then increase the value of α step by step from 0 to 1. This approach will generate a reliable solution. Find the result from
the code AtkinsonHan.m below in Figure 147.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

u
(x
)

x
(a) The final solution u(x)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

x

u
(x
)

α	=	0.00
α	=	0.25
α	=	0.50
α	=	0.75
α	=	1.00

(b) The solutions for different values of α

Figure 147: A BVP with multiple nonlinear contributions

AtkinsonHan.m
N = 501; interval = linspace(0,1,N)'; BCleft = 1; BCright = [2,0];
u = 0;
figure(2); clf; hold on; box on
for alpha = linspace(0,1,5)
alpha
f = {@(x,u,du)-u.*du - alpha*u.ˆ3 + exp(x),@(x,u,du)-du -alpha*3*u.ˆ2 ,@(x,u,du)-u};
[x,u,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,u,

'Display','iter');
plot(x,u) ;xlabel('x'); ylabel('u(x)')
pause(0.1)

endfor
legend('\alpha = 0.00','\alpha = 0.25','\alpha = 0.50','\alpha = 0.75','\alpha = 1.00',

'location','northwest')
figure(1); plot(x,u) ; xlabel('x'); ylabel('u(x)')

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 267

The output generated by the above code nicely illustrates the quadratic convergence of Newton’s algorithm, i.e. the
number of non-changing digits is approximately doubled at each step, after an initial search.

alpha = 0
iteration 1, RMS(correction) = 1.271951e+00, RMS(phi) = 9.217815e-01
iteration 2, RMS(correction) = 1.859463e-01, RMS(phi) = 1.978042e-01
iteration 3, RMS(correction) = 5.875778e-03, RMS(phi) = 5.886006e-03
iteration 4, RMS(correction) = 5.074170e-06, RMS(phi) = 5.074184e-06
alpha = 0.2500
iteration 1, RMS(correction) = 2.750162e-01, RMS(phi) = 5.594625e-01
iteration 2, RMS(correction) = 1.661185e-01, RMS(phi) = 2.075803e-01
iteration 3, RMS(correction) = 2.746584e-02, RMS(phi) = 2.827483e-02
iteration 4, RMS(correction) = 5.465197e-04, RMS(phi) = 5.468251e-04
iteration 5, RMS(correction) = 2.064430e-07, RMS(phi) = 2.064488e-07
alpha = 0.5000
iteration 1, RMS(correction) = 1.734538e-01, RMS(phi) = 4.004352e-01
iteration 2, RMS(correction) = 1.315342e-01, RMS(phi) = 1.798543e-01
iteration 3, RMS(correction) = 3.380237e-02, RMS(phi) = 3.581552e-02
iteration 4, RMS(correction) = 1.465643e-03, RMS(phi) = 1.469075e-03
iteration 5, RMS(correction) = 2.503296e-06, RMS(phi) = 2.503313e-06
alpha = 0.7500
iteration 1, RMS(correction) = 1.283952e-01, RMS(phi) = 3.183453e-01
iteration 2, RMS(correction) = 1.084098e-01, RMS(phi) = 1.567254e-01
iteration 3, RMS(correction) = 3.454831e-02, RMS(phi) = 3.743495e-02
iteration 4, RMS(correction) = 2.185036e-03, RMS(phi) = 2.195112e-03
iteration 5, RMS(correction) = 7.654415e-06, RMS(phi) = 7.654543e-06
alpha = 1
iteration 1, RMS(correction) = 1.031818e-01, RMS(phi) = 2.665817e-01
iteration 2, RMS(correction) = 9.226889e-02, RMS(phi) = 1.381142e-01
iteration 3, RMS(correction) = 3.318699e-02, RMS(phi) = 3.653564e-02
iteration 4, RMS(correction) = 2.598465e-03, RMS(phi) = 2.615903e-03
iteration 5, RMS(correction) = 1.360277e-05, RMS(phi) = 1.360325e-05
iteration 6, RMS(correction) = 3.689710e-10, RMS(phi) = 3.715615e-10

Another approach to find good initial values is the parametrization

fα(x, u, u
′) = α (−u′ u− u3) + ex .

With smaller steps for 0 ≤ α ≤ 1 this parametrization leads to the same final result.

9.24 Fisher’s equation
Examine Fisher’s equation (named after statistician and biologist Ronald Fisher), also known as the Kolmogorov–Petrovsky–
Piskunov equation, or shorter Fisher-KPP equation.

∂

∂t
u(x, t)− ∂2

∂x2
u(x, t) = f(u(x, t)) = u(x, t) (1− u(x, t)) with u(−∞, t) = 1 and u(+∞, t) = 0 . (102)

This initial boundary value problem can exhibit traveling wave solutions that switch between the two equilibrium states
given by f(u) = 0, i.e. at u = 0 and u = 1. Such equations occur, e.g., in ecology, physiology, combustion, crystallization,
plasma physics, and in general phase transition problems.

9.24.1 A travelling wave solution

When searching for a traveling wave solution with speed c use u(x, t) = u(x−c t) and the above partial differential equation
turns into an ordinary differential equation.

−c u′(x)− u′′(x) = u(x) (1− u(x)) with u(−∞) = 1 and u(+∞) = 0 (103)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 268

This ODE does not have a unique solution. Each translation u(x + D) of a solution u(x) is a solution too. Thus a naive
usage of BVP1DNL() will not succeed. It also turns out that the condition u(+∞) = 0 leads to numerical problems. A
solution of (103) was generated with the ideas and algorithm spelled out below.

• Use c = 6√
5
≈ 2.041239 and select a value of M = 20≫ 1. Then examine two boundary value problems:

−c u′n − u′′n = un (1− un) on −M < x < 0 and un(−M) = 1 and un(0) = 1
4

−c u′p − u′′p = up (1− up) on 0 < x < +M and up(0) = 1
4 and up(+M) = ValueAtM

Consider the value of uP (+M) as parameter and determine its value such that u′n(0) = u′p(0). Use the graphical hint
in Figure 148(a) to select an initial interval for the Octave command zero() to determine a numerical solution of
u′n(0) = u′p(0). The code below leads to the value up(+20) ≈ 8.0826 · 10−8.

• With the obtained optimal value of u(+M) solve the two boundary value problems on −M < x < 0 and 0 <
x < +M . Since un(0) = up(0) and u′n(0) = u′p(0) these two solutions can be patched together at x = 0 to
obtain a solution of the ODE (103) on −M < x < M , leading to Figure 148(b) and the numerical confirmation of
u′n(0) = u′p(0).

first derivatives: u'(x-0)= -0.102206 and u'(x+0)= -0.102206, difference = 6.6294e-10

0 5e-08 1e-07 1.5e-07 2e-07
-0.4

-0.3

-0.2

-0.1

0

0.1

sl
o
p
e
s	
	a
t	
x=
0

value	of	u(+M)

x>0
x<0

(a) The slopes at x = 0 as function of u(+M)

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

u

x
(b) The solution for −M < x < M

Figure 148: The solution of Fisher’s equation

Fisher.m
function Fisher()
c = 5/sqrt(6); M = 20; N = 50; Join = 0.25;
f = {@(x,u)(u.*(1-u)), @(x,u)(1-2*u)};
interval = linspace(0,M,N)'; intervaln = linspace(-M,0,N)';
%% find the parameter
function slopes = FindSlopes(valueM,graphs)
BCleft = Join; BCright = valueM;
[xp,u0] = BVP1D(interval,1,-c,0,1,0,BCleft,BCright);
[xp,up,inform] = BVP1DNL(interval,1,-c,0,1,f,BCleft,BCright,u0);
BCleft = 1; BCright = Join;
[xn,u0] = BVP1D(intervaln,1,-c,0,1,0,BCleft,BCright);
[xn,un,inform] = BVP1DNL(intervaln,1,-c,0,1,f,BCleft,BCright,u0);
dup = FEM1DEvaluateDu(xp,up); dun = FEM1DEvaluateDu(xn,un);
slopes = [dun(end),dup(1)];
endfunction

39For c = 6√
5

an exact solution is given by u(x) = (1 + exp(−x√
6
))−2. This was also useful to find the good value for up(+M).

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 269

%%ValueMList = linspace(0,1e-3,10); %% for M = 10
ValueMList = linspace(0,2e-7,10); %% for M = 20
for jj = 1:length(ValueMList)
s = FindSlopes(ValueMList(jj)); sn(jj) = s(1); ,sp(jj) = s(2);
endfor

figure(1); plot(ValueMList,sp,ValueMList,sn);
xlabel('value of u(+M)'); ylabel('slopes at x=0');
legend('x>0','x<0','location','south')

%% find the best value at x=+M
SameSlope = @(valueM)diff(FindSlopes(valueM));
ValueAtM = fzero(SameSlope,[5,9]*1e-8) %% for M = 20

%% solve the two BVPs
BCleft = Join; BCright = ValueAtM; %% for M = 20
u0 = @(x)(xp-M).ˆ6/Mˆ6*Join;
[xp,up,inform] = BVP1DNL(interval,1,-c,0,1,f,BCleft,BCright,u0,

'Display','off','tol',1e-8);
figure(11); plot(xp,u0(xp),xp,up); xlabel('x'); ylabel('u');

legend('u_0','u','location','northeast')
intervaln = linspace(-M,0,N)'; BCleft = 1; BCright = Join;
u0 = @(x)1-(x+M).ˆ4/Mˆ4*(1-Join);
[xn,un,inform] = BVP1DNL(intervaln,1,-c,0,1,f,BCleft,BCright,u0,

'Display','off','tol',1e-8);
figure(12); plot(xn,u0(xn),xn,un); xlabel('x'); ylabel('u');

legend('u_0','u','location','southwest')
figure(2); plot(xn,un,xp,up); xlabel('x'); ylabel('u');

%% evaluate the derivatives at x=0
[dup, ddup] = FEM1DEvaluateDu(xp,up);
[dun, ddun] = FEM1DEvaluateDu(xn,un);
disp(sprintf("first derivatives: u'(x-0)= %g and u'(x+0)= %g, difference = %g",

dun(end),dup(1),dun(end)-dup(1)))
endfunction

9.24.2 A dynamic solution

Fisher’s equation (102) is a dynamic equation, for which the above approach was searching for traveling wave solutions.
Use the command IBVP1DNL() to examine the dynamic behavior directly. On an interval 0 ≤ x ≤ 60 use the boundary
conditions ∂

∂x u(0, t) = 0 and u(60, t) = 0. The initial condition u(x, 0) is a very small, positive contribution, localized at
x ≈ 0, e.g. u(x, 0) = 0.1 exp(−3x2). The code FisherDynamic.m leads to Figure 149. After a rather short time a
traveling front forms and moves with a constant speed c ≈ 2.

FisherDynamic.m
L = 60; N = 401; Interval = linspace(0,L,N)';
w = 1; a = 1; b = 0; c = 0; d = 1; alpha = 1.0;
f = {@(x,t,u)alpha*u.*(1-u),@(x,t,u)alpha*(1-2*u)};
t0 = 0; tend = 25; steps = [30,30];
BCleft = [0,0]; BCright = 0;
u0 = @(x)0.1*exp(-3*x.ˆ2);
[x,u_all,t] = IBVP1DNL(Interval,w,a,b,c,d,f,BCleft,BCright,u0,t0,tend,steps,'tol', 1e-8);
ind15 = find(abs(t-15)<1e-10); ind20 = find(abs(t-20)<1e-10); ind25 = find(abs(t-25)<1e-10);
ind5 = find(abs(t-5)<1e-10); ind10 = find(abs(t-10)<1e-10);
figure(1); plot(r,u_all(:,ind5),r,u_all(:,ind10),r,u_all(:,ind15),...

r,u_all(:,ind20),r,u_all(:,ind25)); xlabel('r'); ylabel('u');
legend('t=5','t=10','t=15','t=20','t=25','location','northeast')

figure(2); mesh(t,x,u_all); xlabel('t'); xlim([t0,tend])
ylabel('x'); zlabel('u'); view([-70,20])

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 270

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

r

u

t=5
t=10
t=15
t=20
t=25

(a) curves at different times (b) the mesh

0 5 10 15 20 25
0

10

20

30

40

50

60

x

t

(c) contour curves

Figure 149: A dynamic solution of Fisher’s equation

figure(3); contour(t,x,u_all); xlabel('t'); ylabel('x');

9.24.3 A dynamic solution of the radially symmetric setup

Fisher’s equation (102) is for Cartesian coordinates and the planar front is moving in one direction. For the 3D case with
the solution u(r, t) depending on the radius r =

√
x2 + y2 + z2 and time t examine

r2
∂

∂t
u(r, t)− ∂

∂r

(
r2

∂

∂r
u(r, t)

)
= r2 f(u(r, t)) = r2

1

π
sin(π u(r, t)) . (104)

The nonlinear function f(u) = u (1− u) is replaced by f(u) = 1
π sin(π u), a function with the same key features f(0) =

f(1) = 0, f ′(0) = 1 and f(u) > 0 for 0 < u < 1. With f(u) = u (1− u) the problem was solved using a finite difference
approach in [Stah08], This problem can be solved by IBVP1DNL() with very similar code and leads to similar results,
visible in Figure 150.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

r

u

t=5
t=10
t=15
t=20
t=25

(a) curves at different times (b) the mesh

0 5 10 15 20 25
0

10

20

30

40

50

60

t

r

(c) contour curves

Figure 150: A dynamic solution of Fisher’s equation for the radially symmetric setup

FisherDynamicRadial.m
L = 60; N = 401; Interval = linspace(0,L,N)';
w = @(r)r.ˆ2; a = @(r)r.ˆ2; b = 0; c = 0; d = @(r)r.ˆ2; alpha = 1.0/pi;
%%f = {@(r,t,u)alpha*u.*(1-u),@(r,t,u)alpha*(1-2*u)};
f = {@(r,t,u)alpha*sin(pi*u),@(r,t,u)alpha*pi*cos(pi*u)};
t0 = 0; tend = 25; steps = [30,60];
BCleft = [0,0]; BCright = 0;
u0 = @(r)0.1*exp(-3*r.ˆ2);
[r,u_all,t] = IBVP1DNL(Interval,w,a,b,c,d,f,BCleft,BCright,u0,t0,tend,steps,'tol', 1e-8);
ind15 = find(abs(t-15)<1e-10); ind20 = find(abs(t-20)<1e-10); ind25 = find(abs(t-25)<1e-10);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 271

ind5 = find(abs(t-5)<1e-10); ind10 = find(abs(t-10)<1e-10);
figure(1); plot(r,u_all(:,ind5),r,u_all(:,ind10),r,u_all(:,ind15),...

r,u_all(:,ind20),r,u_all(:,ind25)); xlabel('r'); ylabel('u');
legend('t=5','t=10','t=15','t=20','t=25','location','northeast')

figure(2); mesh(t,r,u_all); xlabel('t'); xlim([t0,tend])
ylabel('r'); zlabel('u'); view([-70,20])

figure(3); contour(t,r,u_all); xlabel('t'); ylabel('r');

9.25 From Salt Lake City to Zürich, the shortest connection on a sphere

On the right find a graphics of the northern hemisphere (radius R =
6300 km) with the two cities Zürich and Salt Lake City shown. The
geographic data of the towns is given by

latitude π
2 − θ longitude ϕ

Salt Lake City 41◦ −112◦

Zürich 47◦ +8◦

Airlines prefer to use the shortest connection possible and will fly
north first, and then turn back south. Use calculus of variations to find
the corresponding boundary value problem and verify that the shortest
connection follows a great circle.

To examine this problem use spherical coordinates.
x

y

z

 = R


sin θ cosϕ

sin θ sinϕ

cos θ


The longitude equals the angle ϕ and the latitude is given by π

2 − θ. Represent the connection from Salt Lake City to Zürich
by writing the latitude as a function of the longitude, i.e. θ = u (ϕ). To find the total length L express the length element dl
in terms of spherical coordinates. Use basic calculus to find

dl = R

√
sin2 θ dϕ2 + dθ2 = R

√
sin2(u(ϕ)) + (u′(ϕ))2 dϕ

L(u) = R

∫ ϕ1

ϕ0

√
sin2(u(ϕ)) + (u′ (ϕ))2 dϕ = R

∫ ϕ1

ϕ0

g(ϕ, u(ϕ), u′(ϕ)) dϕ .

To be determined is the function θ = u(ϕ) such that the above functional L(u) is minimized, respecting the boundary
conditions u(ϕSLC) = θSLC and u(ϕZH) = θZH . Use calculus of variations to find the Euler–Lagrange equation

− d

dϕ

(
∂

∂u′
g

)
= − ∂

∂u
g

− d

dϕ

 u′√
sin2(u) + (u′)2

 = − cos(u) sin(u)√
sin2(u) + (u′)2

. (105)

This leads to a nonlinear boundary value problem for the function u(ϕ).

9.25.1 A solution based on successive substitution

With FEMoctave use the method of successive substitution and hope for convergence. Start with a straight line connection,
i.e. the solution of d2

dϕ2 u(ϕ) = 0 . Then hope for the iteration un−1 → un to converge, where un solves

d

dϕ

(
u′n√

sin(un−1)2 + (u′n−1)
2

)
=

cos(un−1) sin(un−1)√
sin(un−1)2 + (u′n−1)

2
.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 272

To use the command BVP1D() for this iteration the following steps are performed.

• Determine the Gauss integration points by phiG = FEM1DGaussPoints(phi).

• Evaluate u(ϕ) = θ(ϕ) and u′(ϕ) = d
dϕ θ(ϕ) at the Gauss points with the help of

[thetaG,DthetaG] = pwquadinterp(phi,theta,phiG)

• Evaluate the coefficients a(ϕ) and d(θ) at the Gauss points by

– a = (sin(thetaG).ˆ2 + DthetaG.ˆ2).ˆ(-1/2)

– d = sin(thetaG).*cos(thetaG)./sqrt(sin(thetaG).ˆ2 + DthetaG.ˆ2)

• Call [phi,theta] = BVP1D(interval,a,0,0,d,-1,BCleft,BCright)

To verify that the shortest connection is on a great circle use the vectors p⃗SLC and p⃗ZH connecting the center of the earth to
the two cities. Then determine the vector n⃗ orthogonal to the plane of the great circle connecting Salt Lake City and Zürich.

n⃗ =
1

∥p⃗SLC × p⃗ZH∥
p⃗SLC × p⃗ZH

The scalar product ⟨p⃗, n⃗⟩ will determine the distance of the point p⃗ from the plane containing the great circle. In Figure 151
find the results of successive substitution performed by the code SaltLakeCity2Zuerich.m below. The (slow) ani-
mation also shows the length L for each iteration.

Iteration 1: L = 9510.058645 km
Iteration 2: L = 8532.915369 km
Iteration 3: L = 8491.805282 km
Iteration 4: L = 8485.252338 km
Iteration 5: L = 8483.738234 km

• Figure 151(a) shows the latitude as function of the longitude. The result of the first computations stays clearly to far
south. The sequence of solutions is monotonically increasing and converging.

• Figure 151(b) shows the resulting curves in space. The length unit is the radius R of the earth.

• Figure 151(c) shows the distance from the plane of the great circle connecting Salt Lake City and Zürich. This
distance converges to zero, i.e. the shortest connection is along a great circle.

-120 -100 -80 -60 -40 -20 0 20
40

45

50

55

60

65

φ	[deg]

9
0
-θ
	[
d
e
g
]

1
2
3
4
5
6

(a) graph of the angles

y
x

0.65

0.7

0.75

z

0.8

0.85

0.9

0.2 0-0.2-0.4 0.8-0.6 0.60.40.2-0.8 0-0.2-0.4

(b) the curves in space

-120 -100 -80 -60 -40 -20 0 20
-0.4

-0.3

-0.2

-0.1

0

0.1

φ	[deg]

(c) distance from the plane

Figure 151: The connections between Salt Lake City and Zürich. The plots of latitude as function of longitude, the curves
in space on the earth as sphere with radius 1 and the distances from the plane with the great circle.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 273

SaltLakeCity2Zuerich.m
N = 51; R = 6300;
Angles_ZH = [8,90-47]/180*pi; Angles_SLC = [-112,90-41]/180*pi;
Vec_ZH = R*[sin(Angles_ZH(2))*cos(Angles_ZH(1));

sin(Angles_ZH(2))*sin(Angles_ZH(1));cos(Angles_ZH(2))];
Vec_SLC = R*[sin(Angles_SLC(2))*cos(Angles_SLC(1));

sin(Angles_SLC(2))*sin(Angles_SLC(1));cos(Angles_SLC(2))];
n = cross(Vec_SLC,Vec_ZH); n = n/norm(n);
BCleft = Angles_SLC(2); BCright = Angles_ZH(2);
interval = linspace(Angles_SLC(1),Angles_ZH(1),N);
[phi,theta] = BVP1D(interval,1,0,0,1,0,BCleft,BCright);
figure(1); plot(phi/pi*180,90-theta/pi*180);

xlabel('\phi [deg]'); ylabel('90-\theta [deg]'); hold on
x = sin(theta).*cos(phi); y = sin(theta).*sin(phi); z = cos(theta);
Dtheta = FEM1DEvaluateDu(phi,theta);
figure(2); plot3(x,y,z);

xlabel('x'); ylabel('y'); zlabel('z'); view([-20,10]); hold on
disp(sprintf("Iteration 1: L = %f km",R*trapz(phi,sqrt(sin(theta).ˆ2+Dtheta.ˆ2))))
figure(3); plot(phi*180/pi,[x,y,z]*n);

xlabel('\phi [deg]'); hold on;
phiG = FEM1DGaussPoints(phi);
for jj = 2:5;
[thetaG,DthetaG] = pwquadinterp(phi,theta,phiG);
a = (sin(thetaG).ˆ2 + DthetaG.ˆ2).ˆ(-1/2);
d = -sin(thetaG).*cos(thetaG)./sqrt(sin(thetaG).ˆ2 + DthetaG.ˆ2);
[phi,theta] = BVP1D(interval,a,0,0,d,1,BCleft,BCright);
Dtheta = FEM1DEvaluateDu(phi,theta);
disp(sprintf("Iteration %i: L = %f km",

jj,R*trapz(phi,sqrt(sin(theta).ˆ2+Dtheta.ˆ2))))
figure(1); plot(phi/pi*180,90-theta/pi*180);
x = sin(theta).*cos(phi); y = sin(theta).*sin(phi); z = cos(theta);
figure(2); plot3(x,y,z);
figure(3); plot(phi*180/pi,[x,y,z]*n);
pause(0.2)

endfor %% jj
figure(1); legend('1','2','3','4','5'); hold off;
figure(2); hold off; figure(3); hold off

9.25.2 A solution using BVP1DNL()

When solving the BVP (105)

− d

dϕ

 u′√
sin2(u) + (u′)2

 = − cos(u) sin(u)√
sin2(u) + (u′)2

.

with the help of BVP1DNL() the partial derivatives of the right hand side with respect to u and u′ will be used.

f(ϕ, u, u′) = − cos(u) sin(u)√
sin2(u) + (u′)2

fu =
∂

∂u
f(ϕ, u, u′) = − 1− 2 sin2(u)√

sin2(u) + (u′)2
+

cos2(u) sin2(u)√
sin2(u) + (u′)2

3

fu′ =
∂

∂u′
f(ϕ, u, u′) =

cos(u) sin(u)u′√
sin2(u) + (u′)2

3

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 274

Then the algorithm in the code below will use a combination of Newton’s method and partial substitution. Thus the conver-
gence will not be drastically faster then the pure partial substitution implemented in the above code, but there is some error
control and the algorithm has not to be coded explicitly.

SaltLakeCity2Zuerich.m
N = 51; R = 6300;
Angles_ZH = [8,90-47]/180*pi; Angles_SLC = [-112,90-41]/180*pi;
BCleft = Angles_SLC(2); BCright = Angles_ZH(2);
interval = linspace(Angles_SLC(1),Angles_ZH(1),N);
a = @(x,u,du)(sin(u).ˆ2+du.ˆ2).ˆ(-0.5);
f = {@(x,u,du)(-cos(u).*sin(u))./sqrt(sin(u).ˆ2+du.ˆ2),

@(x,u,du)-(1-2*sin(u).ˆ2)./sqrt(sin(u).ˆ2+du.ˆ2)...
+(cos(u).ˆ2.*sin(u).ˆ2)./(sqrt(sin(u).ˆ2+du.ˆ2).ˆ3),

@(x,u,du)(cos(u).*sin(u).*du)./(sqrt(sin(u).ˆ2+du.ˆ2).ˆ3)};
[phi2,theta2] = BVP1D(interval,1,0,0,1,0,BCleft,BCright); %% generate an intial guess
[phi2,theta2,inform] = BVP1DNL(interval,a,0,0,1,f,BCleft,BCright,theta2,

'MaxIter',20,'Display','iter');
figure(4); plot(phi/pi*180,90-theta/pi*180);

xlabel('\phi [deg]'); ylabel('90-\theta [deg]');
Dtheta2 = FEM1DEvaluateDu(phi2,theta2);
disp(sprintf("BVP1DNL(): L = %f km",R*trapz(phi2,sqrt(sin(theta2).ˆ2+Dtheta2.ˆ2))))
-->
iteration 1, RMS(correction) = 3.564728e-02, RMS(phi) = 2.463522e-02
iteration 2, RMS(correction) = 9.219981e-03, RMS(phi) = 3.524064e-03
iteration 3, RMS(correction) = 3.832637e-03, RMS(phi) = 1.109014e-03
iteration 4, RMS(correction) = 1.851140e-03, RMS(phi) = 4.995842e-04
iteration 5, RMS(correction) = 9.461144e-04, RMS(phi) = 2.493060e-04
iteration 6, RMS(correction) = 5.000805e-04, RMS(phi) = 1.302717e-04
iteration 7, RMS(correction) = 2.705884e-04, RMS(phi) = 6.998341e-05
iteration 8, RMS(correction) = 1.490106e-04, RMS(phi) = 3.832821e-05
iteration 9, RMS(correction) = 8.320151e-05, RMS(phi) = 2.129955e-05
iteration 10, RMS(correction) = 4.698144e-05, RMS(phi) = 1.197436e-05
iteration 11, RMS(correction) = 2.677860e-05, RMS(phi) = 6.796374e-06
iteration 12, RMS(correction) = 1.538521e-05, RMS(phi) = 3.888693e-06

BVP1DNL(): L = 8483.161942 km

9.26 A 1D nonlinear bending beam problem
The bending of a slender beam can be described by the angle α(s) as function of the arc length s. For a beam with inertia
of the cross section I and a material with Young’s modulus E the curvature is given by

κ(s) = α′(s) =
M(s)

EI
,

where M(s) is the total moment at position s. Examine a beam attached at (x, y) = (0, 0) and starting out horizontaly (i.e.
α(0) = 0) with a vertical force F2 applied at the other endpoints s = L. The (x, y) coordinates of the beam at s = l are
given by an integral (

x(s)

y(s)

)
=

∫ s

0

(
cos(α(τ))

sin(α(τ))

)
dτ .

The moment M(s) is given by

M(s) = F2 (x(L)− x(s)) = −F2

∫ L

s

cos(α(τ)) dτ .

Using the above equation for the bending of the beam leads to

α′(s) =
M(s)

EI
=

F2

EI

∫ L

s

cos(α(τ)) dτ

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 275

d

ds
α′(s) =

F2

EI

d

ds

∫ L

s

cos(α(τ)) dτ = − F2

EI
cos(s)

−α′′(s) =
F2

EI
cos(α(s))) .

This ODE has to be supplemented with the boundary conditions α(0) = α′(L) = 0 to arrive at a nonlinear BVP. For small
forces the approximation cos(α) ≈ 1 leads to the solution

α(s) ≈ F2

2EI
(L2 − (L− s)2) = F2

2EI
(2Ls− s2) .

Use this result for code varification or as possible starting value for Newton’s method.

9.26.1 Solving the BVP using Newton’s algorithm

The nonlinear boundary value problem can be solved using Newton’s method. Use the idea of linearization to arrive at an
iterative algorithm.

−α′′(s) =
F2

EI
cos(α(s)) for 0 < s < L and α(0) = α′(L) = 0

−α′′(s)− ϕ′′(s) =
F2

EI
cos(α(s) + ϕ(s)) ≈ F2

EI
(cos(α(s))− sin(α(s))ϕ(s))

−ϕ′′(s) + F2

EI
sin(αn(s))ϕ(s) = +α′′

n(s) +
F2

EI
(cos(αn(s))) with ϕ(0) = ϕ′(L) = 0

αn+1(s) = αn(s) + ϕ(s)

The code BendingBeam1D.m implements the above algorithm. For small values of F2 the results are as expected. But
for larger values of F2 the resulting figure is at best surprising. In Figure 152(a) find the result for F2 = 1.5, and this is in
fact a solution of the nonlinear BVP, but not the expected solution. Newton’s method works extremely well, if the initial
guess is “close enough” to the desired solution. But the last point is critical and failed for this bending beam problem for
large forces F2.

BendingBeam1D.m
L = 3; EI = 1; %% as single run
F2 = 1.5; %% try values of 0.1 0.5 1.0 and 2
N = 1000; s = linspace(0,L,N);
[sn,alpha] = BVP1D(s,1,0,0,1,F2/EI,0,[0,0]);
figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
xGauss = FEM1DGaussPoints(sn);
[xGauss,Nodes2GaussU] = FEM1DGaussPoints(sn);
for jj = 1:20
[dalpha,ddalpha] = FEM1DEvaluateDu(sn,alpha); %% evaluate derivative at nodes
RHS = ddalpha + F2/EI*cos(alpha);
alphaGauss = Nodes2GaussU*alpha; %% evaluate u at Gauss points
[sn,phi] = BVP1D(s,1,0,+F2/EI*sin(alphaGauss),1,RHS,0,[0,0]);
disp(sprintf('max(abs(phi)) = %g , max(abs(RHS)) = %g',max(abs(phi)), max(abs(RHS))))
alpha = alpha + phi;
figure(2); plot(sn,alpha); xlabel('x'); ylabel('angle \alpha')
pause(0.2)

endfor
x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
figure(3); plot(x,y); xlabel('x'); ylabel('y')

To obtain a reliable solution for F2 = 2 it is advisable to use a parameterized approach. In the code below the value of
F2 is increased form 0 to 2.0 is steps of 0.25 and at each new level of F2 the result of the previous computation is used as
starting value for α(s). Find the graphical results in Figure 152(b).

BendingBeam1D.m
L = 3; EI = 1; F2_List = [0.25:0.25:2]; %% a parametrized approach
N = 100; s = linspace(0,L,N)';

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 276

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
y

x
(a) the result for F2 = 1.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

y

x
(b) the parametric results for F2 up to 2

Figure 152: The solutions for a bending beam

[sn,alpha] = BVP1D(s,1,0,0,1,F2_List(1)/EI,0,[0,0]);
figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
xGauss = FEM1DGaussPoints(sn);
figure(3); clf; hold off
for F2 = F2_List
for jj = 1:10
[dalpha,ddalpha] = FEM1DEvaluateDu(sn,alpha);
RHS = ddalpha + F2/EI*cos(alpha);
alphaGauss = pwquadinterp(sn,alpha,xGauss); %% evaluate u at Gauss points
[sn,phi] = BVP1D(s,1,0,F2/EI*sin(alphaGauss),1,RHS,0,[0,0]);
alpha = alpha + phi;

endfor % jj
x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
figure(3); plot(x,y); xlabel('x'); ylabel('y'); hold on

endfor %% F2
hold off

9.26.2 Solving the BVP with the command BVP1DNL()

The above bending beam problem can be solved with the help of BVP1DNL(). There is less coding involved, but the
problem of converging to a non desired solution remains. Observing the results of the iterations confirms that at first the
algorithm is “searching for a solution”, but once it is close to a solution quadratic convergence sets in, i.e. the number of
stable digits is doubled at each step. This is expected for Newton’s method.

BendingBeam1D.m
F2 = 1.5; %% try values of 0.1 0.25 0.5 1.0 and 2
f = {@(s,alpha)F2/EI*cos(alpha), @(s,alpha)-F2/EI*sin(alpha)};
N = 100; s = linspace(0,L,N)';
%%% generate a good initial guess
[sn,alpha0] = BVP1D(s,1,0,0,1,F2/EI,0,[0,0]); %% as solution of linear BVP
%% alpha0 = @(s)F2/(2*EI)*(Lˆ2-(L-s).ˆ2); %% use the analytical solution
[sn,alpha,inform] = BVP1DNL(s,1,0,0,1,f,0,[0,0],alpha0,'tol',1e-8,'MaxIter',50,'Display','iter');
inform
figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
figure(3); plot(x,y); xlabel('x'); ylabel('y');

The output of the above code illustrates the long search for a solution by Newton’s method, and the quadratic conver-
gence as soon as close to one of the possible solutions, starting at iteration 11.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 277

iteration 1, RMS(correction) = 2.148167e+00, RMS(phi) = 3.658963e+01
iteration 2, RMS(correction) = 1.534256e+00, RMS(phi) = 1.281984e+00
iteration 3, RMS(correction) = 3.233207e-01, RMS(phi) = 6.380582e-01
iteration 4, RMS(correction) = 1.715649e-01, RMS(phi) = 6.706732e-01
iteration 5, RMS(correction) = 1.442408e-01, RMS(phi) = 5.281602e-01
iteration 6, RMS(correction) = 1.380244e-01, RMS(phi) = 4.177463e-01
iteration 7, RMS(correction) = 1.388972e-01, RMS(phi) = 3.168041e-01
iteration 8, RMS(correction) = 1.277986e-01, RMS(phi) = 2.140754e-01
iteration 9, RMS(correction) = 8.810050e-02, RMS(phi) = 1.124749e-01
iteration 10, RMS(correction) = 3.198417e-02, RMS(phi) = 3.424090e-02
iteration 11, RMS(correction) = 3.261890e-03, RMS(phi) = 3.282558e-03
iteration 12, RMS(correction) = 3.022821e-05, RMS(phi) = 3.022996e-05
iteration 13, RMS(correction) = 2.563226e-09, RMS(phi) = 2.562500e-09

inform = scalar structure containing the fields:
info = 1
iter = 13
AbsError = 2.5632e-09

The parametric approach will again reliably generate the desired solution with very few iterations for each value of F2.

BendingBeam1D.m
L = 3; EI = 1;
F2_List = [0:0.25:2];
N = 100; s = linspace(0,L,N)'; sn = sort([s; s(1:end-1)+diff(s)/2]);
alpha = 0;
for F2 = F2_List
f = {@(s,al)F2/EI*cos(al), @(s,al)-F2/EI*sin(al)};
[sn,alpha,inform] = BVP1DNL(s,1,0,0,1,f,0,[0,0],alpha);
inform

endfor
inform
figure(1); plot(sn,alpha*180/pi); xlabel('arclength s'); ylabel('angle \alpha [deg]')
x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
figure(3); plot(x,y); xlabel('x'); ylabel('y');

9.26.3 Solving the BVP as final value of a dynamic problem, using IBVP1DNL()

The equation for the bent beam−α′′(s) = F2

EI cos(α(s)) can be looked at as the steady state solution of an artificial dynamic
problem.

∂
∂t α(s, t)−

∂2

∂s2 α(s, t) = F2

EI cos(α(s, t)) for 0 < s < L and t > 0

α(0, t) = ∂
∂s α(L, t) = 0 for t > 0

α(s, 0) = 0 for 0 < s < L

If this solution converges to a final solution α∞(s) = limt→∞ α(s, t) then α∞(s) is a solution of the bending beam
problem40. The virtual time t takes over the role of a parameter, just like the force F2 in the above approach. The code
BeamNonlinear1DDynamic.m below implements this approach and Figure 153 confirms the expected behavior. The
left part of the figure shows the stepwise approximation of the steady state solution. By selecting other initial values
α0(s) = u0(s) one can search for different solutions. As example examine the result for u0(s) = −5π

4 (1− (s
L − 1)2).

BeamNonlinear1DDynamic.m
%% solve the nonlinear beam problem as dynamic problem
L = 3; EI = 1; F2 = 2.0;
Interval = linspace(0,L,100)'; T0 = 0; Tend = 4; steps = [10,1];

40For symmetric, positive definite matrices one can verify that for solutions of W d
dt
u⃗(t) = −Au⃗(t) + M cos(u⃗(t)) the expression G(u⃗(t)) :=

1
2
⟨A u⃗(t) , u⃗(t)⟩ −

∑
i (M sin(u⃗(t)))i is decreasing. If it converges to a steady state u⃗∞ then Au⃗∞ = M cos(u⃗∞).

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 278

(a) the angles α(s, t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

y

x
(b) the final solution (x(s), y(s))

Figure 153: Time evolution and the final solution for a dynamic bending beam

f = {@(x,t,u)F2*cos(u), @(x,t,u)-F2*sin(u)};
u0 = 0; %% the naive initial guess
%%u0 = @(s,t)pi/2*(1-(s/L-1).ˆ2); %% with a better initial guess
%%u0 = @(s,t)-5/4*pi*(1-(s/L-1).ˆ2); %% to aim for a different solution
[s,u_all,t] = IBVP1DNL(Interval,1,EI,0,0,1,f,0,[0,0],u0,T0,Tend,steps);
figure(1); mesh(t,s,u_all); view([-50,20])

xlabel('time t'); ylabel('arclength s'); zlabel('angle \alpha(s)')
u = u_all(:,end);
x = cumtrapz(s,cos(u)); y = cumtrapz(s,sin(u));
figure(2); plot(x,y); xlabel('x'); ylabel('y');

9.27 Mass transfer in a porous catalyst
In [KubiHlav08, p. 92, Example 4.3, p. 255, Example 5.7] a nonlinear boundary value problem is examined, describing the
mass transfer in a porous catalyst.

−y′′ − a

x
y′ = −α2 y exp(

γ β (1− y)
1 + β (1− y)

) with y′(0) = 0 and y(1) = 1

For α = 0 there is the trivial solution y(x) = 1. The nonlinear contribution and its partial derivative are given by

f(y) = −α2 y exp(
γ β (1− y)
1 + β (1− y)

)

∂

∂y
f(y) = −α2 exp(

γ β (1− y)
1 + β (1− y)

) + α2 y exp(
γ β (1− y)
1 + β (1− y)

)
−γ β (1 + β (1− y)) + γ β (1− y)β

(1 + β (1− y))2

= −α2 exp(
γ β (1− y)
1 + β (1− y)

)

(
1 + y

−γ β
(1 + β (1− y))2

)
.

In [KubiHlav08] the values a = 2, γ = 20 and β = 0.05 are used and the parameter 0 ≤ α ≤ 1 is increased from 0 to 1.
BVP1DNL() can solve the problem directly for α = 1, but a parametric solution is possible too. Find the solutions of the
code below in Figure 154. The results coincide with the numbers in [KubiHlav08, Example 5.7].

PorousCatalyst.m
N = 10; interval = linspace(0,1,N)';
a = 2; gamma = 20; beta = 0.05;
BCleft = [0,0]; BCright = 1;
y = 1;
figure(2); clf; hold on; box on; xlabel('x'); ylabel('y')
for alpha = 0:0.2:1

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 279

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1
y

x
(a) the solution for α = 1

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

x

y α	=	0.00
α	=	0.20
α	=	0.40
α	=	0.60
α	=	0.80
α	=	1.00

(b) The solution for different values of α

Figure 154: A BVP describing mass transfer in a porous catalyst

f = {@(x,y) -alphaˆ2*y.*exp(gamma*beta*(1-y)./(1+beta*(1-y))),
@(x,y) -alphaˆ2 *exp(gamma*beta*(1-y)./(1+beta*(1-y))).*...

(1-gamma*beta*y./((1+beta*(1-y)).ˆ2))};
[x,y] = BVP1DNL(interval,1,@(x)-a./x,0,1,f,BCleft,BCright,y);
plot(x,y)
disp(sprintf('alpha = %#3.2f, y(0) = %#g',alpha,y(1)))

endfor
legend('\alpha = 0.00','\alpha = 0.20','\alpha = 0.40','\alpha = 0.60',

'\alpha = 0.80','\alpha = 1.00','location','southeast')
figure(1); plot(x,y); xlabel('x'); ylabel('y'); box on
-->
alpha = 0.00, y(0) = 1.00000
alpha = 0.20, y(0) = 0.993333
alpha = 0.40, y(0) = 0.973339
alpha = 0.60, y(0) = 0.940066
alpha = 0.80, y(0) = 0.893713
alpha = 1.00, y(0) = 0.834810

For a second set of values a = 0, γ = 20 and β = 0.4 the algorithm converges nicely up to α ≈ 0.37. For α > 0.4
convergence is difficult to obtain.

In [KubiHlav08, Example 4.3] find the values for a = 2, γ = 20, β = 0.2 and α = 2. A rather sophisticated iteration
scheme was used in [KubiHlav08]. By increasing the value of α from 0 to 2 the results in the last row of [KubiHlav08,
Table4-12] can be reproduced by BVP1DNL(). Find the results of the code below in Figure 155.

PorousCatalyst.m
N = 51; interval = linspace(0,1,N)';
BCleft = [0,0]; BCright = 1;
a = 2; gamma = 20; beta = 0.2;
y = 1;
figure(2); clf; hold on; box on; xlabel('x'); ylabel('y')
for alpha = [0:0.1:1.6, 1.65:0.05:2]
f = {@(x,y) -alphaˆ2*y.*exp(gamma*beta*(1-y)./(1+beta*(1-y))),

@(x,y) -alphaˆ2 *exp(gamma*beta*(1-y)./(1+beta*(1-y))).*...
(1-gamma*beta*y./((1+beta*(1-y)).ˆ2))};

[x,y] = BVP1DNL(interval,1,@(x)-a./x,0,1,f,BCleft,BCright,y);
plot(x,y)

endfor
figure(1); plot(x,y); xlabel('x'); ylabel('y'); box on
x_n = [0:0.2:0.8]; y_n = pwquadinterp(x,y,x_n);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 280

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
y

x
(a) the solution for α = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) The solution for different values of α

Figure 155: A BVP describing mass transfer in a porous catalyst, second setup

disp(sprintf('y(%g)=%5.4e, y(%g)=%5.4e, y(%g)=%5.4e, y(%g)=%5.4e, y(%g)=%5.4e',
x_n(1),y_n(1),x_n(2),y_n(2),x_n(3),y_n(3),x_n(4),y_n(4),x_n(5),y_n(5)))

-->
y(0)=2.7643e-3, y(0.2)=5.3166e-3, y(0.4)=2.1871e-2, y(0.6)=1.0853e-1, y(0.8)=4.3316e-1

9.28 Troesch’s equation
In [IzadSuayNoei21] or [KubiHlav08, p. 244, Example 5.4] Troesch’s nonlinear boundary value problem is examined.

y′′(x) = α sinh(α y(x)) with y(0) = 0 and y(1) = 1

The results for α = 0.5 in [IzadSuayNoei21, Table 1] can be generated by BVP1DNL() with very few lines of code.

Troesch.m
N = 11; interval = linspace(0,1,N)'; BCleft = 0; BCright = 1; alpha = 0.5;
f = {@(x,y) -alpha*sinh(alpha*y), @(x,y)-alphaˆ2*cosh(alpha*y)};
[x,y,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,@(x)x);
figure(1); plot(x,y); xlabel('x'); ylabel('y(x)')
xd = [0.1:0.1:0.9]'; yd = pwquadinterp(x,y,xd);
Results = [xd,yd]
-->
Results = 0.1 0.095944

0.2 0.192129
0.3 0.288794
0.4 0.386185
0.5 0.484547
0.6 0.584133
0.7 0.685201
0.8 0.788017
0.9 0.892854

To obtain the results for α = 1 in [IzadSuayNoei21, Table 2] just change the value of α in the above code.

In [KubiHlav08, Example 5.4] a shooting method is used to determineα as function of y′(0). The results in [KubiHlav08,
Table5-6] are confirmed by the code below, using BVP1DNL().

Troesch.m
N = 51; interval = linspace(0,1,N)'; BCleft = 0; BCright = 1;
figure(1); clf; hold on; box on
y = 1;

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 281

for alpha = [0.792, 1.151 1.753 2.394 3.308 4.129 5.0]
f = {@(x,y) -alpha*sinh(alpha*y), @(x,y)-alphaˆ2*cosh(alpha*y)};
[x,y] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,y);
figure(1); plot(x,y); xlabel('x'); ylabel('y(x)'); drawnow()
[y0,dy0] = pwquadinterp(x,y,0);
disp(sprintf("alpha = %#6.5g, y'(0)= %g",alpha,dy0))
endfor
-->
alpha = 0.79200, y'(0)= 0.900027
alpha = 1.1510, y'(0)= 0.800195
alpha = 1.7530, y'(0)= 0.600109
alpha = 2.3940, y'(0)= 0.400003
alpha = 3.3080, y'(0)= 0.200008
alpha = 4.1290, y'(0)= 0.0999462
alpha = 5.0000, y'(0)= 0.0457183

9.29 Motion of a string
Examine the motion of a string of length 5. For 2 seconds apply a force to the very left section (0 ≤ x ≤ 1). Use a small
damping factor, e.g. 0.25. A possible IBVP describing this setup is

∂2

∂t2 u(x, t) + 0.25 ∂
∂t u(x, t)−

∂2

∂x2 u(x, t) = f(x, t) for 0 < x < 5 and 0 < t < 10

u(0, t) = u(5, t) = 0 for 0 ≤ t ≤ 10

u(x, 0) = ∂
∂t u(x, 0) = 0 for 0 ≤ x ≤ 5

with the driving force function

f(x, t) =

{
cos(π2 x) sin(2π t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 2

0 otherwise

This problem is examined with the help of I2BVP1D(). Find the graphical result in Figure156. Observe the two cos–
shaped pulses moving with speed +1. Then they are reflected at the border at x = 5 and travelling with speed −1. The
amplitudes are slowly decaying, caused by the damping.

MovingString.m
N = 101; x_max = 5; interval = linspace(0,x_max,N)';
omega = 2*pi;
f = @(x,t)(cos(x*pi/2).*(x<=1))*(sin(omega*t)*(t<=2));
u0 = 0; u1 = 0;
w2 = 1; w1 = 0.25; a = 2; b = 0; c = 0; d = 1;
BCleft = [0]; BCright = [0];
t0 = 0; tend = 10; steps = [250,10];
[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);

figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
xlim([min(t),max(t)]); ylim([min(x),max(x)]); view([20,20])

9.30 A plane stress example by Wait and Mitchel
This example is taken from [WaitMitc85, §4.4.3] with the material parameters suitable for rubber. The domain is visible in
Figure 157.

• On the two sections connecting the points (0, 13), (
1
3 ,

1
3) and (13 , 0) zero displacements are required.

• On the 45◦ degree segment connecting (23 , 1) with (1, 23) the horizontal and vertical displacements are +0.3. Thus
the edge is displaced by 0.3

√
2 ≈ 0.42.

• The other four sections of the boundary are assumed to be force free.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 282

Figure 156: Motion of a string, excited by an initial pulse close to x = 0

(a) the original mesh (b) the deformed mesh

Figure 157: The original and deformed Mesh for a plane stress example

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 283

• As a consequence the solid is severely deformed, visible on the right in Figure 157.

The problem is solved using a linear plane stress model. Find the implementation in the code WaitMitchell.m
below.

• Define the material parameters for a rubber like material: Young’s modulus E and Poisson’s ratio ν.

• Define the domain and the boundary conditions. Then call CreateMeshTriangle() to generate the mesh, shown
in Figure 157. The mesh consists of cubic elements. There are 5948 + 5948 = 11′896 ≈ 12′000 degrees of freedom.
Use Mesh.nDOF to obtain this information.

• A function

Disp(x, y) =

{
0.3 if x+ y > 1

0 if x+ y < 1

is defined to evaluate the known displacements on the boundary.

• A call of PlaneStress() will evaluate the horizontal and vertical displacements (u1, u2). These are shown in
Figure 158.

(a) the horizontal displacement u1 (b) the vertical displacement u2

Figure 158: The displacements for a plane stress example

WaitMitchell.m
E = 3e6; nu = 0.45; %% rubber
Dom = [0,1/3,-11;1/3,1/3,-11;1/3,0,-22;1,0,-22;1,2/3,-11;2/3,1,-22;0,1,-22];
Mesh = CreateMeshTriangle('Domain',Dom,1e-3);
figure(1); FEMtrimesh(Mesh); axis equal
Mesh = MeshUpgrade(Mesh,'cubic');

function res = Disp(xy)
res = 0.3 .*(sum(xy,2)>1) ; %% if x+y>1

endfunction

[u1,u2] = PlaneStress(Mesh,E,nu,{0,0},{'Disp','Disp'},{0,0});
figure(2); FEMtrisurf(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(3); FEMtrisurf(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
figure(100); ShowDeformation(Mesh,u1,u2,1); axis equal

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 284

• With the displacements use EvaluateStress() to determine the two normal stresses σx and σx and the shearing
stress τxy .

• Then generate images, leading to Figure 159. The stress concentration at the different corners is rather obvious.

Figure 159: The stresses for a plane stress example

WaitMitchell.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress(Mesh,u1,u2,E,nu);
figure(4); FEMtrimesh(Mesh,sigma_x); xlabel('x'); ylabel('y'); zlabel('\sigma_x')
figure(5); FEMtrimesh(Mesh,sigma_y); xlabel('x'); ylabel('y'); zlabel('\sigma_y')
figure(6); FEMtrimesh(Mesh,tau_xy); xlabel('x'); ylabel('y'); zlabel('\tau_{xy}')

To analyze the situation more information might be useful. Find the graphical results in Figure 160.

• Use EvaluateVonMises() to determine the von Mises stress. The values have to be compared with the yield
stress of the material.

• The energy density generated by EvaluateEnergyDensity() shows the concentration at the corners too.

• With FEMIntegrate() the total elastic energy Eelast ≈ 2.0 · 105 N m can be determined. The displacement of the
45◦ edge is D = 0.3

√
2 and the total force F (per meter of thickness of the block) is given by

F =
2Eelast

D
=

2Eelast

0.3
√
2
.

The results by the code WaitMitchell.m is F ≈ 9.6 · 105 N
m.

WaitMitchell.m
VonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(Mesh,u1,u2);
EnergyDensity = EvaluateEnergyDensity(Mesh,eps_xx,eps_yy,eps_xy,E,nu);
ElasticEnergy = FEMIntegrate(Mesh,EnergyDensity)
Force = 2*ElasticEnergy/(sqrt(2)*0.3)
Contour = [Dom(:,1:2);Dom(1,1:2)];
figure(7); clf; FEMtricontour(Mesh,VonMises/1e6,[0:0.1:2]); xlabel('x'); ylabel('y');

hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();
figure(8); clf;FEMtricontour(Mesh,EnergyDensity/1e6,[0:0.05:1]);xlabel('x');ylabel('y');

hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 285

(a) the von Mises stress [MPa] (b) the energy density [MPa]

Figure 160: The von Mises stress and the energy density for a plane stress example

Of particular interest is the 45◦ line connecting the points (13 ,
1
3) and (56 ,

5
6). Using the transformation rule for the strain

tensor41 leads to
ε45 =

1

2
(εxx + εyy + 2 εxy) .

Integrating this normal strain along the connecting line should lead to the total displacement, i.e.∫ 5/6

1/3

ε45(x, x)
√
2 dx ≈ 0.3

√
2 .

This is confirmed by the numerical integration using trapz(). Find the contour lines of ε45 on the full domain and the
values along the diagonal line in Figure 161. The very large values of the strain clearly indicate that the linear material
model used is not appropriate. For large deformation the nonlinear material properties have to be taken into account.

WaitMitchell.m
eps_45 = (eps_xx+eps_yy+2*eps_xy)/2;
x = linspace(1/3,1-1/6)';
eps_45line = FEMgriddata(Mesh,eps_45,x,x);
figure(9); clf; FEMtricontour(Mesh,eps_45,[0:0.05:0.6]); xlabel('x'); ylabel('y');

hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();
figure(10); plot(x,eps_45line); xlabel('x'); ylabel('eps_{45}')
Stretch = [trapz(sqrt(2)*x,eps_45line),sqrt(2)*0.3]
-->
Stretch = 0.4209 0.4243

9.31 A pipe under pressure
Examine a pipe with a circular cross section and inner radius R and a wall with thickness ∆R. On the inside a pressure P is
applied. The pipe under pressure will expand and the wall material will stretch. For ductile materials (e.g. copper, steel) the

41Strain is a tensor of order two and thus for a rotation angle ϕ = π
4
= 45◦ obtain[

ε′
x′x′ ε′

x′y′

ε′
x′y′ ε′

y′y′

]
=

[
cosϕ sinϕ

− sinϕ cosϕ

]
·
[
εxx εxy

εxy εyy

]
·
[

cosϕ − sinϕ

sinϕ cosϕ

]

=

 1√
2

1√
2

−1√
2

1√
2

 ·
[
εxx εxy

εxy εyy

]
·

 1√
2

−1√
2

1√
2

1√
2

 =
1

2

[
1 1

−1 1

]
·
[
εxx + εxy −εxx + εxy

εxy + εyy −εxy + εyy

]

ε45 = ε′x′x′ =
1

2
(εxx + 2 εxy + εyy)

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 286

(a) the nornal strain in 45◦ direction

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1

1.2

1.4

e
p
s 4
5

x
(b) normal strain along diagonal

Figure 161: The normal strain in the 45◦ direction for a plane stress example

maximal value of the von Mises stress is a good criterion to decide whether the pipe will withstand the pressure, or break.
The problem can be examined by FEM as a plane strain problem or as an axially symmetric problem, or one can determine
an exact solution for a setup with a thin wall.

As exemplary situation examine:

• a pipe with inner radius R = 0.1 m and a wall thickness of ∆R = 0.01 m. A quarter of a cross section is visible in
Figure 162.

• a pressure of P = 10 atm = 106 Pa = 106 N
m2 .

• with a copper pipe, i.e. a yield strength of ≈ 33 MPa or a steel pipe, i.e. a yield strength of ≈ 350 MPa.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

x

y

Figure 162: One quarter of a section through the pipe, the original domain (green) and the deformed domain (red)

9.31.1 As a plane strain problem

To examine this problem with FEMoctave start by defining the domain and the boundary conditions.

• Define the domain with the help of polar coordinatesR ≤ r ≤ R+∆R and 0 ≤ ϕ ≤ π
2 . Use CreateMeshRect()

to create a rectangular mesh and then MeshDeform() to create the domain in Figure 162.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 287

• At the lower edge at y = 0 the edge is free to move in x–direction and no displacement in y–direction. This is
implemented with the code −21 in the function CreateMeshRect() for the boundary condition. See Table 6 on
page 49 for the coding of the boundary conditions.

• At the left edge at x = 0 the edge is free to move in y–direction and no displacement in x–direction. This is
implemented with the code −12 for the boundary condition.

• At the inner edge at r = R pressure P is applied, leading to the code −33 for the boundary condition.

• At the outer edge at r = R+∆R there is no force, leading to the code −22 for the boundary condition.

• For good accuracy second order elements are used by calling MeshUpgrade().

PipePressure.m
E = 110e9; nu = 0.35; %%% copper
%%E = 200e9; nu = 0.25; %%% steel
R = 0.1; dR = 0.01;
nR = 5; nPhi = 51; %% number of layers in radial and angular direction
Estar = E/(1-nuˆ2); nustar = nu/(1-nu);

global P
P = 10e5; %% 10 atm pressure
FEMmesh = CreateMeshRect(linspace(R,R+dR,nR+1),linspace(0,pi/2,nPhi+1),-21,-12,-33,-22);
function new_xy = Deform(xy)
new_xy = [xy(:,1).*cos(xy(:,2)),xy(:,1).*sin(xy(:,2))];

endfunction
FEMmesh = MeshDeform(FEMmesh,'Deform');
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

With this domain and the correct boundary conditions the problem can be solved.

• Start by defining the force density corresponding to the inside pressure P , i.e.

at

(
R cosα

R sinα

)
apply the force density

(
P cosα

P sinα

)
.

• Assuming that the pipe will not stretch in the direction orthogonal to the cross section we end up with a plane strain
problem. Thus use PlaneStrain() to find approximations to the displacements u1 and u2.

PipePressure.m
%% define the radial pressure to be applied on the inside
function res = gN1(xy)
global P
angle = atan2(xy(:,2),xy(:,1)); res = P*cos(angle);

endfunction
function res = gN2(xy)
global P
angle = atan2(xy(:,2),xy(:,1)); res = P*sin(angle);

endfunction

[u1,u2] = PlaneStrain(FEMmesh,E,nu,{0,0},{0,0},{'gN1','gN2'});

factor = 400;
figure(111); ShowDeformation(FEMmesh,u1,u2,factor); axis equal; xlabel('x'); ylabel('y');

The last few lines in the above code generate the domain visible in Figure 162.

With the displacements determine all stresses at the nodes by using EvaluateStress(). Since four return arguments
are asked for the plane strain setup is used. Then use EvaluateVonMises() to find the values of the von Mises stress,
visible in Figure 163(a). The maximal value of the von Mises stress is approximated by 10 MPa, which is smaller than the
yield strength 33 MPa of copper. Thus the pipe is expected to withstand the applied pressure, but the margin of error is not
very large. The pipe will start cracking on the inside, where the von Mises stress is largest.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 288

PipePressure.m
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);

figure(2); FEMtrimesh(FEMmesh,vonMises); xlabel('x'); ylabel('y');
title('von Mises stress'); view([25,25])

vonMises_min_max = [min(vonMises),max(vonMises)]
-->
vonMises_min_max = 8.3695e+06 1.0082e+07

(a) the von Mises stress

0.1 0.102 0.104 0.106 0.108 0.11
-2e+06

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

radius

pr
in

ci
pa

l s
tr

es
se

s

σ1
σ2
σ3

(b) the principal stresses

Figure 163: The von Mises stress in the cross section and the principal stresses along a radius of the pipe under pressure

To analyze the pipe further choose an angle, e.g. α = π
4 = 45◦, and evaluate along a straight line with this angle for

radii R ≤ r ≤ R+∆R.

• Start by selecting the angle 0 ≤ α ≤ π
2 and define the x and y values along the arc with this angle.

• Use the above values of the stresses and EvaluatePrincipalStress() find the values of the principle stresses
at the nodes.

• Then calls of FEMgriddata() will determine the values of the principle stresses along the selected arc. Use
σ3 = ν (σ1 + σ2) to compute the third principle stress. Then a call of plot() will generate Figure 163(b).

• The minimal value−9.9770 ·105 ≈ −1 MPa of σ2 shows that this is the normal stress in radial direction on the inside
of the pipe, coinciding with the given pressure P .

• The maximal value −7 · 100 ≈ 0 MPa of σ2 corresponds to the zero pressure on the outside.

• The values of σ1 are considerably larger than the values of σ2. This illustrates that the wall of the pipe is severely
stretched in angular direction.

PipePressure.m
%% evaluation at one angle, all radii
alpha = pi/4; Nr = 101; Nmid = (Nr+1)/2; %% use an odd number for Nr
r = linspace(R,R+dR,Nr)'; x = r*cos(alpha); y = r*sin(alpha);

[sigma_1,sigma_2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
sigma_1r = FEMgriddata(FEMmesh,sigma_1,x,y);
sigma_2r = FEMgriddata(FEMmesh,sigma_2,x,y);
sigma_3r = nu*(sigma_1r+sigma_2r);
sigma_2r_min_max = [min(sigma_2r),max(sigma_2r)]

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 289

figure(3); plot(r,[sigma_1r,sigma_2r,sigma_3r]);
xlabel('radius'); ylabel('principal stresses')
legend('\sigma_1','\sigma_2','\sigma_3','location','west')

-->
sigma_2r_min_max = -9.9770e+05 -7.1114e+03

At the midpoint in the wall of the pipe the stress matrix (tensor, to be precise) can be evaluated with the help of three
calls of FEMgriddata(). [

σx τxy

τxy σy

]
≈

[
+4.7572 −5.2252
−5.2252 +4.7616

]
· 106

Then use a rotation matrix and the transformation rule for second order tensors to determine the stresses in the rotated
coordinate system.[

+cosα +sinα

− sinα +cosα

] [
σx τxy

τxy σy

] [
+cosα − sinα

+sinα +cosα

]
≈

[
−0.46582 +0.00217

+0.00217 +9.9846

]
· 106

The result shows the normal, compressing pressure of−0.47 MPa in radial direction and the stretching pressure of +10 MPa
in angular direction.

PipePressure.m
%% examine stress at middle point
x_mid = x(Nmid); y_mid = y(Nmid);

sigma_x = FEMgriddata(FEMmesh,sigma_x,x_mid,y_mid);
sigma_y = FEMgriddata(FEMmesh,sigma_y,x_mid,y_mid);
tau_xy = FEMgriddata(FEMmesh,tau_xy ,x_mid,y_mid);
RotMat = [cos(alpha) -sin(alpha);+sin(alpha) cos(alpha)];
stress = [sigma_x,tau_xy;tau_xy,sigma_y]
stress_rotated = RotMat'*stress*RotMat
-->
stress = 4.7572e+06 -5.2252e+06

-5.2252e+06 4.7616e+06

stress_rotated = -4.6582e+05 2.1668e+03
2.1668e+03 9.9846e+06

With the provided code in PipePressure.m it is easy the modify the parameters of the above problem, e.g. change
from copper to steel, examine larger radii or thinner walls.

For a pipe with a thin wall an analytical approximation is possible. Examine the section shown in Figure 162 and assume
that the normal stress σφ in angular direction is independent on the radius. Then use a balance of force law in y–direction
and an integration over the angle to conclude

σφ ∆R =

∫ π/2

0

P sinφ R dφ = P R .

In the above example this leads to

σφ =
P R

∆R
=

106 · 0.1
0.01

= 107 ,

which is very close to the above result generated by FEMoctave. With the known angular stress and Hooke’s law estimate
the angular stretch, i.e.

εφ =
σφ
E

=
107

110 · 109
≈ 9.09 · 10−5 .

Since the angular stretching factor εφ equals the radial stretching factor εr estimate the change of radius by

R −→ R (1 + εr) = R+ 9.09 · 10−6 .

This is not too far from the FEMoctave result of max{u1} ≈ 8.8 · 10−6. The FEM approximation allows to examine pipes
with thick walls and also examines behavior within the wall.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 290

9.31.2 As an axisymmetric problem

The above problem can be examined as an axially symmetric problem. The domain is given by R ≤ r ≤ R + dR and
0 ≤ z ≤ R, and then rotated about the z–axis.

• At the inner edge at x = r = R the pressure P is applied in r–direction and the edge is free to move in z direction.

• The outer edge at x = r = R+ dR is free to move.

• The lower and upper edge are fixed in z–direction and free to move in x = r–direction.

Start out be defining the parameters and generating the mesh. Then determine the radial displacement ur and the z–
displacement uz by calling AxiStress().

PipePressureAxi.m
R = 0.1; dR = 0.01;
if 0 %% regular mesh
Mesh = CreateMeshRect(R+linspace(0,dR,20),linspace(0,R,10),-21,-21,-32,-22);

else %% irregular mesh
Mesh = CreateMeshTriangle('Test',...

[R 0 -21;R+dR 0 -22; R+dR R -21; R R -32],1e-5);
endif
Mesh = MeshUpgrade(Mesh,'quadratic');

P = 10e5; E = 110e9; nu = 0.35; f = {0,0}; gD = {0,0}; gN = {P,0};
[ur,uz] = AxiStress(Mesh,E,nu,f,gD,gN);
figure(2); FEMtrimesh(Mesh,ur);

xlabel('r'); ylabel('z'); zlabel('u_r')
figure(3); FEMtrimesh(Mesh,uz);

xlabel('r'); ylabel('z'); zlabel('u_z')

Determine all strains by using EvaluateStrainAxi().

PipePressureAxi.m
[eps_xx,eps_yy,eps_zz,eps_xz] = EvaluateStrainAxi(Mesh,ur,uz);
figure(11); FEMtrimesh(Mesh,eps_xx)

xlabel('r'); ylabel('z'); zlabel('\epsilon_{xx}')
figure(12); FEMtrimesh(Mesh,eps_yy)

xlabel('r'); ylabel('z'); zlabel('\epsilon_{yy}')
figure(13); FEMtrimesh(Mesh,eps_zz)

xlabel('r'); ylabel('z'); zlabel('\epsilon_{zz}')

Determine the normal and shearing stresses by using EvaluateStressAxi().

PipePressureAxi.m
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
figure(21); FEMtrimesh(Mesh,sigma_x)

xlabel('r'); ylabel('z'); zlabel('\sigma_x')
figure(22); FEMtrimesh(Mesh,sigma_y)

xlabel('r'); ylabel('z'); zlabel('\sigma_y')
figure(23); FEMtrimesh(Mesh,sigma_z)

xlabel('r'); ylabel('z'); zlabel('\sigma_z')

Determine the von Mises stress, the principal stresses and the Tresca stress by using the functions of FEMoctave:
EvaluateVonMisesAxi(), EvaluatePrincipalStressAxi() and EvaluateTrescaAxi(). The results
coincide with the values from the plane strain approach in the previous section.

PipePressureAxi.m
vonMises = EvaluateVonMisesAxi(sigma_x,sigma_y,sigma_z,tau_xz);
figure(24); FEMtrimesh(Mesh,vonMises)

xlabel('r'); ylabel('z'); zlabel('von Mises')
[sigma_1,sigma_2] = EvaluatePrincipalStressAxi(sigma_x,sigma_z,tau_xz);
r = R + linspace(0,dR,100)';

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 291

sigma_1i = FEMgriddata(Mesh,sigma_1,r,R/2*ones(size(r)));
sigma_2i = FEMgriddata(Mesh,sigma_2,r,R/2*ones(size(r)));
sigma_3i = FEMgriddata(Mesh,sigma_y,r,R/2*ones(size(r)));
figure(25); plot(r,sigma_1i,r,sigma_2i,r,sigma_3i); xlabel('r'); ylabel('z');

legend('\sigma_1','\sigma_2','\sigma_3', 'location','west')
Tresca = EvaluateTrescaAxi(sigma_x,sigma_y,sigma_z,tau_xz);
figure(26); FEMtrimesh(Mesh,Tresca); xlabel('r'); ylabel('z'); zlabel('Tresca')

9.31.3 The analytical solution

For this axisymmetric setup use that uz = 0 and ur(r, z) = ur(r) to determine an exact solution. The energy of the system
is given by

U(ur)

2π
=

∫∫
Ω

r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) ((∂ ur

∂r
)2 +

1

r2
u2r) +

2 ν

r
ur
∂ ur
∂r

)
dA−RP ur(R) .

With the constant k = E
(1+ν) (1−2 ν) and the notation u(r) = ur(r) the expression to be minimized is

Ur(u) =

∫ R+∆R

R

r k

2

(
(1− ν) ((u′(r))2 + 1

r2
u2(r)) +

2 ν

r
u(r)u′(r)

)
dr −RP u(R)

=

∫ R+∆R

R

k

2

(
(1− ν) (r (u′(r))2 + 1

r
u2(r))

)
dr +

k ν

2
u2(r)

R+∆R

r=R
−RP u(R)

Ur(u+ ϕ) = Ur(u) +

∫ R+∆R

R

k (1− ν) (r u′ϕ′ + 1

r
u ϕ) dr + k ν u(r)ϕ(r)

R+∆R

r=R
−RP ϕ(R) +O(ϕ2)

= Ur(u) +

∫ R+∆R

R

k (1− ν) (−(r u′)′ + 1

r
u)ϕ dr +

+k ((1− ν) r u′(r)ϕ(r) + ν u(r)ϕ(r))
R+∆R

r=R
−RP ϕ(R) +O(ϕ2) .

Use the Euler–Lagrange equation for this problem and determine the exact solution.

0 = −r (r (u′(r))′ + u(r)

Ansatz: u(r) = rα

0 = −r (r α rα−1)′ + rα = −α2 rα + rα

0 = −α2 + 1 =⇒ α = ±1

u(r) = c1 r + c2
1

r

The two natural boundary conditions are

(1− ν)Ru′(R) + ν u(R) = −R
k
P

(1− ν) (R+∆R)u′(R+∆R) + ν u(R+∆R) = 0 .

Using the above solution u(r) = c1 r + c2
1
r leads to

R (1− ν) (c1 −
1

R2
c2) + ν (c1R+ c2

1

R
) = −R

k
P

(R+∆R) (1− ν) (c1 −
1

(R+∆R)2
c2) + ν (c1 (R+∆R) + c2

1

R+∆R
) = 0

or as a system of linear equations[
R − 1−2 ν

R

(R+∆R) − 1−2 ν
R+∆R

] (
c1

c2

)
=

(
−R

k P

0

)
.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 292

Using the above parameters the solutions are c1 ≈ 1.7532 · 10−5 and c2 ≈ 7.0714 · 10−7 and thus

ur(r) = u(r) = c1 r + c2
1

r
≈ 1.7532 · 10−5 r + 7.0714 · 10−7 1

r
.

Using the results in Section 4.15.2 (page 86) all stresses and strains can be computed. The values coincide with the above
FEM solutions.

k = E/((1+nu)*(1-2*nu));
c = [R -(1-2*nu)/R;(R+dR) -(1-2*nu)/(R+dR)]\[-R/k*P;0];
r = R + linspace(0,dR,100)';
u = c(1)*r + c(2)./r;

9.32 A sphere under hydrostatic pressure
A sphere with radius R is submitted to a hydrostatic pressure P . This will lead to uniform strains εxx = εyy = εzz =

− 1−2 ν
E P and no shearing strains. This leads to a constant energy density w = 3 (1−2 ν)

2E P 2. The numbers generated by the
code SphereHydrostatic.m confirm these results.

• The material parameters E = 1 and ν = 0.25 are rather theoretical.

• A quarter of a circle in the xz–plane with radius R is rotated about the z–axis to model the upper half of the sphere.

• Along the lower edge require uz = 0 and no force in x–direction. Along the left edge require ux = ur = 0 and no
force in z–direction. Along the curved section at an angle α the force density is given by

g⃗N (α) = −

(
P cos(α)

P sin(α)

)

and implemented by two functions gNr() and gNz().

• A mesh is generated by CreateMeshTriangle() and then the displacements ur and uz determined by calling
AxiStress(). The figures show these displacements.

• With a call of EvaluateStrainAxi() the strains are evaluated at the nodes, followed by a call of EvaluateEnergyDensityAxi()
to find the energy density W .

• The total energy is the determined by the integral

Energy =

∫∫
Ω

2π rW (r, z) dA

and evaluated by calling FEMIntegrate(). Dividing by the volume 2
3 R

3 of the half sphere leads to the average
energy density.

• The figures for the strains and the energy density are rather boring, since all these expressions are constant for the
hydrostatic loading situation.

SphereHydrostatic.m
global P
P = -0.1;
E = 1; nu = 0.25; R = 1;
N = 51; alpha = linspace(0,+pi/2,N)'; x = R*cos(alpha); z = R*sin(alpha);
Dom = [0,0,-21;[x,z,-33*ones(size(x))]]; Dom(end,3) = -12;
function res = gNr(rz)
global P
alpha = atan2(rz(:,2),rz(:,1));
res = P*cos(alpha);

endfunction

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 293

function res = gNz(rz)
global P
alpha = atan2(rz(:,2),rz(:,1));
res = P*sin(alpha);

endfunction

Mesh = CreateMeshTriangle('quart',Dom,1e-2);
Mesh = MeshUpgrade(Mesh,'quadratic');
[ur,uz] = AxiStress(Mesh,E,nu,{0,0},{0,0},{'gNr','gNz'});
figure(1); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r'); view([20,40])
figure(2); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z'); view([-120,20])

[eps_xx,eps_yy,eps_zz,eps_xz] = EvaluateStrainAxi(Mesh,ur,uz);
figure(3); FEMtrimesh(Mesh,eps_xx); xlabel('r'); ylabel('z'); zlabel('eps_{xx}')
figure(4); FEMtrimesh(Mesh,eps_yy); xlabel('r'); ylabel('z'); zlabel('eps_{yy}')
figure(5); FEMtrimesh(Mesh,eps_zz); xlabel('r'); ylabel('z'); zlabel('eps_{zz}')
figure(6); FEMtrimesh(Mesh,eps_xz); xlabel('r'); ylabel('z'); zlabel('eps_{xz}')
W = EvaluateEnergyDensityAxi(Mesh,eps_xx,eps_yy,eps_zz,eps_xz,E,nu);
figure(7); FEMtrimesh(Mesh,W); xlabel('r'); ylabel('z'); zlabel('energy density')
r = Mesh.nodes(:,1);
EnergyIntegrated = FEMIntegrate(Mesh,2*pi*r.*W)
EnergyDensity = EnergyIntegrated/(4/3*pi*Rˆ3/2)

9.33 A crook with a weight attached
Examine the two L–shaped steel beams in Figure 164(a). Each beam has length L = H = 0.1 with a square cross section
of 0.01× 0.01. The top edge is fixed and at the right end there is a force of 100 N (i.e. a weight of 10 kg) pulling the beam
downwards. The corner at (x, y) = (0, 0) is slightly rounded, since the highest stresses are expected to show up in this area,
see Figure 164(b). The applied force of 100 N leads to a surface force density of gN2 = 100 N

0.012 m2 = 106 N
m2 .

Start out by defining the domain and generating the mesh with the help of CreateMeshTriangle(). To avoid
shear–locking use MeshUpgrade() to generate second order elements.

Crook.m
W = 0.01; H = 0.1; Load = 1e6;;
Layers = 2*5; gap = W/5;

if 0 %% no rounding
Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;..

0 0 -22; gap 0 -22; H 0 -23; H -W -22];
else %% with a rounded corner
Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;...

gap*0.366 gap*0.366 -22; gap 0 -22; H 0 -23; H -W -22];
endif

FEMmesh = CreateMeshTriangle ('Crook1',Domain,(W/Layers)ˆ2);
figure(1); FEMtrimesh(FEMmesh); xlabel('x'); ylabel('y'); axis([-W 3*gap -W 3*gap])
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

Then find the approximate displacements u1 and u2 by calling PlaneStress(). The code segment below estimates
the maximal vertical displacement by−8.96 ·10−4 m, i.e. approximately−0.9 mm. Then examine the vertical displacement
generated by the horizontal section of the crook. To verify the order of magnitude of the displacement use two elementary
mechanical arguments:

1. For a bending Euler beam with the dimensions of one arm obtain

u2(L) = −
4F

EW H3
L3 ≈ − 4 · 102

200 · 109 0.014
0.13 = −2 · 10−4 ,

i.e. a displacement of 0.2 mm.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 294

-0.02 0 0.02 0.04 0.06 0.08 0.1

0

0.02

0.04

0.06

0.08

0.1

(a) the domain

-0.01 -0.005 0 0.005
-0.01

-0.005

0

0.005

y

x
(b) the grid at the corner

Figure 164: Original and deformed domain for the crook with attached weight at the right edge

2. The slope of the lower arm at the left starting point is estimated by −6.56 · 10−3 and with the length H = L = 0.1
this leads to another contribution of ≈ 0.56 mm.

The sum of the two contributions is not too far from the result 0.9 mm by FEMoctave.

Crook.m
E = 200e9; nu = 0.25; %%% steel
[u1,u2] = PlaneStress(FEMmesh,E,nu,{0,0},{0,0},{0,-Load});

MaximalDisplacement = min(u2)
[˜,slope_x,˜] = FEMgriddata(FEMmesh,u2,0,-W/2)
i = linspace(-0.01,0.1)'; xi =-0.005*ones(size(yi));
u1i = FEMgriddata(FEMmesh,u1,xi,yi);
figure(8); plot(yi,u1i)

xlabel('y'); ylabel('u_1')
p = polyfit(yi,u1i,2); %% linear regression of a polynomial of degree 2
slope = polyval([2*p(1) p(2)],-W/2) %% evaluate the derivative of the polynomial
-->
MaximalDisplacement = -8.9570e-04
slope_x = -6.5645e-03
slope = 6.6130e-03

To determine the slope of the horizontal beam at the left starting point the result by FEMoctave was used above. One
can use an analytical approximation by using the moment applied to the vertical beam, generated by the force at the right
endpoint. Along the centerline of the vertical beam use

∂2 u1(y)

∂y2
=
−F (H +W/2)

E I
=
−F (H +W/2)

E 1
12 W

3W
≈ 6.3 · 10−2 .

Then use the conditions u1(H) = u1(0.1) = ∂ u1(H)
∂y = 0 at the top edge to estimate ∂ u1(−W/2)

∂y ≈ 6.62 · 10−3, which
is rather close to the FEMoctave result of 6.56 · 10−3. The horizontal displacement u1 along the centerline of the vertical
beam is shown in Figure 167(a).

To generate Figure 164(a) with the scaled deformation also shown, start out by creating a coarse mesh and evaluate the
displacement at those nodes. Then show the original and deformed mesh with different colors.

Crook.m
CoarseMesh = CreateMeshRect([-W:W/3:H],[-W:W/3:H],-11,-11,-11,-11);
x = CoarseMesh.nodes(:,1); y = CoarseMesh.nodes(:,2);
u1i = FEMgriddata(FEMmesh,u1,x,y); u2i = FEMgriddata(FEMmesh,u2,x,y);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 295

x(isnan(u1i)) = NaN;

figure(2); clf; factor = H/10/abs(min(u2));
trimesh(CoarseMesh.elem,x,y,'color','green','linewidth', 1); hold on;
trimesh(CoarseMesh.elem,x+factor*u1i,y+factor*u2i,'color','red','linewidth',1)
axis equal; hold off

To examine the mechanical load of the structure evaluate the stresses by calling EvaluateStress(). By asking for
three return arguments a plane stress model is used. It is easy to generate graphs of the whole structure, but more insight
might be gained by a closer look at some slices.

• At height y = H
2 = 0.05 examine the normal stress σy in y–direction. The result in Figure 165(a) show a compression

in the left segment and traction on the right. This corresponds to the bending on the vertical arm. By integrating σy
along this slice one should obtain the value of the force applied on the right edge of the crook, i.e.

W

∫ 0

−W

σy(x, 0.05) dx ≈ Force = 100 .

For the moment with respect to the origin (0, 0) we expect

W

∫ 0

−W

xσy(x, 0.05) dx ≈ H · Force = 10 .

Both results are confirmed by the code below. The values of the normal stress σx are approximately zero.

• At x = H
2 = 0.05 examine the normal stress σx in x–direction along a vertical slice. The result in Figure 165(b)

shows a compression in the lower segment and traction in the upper segment. This corresponds to the downward
bending on the horizontal arm. For the moment with respect to the point (H2 , 0) we expect

W

∫ 0

−W

y σx(0.05, y) dy ≈
1

2
H · Force = 5 .

The values of the normal stress σy are approximately zero. By integrating the shearing stress τxy obtain again the
applied force, i.e.

W

∫ 0

−W

τxy(0.05, y) dy ≈ Force = −100 .

• Observe that the stress values in the vertical arm are considerably larger than in the horizontal arm. The values in
Figure 165(b) are at x = 0.05. For larger values of x the strains σx will be even smaller.

Crook.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
dist = linspace(-W,0,100)'; HH = H/2*ones(size(dist));
sigma_y_slice_H = FEMgriddata(FEMmesh,sigma_y,dist,HH);
figure(3); plot(dist,sigma_y_slice_H/1e6);

xlabel('x'); ylabel('\sigma_y [MPa]');xlim([-W,0])

sigma_y_slice_H(isnan(sigma_y_slice_H)) = 0;
Integral_sigma_y = W*trapz(dist,sigma_y_slice_H)
Integral_Moment = W*trapz(dist,dist.*sigma_y_slice_H)

sigma_x_slice_V = FEMgriddata(FEMmesh,sigma_x,HH,dist);
tau_xy_slice_V = FEMgriddata(FEMmesh,tau_xy,HH,dist);
figure(4); plot(dist,sigma_x_slice_V/1e6);

xlabel('y'); ylabel('\sigma_x [MPa]');xlim([-W,0])
Integral_Moment_x = W*trapz(dist,dist.*sigma_x_slice_V)
Integral_tau_xy = W*trapz(dist,tau_xy_slice_V)
-->
Integral_sigma_y = 99.769
Integral_Moment = 10.002
Integral_Moment_x = 5.0005
Integral_tau_xy = -99.985

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 296

-0.01 -0.008 -0.006 -0.004 -0.002 0
-100

-50

0

50

100

x

σ y
 [M

P
a]

(a) a horizontal slice at y = 0.05

-0.01 -0.008 -0.006 -0.004 -0.002 0
-30

-20

-10

0

10

20

30

y

σ x
 [M

P
a]

(b) a vertical slice at x = 0.05

Figure 165: A horizontal slice with σy shown and a vertical slice with σx shown

Since steel is a ductile material one can use the von Mises stress to decide whether the crook will withstand the force
of 100 N. Use EvaluateVonMises() to find the values of the von Mises stress at the nodes and then FEMtrisurf()
and FEMtricontour() to generate Figure 166. The contour lines in Figure 166 are supplemented with the borders of the
domain. The spikes of the von Mises stress at the corner (0, 0) should be no surprise to mechanical engineers. One possible
measure to reduce the maximal value of von Mises is the rounding visible in Figure 164(b). To obtain more insight the
von Mises stress is evaluated along the straight line connecting (−W,−W) and (0, 0), using FEMgriddata(), leading to
Figure 167(b). Since the yield strength of steel is ≈ 330 MPa the crook should be able to support the force of 100 N .

(a) the surface, in MPa (b) the contour lines

Figure 166: The von Mises stress on the crook, as surface and level curves

Crook.m
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
figure(5); FEMtrisurf(FEMmesh,vonMises/1e6);

xlabel('x'); ylabel('y'); zlabel('von Mises [MPa]'); view(160,25)
colorbar(); shading interp

figure(6); clf; FEMtricontour(FEMmesh,vonMises/1e6,1e1*[0:0.5:6]);
xlabel('x'); ylabel('y'); title('von Mises [MPa]');

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 297

-0.02 0 0.02 0.04 0.06 0.08 0.1
-0.0004

-0.0003

-0.0002

-0.0001

0

y

u 1

(a) bending in vertical beam

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002
0

20

40

60

80

x,y

vo
n
	M
is
e
s	
[M
P
a
]

(b) von Mises stress across corner

Figure 167: The bending of the centerline of the vertical beam and the von Mises stress on the 45◦ line through the origin

caxis(1e2*[0 0.7]); axis equal; colorbar(); hold on
plot([Domain(:,1);Domain(1,1)],[Domain(:,2);Domain(1,2)],...
'color','black','linewidth',1); hold off

dist = linspace(-W,gap,100)'; HH = H/2*ones(size(dist));
vonMises_slice = FEMgriddata(FEMmesh,vonMises,dist,dist);
figure(7); plot(dist,vonMises_slice*1e-6);

xlabel('x,y'); ylabel('von Mises [MPa]')

9.34 A wrench
A classical example application for mechanical FEM is a wrench. With a digital image of a typical wrench the tool
xinput() is used in Octave to grab the contour data from the screen and written to the file WrenchData.m, see [Stah22,
§3.9]. Then rescale the contour to obtain a typical length of 0.15 m of the wrench in Figure 168(a). Then setup an appropriate
configuration of the wrench.

• The material is steel with the parameters E = 200 GPa and ν = 0.25 .

• Most of the boundary is force free, thus with the code −22, according to Table 6 on page 49.

• Along the two horizontal sections on the very left the displacements are zero, modeling the screw head in the wrench.
A closer look at the contour data shows that these are sections 1 and 4 of the contour, used with the code −11 for the
boundary condition.

• The applied force is 100 N over a length of 0.05 m and width 0.005 m, leading to a force density of 100
0.05·0.005 =

4 · 105 N
m2 . This load is applied on segment 17 of the contour, used with the code −23 for no force in x direction and

the given load in y direction.

With this data the mesh is generated by calling CreateMeshTriangle(). Then the mesh of linear elements should be
upgraded to quadratic or cubic elements with the help of MeshUpgrade(). Then use PlaneStress() to solve for the
displacements u1 and u2.

Wrench.m
load WrenchData.m %% load the contour data
scale = 0.15/max(x); %% scale the contour data
x = scale*x; y = scale*y;
Order = 3; %% select the order of the elements 1,2 or 3

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 298

BC = -22*ones(size(x)); %% default is a force free boundary
BC([1 4]) = -11; BC(17) = -23; %% fixed at the two horizontal section on the left

%% vertical force on top right segment
Load = 100/(0.05*0.005); %% 100 N, distributed over length 0.05 and width 0.005

Mesh = CreateMeshTriangle('Wrench',[x,y,BC],0.01ˆ2/4); %% create the mesh
switch Order
case 2 Mesh = MeshUpgrade(Mesh,'quadratic');
case 3 Mesh = MeshUpgrade(Mesh,'cubic');

endswitch
E = 200e9; nu = 0.25; gN = {0,-Load}; %% data for steel
[u1,u2] = PlaneStress(Mesh,E,nu,{0,0},{0,0},gN); %% solve the plane stress problem

0 0.05 0.1 0.15

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) the wrench, original and deformed

0.06 0.08 0.1 0.12 0.14
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

σ
y	
[M
P
a
]

(b) σy along upper edge

Figure 168: The deformed wrench and the stress σy along upper edge with the applied load

With the solution the original and deformed shape can be displayed with the applied load visualized by a few vectors,
see Figure 168(a).

Wrench.m
%%display the original and deformed wrench, with the applied force
scale = 0.001*max(y)/max(u2);
x_force = linspace(x(17),x(18),8); y_force = 0.038*ones(size(x_force))+0.02;
vec_x = zeros(size(x_force)); vec_y = -0.02*ones(size(x_force));
figure(1); clf
trimesh(Mesh.elem,Mesh.nodes(:,1),Mesh.nodes(:,2),...

'color','green','linewidth',1); hold on
trimesh(Mesh.elem,Mesh.nodes(:,1)+scale*u1,Mesh.nodes(:,2)+scale*u2,...

'color','red','linewidth',1)
quiver(x_force,y_force,vec_x,vec_y,0)
hold off; axis equal; xlim([-0.01, 0.16])

Evaluate the stresses at the nodes, including the von Mises Stress. By asking for three return arguments the plane stress
situation is used. By a piecewise linear interpolation and FEMgriddata() the vertical stress σy can be evaluated along
the upper edge, leading to Figure 168(b). The external load of −0.4 MPa is clearly visible.

Wrench.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress(Mesh,u1,u2,E,nu); %% basic stress
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy); %% von Mises stress
xi = linspace(0.05,0.15,101)'; yi = interp1(x(14:19),y(14:19),xi);
sigma_y_interp = FEMgriddata(Mesh,sigma_y,xi,yi);
figure(2); plot(xi,sigma_y_interp/1e6)

xlabel('x'); ylabel('\sigma_y [MPa]'); xlim([0.05,0.15])

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 299

Since steel is a ductile metal the von Mises stress can be used to examine the effect on the wrench. In Figure 169(a) find
the surface plot of the von Mises stress. The highest stress is on the boundary at the mid section, but spikes are also visible
at the sharp corners on the left. Figure 169(b) shows the contour lines and the position of the highest and lowest von Mises
stress. It should be no surprise that the section on the very right is almost stress free.

Wrench.m
figure(3); clf; FEMtrimesh(Mesh,vonMises/1e6)

zlabel('von Mises stress'); colorbar(); view([40 75])
xlim([0 0.15]); ylim([-0.025 0.09]);
set(gca, 'XTickLabel', [], 'yTickLabel', [], 'zTickLabel', [])

MaxVonMises = max(vonMises); MinVonMises = min(vonMises);
Max_Min_vonMises_MPa = [MaxVonMises,MinVonMises]/1e6
MaxInd = find(vonMises == MaxVonMises); MaxPosition = Mesh.nodes(MaxInd,:);
MinInd = find(vonMises == MinVonMises); MinPosition = Mesh.nodes(MinInd,:);
figure(4); clf; FEMtricontour(Mesh,vonMises/1e6,41)

hold on; plot([x;x(1)],[y;y(1)],'k');
plot(MaxPosition(1),MaxPosition(2),'*r',MinPosition(1),MinPosition(2),'*b');
hold off; axis equal

-->
Max_Min_vonMises_MPa = 1.2415e+01 2.4078e-03

Figure 169: Surface and contour plot of the von Mises stress in [MPa]

9.35 A rotating rubber cylinder
A cylinder with radius R = 0.2 and height 2H = 0.2 is rotating about the z–axis with 10 revolutions per second. The wall
consist of a Silicone rubber of thickness 0.01 and cover and bottom are 0.02 thick. The goal is to determine the resulting
deformation and the von Mises stress.

Using an axially symmetric setup only a cross section in the y = 0 plane for x = r > 0 have to be examined. Since the
setup is symmetric with respect to the plane z = 0 only the upper half has to be modeled, using the zero z displacement at
the lower edge.

Start by defining the parameters and generating the mesh. In this case third order elements are used. Then define the
function for the centrifugal force and solve for the two displacements ur and uz with the help of AxiStress(). Then
display the original and the deformed domain in Figure 170 and the displacements in Figure 171.

RubberBox.m
rho = 1100; E = 1e6; nu = 0.47; %% Silicone rubber
H = 0.1; R = 0.2; W = 0.01;
Contour = [0 H -11;0 H-2*W -22; R-2*W H-2*W -22; R-W H-2*W -22;

R-W 0 -21; R 0 -22; R H-W -22; R-W H -22];
Mesh = CreateMeshTriangle('RubberBox',Contour,3e-5);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 300

Mesh = MeshUpgrade(Mesh,'cubic');

function res=fr(xy,dummy)
freq = 10; omega = freq*2*pi; rho = 1100;
res = rho*xy(:,1)*omegaˆ2;

endfunction

[ur,uz] = AxiStress(Mesh,E,nu,{'fr',0},{0,0},{0,0});

figure(10); ShowDeformation(Mesh,ur,uz,1); axis equal; xlabel('x'); ylabel('y');
figure(11); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r')
figure(12); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z')

0 0.05 0.1 0.15 0.2

0

0.05

0.1

x

y

Figure 170: The upper half of the original and deformed domain for the rotating rubber box

(a) radial displacement ur (b) z–displacement uz

Figure 171: The displacements ur and uz for the rotating rubber box

As last step evaluate the stresses and then the von Mises stress, leading to the surface and contour plots in Figure 172.

RubberBox.m
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
vonMises = EvaluateVonMisesAxi(sigma_x,sigma_y,sigma_z,tau_xz);
figure(13); FEMtrimesh(Mesh,vonMises/1e6)

xlabel('r'); ylabel('z'); zlabel('von Mises [MPa]'); view([35 30])

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 301

0 0.05 0.1 0.15 0.2

-0.02
0

0.02
0.04
0.06
0.08
0.1

0.12

r

von Mises stress [MPa]

0.05
0.1
0.15
0.2
0.25
0.3
0.35

Figure 172: The von Mises stress for the rotating rubber box

figure(14); clf; FEMtricontour(Mesh,vonMises/1e6)
xlabel('r'); ylabel('z'); zlabel('von Mises [MPa]')
hold on; plot([Contour(:,1);Contour(1,1)],[Contour(:,2);Contour(1,2)],'k')
hold off; axis equal; colorbar; title('von Mises stress [MPa]')

9.36 A washer fastener examined as spring
In this example a washer fastener design is examined. The goal is to determine the force required to deform the washer.

9.36.1 The setup

• The material is aluminum, with density ρ = 2700
kg
m3 , Young’s modulus E = 70GPa and Poisson ratio ν = 0.33 .

• The intersection of the washer with the plane y = 0 is almost rectangular. The inner part is moved up slightly and
there are two horizontal sections, one at the inner/upper location at height z = 0.001 and the second at the lower/outer
section at height z = 0. Find the domain in Figure 173. The corners of the domain are given by the six points

r [m] 0.0020 0.0020 0.0044 0.0050 0.0050 0.0026

z [m] 0.0010 0.0004 0 0 0.0006 0.0010

and connected by straight line segments. This domain in then rotated about the z–axis to obtain the washer in R3.

0.002 0.003 0.004 0.005

0

0.0005

0.001

r

z

Figure 173: The original and deformed domain of the washer

To determine the resulting deformation of the washer the boundary conditions have to be specified.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 302

• The outer/lower edge at height z = 0 is fixed in z–direction, but free in radial direction.

• The inner/upper edge at height z = 0.001 is moved downward by 0.0001 m and free in radial direction.

• All other edges are force free.

With this information the boundary value problem can be solved, using the command AxiStress(). The code contains
additional configurations with different boundary conditions on the inside and outside.

WasherSpring.m
pkg load femoctave
rho = 2700; E = 70e9; nu = 0.33; %% Aluminum
H = 0.001; Ri = 0.002; Ro = 0.005; D = 0.0006; H = 0.0004;
global Offset
Offset = 1*1e-4;

if 1 %% free sides
Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -22; Ro D -22;Ri+D H+D -21];

elseif 0 %% clamped on the outside
Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];

else %% clamped on both sides
Contour = [Ri H+D -12; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];

endif

Mesh = CreateMeshTriangle('Washer',Contour,2.5e-9);
%%Mesh = MeshUpgrade(Mesh,'quadratic');
Mesh = MeshUpgrade(Mesh,'cubic');

function res = gDz(xy,dummy)
global Offset
res = -Offset*(xy(:,2)>Offset);

endfunction

[ur,uz] = AxiStress(Mesh,E,nu,{0,0},{0,'gDz'},{0,0});
figure(10); ShowDeformation(Mesh,ur,uz,1); xlabel('r'); ylabel('z');

axis equal; xticks([2:5]/1000); yticks([0:0.5:1]/1000)

Display the radial displacement ur in Figure 174 and the height displacement uz in Figure 175.

0.002 0.003 0.004 0.005

0

0.0005

0.001

r

ur

-1e-05

0

1e-05

2e-05

Figure 174: The radial displacement ur

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 303

0.002 0.003 0.004 0.005

0

0.0005

0.001

r

uz

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

Figure 175: The height displacement uz

WasherSpring.m
figure(11); FEMtrimesh(Mesh,ur)

xlabel('r'); ylabel('z'); zlabel('u_r')
xticks([2:5]/1000); yticks([0:0.5:1]/1000)

Cx = [Contour(:,1);Contour(1,1)]; Cy = [Contour(:,2);Contour(1,2)];
figure(21); clf; FEMtricontour(Mesh,ur)

hold on ; plot(Cx,Cy,'k'); hold off
xlabel('r'); ylabel('z'); title('u_r');
axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)

figure(12); FEMtrimesh(Mesh,uz)
xlabel('r'); ylabel('z'); zlabel('u_z');
xticks([2:5]/1000); yticks([0:0.5:1]/1000)

figure(22); clf; FEMtricontour(Mesh,uz)
hold on ; plot(Cx,Cy,'k'); hold off
xlabel('r'); ylabel('z'); title('u_z');
axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)

9.36.2 Evaluate the force by integrating the normal stress

To determine the force F required to push the upper edge down by 0.1 mm use the normal stress σz in vertical direction.

WasherSpring.m
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
figure(13); FEMtrimesh(Mesh,sigma_z*1e-6)

xlabel('r'); ylabel('z'); zlabel('\sigma_z [MPa]');
xticks([2:5]/1000); yticks([0:0.5:1]/1000)

figure(23); clf; FEMtricontour(Mesh,sigma_z/1e6,[-20:1:20]*100)
hold on ; plot(Cx,Cy,'k'); hold off
xlabel('r'); ylabel('z'); title('\sigma_z [MPa]');
axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)

At any height 0 ≤ h ≤ 0.001 examine the slice a ≤ r ≤ b in the domain visible in Figure 173 and perform an integration
to determine F .

F = 2π

∫ b

r=a

r σz(r, h) dr

Examine the graph of the normal stress σz in Figure 176 and observe the singularities at the corners of the edges with fixed
displacement. These singularities cause serious numerical trouble when trying to integrate along the upper or lower edges.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 304

0.002 0.003 0.004 0.005

0

0.0005

0.001

r

σz [MPa]

-2000

-1000

0

1000

Figure 176: The normal stress σz

On a mesh with elements of order 3 with 5968 free nodes obtain the numerical results42

Fup ≈ 1415.1 N
Fmiddle ≈ 2401.6 N

Flow ≈ 1085.8 N

and the graphs in Figure 177. By changing the element types or the size of the meshes the results at the lower and upper
edges can change substantially, while the result at half height remains stable and thus is more reliable. By changing the
height of the slice in the code below (modify the value of s) one may observe that the results for heights between 20% and
80% are stable.

0.002 0.0022 0.0024 0.0026
-8e+09

-6e+09

-4e+09

-2e+09

0

2e+09

r

σ z

upper edge

0.002 0.003 0.004 0.005
-2e+08

-1e+08

0

1e+08

2e+08

r

σ z

at half height

0.0044 0.0046 0.0048 0.005
-6e+09

-4e+09

-2e+09

0

2e+09
lower egde

σ z

r

Figure 177: The normal pressures σz along upper and lower edge and at half height

WasherSpring.m
r = linspace(0,D,1000)';
sigma_up = FEMgriddata(Mesh,sigma_z,Ri+r,(H+D)*ones(size(r)));
figure(31); plot(Ri+r,sigma_up); xlabel('r'); ylabel('\sigma_z'); title('upper edge')
xlim([Ri,Ri+D]); xticks([2:0.2:2.6]/1000);
Force_up = 2*pi*trapz(Ri+r,sigma_up.*(Ri+r))

sigma_low = FEMgriddata(Mesh,sigma_z,Ro-D+r,zeros(size(r)));
figure(32); plot(Ro-D+r,sigma_low); xlabel('r'); ylabel('\sigma_z'); title('lower egde')
xlim([Ro-D, Ro]); xticks([4.4:0.2:5]/1000);

42A computation with Comsol Multiphysics lead to a force of 2395.5 N at half height and an elastic energy of 0.12077 J. The shape of the graphs in
Figure 177 is confirmed.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 305

Force_low = 2*pi*trapz(Ro-D+r,sigma_low.*(Ro-D+r))

s = 0.5; %% select the height
r_mid = linspace(Ri,Ro,1000)';
sigma_mid = FEMgriddata(Mesh,sigma_z,r_mid,s*(H+D)*ones(size(r_mid)));
ind = find(isfinite(sigma_mid));
r_mid = r_mid(ind); sigma_mid = sigma_mid(ind);
figure(33); plot(r_mid,sigma_mid); xlabel('r'); ylabel('\sigma_z');

title('at half height'); xticks([2:5]/1000);
Force_mid = 2*pi*trapz(r_mid,sigma_mid.*r_mid)

9.36.3 Evaluate the force by an energy argument

Since the above evaluation of the required force F is rather delicate, it is a good idea to examine an alternative approach.
Since the problem is linear the force F depends linearly on the displacement d of the upper edge, i.e. with a displacement
0 ≤ s ≤ d obtain F (s) = k s = s

d F (d). An elementary integration leads to the energy U in the system.

U =

∫ d

0

F (s) ds =

∫ d

0

s

d
F (d) ds =

1

2
dF (d)

Thus find the force F = F (d) = 2U
d . Using the results in Section 8.7 (starting on page 194) the elastic energy U is given

by

U(u⃗) = 2π

∫∫
Ω

r E

2 (1 + ν) (1− 2 ν)

(
(1− ν) ((∂ ur

∂r
)2 + (

∂ uz
∂z

)2 +
1

r2
u2r)+

+2 ν ((
∂ ur
∂r

)(
∂ uz
∂z

) +
1

r
ur (

∂ ur
∂r

+
∂ uz
∂z

))

)
dA+

+2π

∫∫
Ω

r E

1 + ν

1

4
(
∂ ur
∂z

+
∂ uz
∂r

)2 dA .

Since the displacements ur and uz are available use the function FEMIntegrate(). It is best43 to evaluate the displace-
ments and their partial derivatives at the Gauss points by using FEMEvaluateGP() and then integrate. For this example
the result is F = 2402.1 N, which is close to the above integration at half height of the normal stress σz .

WasherSpring.m
[urGP,ur_rz] = FEMEvaluateGP(Mesh,ur); [uzGP,uz_rz] = FEMEvaluateGP(Mesh,uz);
rGP = Mesh.GP(:,1);
w = E/(2*(1+nu)*(1-2*nu))*rGP.*((1-nu)*(ur_rz(:,1).ˆ2+uz_rz(:,2).ˆ2+(urGP./rGP).ˆ2)...

+ 2*nu*(ur_rz(:,1).*uz_rz(:,2) +1./rGP.*urGP.*(ur_rz(:,1)+uz_rz(:,2))))...
+E/(4*(1+nu))*rGP.*(ur_rz(:,2)+uz_rz(:,1)).ˆ2;

U_elast = 2*pi*FEMIntegrate(Mesh,w);
Force_energy = 2*U_elast/Offset

9.36.4 Comparison of linear, quadratic and cubic elements

The above results were generated with a mesh consisting of 1294 triangle and piecewise cubic functions. It is easy to
recompute, using the same number of triangles, but linear or quadratic functions. Find the results in Table 18.

• The FEM algorithm is minimizing the energy U of the system amongst the functions to be used. The space of
piecewise linear functions is a strict subspace of the piecewise quadratic functions. Thus the minimal energy will
be smaller when using elements of order 2 than with elements of order 1. As a consequence linear element will
overestimate the resulting force F = 2U

d .

• The space of piecewise quadratic functions is a strict subspace of the piecewise cubic functions. Thus the minimal
energy will be smaller when using elements of order 3 than with elements of order 1. The force F evaluated with
elements of order 3 will be the smallest. This is confirmed in Table 18.

43The newer function EvaluateEnergyDensityAxi() simplifies the code significantly.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 306

• Using finer meshes will lead to smaller minimal energies U and thus smaller forces F .

• The estimates in Section 5.4 on page 105 lead to factors of 0.5, 2 or 4.5 for the ratio of number of nodes divided by
the number of triangles for linear, quadratic or cubic elements. This is confirmed in Table 18.

element type linear quadratic cubic

number of nodes 696 2685 5968

elastic energy U 0.12726 0.12118 0.12010

force F = 2U
d 2545.2 2423.3 2402.1

Table 18: Comparison of different elements for the washer fastener example

9.36.5 Effect of different boundary conditions

The above setup can be modified by changing the boundary conditions at the inner or outer edge.

• In the original setup both sides are free to move in radial direction.

• The second setup prevents the outer side to move in radial direction.

• The third setup prevents both sides to move in radial direction.

This is implemented by switches at in the first section of the code. The parameter Contour contains the values of the flags
indicating the boundary conditions on the vertical segments.

if 1 %% free sides
Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -22; Ro D -22;Ri+D H+D -21];

elseif 0 %% clamped on the outside
Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];

else %% clamped on both sides
Contour = [Ri H+D -12; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];

endif

The results computed by the energy argument are

F = 2402.1 N with both sides free
F = 2880.4 N with inner side free and outer side fixed
F = 3809.1 N with both sides fixed

The additional constraints lead to a stiffer system, as expected.

9.37 A water dam
A water dam is deformed by its own weight and the water it should hold back. The code WaterDam.m below is a naive
description of such a situation and generates the results in Figure 178.

• The code allows to select different shapes of the dam and different water levels. Modify the value of Hwater .

• By setting the density of the dam material to zero generate the stresses caused by the water only, i.e. use rho =
0*2.4e3; .

• Different shapes of the dam can be examined by selecting values of CASE .

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 307

Figure 178: The normal stresses and the von Mises stress in a water dam

WaterDam.m
global H Hwater BaseLeft
H = 30; Base = 0.7*H; Crest = 0.2*H; Hwater = 0.9*H; BaseLeft = H*0.2;
E = 20e9; nu = 0.2;
CASE = 3
switch CASE
case 1 %% no crack
xy = [0,0,-11;Base,0,-22;Crest,H,-22;0,H,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];

case 2 %% with crack
h = 0.1; depth = 1;
xy = [0,0,-11;Base,0,-22;Crest,H,-22;0,H,-33;0,H/2+h,-22;depth,H/2,-22;0,H/2-h,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];

case 3 %% with foot
BaseLeft = H*0.2;
xy = [-BaseLeft,0,-11;Base,0,-22;Crest,H,-22;0,H,-33;0,BaseLeft,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];

case 4 %% with slope on both sides
BaseLeft = H*0.2;
xy = [-BaseLeft,0,-11;Base,0,-22;Crest,H,-22;0,H,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];

endswitch

FEMmesh = CreateMeshTriangle('Dam',xy,1);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
figure(1); FEMtrimesh(FEMmesh); xlabel('x'); ylabel('h')

function res = f_dam(xy,dummy)
global H BaseLeft
rho = 2.4e3;
res = -9.81*rho*(H-xy(:,2));

endfunction

switch CASE %% different surface pressures
case {1,2}
function res = px(xy,dummy)
global Hwater
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<Hwater);

endfunction
function res = ph(xy,dummy)
global Hwater
res = +0*9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<Hwater);

endfunction

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 308

case 3
function res = px(xy,dummy)
global Hwater BaseLeft
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*...

((xy(:,2)<Hwater).*(xy(:,2)>BaseLeft)+1/sqrt(2)*(xy(:,2)<=BaseLeft));
endfunction
function res = ph(xy,dummy)
global Hwater BaseLeft
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<=BaseLeft)/sqrt(2);

endfunction

case 4
function res = px(xy,dummy)
global Hwater BaseLeft H
alpha = atan(BaseLeft/H);
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*...

((xy(:,2)<Hwater).*(xy(:,2)>BaseLeft)+cos(alpha)*(xy(:,2)<=BaseLeft));
endfunction
function res = ph(xy,dummy)
global Hwater BaseLeft H
alpha = atan(BaseLeft/H);
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<=BaseLeft)*sin(alpha);

endfunction
endswitch

[u1,u2] = PlaneStrain(FEMmesh,E,nu,{0,'f_dam'},{0,0},{'px','ph'});
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);

figure(2); FEMtrimesh(FEMmesh,u1);
xlabel('x'); ylabel('h'); zlabel('u_x'); view([-120,20])

figure(3); FEMtrimesh(FEMmesh,u2);
xlabel('x'); ylabel('h'); zlabel('u_h'); view([-120,20])

figure(11); FEMtrimesh(FEMmesh,sigma_y*1e-6);
xlabel('x'); ylabel('h'); zlabel('\sigma_h [MPa]'); view([60,20])

figure(21); clf; FEMtricontour(FEMmesh,sigma_y*1e-6);
xlabel('x'); ylabel('h'); colorbar();
hold on; plot(x,y,'k'); title('\sigma_h [MPa]')

figure(12); FEMtrimesh(FEMmesh,sigma_x*1e-6);
xlabel('x'); ylabel('h'); zlabel('\sigma_x [MPa]'); view([60,20])

figure(22); clf; FEMtricontour(FEMmesh,sigma_x*1e-6);
xlabel('x'); ylabel('h'); colorbar()
hold on; plot(x,y,'k'); title('\sigma_x [MPa]')

figure(13); FEMtrimesh(FEMmesh,vonMises*1e-6);
xlabel('x'); ylabel('h'); zlabel('von Mises [MPa]'); view([60,20])

figure(23); clf; FEMtricontour(FEMmesh,vonMises*1e-6);
xlabel('x'); ylabel('h'); colorbar()
hold on; plot(x,y,'k'); title('von Mises [MPa]')

Max_vonMises = max(vonMises)/1e6

9.38 A tuning fork
A tuning fork is used to generate a sound signal with a given, stable frequency. The sound is generated by an eigen mode of
the fork. On the web page https://www.acs.psu.edu/drussell/Demos/TuningFork/fork-modes.html find a typical tuning fork
and the most important eigen modes. The code TuningFork.m below allows to generate and analyze a few of the planar
modes, leading to Figure 179.

• On the second line of the code you may change the dimensions of the tuning fork.

• With the value of CASE switch between different boundary conditions:

SHA 15-5-24

https://www.acs.psu.edu/drussell/Demos/TuningFork/fork-modes.html

9 EXAMPLES, EXAMPLES, EXAMPLES 309

CASE = 1 only the lower edge is fixed.

CASE = 2 the lower edge and the two sides at the bottom are fixed.

• With the value of MODE select for which mode the deformation is analyzed and visualized.

-0.04 -0.02 0 0.02 0.04

0

0.05

0.1

(a) second mode f = 426 Hz

-0.04 -0.02 0 0.02 0.04
-0.05

0

0.05

0.1

(b) third mode f = 1603 Hz

-0.04 -0.02 0 0.02 0.04

0

0.05

0.1

(c) fourth mode f = 2613 Hz

Figure 179: Three eigenmodes of a tuning fork

TuningFork.m
angle = linspace(0,pi,11); halfangle = linspace(0,pi/2,6);
R1 = 5.5; R2 = 6.25; H1 = 108.5; H2 = H1+15;

x = [R1*cos(fliplr(angle)),R1,R1+7,R1+7-R2*sin(halfangle),R1+7-R2,-R1-7+R2,...
-R1-7+R2*sin(fliplr(halfangle)),-R1-7,-R1]/1000;

y = [-R1*sin(angle),H1,H1,H1-H2-R2+R2*cos(halfangle),-50,-50,...
H1-H2-R2+R2*cos(fliplr(halfangle)),H1,H1]/1000;

%%figure(1); plot(x,y); axis equal

CASE = 1;
IND = find(y==-50/1000,1);
switch CASE
case 1 %% only lower edge fixed
xy = [x',y',-22*ones(length(x),1)]; xy(IND,3)=-11;

case 2 %% lower edge and sides fixed
xy = [x',y',-22*ones(length(x),1)]; xy([IND-1:IND+1],3)=-11;

endswitch

FEMmesh = CreateMeshTriangle('Fork',xy,3e-6);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');

E = 200e9; nu = 0.21; rho = 7.9e3; %% use SI units
[la,u1all,u2all] = PlaneStressEig(FEMmesh,E,nu,rho,6);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 310

Frequencies = sqrt(la')/(2*pi)

Mode = 2;
u1 = u1all(:,Mode); u2 = u2all(:,Mode);
MaxDisp = max(max(abs(u1)),max(abs(u2))); %% scale the values
u1 = 0.005*u1/MaxDisp; u2 = 0.005*u2/MaxDisp;

figure(11); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(12); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')

[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(21); FEMtrimesh(FEMmesh,sigma_x/1e6); xlabel('x'); ylabel('y'); zlabel('\sigma_x')
figure(22); FEMtrimesh(FEMmesh,sigma_y/1e6); xlabel('x'); ylabel('y'); zlabel('\sigma_y')
figure(23); FEMtrimesh(FEMmesh,tau_xy/1e6); xlabel('x'); ylabel('y'); zlabel('\tau_{xy}')
figure(30); ShowDeformation(FEMmesh,u1,u2,1); axis equal
-->
Frequencies = 321.78 425.64 1602.83 2612.85 4077.76 7000.23

9.39 Vibrations of a ring
The planar eigen modes of a vibrationg ring can be evaluated with the help of PlaneStressEig(). The code in
RingVibration.m evaluates the first twenty frequencies and the corresponding modes. Twelve modes are shown in
Figure 180.

• The first 3 frequencies are (approximately) zero. They correspond to translations in horizontal and vertical direc-
tion and a pure rotation. Since no constraints are applied the ring is free to move, without deformation. See also
Section 5.14 for the consequence of missing boundary constraints.

• Modes 4 and above always show up in pairs with the same frequency and rotated shape of the eigen modes. The 2
through 6 maximal and minimal deformations are clearly visible.

• For the computations in RingVibration.m quadratic elements are used. This avoids the effect of shear locking
and increases the accuracy. Since only (approximately) 3 layer of elements are used, the effect of shear–locking is
essential. If linear elements are used the resulting frequencies are considerably higher and the differences in the pairs
is larger.

• The code in RingVibration.m uses the plane stress assumption, i.e. no forces in the z–direction. If the ring
is supposed to be a section of a long circular tube, which can not move in z–direction, then use the plan strain
assumption, i.e. the command PlaneStrainEig(). The frequencies will be slightly higher, since the setup is
stiffer, E⋆ > E and ν⋆ > ν.

RingVibration.m
R = 0.03; D = 0.002;
Nring = 36; angles = linspace(0,2*pi,Nring+1)'; angles = angles(1:end-1);
Ring = [(R+D/2)*cos(angles),(R+D/2)*sin(angles),-22*ones(size(angles))];
Hole.name = 'Hole';
Hole.border = [(R-D/2)*cos(angles),(R-D/2)*sin(angles),-22*ones(size(angles))];
Hole.point = [0,0.01];

FEMmesh = CreateMeshTriangle('Ring',Ring,5e-7,Hole);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic')

E = 200e9; nu = 0.25; rho = 8e3; %% steel
Nmodes = 20;
[lambda,u1_all,u2_all] = PlaneStressEig(FEMmesh,E,nu,rho,Nmodes);
frequencies = sqrt(abs(lambda'))/(2*pi)

for Mode = 1:Nmodes
u1 = u1_all(:,Mode); u2 = u2_all(:,Mode); scale = 3e-3/(max(abs([u1;u2])));

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 311

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
mode	1

(a) f = 0 Hz

-0.04 -0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	2

(b) f = 0 Hz

-0.04 -0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	3

(c) f = 0 Hz

-0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
mode	4

(d) f = 1′368 Hz

-0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
mode	5

(e) f = 1′368 Hz

-0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	6

(f) f = 3′856 Hz

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
mode	7

(g) f = 3′856 Hz

-0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
mode	8

(h) f = 7′357 Hz

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	9

(i) f = 7′387 Hz

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	10

(j) f = 11′825 Hz

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	11

(k) f = 11′825 Hz

-0.04 -0.02 0 0.02 0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

mode	12

(l) f = 17′219 Hz

Figure 180: The first twelve eigen modes of a vibration ring

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 312

figure(10+Mode); ShowDeformation(FEMmesh,u1,u2,scale); axis equal;
title(sprintf('mode %i',Mode))

endfor
-->
Frequencies = 3.7599e-3 6.9476e-3 8.9547e-3 1.3678e+3 1.3678e+3 3.8556e+3

3.8556e+3 7.3570e+3 7.3571e+3 1.1825e+4 1.1825e+4 1.7219e+4

Figure 180 might indicate that the deformation of the ring is strictly in radial direction, but this is not the case. For each
of the modes there is a movement ur in radial direction, combined with a movement uϕ in angular direction. At a point
R (cos(ϕ), sin(ϕ)) on the center line of the ring determine the radial and angular defection by

ur(ϕ) = cos(ϕ)u1(ϕ) + sin(ϕ)u2(ϕ) and uϕ(ϕ) = − sin(ϕ)u1(ϕ) + cos(ϕ)u2(ϕ) .

There is a strong interaction between the radial and angular movements44. Evaluate these radial and angular deformations
along the center line (x, y) = R cos(ϕ), sin(ϕ)) and use a linear regression of the form

ur(ϕ) = c1 + c2 cos(nϕ) + c3 sin(nϕ) and uϕ(ϕ) = d1 + d2 cos(nϕ) + d3 sin(nϕ) .

In the code RingVibrationMode.m below n = 3 is used for mode 7, since there are 3 outer arcs visible in Figure 180.
The resulting numbers and Figure 181 confirm that the deformations are strictly trigonometric, FEM data and best fit can
not be distinguished.

• For Mode = 7 the numerical results show that the phase difference between the radial and angular movement is
given by −90◦. A point on the center line of the ring moves according to(

ur(t, ϕ)

uϕ(t, ϕ)

)
= A cos(

√
λ t)

(
ϕr(ϕ)

uϕ(ϕ)

)
,

i.e. oscillations along a straight line. For this mode at an angle ϕ0 of a point halfway between the maximal amplitude
for ur and zero amplitude (i.e. an offset of 15◦ = 360◦

3·8 of a maximal radial deflection in Figures 180 or 181) find(
ur(t, ϕ0)

uϕ(t, ϕ0)

)
≈ A√

2
cos(
√
λ t)

(
0.77

0.25

)
.

A similar result is correct for (almost) all modes, with different values for n.

• Modes 1, 2 and 3 are of the form c1 cos(ϕ) + c2 sin(ϕ) and correspond to pure translations and rotations.

• Mode 16 is special: it a purely radial displacement, i.e. uϕ ≈ 0. Modes 19 and 20 are superpositions of purely radial
displacement and c1 cos(ϕ) + c2 sin(ϕ). These special modes are the reason for the if...elseif...endif
construction in the first lines of RingVibrationMode.m .

RingVibrationMode.m
%% this code requires that RingVibration was run first
Mode = 7
if Mode<16 n = floor(Mode/2)
elseif Mode<19 n = floor((Mode-1)/2)
else n = floor((Mode - 17)/2) endif
phi = linspace(0,2*pi,200)'; x = R*cos(phi); y = R*sin(phi);
u1_r = FEMgriddata(FEMmesh,u1_all(:,Mode),x,y);
u2_r = FEMgriddata(FEMmesh,u2_all(:,Mode),x,y);
ur = cos(phi).*u1_r + sin(phi).*u2_r;
uphi = -sin(phi).*u1_r + cos(phi).*u2_r;

M = [ones(size(phi)),cos(n*phi),sin(n*phi)]; p = LinearRegression(M,ur);
dr = p(1); Amp_r = sqrt(p(2)ˆ2+p(3)ˆ2); phase_r = atan2(p(2),p(3))/pi*180;

44For this reason one can not use the results for transversal displacements of a straight slender beam with periodic boundary conditions to determine the
frequencies and modes of the vibration ring. Find results on the ring in [Blev79, p. 205] and the derivation in [Soed04].

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 313

0 100 200 300
-1

-0.5

0

0.5

1
u r

phi	[deg]

data
fit

(a) radial displacement ur

0 100 200 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

phi	[deg]

u φ

data
fit

(b) angular displacement uϕ

Figure 181: Radial displacement ur and angular displacement uϕ for mode 7. Shown are the FEM data and the best fit of
the form c1 + c2 cos(nϕ) + c3 sin(nϕ) with n = 3.

disp(sprintf('Results for u_r: dr = %g, amplitude = %g, phase_r = %g',dr,Amp_r,phase_r))
ur_fit = M*p;
figure(101); plot(phi*180/pi,ur,'g',phi/pi*180,ur_fit,'b'); xlim([0,360])

xlabel('phi [deg]'); ylabel('u_r'); legend('data','fit');

p = LinearRegression(M,uphi);
dphi = p(1); Amp_phi = sqrt(p(2)ˆ2+p(3)ˆ2); phase_phi = atan2(p(2),p(3))/pi*180;
disp(sprintf('Results for u_phi: dphi = %g, amplitude = %g, phase_phi =% g',...

dphi,Amp_phi,phase_phi))
disp(sprintf('Ratio of amplitudes = %g, phaseDiff = %g',Amp_phi/Amp_r,phase_r-phase_phi))
uphi_fit = M*p;
figure(102); plot(phi*180/pi,uphi,'g',phi/pi*180,uphi_fit,'b'); xlim([0,360])

xlabel('phi [deg]'); ylabel('u_\phi'); legend('data','fit');
-->
Mode = 7
n = 3
Results for u_r: dr = -5.61863e-07, amplitude = 0.773988, phase_r = 158.09
Results for u_phi: dphi = -3.14111e-07, amplitude = 0.253133, phase_phi = -111.91
Ratio of amplitudes = 0.327049, phaseDiff = 270

9.40 Hertz contact of a rigid cylinder with an elastic half space
There is a very nice web page about OpenHertz at foadsf.github.io/OpenHertz/. It allows to examine different Hertz
contact setups.

In this section the contact of a rigid cylinder with a half space is examined and compared to result for the Hertz contact
theory.

9.40.1 The model and the algorithm

A rigid, horizontal cylinder with radius R is pushed downwards by D into an elastic half space. The goal is to determine
the resulting deformation and stresses. This contact problem is not a linear problem and thus requires some additional work
if analyzed with the help of FEMoctave. The domain of contact is not know a–priori and thus has to be determined by an
appropriate iteration.

The algorithm is based on the observation, that the normal stress σy or the vertical displacement u2 are known along
the upper edge of the half space at y = 0. In the contact zone −a ≤ x ≤ +a the displacement of the plane is given by the

SHA 15-5-24

https://foadsf.github.io/OpenHertz/

9 EXAMPLES, EXAMPLES, EXAMPLES 314

symbol units

R radius of cylinder mm

D penetration depth mm

x horizontal coordinate mm

y vertical coordinate mm

a half width of the contact area mm

P total pressure per length N/mm

p local pressure N/mm2

E Young’s modulus of elasticity N/mm2

ν Poisson’s ratio

W width of the computational domain mm

H height of the computational domain mm

Table 19: Parameters for the contact of a cylinder with a half space

equation of the displaced cylinder.

R2 = x2 + (y −R+D)2

y = R−D −
√
R2 − x2 ≈ R−D −R+

x2

2R
= −D +

x2

2R

As consequence use the boundary conditions
u2(x) = R−D −

√
R2 − x2 for |x| ≤ a

σy = 0 for |x| ≥ a
σx = 0 for |x| ≤W

along the upper edge y = 0. Due to the obvious symmetry only half of the physical domain has to be used for the
computational model, leading to the computational domain is 0 ≤ x ≤ W and −H ≤ y ≤ 0. On the other sections of the
boundary use 

u1 = 0 , σy = 0 along x = 0

u1 = 0 , σy = 0 along x =W

u1 = u2 = 0 along y = −H

In the domain a plane strain model is used with the material parameters E and ν.

-0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

x

y

(a) the full domain

0.120.130.140.150.160.17
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

x

y

(b) zoom into critical area

0 0.05 0.1 0.15 0.2 0.25
-20000

0

20000

40000

60000

80000

100000

120000

x

σ
y

(c) σy for the first attempt

Figure 182: The mesh for the cylinder contact problem

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 315

• To start the iteration the intersection of the cylinder with the plane y = 0 is used.

y = 0 = R−D −
√
R2 − x2 =⇒ a20 = x2 = R2 − (R−D)2 = 2RD −D2 = D (2R−D)

The initial value of a0 will be updated to a by each iteration.

• A triangular mesh is generated with smaller triangles in the corner [0 ≤ x ≤ 2 a0] × [−2 a0 ≤ y ≤ 0]. By adding
points close to [a, 0] an even finer mesh is used in the critical area of the contact point at x = +a. Find the original
mesh and an enlarged critical area in Figure 182.

• For each iteration solve the plain strain problem with the help of the command PlaneStrain(). Then evaluate the
normal stress σy(x) along the upper edge y = 0 and determine the first zero at x = a of σy(x). For x > a the normal
stress σy is positive and thus the cylinder and the half plane will not be in contact, see Figure 182(c).

• The above computations are repeated and the changing values of a have to be observed. After 5 iterations the value
of a changes only slightly and a good approximation of the domain of contact −a ≤ x ≤ +a is determined. The
displacement u2 along the upper edge at y = 0 and the circle are shown in Figure 183(a).

• By integrating the normal stress σy along different heights y verify that the vertical pressure P (units N/mm) is
independent on the height y.

• Compare the obtained results for the contact (half) width a and the pressure P with the theoretical results from
Section 9.40.3 below. The obviously missing factor 2 for the pressure is caused by the symmetry, i.e. only half the
setup is used for the FEM computations.

0 0.05 0.1 0.15 0.2 0.25
-0.02

-0.01

0

0.01

0.02

0.03

0.04

x

u
2

solid

circle

(a) uy along upper edge

0 0.020.040.060.08 0.1 0.120.14
-10000

-8000

-6000

-4000

-2000

0

2000

4000

x

σ
y

FE	data
theory

(b) σy along upper edge, theory and FEM

0 0.05 0.1 0.15 0.2 0.25
-10000

-8000

-6000

-4000

-2000

0

2000

4000

x

σ
y

at	y	=	0
at	y	=	-H/100
at	y	=	-H/10
at	y	=	-H/2
at	y	=	-H

(c) final σy at different levels

Figure 183: The vertical displacement u2 along the upper edge and the normal stress σy at different levels

To start define the necessary auxiliary functions and generate the initial mesh.

HertzCylinder.m
PHASE = 1 %% 1: setup and computation

%% 2: visualization of the result
%% 3: parametric study for small penetration depth D
%% 4: parametric study for large penetration depth D

switch PHASE
case 1 %% PHASE 1
clear *
pkg load femoctave
E = 200e3; nu = 0.24 ;%% N/mmˆ2 parameter for steel
global R D
R = 1; D = 0.01; %% radius of cylinder and indentation depth
W = 0.75; H = 1; %% width and height of the computational domain
a0 = sqrt(D)*sqrt(2*R-D) %% first estimate of contact point

Area = 0.1ˆ2; MeshType = 'quadratic'; %% definition of the mesh

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 316

Seg1.name = 'Segment';
Seg1.border = [0,-2*a0,0;2*a0,-2*a0,0;2*a0,0,0];
Point1.name = 'MeshSize'; Point1.where = [+a0,-a0]; Point1.area = Area/20;
%% finer mesh arounf origin
Point2.name = 'MeshSize'; Point2.where = [+2*a0,-2*a0]; Point2.area = Area;

dd = 0.001; %% very fine mesh at contact point
Mesh = CreateMeshTriangle('Flat',[0,0,-21;a0-dd,0,-21;a0,0,-22;a0+dd,0,-22;...

W,0,-12;W,-H,-11;0,-H,-12], Area,Seg1,Point1,Point2);

function res = disp_y(xy) %% displacement in y-direction as function of x
global R D
a0 = sqrt(D)*sqrt(2*R-D);
res = (R-D-sqrt(Rˆ2 - xy(:,1).ˆ2));
res = res.*(xy(:,1)<=a0).*(xy(:,2)>-eps);

endfunction

function res = FindFirstPositive(x,sigma_y);%% find the first zero of the normal stress
ind = find(sigma_y>0,1);
x0 = x(ind-1); dx = x(ind)-x0;
y0 = sigma_y(ind-1); y1 = sigma_y(ind);
res = x0 -y0*dx/(y1-y0);

endfunction

figure(1); FEMtrimesh(Mesh); axis equal; xlabel('x'); ylabel('y')
xlim(0.145+[-0.03,0.03]);ylim([-0.05,0.01])

Mesh = MeshUpgrade(Mesh,MeshType);

Then solve the first plane strain problem and start the iteration.

HertzCylinder.m
[u1,u2] = PlaneStrain(Mesh,E,nu,{0,0},{0,'disp_y'},{0,0});

[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
x_edge = linspace(0,2*a0,1000)';
sigma_y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
figure(30); plot(x_edge,sigma_y_edge,a0,0,'+');

xlabel('x'); ylabel('\sigma_y'); xlim([0,max(x_edge)])
a = FindFirstPositive(x_edge,sigma_y_edge)

for jj = 1:5 %% use 5 iterations and observe the value of a
Mesh = CreateMeshTriangle('Flat',

[0,0,-21;a-dd,0,-21;a,0,-22;a+dd,0,-22;W,0,-12;W,-H,-11;0,-H,-12],...
Area,Seg1,Point1,Point2);

Mesh = MeshUpgrade(Mesh,MeshType);
[u1,u2] = PlaneStrain(Mesh,E,nu,{0,0},{0,'disp_y'},{0,0});
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
sigma_y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
a = FindFirstPositive(x_edge,sigma_y_edge)

endfor

%% display the normal stress as function of x along the upper edge
ind = find(x_edge<a);
sigma_y_fit = mean(sigma_y_edge(ind))*4/pi*sqrt(1-x_edge(ind).ˆ2/aˆ2);
figure(31); plot(x_edge,sigma_y_edge,x_edge(ind),sigma_y_fit,a0,0,'+',a,0,'+');

xlabel('x'); ylabel('\sigma_y'); legend('FE data','theory',...
'location','southeast'); xlim([0,1.1*a0])

VonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);

%% display the displacement of the upper edge

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 317

y_edge = FEMgriddata(Mesh,u2,x_edge,0*x_edge);
y_circle = R-D-sqrt(Rˆ2-x_edge.ˆ2);
figure(20); plot(x_edge,y_edge,x_edge,y_circle,a,0,'*'); xlabel('x'); ylabel('u_2');

legend('solid','circle', 'location','northwest'); xlim([0,max(x_edge)])

x_edge_low = linspace(0,W,1000)';
sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
sigma_y_edge_top = FEMgriddata(Mesh,sigma_y,x_edge_low,zeros(size(x_edge_low)));
sigma_y_edge_half = FEMgriddata(Mesh,sigma_y,x_edge_low,-H/2*ones(size(x_edge_low)));
sigma_y_edge_10 = FEMgriddata(Mesh,sigma_y,x_edge_low,-H/10*ones(size(x_edge_low)));
sigma_y_edge_100 = FEMgriddata(Mesh,sigma_y,x_edge_low,-H/100*ones(size(x_edge_low)));
figure(90); plot(x_edge_low,sigma_y_edge_top,x_edge_low,sigma_y_edge_100,...

x_edge_low,sigma_y_edge_10,x_edge_low,sigma_y_edge_half,...
x_edge_low,sigma_y_edge_low);

xlabel('x'); ylabel('\sigma_y'); xlim([0,max(x_edge)])
legend('at y = 0','at y = -H/100','at y = -H/10','at y = -H/2','at y = -H',...
'location','southeast')

PressureUpperEdgeLocal = trapz(x_edge,sigma_y_edge)
PressureUpperEdge = trapz(x_edge_low,sigma_y_edge_top)
Pressure100Edge = trapz(x_edge_low,sigma_y_edge_100)
Pressure10Edge = trapz(x_edge_low,sigma_y_edge_10)
PressureHalfEdge = trapz(x_edge_low,sigma_y_edge_half)
PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low)

Estar = E/(1-nuˆ2);
P = -2*PressureLowerEdge;
a = sqrt(4*P*R/(pi*Estar))
-->
PHASE = 1
a0 = 0.1411
a = 0.1115
a = 0.095575
a = 0.087056
a = 0.082939
a = 0.080529
a = 0.079477
PressureUpperEdgeLocal = -516.16
PressureUpperEdge = -515.46
Pressure100Edge = -512.26
Pressure10Edge = -514.30
PressureHalfEdge = -513.27
PressureLowerEdge = -514.44
a = 0.078567

9.40.2 Evaluation and visual results

The above results have to be visualized.

• A grid of the domain [0, 3 a]× [−3 a, 0] with the sizable effects is generated, the deformation given by u1 and u2.

• On this grid u1, u2 and the total displacement
√
u21 + u22 are evaluated and visualized, leading to Figure 184.

• The normal stresses σy and σx and the von Mises stress are evaluated on the same grid and visualized, leading to
Figure 185.

HertzCylinder.m
case 2 %% PHASE 2
[x,y] = meshgrid(linspace(0,3*a,51),linspace(-3*a,0,51));
u1g = FEMgriddata(Mesh,u1,x,y); u2g = FEMgriddata(Mesh,u2,x,y);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 318

Figure 184: Contact with cylinder: contours for the displacements u2 and u1 and
√
u21 + u22

Figure 185: Contact with cylinder: contours for the two normal stresses and the von Mises stress

x_g = x + u1g; y_g = y + u2g; %% construct the deformed grid
sigma_yg = FEMgriddata(Mesh,sigma_y,x,y); %% evaluate sigma_y on the grid
figure(101); mesh(x_g,y_g,sigma_yg); xlabel('x'); ylabel('y');zlabel('\sigma_y')
figure(111); contourf(x_g,y_g,sigma_yg/1e3,linspace(min(sigma_yg(:)),0,51)/1e3);

xlabel('x'); ylabel('y'); title('\sigma_y [kPa]'); colorbar
figure(121); contourf(x_g,y_g,-u2g*1e3,51); xlabel('x'); ylabel('y');

title('-u_y [\mum]'); colorbar
sigma_xg = FEMgriddata(Mesh,sigma_x,x,y);
figure(102); mesh(x_g,y_g,sigma_xg); xlabel('x'); ylabel('y');zlabel('\sigma_x')
figure(112); contourf(x_g,y_g,sigma_xg/1e3,linspace(min(sigma_yg(:)),0,51)/1e3);

xlabel('x'); ylabel('y'); title('\sigma_x [kPa]'); colorbar
figure(122); contourf(x_g,y_g,u1g*1e3,51); xlabel('x'); ylabel('y');

title('u_x [\mum]'); colorbar

VonMises_g = FEMgriddata(Mesh,VonMises,x,y);
figure(103); mesh(x,y,VonMises_g); xlabel('x'); ylabel('y');zlabel('von Mises')
figure(113); contourf(x_g,y_g,VonMises_g/1e3,linspace(0,max(VonMises_g(:)),51)/1e3);

xlabel('x'); ylabel('y'); title('von Mises [kPa]'); colorbar
figure(123); contourf(x_g,y_g,sqrt(u1g.ˆ2+u2g.ˆ2)*1e3,51);

xlabel('x'); ylabel('y'); title('displacement [\mum]'); colorbar
DOriginal = D; aOriginal = a;

9.40.3 The analytical solution based on the Hertz theory

The results in this section are found in [Barb18], which is based on [John87a]. The goal is to present the results of the Hertz
contact for a line load by a cylinder on a half space. The notation is adapted to match the above sections.

• Use [Barb18, p. 14]. Apply a point load P at the origin to a half space y < 0. The shearing stresses are τxy = τyz = 0.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 319

Solve ∆ϕ = 0 for the potential ϕ and then along the surface y = 0 find

σy = −∂ ϕ
∂y

and u2 = −2 (1− ν2)P
E

∂ ϕ

∂y
= −2P

E⋆

∂ ϕ

∂y
.

With r2 = x2 + y2 + z2 obtain the fundamental solution

ϕ(R, y) = − P

2π
ln(r + y) = − P

2π
ln(
√
x2 + y2 + z2 + y) .

This leads to the displacement at the surface y = 0

u2(x, 0, z) = −
P

π E⋆
√
x2 + z2

.

• For a line load p along x = 0 for −b < z < b obtain

u2(x, 0, 0) = −
p

π E⋆

∫ +b

z=−b

1√
x2 + z2

dz = . . . = − p

π E⋆
ln |z +

√
z2 + z2|

+b

z=−b
.

This expression does not converge as b → +∞. This might be the reason why I did not find an analytic formula for
the displacement D as function of the applied load!

• In the area of contact −a < x < a the slope of the displacement has to coincide with the slope of the circle. This fact
can be used to extract information on the Hertz solution. For the circle obtain

∂

∂x
u2(x) =

d

∂x

(
−D +

x2

2R

)
=
x

R
.

For a point load p evaluate the slope of the upper edge.

u2(x, 0, z) = −
p

π E⋆

1√
x2 + z2

=⇒ ∂

∂x
u2(x, 0, z) = −

p

π E⋆

x
√
x2 + z2

3

For a constant load density p for −b < z < +b conclude

∂

∂x
u2(x, 0, z) = − p

π E⋆

∫ +b

z=−b

x
√
x2 + z2

3 dz

= − p

π E⋆

z

x
√
x2 + z2

+b

z=−b
= − p

π E⋆

2 b

x
√
x2 + b2

→ − p

π E⋆

2

x
as b→ +∞

Now evaluate the slope generated by the applied pressure density p(x) for −a < x < +a and set it equal to the slope
of the circle.

x

R
=

2

π E⋆

∫ +a

x=−a

p(s)

x− s
ds

A solution of this singular integral equation is given in the Appendix C of [Barb18].

P =

∫ +a

−a

p(x) dx

p(x) =
1

π
√
a2 − x2

(
P − E⋆

2

∫ +a

−a

ξ
√
a2 − ξ2

R (x− ξ)
dξ

)

• At x = +a (or −a) use p(a) = 0 to conclude

0 = P − E⋆

2

∫ +a

−a

ξ
√
a2 − ξ2

R (±a− ξ)
dξ

P =
E⋆

2

∫ +a

−a

ξ
√
a2 − ξ2

R (+a− ξ)
dξ =

E⋆

2

∫ +a

−a

ξ
√
(a− ξ)(a+ ξ)

R (+a− ξ)
dξ

=
E⋆

2

∫ +a

−a

ξ
√
a+ ξ

R
√
a− ξ

dξ =
E⋆

2

π a2

2R
=

E

4 (1− ν2)
π a2

R

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 320

This equation can be solved for the half width a of the contact area.

a2 =
4P R (1− ν2)

π E
and

P

a2
=

π E

4R (1− ν2)
(106)

These results are confirmed by the above FEM values.

The above analytical computaion also leads to

p(x) =
E⋆

2R

√
a2 − x2 =

E

2R (1− ν2)
√
a2 − x2 =

2P

π a2

√
a2 − x2 =

2P

π a

√
1− x2

a2
.

Figure 183(b) illustrates this result with the help of the FEM simulation. Use the formula for p(x) to conclude

pmax = p(0) =
E a

2R (1− ν2)
=

2P

π a

pmean =
P

2 a
=

π E a

8R (1− ν2)
=

π

4
pmax .

9.40.4 Parameter studies for different penetration depths

Starting with the above numerical results the penetration depth D can be diminished step by step and the new contact width
a and pressure P be evaluated with a loop over different values of D. Instead of a fixed number of iterations a simple
termination criterion is used, stop if a does not change too much any more. Find the results in Figure 186. Surprisingly the
penetration depth is not too far from a linear function of the applied pressure.

Based on equation (106) expected that P = c a2 for a constant c = π E
4R (1−ν2) . This is confirmed with the help of a

linear regression, leading to Figure 186(c).

0 200 400 600 800 1000 1200
0

0.002

0.004

0.006

0.008

0.01

pressure

p
e
n
e
tr
a
tio
n
	d
e
p
th

(a) depth as function of pressure

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

pressure

co
n
ta
ct
	w
id
th

(b) contact width as function of pressure

0 0.02 0.04 0.06 0.08
0

200

400

600

800

1000

1200

contact	width

p
re
ss
u
re

FEM

c*a2

(c) pressure as function of contact width

Figure 186: Contact with cylinder: results of pressure and contact width for small penetration depth

HertzCylinder.m
case 3 %% Phase 3: parametric study for small D
a = aOriginal;
D_List = DOriginal*[1:-0.1:0.1]';
a_List = zeros(size(D_List)); Pressure_List = a_List;
a_List(1) = aOriginal; Pressure_List(1) = -2*PressureLowerEdge;
for ii = 1:length(D_List)
D = D_List(ii);
disp(sprintf('working with penetration depth D = %g',D))
jj = 0;
do
jj++;
Mesh = CreateMeshTriangle('Flat',

[0,0,-21;a-dd,0,-21;a,0,-22;a+dd,0,-22;W,0,-12;W,-H,-11;0,-H,-12],...
Area,Seg1,Point1,Point2);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 321

Mesh = MeshUpgrade(Mesh,MeshType);
[u1,u2] = PlaneStrain(Mesh,E,nu,{0,0},{0,'disp_y'},{0,0});
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
sigma_y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
a_old = a;
a = FindFirstPositive(x_edge,sigma_y_edge);
disp(sprintf('value a = %g, last change = %g', a , a-a_old))

until or(abs(a-a_old)< 5e-5,jj>20)
a_List(ii) = a;
sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low);
Pressure_List(ii) = -2 * PressureLowerEdge;

endfor
D_List = [D_List;0]; Pressure_List = [Pressure_List;0]; a_List = [a_List;0];
figure(201); plot(Pressure_List,D_List); xlabel('pressure'); ylabel('penetration depth')
figure(202); plot(Pressure_List,a_List); xlabel('pressure'); ylabel('contact width')

p = LinearRegression(a_List.ˆ2,Pressure_List);
figure(203); plot(a_List,Pressure_List,'*',a_List,p*a_List.ˆ2)

ylabel('pressure'); xlabel('contact width')
legend('FEM','c*aˆ2','location','northwest')

Instead of using smaller penetration depth, larger ones can be examined too. The tools do not change. The results in
Figure 187 show no surprises.

0 5000 10000 15000 20000
0

0.02

0.04

0.06

0.08

0.1

pressure

p
e
n
e
tr
a
tio
n
	d
e
p
th

(a) depth as function of pressure

0 5000 10000 15000 20000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

pressure

co
n
ta
ct
	w
id
th

(b) contact width as function of pressure

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5000

10000

15000

20000

p
re
ss
u
re

contact	width

FEM

c*a2

(c) pressure as function of contact width

Figure 187: Contact with cylinder: results of pressure and contact width for large penetration depth

HertzCylinder.m
case 4 %% Phase 4: parametric study for large D
a = aOriginal;
D_List = DOriginal*[1:0.4:10]';
a_List = zeros(size(D_List)); Pressure_List = a_List;

for ii = 1:length(D_List)
D = D_List(ii);
disp(sprintf('working with penetration depth D = %g',D))
x_edge = linspace(0,1.3*a,1000');
jj = 0;
do
jj++;
Mesh = CreateMeshTriangle('Flat',

[0,0,-21;a-dd,0,-21;a,0,-22;a+dd,0,-22;W,0,-12;W,-H,-11;0,-H,-12],...
Area,Seg1,Point1,Point2);

Mesh = MeshUpgrade(Mesh,MeshType);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 322

[u1,u2] = PlaneStrain(Mesh,E,nu,{0,0},{0,'disp_y'},{0,0});
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
sigma_y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
a_old = a;
a = FindFirstPositive(x_edge,sigma_y_edge);
disp(sprintf('iteration %i, value a = %g, last change = %g', jj, a, a-a_old))

until or(abs(a-a_old)< 5e-5,jj>20)
a_List(ii) = a;
sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low);
Pressure_List(ii) = -2 * PressureLowerEdge;

endfor

D_List = [0;D_List]; Pressure_List = [0;Pressure_List]; a_List = [0;a_List];
figure(301); plot(Pressure_List,D_List); xlabel('pressure'); ylabel('penetration depth')
figure(302); plot(Pressure_List,a_List); xlabel('pressure'); ylabel('contact width')

p = LinearRegression(a_List.ˆ2,Pressure_List);
figure(303); plot(a_List,Pressure_List,'*',a_List,p*a_List.ˆ2)

ylabel('pressure'); xlabel('contact width')
legend('FEM','c*aˆ2','location','northwest')

9.41 Hertz contact of a rigid sphere with an elastic half space
The above situation of a cylinder pressing into a half space can be modified to a sphere pressing into a half space. The
algorithm does not change substantially. Find the adaptation in Table 20. The Hertz based formulas change when pressing

cylinder ←→ sphere

x, y ←→ r, z

PlaneStress() ←→ AxiStress()

EvaluateStress() ←→ EvaluateStressAxi()

EvaluateVonMises() ←→ EvaluateVonMisesAxi()

Table 20: Adaptations for pressing with a cylinder or a sphere

with a sphere with radius a. Find in [John87a, p. 93]

a =

(
3P R

4E⋆

)1/3

and P =
4E⋆

3R
a3

D =

(
3P

4E⋆

)2/3
1

R1/3
=

(
3P R

4E⋆

)2/3
1

R
=
a2

R
=

(
3

4E⋆

)2/3
1

R1/3
P 2/3

P =
4E⋆

3
R1/2D3/2

p(r) = pmax

√
1− r2

a2
for 0 ≤ r ≤ a , pmax =

3

2
pmean =

3P

2π a2

The above code HertzCylinder.m is adapted to HertzSphere.m, not shown in these notes, but included in the
distribution of FEMoctave.

• In Figure 188 the relations between the penetration depth, the resulting pressure and the radius of the contact are are
shown, together with the theoretical results based on the Hertz theory. In addition a linear regression was used to
determine that 0.8469 ·DHertz is the best match to the overall FEM data. Observe that for small penetration depth D
the Hertz result

P =
4E⋆

√
R

3
D

3/2
Hertz or DHertz =

(
3P

4E⋆

)2/3
1

R1/3

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 323

is close to the result generated by FEMoctave, but for large values of D there is a systematic difference. For the
same penetration depth the required pressure by the Hertz approach is smaller than for the FEM simulation. Thus
for the same pressure Hertz will arrive at a larger penetration depth. For large values of D the fitted curve is a better
match.

• Figure 188(c) confirms that the total pressure P is proportional to a3, the radius of the area of contact.

• In Figure 189 find the displacement in radial and z direction. In Figure 190 the normal stresses and the von Mises
stress are shown.

0 2000 4000 6000 80001000012000
0

0.02

0.04

0.06

0.08

0.1

0.12

pressure

p
e
n
e
tr
a
tio
n
	d
e
p
th

FE	data
fit
Hertz

(a) depth as function of pressure

0 200 400 600 800
0

0.005

0.01

0.015

0.02

pressure

p
e
n
e
tr
a
tio
n
	d
e
p
th

FE	data
fit
Hertz

(b) zoom for small pressure

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2000

4000

6000

8000

10000

12000

contact	width

p
re
ss
u
re

FEM

c*a3

(c) pressure as function of contact width

Figure 188: Contact with sphere: results of pressure and contact width for large penetration depth

Figure 189: Contact with sphere: contours for the displacements uz and ur and
√
u2r + u2z

For a given penetration depth D we can use the Hertz results in [John87a] and determine the surface pressure

σz(r, 0) =

 − 2E⋆

π a2 R
1/3D3/2

√
1− r2

a2 for r ≤ a
0 for r ≥ a

and then use FEMoctave to determine the resulting deformations and stresses caused by the sphere indenting the half
space. The other boundary conditions used by FEMoctave are

σr = 0 along z = 0

ur = 0 , σy = 0 along r =W

ur = 0 , uz = 0 along z = −H
ur = 0 , σy = 0 along r = 0

The code HertzSphereDirect.m shown below generates Figure 191.

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 324

Figure 190: Contact with sphere: contours for the two normal stresses and the von Mises stress

• Figure 191(a) shows the resulting displacement and the expected circular displacement by Hertz’s theory. The two
coincide quite well, as expected. Hertz predicts a slightly larger penetration depth, which is consistent with the
observations in Figure 188.

• Figure 191(b) shows the normal stress σz in vertical direction. The result coincides with Figure 190.

• In Figure 192 find the von Mises stress for this setup. Maximal value at r = 0, z ≈ −0.046 for a radius a = 0.1 of
the area of contact. This is consistent with the information in [Gold01, p.80], where the maximal stress is predicted
at z ≈ −0.48 · a.

0 0.05 0.1 0.15 0.2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

r

u
z

uz
circle
r=a

(a) the displacement uz(r, 0) (b) the normal pressure σz

Figure 191: Contact with a sphere for given normal pressure σz(r, 0)

HertzSphereDirect.m
%% 1 GPa = 10ˆ9 N/mˆ2 = 10ˆ3 MPa = 10ˆ3 N/mmˆ2
E = 200e3; nu = 0.24 ;%% N/mmˆ2
%% parameters for steel: E = 200 GPa = 200e3 MPa, nu = 0.24, yield strength = 300 MPa
%% parameters for gold: E = 79 GPa = 79e3 MPa, nu = 0.42, yield strength = 200 MPa
R = 1; D = 0.01; %% radius of sphere and indentation depth
W = 0.75; H = 1; %% width and height of the computational domain

global a P
Estar = E/(1-nuˆ2);
P = 4*Estar/3*sqrt(R)*Dˆ(3/2)
a = (3*P*R/(4*Estar))ˆ(1/3)
D = (3*P/(4*Estar))ˆ(2/3)/Rˆ(1/3);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 325

Figure 192: The von Mises stress for a contact with a sphere for given normal pressure σz(r, 0)

function res = Load(rz)
global a P
r = rz(:,1);
res = -3*P/(2*pi*aˆ2)*sqrt(1-r.ˆ2/aˆ2).*(r<a);

endfunction

N = 51;
if 0 %% mesh by rectangle
Mesh = CreateMeshRect(linspace(0,W,N),linspace(-H,0,N),-11,-23,-12,-12);

else %% mesh by triangle
area = 0.5*W*H/Nˆ2;
dd = 0.001;
Mesh = CreateMeshTriangle('Flat',[0,0,-23;a-dd,0,-23;a,0,-22;a+dd,0,-22;...

W,0,-12;W,-H,-11;0,-H,-12],area);
endif
Mesh = MeshUpgrade(Mesh,'quadratic');
%%Mesh = MeshUpgrade(Mesh,'cubic');
[ur,uz] = AxiStress(Mesh,E,nu,{0,0},{0,0},{0,'Load'});

figure(1); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r')
figure(2); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z')
r = linspace(0,2*a,1000)';
uz_edge = FEMgriddata(Mesh,uz,r,zeros(size(r)));
circle = R-D-sqrt(Rˆ2-r.ˆ2);
figure(11); plot(r,uz_edge,'r',r,circle,'k',[a,a],[-D,0],'g')

xlabel('r'); ylabel('u_z'); xlim([0,2*a]);
legend('u_z','circle','r=a','location','northwest')

DifferenceUzAtOrigin = circle(1)-uz_edge(1)

[sigma_r,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
VonMises = EvaluateVonMisesAxi(sigma_r,sigma_y,sigma_z,tau_xz);

NN = 51;
[rr,zz] = meshgrid(linspace(0,3*a,NN),linspace(-3*a,0,NN));
sigma_zg = FEMgriddata(Mesh,sigma_z, rr,zz);

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 326

sigma_rg = FEMgriddata(Mesh,sigma_r, rr,zz);
VonMises_g = FEMgriddata(Mesh,VonMises,rr,zz);
figure(31); contourf(rr,zz,sigma_rg/1e3,51); xlabel('r'); ylabel('z');

title('\sigma_r [kPa]'); axis equal; colorbar
figure(32); contourf(rr,zz,sigma_zg/1e3,51); xlabel('r'); ylabel('z');

title('\sigma_z [kPa]'); axis equal; colorbar
figure(33); contourf(rr,zz,VonMises_g/1e3,51); xlabel('r'); ylabel('z');

title('von Mises [kPa]'); axis equal; colorbar

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 327

9.42 Elastic waves in solids
In this section three initial boundary value problems for dynamic elasticity are examined. The effect of a localized initial
displacement is visualized. Elastic waves are generated by each of the examples.

9.42.1 A cylindrical elastic wave

On a square domain (x, y) ∈ [−5,+5]× [−5,+5] an initial horizontal displacement is prescribed by

u1(x, y) =

{
0.1 · cos2(4 r) for 0 ≤ r ≤ π

8 ≈ 0.4

0 for π
8 ≤ r

,

where r =
√
x2 + y2. The vertical displacements u2 and the initial velocities are set to zero. On all of the boundaries zeros

displacements are enforced. Then the solutions are generated at times t = 1.0, 2.0, 3.0 and 4.0. The code below leads to
Figures 193 and 194.

• The maximal speed of the elastic waves is c =
√

E
ρ = 1 and for r =

√
x2 + y2 > π

8 ≈ 0.4 the initial displacements
are zero. Thus the displacements for r > c t+ 0.4 vanish. Expect the highest amplitudes at r = c t.

• In the right columns in Figures 193 and 194 the scale if changing for the different times. Thus use the values indicated
on the axes to evaluate the speed of the waves. The scaling in the left columns remains constant.

• The initial displacement is strictly horizontal and longitudinal waves move faster than transversal waves. This leads
to the elliptical shape of the horizontal displacement u1 for small times, i.e. Figure 193(b). The transversal speed
ctrans =

c√
2
≈ 0.7 c is confirmed by the figure.

• Initially the vertical displacements u2 are considerably smaller than the horizontal displacements u1.

ElasticWaveCylinder.m
E = 1; nu = 0; rho = 1; f = {0,0}; gD = {0,0}; gN = {0,0}; L = 10; H = L;
function res = u0Func(xy)
r = sqrt(xy(:,1).ˆ2+xy(:,2).ˆ2);
res = 0.1*cos(4*r).ˆ2.*(4*r<pi/2);

endfunction
u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 4; steps = [4,100];

N = 100; %% the graphs in the notes are generated with N = 200, but the CPU time ...
Mesh = CreateMeshRect(linspace(-L/2,+L/2,N+1),linspace(-H/2,+H/2,N+1),-11,-11,-11,-11);
Mesh = MeshUpgrade(Mesh,'quadratic');
[u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,tend,steps);

Amp = 0.02; Levels = Amp*[-1:0.1:1]; Levels(11)=[]; %% drop Levels = 0
for jj = 2:length(t)
u1 = u1_all(:,jj); u2 = u2_all(:,jj);
figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-1,1])

xlabel('x'); ylabel('y'); zlabel('u_1');
figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-1,1])

xlabel('x'); ylabel('y'); zlabel('u_2');
figure(40+jj); clf; FEMtricontour(Mesh,u1,Levels); axis equal;

xlabel('x'); ylabel('y'); title('u_1');
figure(50+jj); clf; FEMtricontour(Mesh,u2,Levels); axis equal

xlabel('x'); ylabel('y'); title('u_2')
endfor

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 328

(a) graph of u1 at t = 1.0

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

y

u1

(b) contours of u1 at t = 1.0

(c) graph of u1 at t = 2.0

-2 -1 0 1 2

-1

0

1

x

y

u1

(d) contours of u1 at t = 2.0

(e) graph of u1 at t = 3.0

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

x

y

u1

(f) contours of u1 at t = 3.0

(g) graph of u1 at t = 4.0

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

x

y

u1

(h) contours of u1 at t = 4.0

Figure 193: The horizontal displacement u1 of an elastic cylindrical wave

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 329

(a) graph of u2 at t = 1.0

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x

y

u2

(b) contours of u2 at t = 1.0

(c) graph of u2 at t = 2.0

-2 -1 0 1 2

-2

-1

0

1

2

x

y

u2

(d) contours of u2 at t = 2.0

(e) graph of u2 at t = 3.0

-2 0 2

-3

-2

-1

0

1

2

3

x

y

u2

(f) contours of u2 at t = 3.0

(g) graph of u2 at t = 4.0

-4 -2 0 2 4

-2

0

2

x

y

u2

(h) contours of u2 at t = 4.0

Figure 194: The vertical displacement u2 of an elastic cylindrical wave

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 330

9.42.2 A planar elastic wave in a canal

On a domain snown on the right in Figure 195 an initial horizontal displacement is prescribed by

u1(x, y) =

{
0.1 · cos2(8 (x+ 1)) for 0 ≤ (x+ 1) ≤ π

16 ≈ 0.2

0 for π
16 ≤ (x+ 1)

.

The vertical displacements u2 and the initial velocities are set to zero. On all of the boundaries are force free. Only on the
edge on the right zeros displacements are enforced. Then the solutions are generated at times t = 1.0, 2.0, 3.0 and 4.0. The
code below leads to Figures 195 and 196.

• With the parameters E = 1, ν = 0 and ρ = 1 the solution is a single pulse moving form x ≈ −1 to the right with
the speed c = 1 for the longitudinal elastic wave. This would be the case if the canal had a constant width. This
observation is confirmed by Figure 195(b) at time t = 1. Up to this time the width of the canal was constant. Only at
to upper edge the first, minor effect of the changing width is visible.

• At time t = 2 in Figure 195(d) the longitudinal pulse is at x ≈ 1 with its shape and size mostly intact. The upper part
is clearly modified by the narrower canal. In the section x < 1 the transversal elastic wave generated by the upper
wall is clearly visible.

• At time t = 3 in Figure 195(f) the longitudinal pulse is at x ≈ 2 with its shape and size mostly intact. The transvesal
wave moved down with speed ctrans = c√

2
≈ 0.7 .

• At time t = 4 in Figure 195(h) the longitudinal pulse is at x ≈ 2. It was reflected at the hard wall at x = 2.5 and is
moving back with negative amplitude.

• In Figure 196 the vertical displacement u2 is shown. At time t = 1 no result is shown, since u2 ≈ 0.

WaveCanal.m
x = linspace(0,1,21)'; y = cos(pi/2*x).ˆ2; bc = -22*ones(size(x));
MeshData = [-1,0.5,-22;x,0.5*y,bc;2.5,0,-11;2.5,-1,-22;-1,-1,-22];
x = MeshData(:,1); y = MeshData(:,2);
Mesh = CreateMeshTriangle('Canal',MeshData,0.001);
Mesh = MeshUpgrade(Mesh,'quadratic');

E = 1; nu = 0; rho = 1; f = {0,0}; gD = {0,0}; gN = {0,0};
function res = u0Func(xy)
res = 0.1*cos(8*(xy(:,1)+1)).ˆ2.*(8*(xy(:,1)+1)<pi/2);

endfunction
u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 4; steps = [4,200];
[u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,tend,steps);

Amp = 0.065; Levels = Amp*[-1:0.1/2:1]; Levels(21)=[]; %% drop Levels = 0
for jj = 2:length(t)
u1 = u1_all(:,jj); u2 = u2_all(:,jj);
figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-1,1])

xlabel('x'); ylabel('y'); zlabel('u_1');
figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-1,1])

xlabel('x'); ylabel('y'); zlabel('u_2');
figure(40+jj); clf; FEMtricontour(Mesh,u1,Levels); axis equal; title('u_1')

hold on; plot([x;x(1)],[y;y(1)],'k'); xlabel('x'); ylabel('y')
figure(50+jj); clf; FEMtricontour(Mesh,u2,Levels); axis equal; title('u_2')

hold on; plot([x;x(1)],[y;y(1)],'k'); xlabel('x'); ylabel('y')
endfor

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 331

(a) graph of u1 at t = 1.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u1

(b) contours of u1 at t = 1.0

(c) graph of u1 at t = 2.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u1

(d) contours of u1 at t = 2.0

(e) graph of u1 at t = 3.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u1

(f) contours of u1 at t = 3.0

(g) graph of u1 at t = 4.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u1

(h) contours of u1 at t = 4.0

Figure 195: The horizontal displacement u1 of an elastic cylindrical wave

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 332

(a) graph of u2 at t = 2.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u2

(b) contours of u2 at t = 2.0

(c) graph of u2 at t = 3.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y
u2

(d) contours of u2 at t = 3.0

(e) graph of u2 at t = 4.0

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

x

y

u2

(f) contours of u2 at t = 4.0

Figure 196: The vertical displacement u2 of an elastic cylindrical wave

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 333

9.42.3 A planar wave moving around a turn

On the curved domain shown in Figure 197 force free boundary contions are used on all section, but the top right part.
There zero displacements are imposed. An elastic wave is started horizontally in the lower left section by using the initial
displacement

u1(x, y) =

{
0.1 · cos2(4x) for 0 ≤ x ≤ π

8 ≈ 0.4

0 for π
8 ≤ x

,

u2(x, y) = 0 and zero initial velocity. Due to the rather theoretical material parameters E = 1, ν = 0 and ρ = 1 the wave

speed for longitudinal elastic waves is given by c =
√

E
ρ = 1. The single pulse of the initial form 0.1

2 cos2(4x) is expected
to move around the corner, leading to nonzero vertical displacements u2. The code below leads to Figure 198, confirming
the results. Caused by refelctions at the boundary of the curved domain the initial pulse will form a sizable tail.

• Observe that the values of u1 decrease as time t advances and the values of u2 increase.

• To examine different wave speeds, change the modulus of elasticity E, since the speed is given by c =
√

E
ρ .

• To examine the considerably smoother results on a horizontal strip, uncomment the line with the command MeshDeform()
in the code below. Observe the pure pulse moving to the right, no tail is forming and u2 remains zero.

• To examine transversal waves change the initial displacement to u2(x, y) with the modified line

u0 = {0,'u0Func'}; v0 = {0,0};

For transversal waves the speed is given by ctrans =
√

G
ρ with the shearing modulus G = E

2 (1+ν) . Thus for ν = 0

find ctrans = 1√
7
c ≈ 0.7 c. The results in Figure 198 will change. Now u2 will be large to start out.

Figure 197: The domain for an elastic wave moving on a curve

ElasticWaveCorner.m
%%% speed sqrt(E/rho) for longitudinal waves
E = 1; nu = 0; rho = 1; L = 12; H = 1; f = {0,0}; gD = {0,0}; gN = {0,0};
function res = u0Func(xy)
res = 0.1*cos(4*xy(:,1)).ˆ2.*(4*xy(:,1)<pi/2);

endfunction
u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 10; steps = [5,200];

Mesh = CreateMeshRect(linspace(0,L,121),linspace(-H/2,+H/2,11),-22,-22,-22,-11);
function res = Deform(xy)
alpha = pi/8; R = 5/alpha;

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 334

x = xy(:,1); y = xy(:,2) + R; angles = x/R; r = y;
res = [r.*sin(angles),R-r.*cos(angles)];

endfunction
Mesh = MeshDeform(Mesh,'Deform');
Mesh = MeshUpgrade(Mesh,'quadratic');
[u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,tend,steps);

Amp = 0.07;
for jj = 2:length(t)
u1 = u1_all(:,jj); u2 = u2_all(:,jj);
disp(sprintf('at time t=%i, max(u1) = %g, max(u2) = %g, max(u) = %g',...

t(jj),max(u1),max(u2),max(sqrt(u1.ˆ2+u2.ˆ2))))
figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-0.1,1])

xlabel('x'); ylabel('y'); zlabel('u_1');
figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-0.1,1])

xlabel('x'); ylabel('y'); zlabel('u_2');
figure(40+jj); FEMtrimesh(Mesh,sqrt(u1.ˆ2+u2.ˆ2)); zlim(Amp*[-0.1,1])

xlabel('x'); ylabel('y'); zlabel('|u|');
endfor
-->
at time t=2, max(u1) = 0.0610161, max(u2) = 0.00706702, max(u) = 0.0612235
at time t=4, max(u1) = 0.0633773, max(u2) = 0.0178088, max(u) = 0.0653784
at time t=6, max(u1) = 0.0561453, max(u2) = 0.0253832, max(u) = 0.0613949
at time t=8, max(u1) = 0.0469787, max(u2) = 0.0311124, max(u) = 0.0563221
at time t=10, max(u1) = 0.0409416, max(u2) = 0.0369974, max(u) = 0.0551817

SHA 15-5-24

9 EXAMPLES, EXAMPLES, EXAMPLES 335

(b) t = 2.0

(e) t = 4.0

(h) t = 6.0

(k) t = 8.0

(n) t = 10.0

Figure 198: An elastic wave moving in a turn at times 2, 4 , 6, 8 and 10. The left column shows the horizontal displacement
u1, the middle column the vertical displacement u2 and the column on the right u =

√
u21 + u22.

SHA 15-5-24

BIBLIOGRAPHY 336

Bibliography
[AgarHodiRega19] R. P. Agarwal, S. Hodis, and D. O’Regan. 500 Examples and Problems of Applied Differential Equa-

tions. Springer, 2019.

[AtkiHan09] K. Atkinson and W. Han. Theoretical Numerical Analysis. Number 39 in Texts in Applied Mathematics.
Springer, 2009.

[AxelBark84] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Values Problems. Academic Press, 1984.

[Barb18] J. Barber. Contact Mechanics. Springer, 2018.

[Blev79] R. Blevins. Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, 1979.

[Butc03] J. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, second edition,
2003.

[Demm97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[Gold01] W. Goldsmith. Impact. Dover Civil and Mechanical Engineering. Dover Publications, 2001.

[GoluVanLoan96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition, 1996.

[IzadSuayNoei21] M. Izadi, S. Yüzbasi, and S. Noeiaghdam. Approximating Solutions of Non-Linear Troesch’s Problem
via an Efficient Quasi-Linearization Bessel Approach. Mathematics, 9(16), 2021.

[John87a] K. Johnson. Contact Mechanics. Cambridge University Press, 1987.

[Kell92] H. B. Keller. Numerical Methods for Two–Point Boundary Value Problems. Dover, 1992.

[KubiHlav08] M. Kubicek and V. Hlavacek. Numerical Solution of Nonlinear Boundary Value Problems with Applications.
Dover books on engineering. Dover, 2008.

[MuelSilt12] J. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applications. Computa-
tional Science and Engineering. Society for Industrial and Applied Mathematics, 2012.

[MuelSilt20] J. Mueller and S. Siltanen. The D-bar method for electrical impedance tomography–demystified. Inverse
Problems, 36:28, 2020.

[Prze68] J. Przemieniecki. Theory of Matrix Structural Analysis. McGraw–Hill, 1968. Republished by Dover in 1985.

[Sege77] L. A. Segel. Mathematics Applied to Continuum Mechanics. MacMillan Publishing Company, New York, 1977.
republished by Dover 1987.

[Seyd00] R. Seydel. Einführung in die numerische Berechnung von Finanz–Derivaten. Springer, 2000.

[Seyd11] R. Seydel. Tools for Computational Finance. Springer, 5th edition, 2011.

[www:triangle] J. R. Shewchuk. https://www.cs.cmu.edu/˜quake/triangle.html.

[Soed04] W. Soedel. Vibrations of Shells and Plates. Dekker Mechanical Engineering. Taylor & Francis, 3rd edition, 2004.

[Sout73] R. W. Soutas-Little. Elasticity. Prentice–Hall, 1973.

[VarFEM] A. Stahel. Calculus of Variations and Finite Elements. Lecture Notes used at HTA Biel, 2000.

[Stah08] A. Stahel. Numerical Methods. lecture notes, BFH-TI, 2008.

[Stah22] A. Stahel. Octave and MATLAB for Engineering Applications. Springer Fachmedien Wiesbaden, Wiesbaden, first
edition, 2022.

[Stew13] I. Stewart. Seventeen Equations that Changed the World. Profile Books Limited, 2013.

[TongRoss08] P. Tong and J. Rossettos. Finite Element Method, Basic Technique and Implementation. MIT, 1977. Repub-
lished by Dover in 2008.

SHA 15-5-24

LIST OF FIGURES 337

[WaitMitc85] R. Wait and A. Mitchell. Finite Element Analysis and Applications. A Wiley-Interscience publication. Wiley,
1985.

[Wein74] R. Weinstock. Calculus of Variations. McGraw–Hill, New York, 1962. republished by Dover.

[Zien13] O. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element Method: Its Basis and Fundamentals. Butterworth-
Heinemann, 7 edition, 2013.

List of Figures
1 A semi–disk as domain in R2 and a solution of a BVP . 9
2 Deformation of an elastic solid . 13
3 Definition of strain: a rectangle before and after deformation . 13
4 Components of stress in space . 14
5 Solution of −∆u = 0.25 on a rectangle . 21
6 Solution of the Laplace equation in cylindrical coordinates . 22
7 Solution of a diffusion problem on a L-shaped domain . 23
8 Solution of a diffusion convection problem . 24
9 The fourth eigenfunction of ∆u = λu on a disc . 25
10 The first four radial eigenmodes of the Laplace operator on a disk of radius 1 27
11 Solution of a dynamic heat equation . 29
12 Solution of a wave equation . 30
13 The solution for a simple 1D boundary value problem and the sparsity of the matrix A 31
14 The solution of a steady state heat problem and the heat flux across spheres of radius r 32
15 The solution of dynamic heating of a ball, u as function of r or t . 33
16 The solution of dynamic heating of a ball, surface and contours . 33
17 The amplitude of a vibrating string, u as function of x and t, the surface 34
18 The amplitude of a vibrating string, u as function of x and t, the contour lines 35
19 The solutions and its contours for a nonlinear dynamic heat problem . 37
20 The computational domain and the two displacement functions u1 and u2 38
21 The normal strains εxx, εyy and the shearing strain εxy . 39
22 The normal stresses σx and σy and the shearing stress τxy . 39
23 The von Mises and Tresca stress . 40
24 The computational domain and the two displacement functions u1 and u2 41
25 The normal strains εxx, εyy and the shearing strain εxy . 41
26 The normal stresses σx and σy and the shearing stress τxy . 42
27 The von Mises and Tresca stress . 43
28 The first eigenmode of a bending beam . 44
29 The first eigenmode of a bending beam as dynamic problem . 44
30 The original and deformed domain and the von Mises stress for an axially symmetric setup 45
31 Stresses for an axially symmetric setup . 46
32 A domain with a hole and a finer mesh at the lower edge . 53
33 The deformed lever and the bending of the center line . 53
34 A domain with a two different mesh sizes . 54
35 The same mesh with linear or quadratic elements . 56
36 A mesh generated by a Delaunay triangulation and the solution of a BVP 57
37 A function evaluated on a uniform grid . 62
38 Convergence results for linear, quadratic and cubic elements . 94
39 An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix 96
40 Uniform meshes consisting of equilateral triangles . 96
41 An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix 97
42 A right triangle, the Gauss integration points and the element stiffness matrix 98
43 Uniform meshes consisting of rectangular triangles . 99
44 A right angle triangle, the Gauss integration points and the element stiffness matrix 100
45 The number of nonzero entries in each row . 102

SHA 15-5-24

LIST OF FIGURES 338

46 The mesh and the solution for a BVP . 103
47 Difference to the exact solution and values of ∂ u

∂y , using a first order mesh 103
48 Difference to the exact solution and values of ∂ u

∂y , using a second order mesh 104
49 Difference of the approximate values of ∂ u

∂y to the exact values . 104
50 Difference of the approximate values of u and ∂ u

∂y to the exact values for cubic elements 105
51 Meshes for linear, quadratic and cubic elements . 107
52 The solution and the first derivative, evaluated at the nodes and by interpolation 109
53 The first derivative, complete graph and zoomed in at x = 0.5 . 109
54 Differences of the FEM solution uFEM (x) to the exact solution uexact(x) = exp(x) 110
55 The solution and difference to the exact solution for a 1D BVP . 111
56 The derivative of the numerical solution and difference to the exact solution 112
57 The second derivative of the numerical solution and difference to the exact solution 112
58 The solution generated by the implicit time stepper . 113
59 The solution generated by the Crank–Nicolson time stepper . 114
60 The solution at time t = 2 generated by the explicit and Runge–Kutta time steppers 114
61 Solutions of the wave equation at the time t = tend . 116
62 Original and deformed domain and the Gauss integration points for linear elements 117
63 The strains εxx and εxy with two layers in each direction . 118
64 The original shape of the a beam and its (exaggerated) deformed shape, using two layers of elements 122
65 Meshes for linear and quadratic elements with one layer, with the integration points 123
66 The elastic energy density of the bending beam with one or five layers . 123
67 The second eigenmode of a bending beam . 126
68 The solution of the boundary value problem with an additional constraint 128
69 The contours for the displacement u =

√
u21 + u22, without and with constraints 129

70 Classical and weak solutions, minimizers and FEM . 133
71 A few triangular elements . 135
72 Transformation of the standard triangle Ω to a general triangle E . 135
73 Gauss integration of order 2 on the standard triangle, using 3 integration points 137
74 Gauss integration of order 5 on the standard triangle, using 7 integration points 138
75 Local and global numbering of nodes . 139
76 Basis functions for second order triangular elements . 145
77 Transformation of the cubic standard triangle Ω to a general triangle E . 154
78 The 10 basis functions for third order triangular elements . 156
79 The interpolation from four nodes to three Gauss points on an interval [−h

2 ,+
h
2] 162

80 The mesh and the solution of an elliptic problem with variable coefficients 201
81 Traveling waves on a rectangle . 203
82 The radial Bessel function as solution of a BVP . 204
83 Difference to the exact solution of a BVP . 204
84 Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid. 205
85 Difference of ∂ u

∂x to the exact solution, using second order elements . 205
86 Difference of ∂ u

∂x to the exact solution, using first order elements . 206
87 A solution with singular partial derivatives at the origin . 207
88 A solution with singular partial derivatives, graphs of ∂ u

∂x and ∥∇u∥ . 208
89 Fluid flow between two plates, the setup . 208
90 Velocity field of an ideal fluid . 209
91 Velocity field of a ideal fluid in a circular pipe . 211
92 The wing profile and the mesh with the rotated wing . 213
93 The surface for v2 and the pressure along wing . 214
94 The contour plot for the pressure . 215
95 The flow lines around the wing . 216
96 A minimal surface . 216
97 The capacitance and the section used for the modeling . 218
98 A mesh on the domain . 219
99 The contour lines of the resulting voltage . 219
100 Voltage plot and electric field between the plates of the capacitance . 219

SHA 15-5-24

LIST OF FIGURES 339

101 Torsion of a shaft . 221
102 The von Mises stress caused by torsion of a bar with square or rectangular cross section 223
103 The mesh for a dynamic heat problem . 225
104 The evolution of the temperature surface at different times . 225
105 The temperature surface at different times along y = 0 . 225
106 The temperature as function of time at the endpoint (2.5 , 0) . 226
107 The mesh for a dynamic heat problem . 227
108 The evolution of the temperature surface at different times . 227
109 The temperature surface at different times along y = 0 . 228
110 The temperature as function of time at the endpoint (2.5 , 0) . 228
111 The domain and the initial temperature . 230
112 The temperature at different times . 230
113 The temperature at different times along y = 0 . 231
114 The temperature decay at the center (0, 0) . 232
115 The domain for a heat wave propagation . 233
116 The propagation of a heat wave . 233
117 The steady state solution of a heat problem in a ball . 236
118 The errors of the steady state solution of a heat problem in a ball . 236
119 The steady statesolution of a heat problem in a ball, solved as 1D problem 237
120 The temperatur u(r, t) inside the cylinder . 238
121 The contours of the temperatur u(r, t) inside the cylinder . 238
122 The temperatur u(r, t) at the inner (r = 0) and outer (r = R) edge . 239
123 The domain for the wave propagation . 239
124 Wave propagation, leading to a Kirchhoff diffraction pattern . 240
125 A spherical sound wave at time t = 1.75, and the decaying amplitude with the best fitting c

t 242
126 A circular sound wave at time t = 4 and the decaying amplitude with the best fitting c√

t
. 243

127 A spherical wave as function of time t and radius r =
√
x2 + y2 + z2 . 244

128 A cylindrical wave as function of time t and radius r =
√
x2 + y2 . 245

129 The amplitude u(x, t) for a reflected pulse . 246
130 Waterfall plot and contour plot for the amplitude u(x, t) for a reflected pulse 247
131 The value V of a European call option as function of time τ and the value of the stock S 248
132 The value V of a European put option as function of time τ and the value of the stock S 250
133 The first six eigenfunctions of the harmonic Schrödinger operator . 252
134 The PDF for the first six modes of the harmonic Schrödinger operator . 252
135 The conductivity . 253
136 Contours of the voltages . 254
137 The vector field for the current density J⃗ and a few streamlines . 255
138 Voltage along the boundary . 255
139 Differences of the voltage and the reference voltage . 256
140 Flux density at inlet and outlet . 258
141 A catenary, the FEM solution and the difference to the exact solution . 259
142 Displacement and strain for a beam with thinner midsection . 260
143 Fata Morgana: the ray of light for a point on the ground . 261
144 Fata Morgana: how the image of two points appear to the observer . 262
145 Keller’s boundary value problem . 263
146 Two solutions of −u′′(x) = 1

2 exp(u(x)) with u(−1) = u(+1) = 0 . 265
147 A BVP with multiple nonlinear contributions . 266
148 The solution of Fisher’s equation . 268
149 A dynamic solution of Fisher’s equation . 270
150 A dynamic solution of Fisher’s equation for the radially symmetric setup 270
151 The connections between Salt Lake City and Zürich . 272
152 The solutions for a bending beam . 276
153 Time evolution and the final solution for a dynamic bending beam . 278
154 A BVP describing mass transfer in a porous catalyst . 279
155 A BVP describing mass transfer in a porous catalyst, second setup . 280

SHA 15-5-24

LIST OF TABLES 340

156 Motion of a string, excited by an initial pulse close to x = 0 . 282
157 The original and deformed Mesh for a plane stress example . 282
158 The displacements for a plane stress example . 283
159 The stresses for a plane stress example . 284
160 The von Mises stress and the energy density for a plane stress example . 285
161 The normal strain in the 45◦ direction for a plane stress example . 286
162 One quarter of a section through the pipe . 286
163 Von Mises stress and principal stresses . 288
164 Domain for the crook with attached weight . 294
165 A horizontal slice with σy shown and a vertical slice with σx shown . 296
166 The von Mises stress on the crook, as surface and level curves . 296
167 Bending of vertical beam and von Mises Stress at corner . 297
168 The deformed wrench and the stress σy along upper edge with the applied load 298
169 Surface and contour plot of the von Mises stress in [MPa] . 299
170 The upper half of the original and deformed domain for the rotating rubber box 300
171 The displacements ur and uz for the rotating rubber box . 300
172 The von Mises stress for the rotating rubber box . 301
173 The original and deformed domain of the washer . 301
174 The radial displacement ur . 302
175 The height displacement uz . 303
176 The normal stress σz . 304
177 The normal pressures σz along upper and lower edge and at half height . 304
178 The normal stresses and the von Mises stress in a water dam . 307
179 Three eigenmodes of a tuning fork . 309
180 The first twelve eigen modes of a vibration ring . 311
181 Radial and angular displacement for mode 7 . 313
182 The mesh for the cylinder contact problem . 314
183 Vertical displacement and normal stress at different levels . 315
184 Contact with cylinder: contours for the displacements u2 and u1 and

√
u21 + u22 318

185 Contact with cylinder: contours for the two normal stresses and the von Mises stress 318
186 Contact with cylinder: results of pressure and contact width for small penetration depth 320
187 Contact with cylinder: results of pressure and contact width for large penetration depth 321
188 Contact with sphere: results of pressure and contact width for large penetration depth 323
189 Contact with sphere: contours for the displacements uz and ur and

√
u2r + u2z 323

190 Contact with sphere: contours for the two normal stresses and the von Mises stress 324
191 Contact with a sphere for given normal pressure σz(r, 0) . 324
192 The von Mises stress for a contact with a sphere for given normal pressure σz(r, 0) 325
193 The horizontal displacement u1 of an elastic cylindrical wave . 328
194 The vertical displacement u2 of an elastic cylindrical wave . 329
195 The horizontal displacement u1 of an elastic cylindrical wave . 331
196 The vertical displacement u2 of an elastic cylindrical wave . 332
197 The domain for an elastic wave moving on a curve . 333
198 An elastic wave moving through a turn . 335

List of Tables
1 Commands to solve BVPs, IBVPs and elasticity problems . 11
2 Normal and shear strains in space . 14
3 Description of normal and tangential stress in space . 15
4 Commands to create and modify meshes . 47
5 Elements of a mesh structure . 48
6 Codes for the boundary conditions . 49
7 Commands to solve and examine 1D boundary value problems . 68
8 Commands to solve and examine plane elasticity problems . 81
9 Commands to solve and examine axially symmetric elasticity problems 86

SHA 15-5-24

LIST OF TABLES 341

10 Results for elements of order 1, 2 and 3 . 108
11 Elastic energy contributions for shearing . 119
12 Different values for the deformation of a bending beam, depending on the size of the grid 124
13 Properties of triangular elements . 135
14 Coordinates of the nodes in the standard quadratic triangle . 144
15 Coordinates of the nodes in the standard cubic triangle . 154
16 Properties of the ODE solvers used in IBVP1D() . 177
17 Variables for the Black–Scholes PDE . 248
18 Comparison of different elements for the washer fastener example . 306
19 Parameters for the contact of a cylinder with a half space . 314
20 Adaptations for pressing with a cylinder or a sphere . 322

SHA 15-5-24

Index
AxiStress(), 45, 85, 290, 292, 299, 302, 322, 324, 326
AxiStressEquationCubicM(), 91
AxiStressEquationM(), 91, 131
AxiStressEquationQuadM(), 91
axisymmetric, 18

basis function, 144, 154
Bernoulli principle, 16, 18, 20, 183
Bernoulli’s law, 213
Black–Scholes, 247
boundary condition, 174
BVP, 21

boundary value problem, 9
eigenvalue, 10
elliptic, 9
symmetric, 10

BVP1D(), 31, 68, 69, 108–111, 237, 260, 262, 263, 272, 275
BVP1Deig(), 26, 74, 251
BVP1DNL(), 35–37, 75, 258, 261, 263–266, 268, 274, 276–

280
BVP2D(), 23, 24, 64, 127, 233
BVP2Deig(), 24, 25, 65, 232
BVP2Dsym(), 21–23, 63, 201, 213, 235, 255

catenary, 258
Cholesky, 166
conforming, 61, 103, 108, 110, 134, 135
constant strain triangle, 117, 186
convection, 24
convergence, 93
Crank–Nicolson, 72, 113, 166, 177–179
CreateMeshRect(), 21, 22, 24, 27, 40, 42, 49, 56, 60, 98,

119, 122, 127, 202, 203, 241, 243, 286, 287, 294,
324, 326, 327, 330, 333

CreateMeshTriangle(), 23, 25, 28, 38, 50, 52, 58, 61, 94, 95,
98, 103, 127, 201, 203, 206, 208, 211, 213, 217,
223, 224, 227, 229, 233, 240, 283, 292, 293, 297,
302, 310, 312, 315, 324, 326

CST, 117, 186

Delaunay, 57
Delaunay2Mesh(), 57
DIRK, 178

eigenvalue, 24, 90, 167, 168
eigs, 90
EIT, 253
element stiffness matrix, 138
EvaluateEnergyDensity(), 85, 122, 284
EvaluateEnergyDensityAxi(), 88, 292, 305
EvaluatePrincipalStress(), 39, 42, 84, 288
EvaluatePrincipalStressAxi(), 87, 290
EvaluateStrain(), 38, 41, 82, 120
EvaluateStrainAxi(), 86, 290, 292

EvaluateStress(), 39, 42, 82, 127, 284, 287, 295, 298, 306,
310, 316

EvaluateStressAxi(), 45, 87, 290, 300, 322, 324, 326
EvaluateTresca(), 39, 42, 84
EvaluateTrescaAxi(), 88, 290
EvaluateVonMises(), 39, 42, 83, 284, 287, 296, 298, 306,

316
EvaluateVonMisesAxi(), 45, 87, 290, 300, 322, 324, 326
explicit, 72, 113, 166, 168, 177, 178

Fata Morgana, 260
FEM1DEvaluateDu(), 68, 70, 108–110, 176, 259, 261, 263,

265, 272
FEM1DGaussPoints(), 68, 70, 263, 272, 275
FEM1DIntegrate(), 70, 259
FEMEquation(), 88, 95
FEMEquationCubic(), 89
FEMEquationQuad(), 89
FEMEvaluateGP(), 59, 121, 305
FEMEvaluateGradient(), 59, 207
FEMgriddata(), 53, 61, 117, 119, 204, 214, 215, 233, 235,

255, 257, 285, 288, 289, 294–296, 298, 316, 317,
326

FEMIntegrate(), 60, 120, 121, 201, 284, 292, 305
FEMInterpolBoundaryWeight(), 90
FEMInterpolWeight(), 89
FEMtricontour(), 23, 24, 27, 57, 58, 208, 211, 214, 220, 255,

285, 296, 299, 300, 327, 330
FEMtrimesh(), 21–23, 25, 27, 28, 38, 57, 58, 103, 127, 201,

202, 206–208, 211, 214, 220, 233, 240, 255, 284,
299, 300, 306, 310, 324, 326, 327, 330, 333

FEMtrisurf(), 58, 217, 223, 283, 296
Fermat’s principle, 261
Fisher’s equation, 267

Galerkin method, 134
Gauss integration, 60, 136–138, 143, 145, 152, 155, 163,

171, 172, 188, 190
GenerateFEM1D(), 68, 69
GenerateWeight1D(), 68

heat equation, 10, 24, 27, 165, 167
Hooke’s law, 14

I2BVP1D(), 34, 68, 73, 244–246, 281
I2BVP2D(), 28, 67, 202, 240, 241, 243
IBVP, 21

hyperbolic, 11, 67, 167
parabolic, 10, 66, 165

IBVP1D(), 32, 68, 71, 72, 113, 237, 248, 249
IBVP1DNL(), 37, 76, 269, 270, 277
IBVP2D(), 27, 66, 166, 224, 227, 233
IBVP2Dsym(), 66, 166, 229, 233
implicit, 72, 113, 166, 177, 178
interpolation, 171

342

INDEX 343

Jaccobi determinant, 136

mesh, refine, 57
MeshAddConstraint(), 55, 127
MeshCubic2Linear(), 55, 56
MeshDeform(), 40, 57, 201, 286, 287, 333
MeshQuad2Linear(), 24, 55, 56, 203
MeshUpgrade(), 24, 38, 40, 42, 50, 51, 55, 127, 201, 203,

213, 235, 240, 255, 283, 287, 293, 297, 310, 312,
315, 324, 326

minimal surface, 216

pendulum, 265
PlaneStrain(), 40, 78, 287, 306, 313, 316
PlaneStrainDynamic(), 79
PlaneStrainEig(), 79, 310
PlaneStress(), 38, 53, 78, 283, 293, 294, 297
PlaneStressDynamic(), 43, 79, 327, 330, 333
PlaneStressEig(), 42, 79, 125, 127, 131, 308, 310, 312
potential flow, 207, 210, 213
Prandtl stress function, 222
principal stress, 39, 42, 84
PStressEquationCubicM(), 91
PStressEquationM(), 91, 130
PStressEquationQuadM(), 91
PStressEquationWM(), 185
pwquadinterp(), 32, 68, 70, 108–111, 176, 237, 260, 263,

272, 275, 279, 280

ReadMeshTriangle(), 50, 51, 55
Ritz method, 134
Runge–Kutta, 72, 113, 166, 178

Schrödinger equation, 250
shear–locking, 116, 119, 122, 125, 293, 310
ShowDeformation(), 40, 58, 81, 122, 287, 299, 302, 310,

312
singular problem, 206
smallEig(), 90
solution

classical, 132, 133
weak, 133, 134

stability
A–stability, 177
conditional, 72, 113, 177
L–stability, 72, 113, 177
unconditional, 72, 113, 177

stiffness matrix
element, 134
global, 134

strain, 13
streamline(), 215, 255
stress

principal, 39, 42, 84, 290
Tresca, 39, 42, 84, 290
von Mises, 39, 42, 83, 222, 284, 287, 290, 296, 298,

300

successive substitution, 262, 271
superconvergence, 93, 111, 203, 237

tensor
infinitesimal strain, 13

time step
Crank–Nicolson, 166, 178
explicit, 178
implicit, 178
Runge–Kutta, 178

torsional rigidity, 221
Tresca stress, 39, 42, 84, 290
triangle, 7, 50, 51, 92, 218
tricontour(), 58, 92
tuning fork, 308

water dam, 306
wave equation, 28, 165, 167, 168

SHA 15-5-24

	Table of Contents
	Introduction
	The Problems to be Examined
	The domain R2 and its boundary == 12
	The general elliptic problem
	The symmetric elliptic problem
	The symmetric eigenvalue problem
	The general parabolic problem
	The symmetric parabolic problem
	The hyperbolic problem
	1D boundary value problems
	1D initial boundary value problems of order 1
	1D initial boundary value problems of order 2
	1D eigenvalue value problems
	Nonlinear 1D boundary value problems
	Dynamic nonlinear 1D initial boundary value problems
	Plane elasticity
	Description of strain
	Description of stress and Hooke's law
	The plane stress problems
	The plane strain problems

	Elasticity problems for axisymmetric solids, using cylindrical coordinates

	Illustrative Examples
	Solving elliptic problems, static heat equations
	A symmetric problem
	Laplace equation in cylindrical coordinates
	Diffusion on an L-shaped domain
	A diffusion convection problem

	Solving eigenvalue problems
	Solving parabolic problems, dynamic heat equations
	Solving hyperbolic problems, wave equations
	Solving 1D steady state boundary value problems
	Solving 1D dynamic initial boundary value problems of order 1, a heat equation
	Solving 1D dynamic initial boundary value problems of order 2, a wave equation
	Solving nonlinear 1D boundary value problems
	A nonlinear 1D BVP solved by BVP1DNL()
	A nonlinear 1D BVP solved by successive substitution

	A dynamic nonlinear initial boundary value problem
	Plane elasticity
	A plane stress example
	A plane strain example
	A plane stress eigenvalue problem and a dynamic problem

	An axially symmetric elasticity example

	The Commands of FEMoctave
	Commands for 2D meshes: creation and modification
	Structure of a mesh
	Create a uniform mesh on a rectangle: CreateMeshRect()
	Using triangle: CreateMeshTriangle() and ReadMeshTriangle()
	Adapting meshes and creating holes by using options of CreateMeshTriangle()
	Adding constraints to a node in the mesh
	Converting meshes: upgrading and downgrading
	Use delaunay() to create a mesh: Delaunay2Mesh()
	Deforming meshes by MeshDeform()

	Evaluation and displaying results
	Display results on meshes, FEMtrimesh(), FEMtrisurf(), and FEMtricontour()
	Evaluate the gradient of a function at the nodes: FEMEvaluateGradient()
	Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP()
	Integrate a function over the domain: FEMIntegrate()
	Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata()

	How to define functions
	Functions for static problems
	Functions for dynamic problems

	Solving elliptic problems
	Symmetric elliptic problems: BVP2Dsym()
	General elliptic problems: BVP2D()

	Solving 2D eigenvalue problems: BVP2Deig()
	Solving parabolic problems: IBVP2D() and IBVP2Dsym()
	Solving hyperbolic problems: I2BVP2D()
	Solving 1D steady state problems, BVP1D()
	Solving 1D dynamic problems of order 1, IBVP1D()
	Solving 1D dynamic problems of order 2, I2BVP1D()
	Solving 1D eigenvalue problems: BVP1Deig()
	Solving nonlinear 1D boundary value problems: BVP1DNL()
	Solving dynamic nonlinear 1D boundary value problems: IBVP1DNL()
	Plane elasticity problems
	Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain()
	Eigenvalue problems, PlaneStressEig(), PlaneStrainEig()
	Dynamic elasticity problems, PlaneStressDynamic(), PlaneStrainDynamic()
	Evaluating plane stress and plane strain solutions
	Displaying the deformed domain, ShowDeformation()
	Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress()
	Evaluation of stress expressions: EvaluateVonMises(), EvaluatePrincipalStress() and EvaluateTresca()
	Evaluation of the energy density, EvaluateEnergyDensity()

	Solving axisymmetric elasticity problems, AxiStress()
	Evaluating axisymmetric solutions
	Evaluation of strains and stress for axisymmetric problems
	Evaluation of the energy density, EvaluateEnergyDensityAxi()

	Internal commands in FEMoctave
	Linear elements: FEMEquation.cc and FEMEquation.m
	Quadratic elements: FEMEquationQuad.cc and FEMEquationQuad.m
	Cubic elements: FEMEquationCubic.cc and FEMEquationCubic.m
	Effect of right hand side for dynamic problems: FEMInterpolWeight()
	Effect of the Dirichlet values: FEMInterpolBoundaryWeight()
	Determine a few small eigenvalues: eigSmall()
	Generating the equations for elasticity problems

	External programs

	Tools for Didactical Purposes
	Observe the convergence of the error as h0
	Some Element Stiffness Matrices
	Element contributions for equilateral triangles
	From FEM to a finite difference approximation
	Element stiffness matrices for 1D problems
	Element stiffness matrices for elasticity problems

	Behavior of a FEM solution within triangular elements
	Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix
	Compare linear, quadratic and cubic elements
	Are second order elements C1 conforming?
	Superconvergence for a 1D BVP
	Stability of the time steppers, or lack thereof
	Conditional stability of the explicit time stepper for a wave equation
	The shear–locking effect caused by linear elements
	Bending of an Euler beam
	Eigenvalues and eigenmodes of a slender beam
	Adding missing constraints
	Adding a constraint for a steady state heat problem
	Adding constraints for an elasticity problem

	Missing boundary constraints and null spaces

	The Mathematics of the Algorithms for 2D FEM
	Classical solutions and weak solutions
	A few triangular elements
	Transformation, interpolation and Gauss integration
	Transformation of coordinates and integration over a general triangle
	Gauss integration on the standard triangle with 3 Gauss points
	Gauss integration on the standard triangle with 7 Gauss points

	Construction of first order elements
	Linear interpolation on a triangle
	Integration of f
	Integration of b0u
	Integration of au
	Integration of u"017Eb
	Integration over boundary segments

	Construction of second order elements
	The basis functions for a second order element and quadratic interpolation
	Determine values at the Gauss points and apply Gauss integration
	Integration of f
	Integration of b0u
	Transformation of the gradient to the standard triangle
	Partial derivatives at the nodes
	Integration of u"017Eb and au
	Integration over boundary segments

	Construction of third order elements
	The basis functions for a third order element and cubic interpolation
	Determine values at the Gauss points and apply Gauss integration
	Integration of f and b0u
	Transformation of the gradient to the standard triangle
	Integration of u"017Eb and au
	Partial derivatives at the nodes
	Integration over boundary segments
	From a polynomial interpolation to the Gauss integration points

	Convergence of the approximate solutions uh to the exact solution u
	Dynamic problems
	Dynamic problems of the heat equation type
	Using eigenvalues for dynamic problems of the heat equation type
	Dynamic problems of the wave equation type
	Using eigenvalues for dynamic problems of the wave equation type

	Inverse power iteration or eigs() to determine small eigenvalues of positive definite matrices

	The Algorithms for 1D FEM
	The problems to be examined
	Interpolation, Gauss integration and the element stiffness matrices
	Taking boundary conditions into account
	Solving the BVP with a system of linear equations
	Evaluation of the solution between nodes and evaluation of derivatives
	The first order dynamic problem
	An explicit time step
	An implicit time step
	A Crank–Nicolson time step
	An L–stable Runge–Kutta solver, DIRK
	A solver for semilinear dynamic problems

	The second order dynamic problem
	An implicit solver
	An explicit solver

	Nonlinear boundary value problems, Newton's method and partial substitution

	The Algorithms for Plane Elasticity and Axially Symmetric Elasticity
	The plane stress problem
	The plane stress eigenvalue and dynamic problem
	Construction of first order elements
	Integration of f11+f22
	Integration of the terms involving derivatives of 1 and 2
	The boundary integral
	Construct a weight matrix W

	Construction of second order elements
	Integration of f11+f22
	Integration of the terms involving derivatives of 1 and 2
	The boundary integral
	Construct a weight matrix W

	Construction of third order elements
	Integration of f11+f22
	Integration of the terms involving derivatives of 1 and 2
	The boundary integral
	Construct a weight matrix W

	The plane strain problem
	Elasticity for axially symmetric setups
	Construction of first order elements
	Integration of r(frr+fzz)
	Integration of the terms involving derivatives of z and z
	The boundary integral

	Construction of second order elements
	Integration of r(frr+fzz)
	Integration of the terms involving derivatives of r and z
	The boundary integral

	Construction of third order elements
	Integration of r(frr+fzz)
	Integration of the terms involving derivatives of z and z
	The boundary integral

	Examples, Examples, Examples
	An elliptic problem with variable coefficients
	An animated wave
	An elliptic problem with radial symmetry, superconvergence
	An example with limited regularity
	A potential flow problem
	A potential flow problem in a circular pipe
	A potential flow around a wing profile
	A minimal surface problem
	Computing a capacitance
	State the problem
	Create the mesh and solve the BVP
	Compute the capacitance

	Torsion of beams, Prandtl stress function
	The setup with the warp function and the Prandtl stress function
	On a disk with radius R
	On a square
	On a rectangle

	Dynamic heat conduction problems
	With a narrow section in the domain
	With a section of lower thermal conductivity
	Cooling of a cylinder
	Heat waves
	Static heat equation in a ball in R3, solved as a 1D problem
	Dynamic heat equation in a cylinder, solved as a 1D problem

	Wave propagation, Kirchhoff diffraction
	Sound waves in R2 and R3
	A sound wave in R3 with cylindrical coordinates
	A sound wave in R2
	Sound waves in R3 and R2 as 1D problems

	Reflection and transmission of a wave by a change of impedance
	The Black–Scholes equation of mathematical finance
	Schrödinger's harmonic oscillator
	The EIT forward problem
	A Catenary
	Stretching of a beam
	How a Fata Morgana is appearing
	Keller's nonlinear boundary value problems
	Partial successive substitution
	Newton's method
	Using BVP1DNL()
	A similar problem with multiple solutions

	A pendulum problem
	A BVP with multiple nonlinear contributions
	Fisher's equation
	A travelling wave solution
	A dynamic solution
	A dynamic solution of the radially symmetric setup

	From Salt Lake City to Zürich, the shortest connection on a sphere
	A solution based on successive substitution
	A solution using BVP1DNL()

	A 1D nonlinear bending beam problem
	Solving the BVP using Newton's algorithm
	Solving the BVP with the command BVP1DNL()
	Solving the BVP as final value of a dynamic problem, using IBVP1DNL()

	Mass transfer in a porous catalyst
	Troesch's equation
	Motion of a string
	A plane stress example by Wait and Mitchel
	A pipe under pressure
	As a plane strain problem
	As an axisymmetric problem
	The analytical solution

	A sphere under hydrostatic pressure
	A crook with a weight attached
	A wrench
	A rotating rubber cylinder
	A washer fastener examined as spring
	The setup
	Evaluate the force by integrating the normal stress
	Evaluate the force by an energy argument
	Comparison of linear, quadratic and cubic elements
	Effect of different boundary conditions

	A water dam
	A tuning fork
	Vibrations of a ring
	Hertz contact of a rigid cylinder with an elastic half space
	The model and the algorithm
	Evaluation and visual results
	The analytical solution based on the Hertz theory
	Parameter studies for different penetration depths

	Hertz contact of a rigid sphere with an elastic half space
	Elastic waves in solids
	A cylindrical elastic wave
	A planar elastic wave in a canal
	A planar wave moving around a turn

	Bibliography
	List of Figures
	List of Tables
	Index

